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We investigate the backreaction of the quantum fluctuations of a very light (m ≲Htoday) nonminimally
coupled spectator scalar field on the expansion dynamics of the Universe. The one-loop expectation value
of the energy-momentum tensor of these fluctuations, as a measure of the backreaction, is computed
throughout the expansion history from the early inflationary universe until the onset of recent acceleration
today. We show that, when the nonminimal coupling ξ to Ricci curvature is negative (ξc ¼ 1=6
corresponding to conformal coupling), the quantum backreaction grows exponentially during inflation,
such that it can grow large enough rather quickly (within a few hundred e-foldings) to survive until late time
and constitute a contribution of the cosmological constant type of the right magnitude to appreciably alter
the expansion dynamics. The unique feature of this model is in that, under rather generic assumptions,
inflation provides a natural explanation for the initial conditions needed to explain the late-time accelerated
expansion of the Universe, making it a particularly attractive model of dark energy.
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I. INTRODUCTION

The recent accelerated expansion of the Universe and its
cause is one of the most puzzling mysteries in cosmology
and physics today. Since the observations of type Ia
supernovae reported by two groups [1,2], a lot of obser-
vations have been accumulating to indicate that the
Universe is well described by the ΛCDM model (for recent
observational results, see e.g. Refs. [3,4]). Although the
cosmological constant (CC) gives a good fit to the data and
explains well the current cosmic acceleration, future
observations promise to provide much tighter constraints
of the models. That motivated theorists to explore other
possibilities, which generically came to be known as dark
energy (DE) (for a review on dark energy, see e.g. Ref. [5]).
The origin of dark energy could be matter of which the
properties mimic those of cosmological constant, but it
could be also in the modification of gravity on cosmologi-
cal scales [6]. In fact, due to the intricate coupling between
gravity and matter in some theories, it is not always
possible to tell whether dark energy comes from a new
kind of matter or from a modification of gravity.
In this work, we examine the idea that dark energy

originates from the backreaction of quantum fluctuations
originating in the primordial inflationary universe. The idea
that the origin of dark energy can be linked to primordial

inflation has not been widely explored (for an early attempt
to link the cause of inflation with the cause of dark energy,
see Ref. [7], and for a more recent attempt, see Ref. [8]).
Also, early attempts [9,10] to link quantum fluctuations of
the inflaton to dark energy turned out not to be correct [11].
Indeed, a careful one-loop calculation of the energy-
momentum tensor from inflationary gravitons [12] and an
educated estimate of the corresponding energy-momentum
tensor from scalar cosmological perturbations [12] shows
that, rather than contributing to dark energy, these infla-
tionary perturbations contribute a tiny amount (about 10−13

of the critical density today) to dark matter.
Recently, the idea of relating quantum backreaction to

dark energy has again drawn some attention, and here we
give a brief overview. In Ref. [12], the minimally coupled
massless spectator scalar was studied, and it was found that
the quantum backreaction in late-time matter era scales just
as nonrelativistic matter fluid driving the background
expansion, but its fraction is tiny, about 10−13 of the critical
density. This ratio is determined by the same ratio reached
by the end of inflation, and it effectively freezes afterward.
The same was concluded for the contribution from grav-
itons. The result for scalars was subsequently confirmed in
Ref. [13]. There, it was also investigated what the
influences of possible pre-inflationary periods are on the
magnitude of late-time quantum backreaction, and it was
found it could be increased if additional inflationary
periods at a much higher (Planck) energy scale existed
prior to the standard one, but the late-time scaling cannot be
changed.
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However, when one considers the quantum backreaction
from inflationary quantum fluctuations of a massless non-
minimally coupled spectator scalar field, and when the
relevant nonminimal coupling is negative (such that it gives
a tachyonic mass to the scalar during inflation), then under
reasonable conditions on inflation and nonminimal cou-
pling, the scalar field can yield a large quantum back-
reaction at late times [14], making it potentially a candidate
for dark energy (the analysis performed in Ref. [14] is
perturbative, and hence any statements about whether that
is a reliable candidate for dark energy cannot be made). In
this model, the backreaction can grow considerably during
inflation (even to nonperturbative values), how fast depend-
ing on the nonminimal coupling (this was already found in
Refs. [15,16] for more general slow-roll inflation), so its
ratio to the background fluid is greatly enhanced compared
to the minimally coupled case. This ratio again freezes
during the radiation period but starts to evolve again in the
matter period.
Another idea involves the late-time quantum backreaction

from inflationary quantum fluctuations of a very light
spectator scalar field [17],where thebackreaction contributes
like a CC at the late-time matter era. In order for this idea to
work, the authors of Ref. [17] needed to lower the scale of
inflation, and furthermore they needed a humongously large
number of e-foldings of inflation (NI ≳ 1060). In a more
recent paper [18], it was pointed out that the mechanism
works as well for inflation at the grand-unified scale and that
the required number of e-foldings is “only” about 1013.
When compared with the original work [17], that was a
significant improvement. In Ref. [18], it was also studied
how some preinflationary periods can lead to lowering the
requirements on the number of e-foldings of this model
where they managed to get it down to NI ∼ 240 with the
assumption of another Planck scale inflationary period
preceding the Grand Unified Theory scale one.
Apart from various technical improvements, the goal of

this paper is to study the late-time quantum backreaction
from inflationary quantum fluctuations of scalar fields and
its relation to dark energy in more general models, without
relying on any preinflationary physics, and one of the
important result of this work is the realization that the
simple addition of a small nonminimal coupling to
the Ricci scalar can completely alleviate the constraint
on the length of inflation. We show that the late-time one-
loop quantum backreaction from a nonminimally coupled,
light spectator scalar field can be a good candidate for dark
energy. In our model, conditions on inflation are com-
pletely relaxed: inflation can occur at the grand-unified
scale, and it can last as little as hundreds of e-foldings. In
fact, this model has been studied earlier in Ref. [19] with
the same idea of early universe quantum fluctuations
mimicking a cosmological constant in a subsequent radi-
ation or matter-dominated universe. The primary interest
there was the study in the Einstein frame (as opposed to the

study in the Jordan frame here) and the constraints on the
variation of the Newton’s constant. The analysis performed
here is much more detailed and rigorous, with more
stringent quantitative bounds provided on the nonminimal
coupling and the dependence on the duration of the
inflationary period, but qualitatively the conclusions agree.
The model of a very light, nonminimally coupled

spectator scalar was studied and proposed as a dark energy
model very soon after the discovery of the recent
accelerated expansion of the universe by Parker and
Raval [20–24]. In those works, the main effect derives
from the ultraviolet quantum fluctuations, as opposed to the
work presented here where the main contribution to the
energy-momentum tensor comes from the infrared (super-
Hubble) quantum fluctuations. We provide a more detailed
comparison of our work with that of Parker and Raval in
Sec. VIII.
Quantum fluctuations of fields are generally nonvanish-

ing, so we expect them to contribute as corrections to the
classical Einstein’s equations. This statement can be neatly
summarized by the following equation,

Gμν ¼ 8πGN ½Tcl
μν þ hT̂Q

μνi�; ð1Þ
which can be recognized as a quantum corrected Einstein
equation. The two source terms on the right are the classical
energy-momentum tensor of matter fields and the quantum
backreaction, respectively. The quantum backreaction is
the expectation value of the energy-momentum tensor
operator of quantum fluctuations of matter fields and the
metric field. The evidence that quantum fluctuations indeed
interact gravitationally comes from studying the fluctua-
tions in the spectrum of the CMB and ultimately attributing
it to the spectrum of primordial inflationary quantum scalar
fluctuations. As opposed to the spatial variations of the
quantum fluctuations, which ultimately contribute to the
CMB temperature fluctuations, here we study the homo-
geneous nonvanishing contribution of quantum fluctua-
tions. We want to study the effects of the backreaction term
in cosmology, in particular its influence on the dynamics of
the large scale expansion of the universe and its possible
connection to the dark energy problem. That is a rather
ambitious task, and in this work, we opt to address less
ambitious, but still very important, questions:
(1) Can the backreaction ever become large enough to

influence the expansion dynamics?
(2) When does it become large, and how does it depend

on the parameters of the model and the expansion
history?

(3) What is the behavior of the backreaction when it
becomes large, and does it tend to accelerate the
expansion?

Since we are interested in modeling DE, we want the
backreaction not to spoil the previous expansion history.
Therefore, its influence on the expansion has to be
negligibly small up until the recent onset of accelerated
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expansion. Therefore, we study Eq. (1) perturbatively, in
the sense that we do not consider the backreaction actually
backreacting on the classical evolution, since it is small by
assumption (we thoroughly check whether this assumption
is satisfied in different epochs in the history of the
Universe). The formalism appropriate for this study is
the quantum field theory in curved space-time, originating
in the late 1960s and early 1970s [25–28], and by now a is
well-established subject, covered in standard Refs. [29–32].
Of course, when the backreaction becomes large, this
approach breaks down, and a full self-consistent solution
is needed.
Here, we study the backreaction from quantum fluctua-

tions of a very light, nonminimally coupled, spectator
scalar field as they evolve from an initial state specified
at the beginning of the inflationary period of our Universe,
through the radiation and matter-dominated era, up until the
onset of the late-time acceleration period (see Fig. 1 for the
schematic depiction of the expansion history). The leading
order contribution to the one-loop expectation value of the
energy-momentum tensor of these quantum fluctuations is
computed in each era, as a controlled expansion in small
ratios of physical parameters.
This paper is organized as follows. The following section

introduces definitions and conventions for the cosmological
space-time. The third section presents the scalar field
model, outlines its quantization, and defines the main
quantities to be computed—the scalar field mode function
and the expectation value of the energy-momentum tensor.
The representation and approximations of the evolution of
the mode function are given in Sec. IV. In Sec. V, the

quantum backreaction energy density and pressure inte-
grals are analyzed from a general point of view, and the
relevant contributions are identified. Section VI is devoted
to calculating approximate mode functions on constant
epsilon backgrounds, in particular their expansion in the
small mass limit. In Sec. VII, the dominant contributions to
the energy density and pressure of the backreaction are
evaluated. In the concluding section, Sec. VIII, we sum-
marize the results and discuss their connection to dark
energy. An outline of the future work is also given.

II. FLRW BACKGROUND

The line element of a D-dimensional, spatially flat
Friedmann-Lemaître-Robertson-Walker (FLRW) space-
time is given by

ds2¼ gμνdxμdxν¼−dt2þa2ðtÞd~x2 ¼ a2ðηÞ½−dη2þd~x2�;
ð2Þ

where gμν is the metric, a is the scale factor, t denotes the
physical (cosmological) time, and η is the conformal time.
The physical and conformal time are related via dt ¼ adη.
In this work, we prefer performing computations in
conformal time, for which the metric is conformally
flat, gμν ¼ a2ðηÞημν, and ημν ¼ diagð−1; 1;…; 1Þ is the
D-dimensional Minkowski metric. All the expressions
are written in D dimensions in order to facilitate dimen-
sional regularization utilized in computing quantum
expectation values (D ¼ 4 is the number of physical
space-time dimensions). We adopt the natural units
convention (c ¼ ℏ ¼ 1), unless explicitly stated. The geo-
metric conventions we use are Γα

μν ¼ 1
2
gαβð∂μgνβ þ ∂νgμβ −

∂βgμνÞ for Christoffel symbols, Rα
μβν ¼ ∂βΓα

μν − ∂νΓα
μβ þ

Γα
βρΓ

ρ
μν − Γα

νρΓ
ρ
μβ for the Riemann tensor, Rμν ¼ Rα

μαν for
the Ricci tensor, and R ¼ Rμ

μ for the Ricci scalar.
The dynamics of the scale factor is governed by the

Friedmann equations,�
H
a

�
2

¼ 6

ðD − 2ÞðD − 1Þ ×
8πGN

3

X
i

ρi; ð3Þ

H0 −H2

a2
¼ 2

D − 2
× ð−4πGNÞ

X
i

ðρi þ piÞ; ð4Þ

where ρi and pi are the energy density and pressure of the
ith matter fluid, respectively; H ¼ a0=a is the conformal
Hubble rate related to the physical oneH viaH ¼ aH; and
a prime denotes differentiation with respect to conformal
time. The (noninteracting) matter fluids each satisfy the
conservation equation,

ρ0i þ ðD − 1ÞHðρi þ piÞ ¼ 0: ð5Þ
They are usually assumed to be ideal fluids, characterized
by a linear equation of state,
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FIG. 1. Schematic depiction of the expansion history in terms
of the ϵ ¼ − _H=H2 parameter, consisting of three past cosmo-
logical eras—the inflation period, radiation-dominated period,
and matter-dominated period—and today we are in a dark
energy-dominated period. Time η0 corresponds to beginning of
inflation, n1 corresponds to the end of inflation, η2 corresponds to
the time of radiation-matter equality, and ηDE corresponds to the
onset of the dark energy domination period. Today, we are at
ϵtoday ¼ 0.47. The first two transitions are assumed to be fast in
the sense that the scale of the duration of the transition τ satisfies
τi ≪ 1=Hi. We approximate the inflationary period by an exact
de Sitter one, ϵI ¼ 0.
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pi ¼ wiρi; ð6Þ
with a constant equation of state parameter wi. Using this
equation of state, the conservation equation (5) can be
easily integrated to yield the scaling of the fluid’s energy
density and pressure,

ρi ¼
pi

wi
¼ ρi;0

�
a
a0

�
3ð1þwiÞ

; ð7Þ

where ρi;0 ¼ ρiðη0Þ and a0 ¼ aðη0Þ.
The expansion history of our Universe consists of a few

eras in which one fluid dominates over the others that can
be neglected. In such regimes, Friedmann equations are
readily solved for the scale factor and the Hubble rate,

aðηÞ ¼ a0½1þ ðϵ − 1ÞH0ðη − η0Þ� 1
ϵ−1;

HðηÞ ¼ H0

�
a
a0

�
1−ϵ

; ð8Þ

where Hðη0Þ ¼ H0 and the principal slow-roll parameter ϵ
(which is a measure of the acceleration of the universe),
generally defined as

ϵ ¼ −
_H
H2

¼ 1 −
H0

H2
; ð9Þ

is a constant during the single fluid-dominated era, related
to the equation of state parameter,

ϵ ¼ ðD − 1Þ
2

ð1þ wÞ; ð10Þ

and we use it to characterize different cosmological eras. A
schematic depiction of the expansion history of the
Universe assumed in this work, in terms of the ϵ parameter
and the conformal Hubble rate, is given in Figs. 1 and 2,
respectively.

III. SCALAR FIELD MODEL

This section introduces the model of a nonminimally
coupled massive scalar field on cosmological space-time
studied in this work. The quantization of the scalar on
FLRW backgrounds is outlined, and the main quantities to
be calculated—expectation values of the energy-momentum
tensor components—are defined. The choice of initial state
is discussed.
The action for the massive nonminimally coupled scalar

on curved space-time is

Sϕ ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μϕ∂νϕ −

1

2
m2ϕ2 −

1

2
ξRϕ2

�
;

ð11Þ
where m is the scalar field mass and ξ is the nonminimal
coupling constant. Note that the sign convention we use

implies ξc ¼ ðD − 2Þ=½4ðD − 1Þ� !D→4
1=6 is the conformal

coupling.

A. Quantization on FLRW

On a FLRW background, the Lagrangian density takes
the form

Lϕ ¼ aD−2

2
½ðϕ0Þ2 − ð ~∇ϕÞ2 − ðmaÞ2ϕ2 − ξa2Rϕ2�: ð12Þ

In order to quantize this field, we need to switch to the
Hamilton formalism. First, we define a canonically con-
jugate momentum,

πðxÞ ¼ ∂Lϕ

∂ϕ0ðxÞ ¼ aD−2ðηÞϕ0ðxÞ; ð13Þ

and then the Hamiltonian via the Legendre transform,

H½ϕ; π; ηÞ ¼
Z

dD−1x½πðxÞϕ0ðxÞ − LϕðxÞ�

¼ aD−2

2

Z
dD−1x½a4−2Dπ2 þ ð ~∇ϕÞ2

þ ðmaÞ2ϕ2 þ ξa2Rϕ2�: ð14Þ
Next, we promote ϕ and π to operators and their Poisson
brackets to commutators,

½ϕ̂ðη; ~xÞ; π̂ðη; ~x0Þ� ¼ iδD−1ð~x − ~x0Þ; ð15Þ

½ϕ̂ðη; ~xÞ; ϕ̂ðη; ~x0Þ� ¼ 0 ¼ ½π̂ðη; ~xÞ; π̂ðη; ~x0Þ�: ð16Þ
The Hamiltonian operator defined as

ĤðηÞ ¼ H½ϕ̂; π̂; ηÞ ð17Þ
now determines the dynamics via Heisenberg equations for
the field operators,

ϕ̂0ðη; ~xÞ ¼ i½ĤðηÞ; π̂ðη; ~xÞ� ¼ a2−DðηÞπ̂ðη; ~xÞ; ð18Þ

INF
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FIG. 2. Schematic depiction of the evolution of the conformal
Hubble rate H throughout the expansion history of the universe.
Hubble rates at the times of transitions satisfy the hierarchy
H0 ≪ HDE ≪ H2 ≪ H1. As in Fig. 1, time η0 denotes the
beginning of inflation, time η1 denotes the end of inflation, η2
denotes the end of radiation and the beginning of the matter
dominated period (radiation-matter equality), and time ηDE
denotes the onset of dark energy domination.
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π̂0ðη; ~xÞ ¼ i½ĤðηÞ; ϕ̂ðη; ~xÞ�

¼ aD−2ðηÞ
�
~∇2 − ðmaÞ2 − ξa2ðηÞRðηÞ

�
ϕ̂ðη; ~xÞ:

ð19Þ
These two combined together yield the equation of motion
for the field operator� ∂2

∂η2 þ ðD − 2ÞH ∂
∂η − ~∇2 þ ðmaÞ2

þ ðD − 1Þξ½2H0 þ ðD − 2ÞH2�
�
ϕ̂ðxÞ ¼ 0; ð20Þ

where ~∇2 ¼ P
i∂2

i is the Laplace operator. This is just a
Klein-Gordon equation,

½□ −m2 − ξR�ϕ̂ ¼ 0; ð21Þ

specialized to FLRW, where □ ¼ gμν∇μ∇ν ¼
ð−gÞ−1=2∂μ½ð−gÞ1=2gμν∂ν� is the d’Alembert operator. This
equation is standardly analyzed in Fourier (comoving
momentum) space,

ϕ̂ðη; ~xÞ ¼ a
2−D
2

Z
dD−1k

ð2πÞD−1
2

½ei~k·~xUðη; kÞb̂ð~kÞ

þ e−i~k·~xU�ðη; kÞb̂†ð~kÞ�; ð22Þ

where b̂ð~kÞ and b̂†ð~kÞ are the annihilation and creation
operators, respectively, which satisfy the following commu-
tation relations,

½b̂ð~kÞ; b̂†ð~k0Þ� ¼ δD−1ð~k − ~k0Þ; ð23Þ

½b̂ð~kÞ; b̂ð~k0Þ� ¼ 0 ¼ ½b̂†ð~kÞ; b̂†ð~k0Þ�; ð24Þ
and Uðk; ηÞ is the mode function. Note the a

2−D
2 factor

taken out in the definition of the Fourier transform (22).
The commutation relations (15)–(16) and (23)–(24)
require theWronskian of themode function to be normalized
as

Uðk; ηÞU0�ðk; ηÞ −U0ðk; ηÞU�ðk; ηÞ ¼ i: ð25Þ

The equation of motion satisfied by the mode function is
the one for a harmonic oscillator with a time-dependent
frequency,

U00ðk; ηÞ þ ½k2 þM2ðηÞ�Uðk; ηÞ ¼ 0; ð26Þ
where

M2 ¼ m2a2 −
1

4
½D − 2 − 4ξðD − 1Þ�½2H0 þ ðD − 2ÞH2�:

ð27Þ
The state jΩi that we choose to examine we pick

to be the one annihilated by the annihilation operator,

b̂ð~kÞjΩi ¼ 0, which implies there is no classical condensate
(hence the name spectator),

hΩjϕ̂ðt; ~xÞjΩi ¼ 0: ð28Þ
This state respects the symmetries of the background space-
time, namely, homogeneity and isotropy, which is evident
from requiring the mode function to depend only on the
modulus of the comoving momentum. In order to com-
pletely specify this state, one needs to specify the initial
conditions for the mode function (initial state), which we
comment upon in Sec. III C.

B. Energy-momentum tensor

The energy-momentum tensor operator is defined as

T̂μνðxÞ ¼
−2ffiffiffiffiffiffi−gp δSϕ½ϕ; gμν�

δgμνðxÞ
				
ϕ→ϕ̂

¼ ∂μϕ̂ðxÞ∂νϕ̂ðxÞ −
1

2
gμνðxÞ½gαβðxÞ∂αϕ̂ðxÞ∂βϕ̂ðxÞ�

−
m2

2
gμνðxÞϕ̂2ðxÞ þ ξ½GμνðxÞ −∇μ∇ν

þ gμνðxÞ□�ϕ̂2ðxÞ; ð29Þ
where Gμν ¼ Rμν − 1

2
gμνR is the Einstein tensor, ∇ denotes

the covariant derivative, and □ ¼ gμν∇μ∇ν is the covariant
d’Alembertian operator. The expectation value of the
energy -momentum tensor operator with respect to the
state defined in the previous section is diagonal and is
conveniently expressed in terms of energy density and
pressure,

ρQ ¼ 1

a2
hΩjT̂00jΩi

¼ a−D

ð4πÞD−1
2 ΓðD−1

2
Þ

Z
∞

0

dk kD−2
�
2k2jUj2 − 1

2
½D − 2 − 4ξðD − 1Þ�H0jUj2

þ 2m2a2jUj2 − 1

2
½D − 2 − 4ξðD − 1Þ�H ∂

∂η jUj2 þ 1

2

∂2

∂η2 jUj2
�
; ð30Þ
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δijpQ ¼ 1

a2
hΩjT̂ijjΩi

¼ δija−D

ð4πÞD−1
2 ΓðD−1

2
Þ

Z
∞

0

dk kD−2
�

2k2

ðD − 1Þ jUj2 − 1

2
½D − 2 − 4ξðD − 1Þ�H0jUj2

−
1

2
½D − 2 − 4ξðD − 1Þ�H ∂

∂η jUj2 þ ð1 − 4ξÞ
2

∂2

∂η2 jUj2
�
; ð31Þ

where we have used the equation of motion (26) to write

jU0j2 ¼ ðk2 þM2ÞjUj2 þ 1

2

∂2

∂η2 jUj2 ð32Þ

and eliminate jU0j2 in favor of jUj2 and its derivatives. We can take some derivatives out of the integral to write the (30) and
(31) in a convenient way,

ρQ ¼ a−D

ð4πÞD−1
2 ΓðD−1

2
Þ

�
2I1 þ

�
2ðmaÞ2 − 1

2
½D − 2 − 4ξðD − 1Þ�½H0 þH∂η� þ

1

2
∂2
η

�
I0

�
; ð33Þ

pQ ¼ a−D

ð4πÞD−1
2 ΓðD−1

2
Þ

�
2I1

ðD − 1Þ −
�
1

2
½D − 2 − 4ξðD − 1Þ�½H0 þH∂η� þ

ð1 − 4ξÞ
2

∂2
η

�
I0

�
; ð34Þ

where we have defined the two integrals,

In ¼
Z

∞

0

dk kD−2þ2njUðk; ηÞj2; n ¼ 0; 1: ð35Þ

Finding a good approximation for these integrals is one of
the two main technical tasks of this work.

C. Choice of state

Understanding how the choice of the initial state affects
our final results is important, and this is what we discuss
next at some length. We assume that the Universe starts in a
natural state defined on a global equal-time hypersurface Σ0

as the Chernikov-Tagirov-Bunch-Davies (CTBD) vacuum
state in the UV. This means that the mode function reduces
to the flat space form in the deep UV,

Uðk; ηÞ → e−ikηffiffiffiffiffi
2k

p ð36Þ

(a more precise statement is given in the Appendix).
Furthermore, we assume the state is suitably regulated in
the infrared (on super-Hubble wavelengths). That is,
namely, necessary to regulate the IR modes since attempt-
ing to impose the usual Bunch-Davies condition on the
infrared modes would produce unphysical infrared diver-
gences in the initial one-loop energy-momentum tensor.
Infrared states can be regulated in various ways: (i) by
choosing the global CTBD vacuum state associated with
the epoch that precedes inflation in which the CTBD state
is regular, (ii) by making the Universe’s (initial) equal-time
hypersurface compact, or (iii) by introducing a comoving
IR cutoff. The first prescription can be achieved by e.g.

assuming a preinflationary radiation epoch [14,33], while
the second one by imposing a positive constant spatial
curvature (κ > 0) on Σ0 or by making Σ0 compact by
imposing periodic boundary conditions (in the former case,
Σ0 is a three-dimensional sphere S3, while in the latter case,
Σ0 is a three-dimensional torus T3). The third option is
technically perhaps the simplest, and we employ it in this
work. It should be stressed that the point of view on this
regularization is not to throw away the deep IR modes
below the cutoff on principal grounds but rather that they
are smoothly suppressed under this scale and contribute
negligibly to the observables. Then, the leading approxi-
mation to this case is to introduce a sharp cutoff. The deep
IR suppression can be attributed to some physical process
during or before inflation or can be viewed as an approxi-
mation to the state obtained by placing the Universe in a
comoving box. One can show [34] that, to leading order in
powers of the IR comoving cutoff k0, (expectation values
of) physical observables are correctly reproduced by the
sudden cutoff approximation.
All these methods qualitatively agree. For (i) and (ii), this

was shown in Ref. [33] in the sense that qualitative
dependence on the relevant physical scale is the same, where
in the case of a preinflationary radiation epoch the relevant
physical scale is the Hubble parameter at the radiation-
inflation transition, in the case when Σ0 ≡ S3 the relevant
physical scale is

ffiffiffi
κ

p
, andwhenΣ0 ≡ T3 the relevant physical

scale is the comoving length of the torusL. Note that the three
aforementionedwaysof regulating the infrared correspond to
three (very) different physical situations.
Here, we use the simple cutoff regularization—we

effectively remove the modes below a certain pivotal
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mode k0. In practice, this is implemented by cutting off the
integration of In integrals (35) at k0,

In ≈
Z

∞

k0

dk kD−2þ2njUðk; ηÞj2: ð37Þ

In the limit of very small k0, this can be shown to be
equivalent (up to corrections suppressed as k20) to (i)
mentioned above, with k0 identified with 2π=L, and is
shown to be equivalent to (ii) here in Sec. VII by
comparison to Refs. [14,33]. The main point we are trying
to make here is that, for a large class of initial states that are
regular in the infrared, one will get answers that qualita-
tively agree with the results obtained in this work,
hence making the results of our analysis quite generic,
i.e. to a large extent independent of the choice of the
initial state.

IV. EVOLUTION OF THE MODE FUNCTION

The two main technical tasks of this work are (i) to solve
for the time evolution of the mode function (26) as it
evolves through cosmological eras and (ii) to perform the
integrals (30) and (31) over these mode functions to obtain
the backreaction energy density and pressure. This section
discusses these two issues from a more general point of
view. The mode function is organized in a convenient way.
The relevant integration interval is identified, and a sudden
transition approximation is introduced for the contributing
modes. These considerations simplify following computa-
tions significantly.

A. Bogolyubov coefficients

When it comes to the evolution of the mode function,
unfortunately, exact results are known only for a handful of
FLRW backgrounds (here is a way to write down a general
solution for an arbitrary FLRW background, valid for all
momentum scales [35], but it is difficult to make use of it
practically). Fortunately, for periods of constant ϵ (out of
which most of the history of expansion consists, Fig. 1), the
exact solutions are known in the massless limit. A con-
venient way to express them is in terms of the Chernikov-
Tagirov-Bunch-Davies mode function [25,36],

uϵðk; ηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

4j1 − ϵjH
r

Hð1Þ
ν

�
k

ð1 − ϵÞH
�
; ð38Þ

where the index of the Hankel function of the first

kind Hð1Þ
ν is

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ ðD − 2ϵÞ
4ð1 − ϵÞ2 ½D − 2 − 4ξðD − 1Þ�

s
: ð39Þ

These functions are defined to reduce to the positive-
frequency form (A4) in the UV, and the IR is defined
as an analytic continuation of the UV. The other linearly

independent solution is a complex conjugate of (38). In the
massive case, exact solutions are not known for constant ϵ
periods, except in a few notable cases (de Sitter and
radiation-dominated universe). Nevertheless, there is a
way of making a controlled expansion of this function
in the small ratio m=H with which we will be concerned,
which is sufficient for our purposes. This expansion is
presented in Sec. VI.
Generally, the full mode function during a given constant

ϵ period will be a linear combination of the CTBD mode
functions,

Uϵðk; ηÞ ¼ αϵðkÞuϵðk; ηÞ þ βϵðkÞu�ϵðk; ηÞ: ð40Þ
Coefficients αðkÞ and βðkÞ are called the Bogolyubov
coefficients, and they have to satisfy

jαðkÞj2 − jβðkÞj2 ¼ 1; ð41Þ
as dictated by the Wronskian normalization (25). They are
determined for each era by the initial conditions at the
beginning of the given era, which are in turn given by the
details of the transition from one era to another.
If τ is a small time scale of the transition between

periods, then for momenta above this scale, the
Bogolyubov coefficients must reduce to

αðkÞ⟶k→∞
1; βðkÞ⟶k→∞

0; ð42Þ
nonadiabatically, meaning faster than any power of 1=k.
This is true provided that the initial condition is of adiabatic
order ∞. Otherwise, if the initial state is of adiabatic
order n, it retains that property during the evolution [37].
This we can also infer from the considerations of the
Appendix. The physical reason behind this conclusion is
that the deep UV modes oscillate so fast so that their
evolution is adiabatic.
In the IR, Bogolyubov coefficients are not universal as

the deep UV are. On the contrary, they do depend on
the details of the transition between the two periods of
constant ϵ. In case of a fast transition, they are not so
sensitive (to leading order) to the details of the transition
but rather depend just on the two periods connected by the
transition. This we show in the next subsection.

B. Sudden transition approximation

In case of fast transitions between constant ϵ periods,
τ ≪ 1=H, the evolution of the IR modes, k ≪ 1=τ, through
the transition is well described by the so-called sudden
transition approximation, where the ϵ parameter jumps
discontinuously from one constant value to another.
Physically, these modes are very slow compared to the
transition scale, and the transition is effectively instanta-
neous for them. More precisely, the transition is instanta-
neous for the IR modes to leading order in the expansion in
the transition scale τ. We stress that this is an approximation
for the evolution of the IR modes, not a model for the
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background evolution, and should not be extrapolated to
UV modes.1

Here, we illustrate the sudden transition approximation
on a specific example of transition between two periods
ϵ0 and ϵ1. Let the evolution of ϵ between two periods be
given by

ϵðηÞ ¼
8<
:

ϵ0; η < η0 − τ
2

ϵtrðηÞ; η0 − τ
2
< η < η0 þ τ

2

ϵ1; η > η0 þ τ
2
;

ð43Þ

where

ϵtrðηÞ ¼
ϵ0
2

�
1þ tanh

�
1

1þ η−η0
τ=2

−
1

1 − η−η0
τ=2

��

þ ϵ1
2

�
1þ tanh

�
−

1

1þ η−η0
τ=2

þ 1

1 − η−η0
τ=2

��
: ð44Þ

Before the transition, let the full mode function be

U


k;η< η0 −

τ

2

�
¼ α0ðkÞu0ðk;ηÞ þ β0u�0ðk;ηÞ≡U0ðk;ηÞ;

ð45Þ
with some known Bogolyubov coefficients α0 and β0. After
the transition, the mode function is

U


k;η> η0þ

τ

2

�
¼ α1ðkÞu1ðk;ηÞþβ1u�1ðk;ηÞ≡U1ðk;ηÞ:

ð46Þ
The equation (26) we are trying to solve is the harmonic
oscillator one with a time-dependent frequency,

U00 þ ω2ðηÞU ¼ 0; ð47Þ
where

ω2ðηÞ ¼ k2 þM2ðηÞ ð48Þ
and M2 is defined in (27). One can check the Wentzel–
Kramers–Brillouin (WKB) applicability condition
ω0=ω2 ≪ 1 and for which ranges of momenta is it satisfied,

ω0

ω2
∼
�H2

k2
1

ðkτÞ2 ; k ≫ H

1=ðHτÞ; k≲H
: ð49Þ

Since τ ≪ 1=H by assumption, the only modes that evolve
adiabatically are the ones for which at least k > μ ≫ H.

For the modes k < μ, another approximation applies.
There, 1=τ is the largest scale in the hierarchy, and we can
expand the evolution in powers of τ. We do this by
expanding the ϵðηÞ function (44),

ϵðηÞ ≈ ϵ0θðη0 − ηÞ þ ϵ1θðη − η0Þ þOðτÞ: ð50Þ
Now, it is straightforward to match the two solutions (45)
and (46), which are just the continuity conditions for the
mode function and its derivative,

U0ðk; η0Þ ¼ U1ðk; η0Þ; U0
0ðk; η0Þ ¼ U0

1ðk; η0Þ: ð51Þ
Solving these conditions for Bogolyubov coefficients
yields

α1ðkÞ¼−i½U0ðk;η0Þu0�1 ðk;η0Þ−U0
0ðk;η0Þu�1ðk;η0Þ�þOðτÞ;

ð52Þ

β1ðkÞ ¼ i½U0ðk; η0Þu01ðk; η0Þ −U0
0ðk; η0Þu1ðk; η0Þ� þOðτÞ:

ð53Þ
These two formulas comprise the sudden transition
approximation for the Bogolyubov coefficients and the
evolution of the mode function.

V. ENERGY DENSITY AND
PRESSURE INTEGRALS

In this section, we analyze the integrals (35) on general
grounds. They cannot be evaluated exactly (except for very
simple mode functions [12]), and we have to resort to
approximation schemes. We first organize the integrand in
a way which separates the part containing all the UV
divergences (among other contributions) and the UV finite
part containing possibly relevant IR contributions. The
contributions from different scales, i.e. different integration
intervals, are examined, and the relevant interval that the
dominant contribution comes from is identified. The
analysis presented here greatly facilitates the evaluation
of integrals (35), especially since we get away with not
evaluating certain parts of integrals explicitly (as was done
in Ref. [14]).

A. Organizing the integrand

The integrands of integrals (35) contain the mode
function only as a modulus jUðk; ηÞj2, which can be written
out in terms of the CTBD mode functions of a given
constant ϵ period,

jUðk; ηÞj2 ¼ juðk; ηÞj2 þ 2jβðkÞj2juðk; ηÞj2
þ αðkÞβ�ðkÞu2ðk; ηÞ þ α�ðkÞβðkÞ½u�ðk; ηÞ�2;

ð54Þ
where (41) was used. In the deep UV, Bogolyubov
coefficients reduce to (42) faster than the power law (at
least exponentially). Therefore, the UV divergent structure

1Taking the sudden transition approximation too seriously as a
model for the background and applying it to the UV modes leads
to unphysical mode mixing in the deep UV. This in turn results in
additional divergences in the energy-momentum tensor which
cannot be absorbed into counterterms. These issues are discussed
in Ref. [12]. Considering the sudden jumps in ϵ as a model for the
background makes sense only if one takes the continuum limit of
a series of such small transitions, as was done in Ref. [35].
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of integrals (35) is completely captured by the juðk; ηÞj2 on
the right in (54). We split the integrals into two parts,

In ¼ ICTBD
n þ IBog

n ; ð55Þ
where the CTBD part is

ICTBD
n ¼

Z
∞

k0

dk kD−2þ2njuðk; ηÞj2; ð56Þ

which contains all the UV divergences, and the
Bogolyubov part,

IBog
n ¼

Z
∞

k0

dk k2þ2nZBogðk; ηÞ; ð57Þ

where the integrand is

ZBogðk; ηÞ ¼ 2jβðkÞj2juðk; ηÞj2 þ αðkÞβ�ðkÞu2ðk; ηÞ
þ α�ðkÞβðkÞ½u2ðk; ηÞ��: ð58Þ

Note that we take the D ¼ 4 limit in the Bogolyubov part,
since it is manifestly UV finite because of the properties of
the Bogolyubov coefficients (42), which simplifies its
evaluation.
We can immediately say a lot about the CTBD con-

tribution (56). The way to compute it is to first split it in the
UV and IR parts by introducing a UV cutoff μ ≫ H,

ICTBD
n ¼ ICTBD;UV

n þICTBD;IR
n

¼
Z

∞

μ
dkkD−2þ2njuðk;ηÞj2þ

Z
μ

k0

dkk2þ2njuðk;ηÞj2:

ð59Þ
Its UV part needs to be regularized and then renormalized
as is outlined in the Appendix, and its contribution is given
in (A27)–(A28) and (A32). Note that this UV contribution
is dependent on the fiducial cutoff μ introduced by hand.
That dependence cancels exactly with the opposite one
coming from the IR contribution (which can be evaluated in
D ¼ 4 from the start). This computation is performed
explicitly in Sec. VII A for the inflationary era.
The only dimensionful quantities the CTBD part can

depend on are the evolving Hubble rate and mass, and
possibly the IR regulator. The dependence on the regulator
actually must cancel out with same contribution from the
Bogolyubov part. The total dependence on the regulator in
the final answer can only come from the CTBD part, and it
must have the same structure as the initial state [38].
Therefore, in the small mass limit, we can represent
possible contributions to energy density and pressure as

H4

a4

�
lnðaÞ

�
#1 þ #2

�
ma
H

�
2

þ #3

�
ma
H

�
4

þ � � �
�

þ
�
#4 þ #5

�
ma
H

�
2

þ #6

�
ma
H

�
4

þ � � �
��

; ð60Þ

where #i’s stand for some numerical coefficients of order 1.
This contribution is not relevant during the radiation or
matter period. Its magnitude is tiny compared to the
background. In the matter period, it also redshifts faster
than the background. In the radiation period, it does not;
rather, it redshifts at the same rate as the background fluid
[H4a−4 lnðaÞ term is absent in this case], but its magnitude
is tiny. The contribution from this CTBD part is always
negligible compared to the background, and therefore we
can neglect it. If there is a large effect, it must lie in the
Bogolyubov part. That contribution we analyze generally in
the next subsection.

B. Bogolyubov part

We would like to argue on general grounds about the
contributions from different momentum scales to this
integral. For the sake of simplicity, consider the transition
between two periods of constant ϵ. Before the transition,
during period ϵ0, the state was the CTBD one (α0 ¼ 1,
β0 ¼ 0). The state after the transition, during period ϵ1, is
dictated by the transition between periods, which is
assumed to be fast (τ0 ≪ 1=H0). We examine the two
cases for the second period separately—the decelerated
case (ϵ1 > 1) and the accelerated case (ϵ1 < 1).

1. Decelerating period

After the transition to the decelerating period, the time
evolving Hubble rate H drops below the one at the
transition point H0 (see Fig. 2), and eventually the
hierarchy of scales depicted in Fig. 3 is reached. This
happens some time after the transition, which is the regime
we are interested in. We split the integration into three
intervals, separated by μ0 and μ, according to this hierarchy.
The modes in the highest interval k > μ0 contribute
negligibly since the Bogolyubov coefficients are nonadia-
batically suppressed there (β ∼ e−τk).
The contribution of the middle interval can be estimated

rather generally. We start by noting that

FIG. 3. Hierarchy of scales after the transition to a decelerating
period.

LATE-TIME QUANTUM BACKREACTION OF A VERY … PHYSICAL REVIEW D 94, 084053 (2016)

084053-9



jIBog;mid
n j ¼

				
Z

μ0

μ
dk k2þ2nZBogðk; ηÞ

				
≤ 2

Z
μ0

μ
dk k2þ2n½jβ1ðkÞj2

þ jα1ðkÞjjβ1ðkÞj�ju1ðk; ηÞj2: ð61Þ
The time-dependent CTBD mode function may be
expanded asymptotically as in (A16) since k ≫ H ≫ ma
on this interval,

ju1ðk; ηÞj2 ≈
1

2k

�
1þ H2

4k2

�
1þO

�
ma
H

�
2
�
þO

�
H
k

�
4
�
:

ð62Þ

The momentum scales in question are much smaller than
the scale of the transition 1=τ, so the Bogolyubov coef-
ficients are well approximated by the sudden transition
ones and depend on three quantities: k, H0, ma0. Since we
are interested in the small mass limit, we may expand the
Bogolyubov coefficients in powers of ma0=H0,

β1ðk;H0; ma0Þ ≈ β1

�
k
H0

��
1þO

�
ma0
H0

��
; ð63Þ

and analogously for α1, so to leading order they depend
only on the ratio k=H0. Therefore, we can approximate (61)
with

jIBog;mid
n j≲

Z
μ0

μ
dk k1þ2n

�				β1
�

k
H0

�				2

þ
				α1

�
k
H0

�				
				β1

�
k
H0

�				
�
: ð64Þ

Making a variable substitution K ¼ k=H0 puts this integral
into a form which is suitable for further approximation,

jIBog;mid
n j≲H2þ2n

0

Z
μ0=H0

μ=H0

dK K1þ2n½jβ1ðKÞj2

þ jα1ðKÞjjβ1ðKÞj�: ð65Þ
The integrand is now dimensionless, and the limits of
integration are μ=H0 ≪ 1 and μ0=H0 ≫ 1, so we may
perform (asymptotic) expansions in these limits. It might
happen so that the leading order contribution is dominated
by one of the cutoffs, but this contribution (and in fact any
other cutoff-dependent one) must cancel with the opposite
contribution from another part of the full integral. Although
tedious, this can be checked explicitly as was done in
Ref. [14]. Therefore, what we are interested in is the
contribution independent of μ0 and μ, since that is the only
one that remains after all the parts are added up. That
contribution has the following form:

jIBog;mid
n j ∼ #H2þ2n

0 : ð66Þ

This gives the contribution to the energy density (and
momentum) of the form

ρ ∼ #
H4

0

a4
: ð67Þ

It is just a radiationlike contribution and redshifts away
faster than the background (or at the same rate in the case of
radiation era). Therefore, we may safely neglect it as long
as it is not too big before the start of the radiation period.
The lower part of the integral has a chance to contribute

something that does not redshift away faster than the
background. Its exact contribution is not so straightforward
to estimate, but if there is an interesting effect to be found, it
is derived from this contribution. Therefore, it is the only
one we need to examine, which we do in Sec. VII. For
completeness, next we examine the accelerated case,
ϵ1 < 1.

2. Accelerating period

In the case of the universe transitioning from one period
of constant ϵ0 where the scalar was in a CTBD state to an
accelerating period of constant ϵ1 < 1, where the transition
was fast, we soon reach a hierarchy of scales shown in
Case A of Fig. 4 and afterward the one in Case B, as the
conformal Hubble rate continues to grow. We treat these
two cases separately.

Case A.—The hierarchy of scales in this case is depicted on
the left of Fig. 4. The contribution from the modes k > μ0 is
negligible because of the nonadiabatic suppression of
Bogolyubov coefficients, just as in the decelerating case.
The contribution from the middle interval can be

estimated as

jIBog;mid
n j ≤ 2

Z
μ

μ0

dk k2þ2n½jβ1ðkÞj2

þ jα1ðkÞjjβ1ðkÞj�ju1ðk; ηÞj2 ð68Þ

FIG. 4. Hierarchy of scales after the transition to the accel-
erating period; Case A: some time after the transition, Case B:
very long after the transition.
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in a similar way as in the decelerating case. Here, because
of the hierarchy of scales, we may expand the sudden
transition Bogolyubov coefficients for large momenta (see
Ref. [12] for the expansion),

αðkÞ ≈ 1þO
�
H0

k

�
ð69Þ

βðkÞ ≈ H2
0

k2
þO

�
H0

k

�
: ð70Þ

The time-dependent mode function depends on k, H,
and ma. Since ma ≪ k, H, we can expand away its m
dependence so that the leading order term depends only
on k=H and H. Then, using the variable substitution
K ¼ k=H in the middle integral, we can estimate it as

jIBog;mid
n j ≤ #H2

0H
2nþ1

Z
μ=H

μ0=H
dK K2nju1ðk;HÞj2

×

�
1þO

�
H
H0

��
: ð71Þ

As in the decelerating case, this integral can be expanded
for the small lower and large upper limit. Neglecting as
before terms dependent on the artificially introduced cut-
offs, what can remain is a contribution #H2

0H
2n. Now, these

contribute to energy density and pressure as #H2
0H

2=a4. If
the numerical coefficient is not exponentially large, this
contribution is negligible compared to the background fluid
energy density, and it only redshifts away faster than
the background. Only the lower integrals remain to be
evaluated.

Case B.—In this case, the reasoning of Case A applies, and
we just need not examine the middle integral, since here it
is shifted into the region where Bogolyubov coefficients are
nonadiabatically suppressed (as depicted on the right of
Fig. 4), and hence contributes negligibly. One needs to
examine the same (lower) interval to look for the dominant
contribution.

VI. MODE FUNCTIONS

In this section, we derive the CTBD mode functions for
each of the cosmological periods. Exact solutions are
known for the inflationary and radiation periods. While
we can perform integrals (35) over the exact inflationary
mode functions, the radiation ones are too complicated and
need to be approximated. An expansion in small m=H ¼
ma=H to first subleading order suffices for our goals. This
expansion is performed in two ways. First, the exact
radiation period mode function is expanded, and the
approximation valid for all momenta is obtained.
Second, the method for obtaining the approximation
directly from the equation of motion (26) (without referring
to the exact solution) is introduced, and the approximation
for the radiation period mode function is derived. This

method is shown to reproduce the expansion of the exact
result, which lends support for applying it in cases where
the exact mode functions are not known. The matter period
mode functions are not known exactly, and we apply this
method in order to find its expansion to first subleading
order in small mass, valid for all momenta. All the
approximated mode functions derived in this section are
simple enough so that integrals (35) can be performed, and
the energy density and pressure of quantum backreaction
are computed.

A. Inflationary era

Fortunately, the de Sitter inflationary period (ϵI ¼ 0)
CTBDmode functions are known exactly even in themassive
case. The equation of motion for the mode function is

u00 þ ½k2 þ ðmaÞ2 − 2ð1 − 6ξÞH2�u ¼ 0: ð72Þ
The positive frequency solution to this equation is

uIðk; ηÞ ¼
ffiffiffiffiffiffiffi
π

4H

r
Hð1Þ

νI

�
k
H

�
; ð73Þ

where

νI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ 2ð1 − 6ξÞ −

�
m
H

�
2

s
: ð74Þ

In this work, we will be considering mass of the order
of the Hubble rate today (meaning that the ratio m=HI in
inflation is extremely small), and nonminimal couplings
0 > ξ≳ −0.05. More negative nonminimal couplings would
lead to a too rapid growth of quantum fluctuations during
inflation (aswill be shownby the endof this subsection), anda
larger mass would mean that the field becomes very massive
at some point during the cosmological evolution and starts
contributing like dust to the expansion (precluding it from
having anything to dowithDE). Formost of the range of these
two parameters, νI > 3=2, which leads to an IR divergence.
This divergence has to be regulated somehow, since it signals
that the state chosen is unphysical. The practical method of
regularizationwe choose is introducing a comoving IR cutoff
k0. The point of viewwe take on it is that it is a shortcutway of
choosing a physical mode function, since the contribution of
themodes below k0will be suppressed, andweneglect it from
the start.
We will also need the small momentum (k ≪ H)

expansion of the mode function in (73),

uIðk; ηÞ ≈ −
iffiffiffi
π

p 2νI−1ΓðνIÞHνI−1=2
1 k−νI

�
1þO

�
k
H

�
2
�
:

ð75Þ

B. Radiation era

In this subsection, first, the exact the radiation period
CTBD mode function is derived, and then an expansion for
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m=H ≪ 1 is performed (valid for all momenta). Second,
this small mass expansion is derived directly from the
equation of motion without referring to the exact solution
with the help of the Frobenius method. This serves to
introduce the method which can be applied to cases where
an exact solution is not known.

1. Exact CTBD mode function

The CTBD mode functions for the radiation period are
also known in the massive case but are unfortunately too
complicated for practical analytical computations. The
equation of motion for the modes is

u00 þ ½k2 þ ðmaÞ2�u ¼ 0: ð76Þ
In the radiation period, the scale factor and the conformal
Hubble rate are related as

aH ¼ a1H1; ð77Þ
where the quantities with index 1 refer to the values at
the beginning of the radiation period, so Eq. (76) can be
written as

u00 þ
�
k2 þ m4

H2

�
u ¼ 0; ð78Þ

where we have defined

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma1H1

p
: ð79Þ

By making a variable substitution

s ¼ im2

H2
; ð80Þ

the equation can be put in the form� ∂2

∂s2 þ
�
−
1

4
−

i
4s

�
k
m

�
2

þ 3

16s2

��
ðs1=4uÞ ¼ 0; ð81Þ

which is a Whittaker equation2 [39],� ∂2

∂s2 þ
�
−
1

4
þ λ

s
þ

1
4
− μ2

s2

��
ðs−1=4uÞ ¼ 0; ð82Þ

with coefficients

λ ¼ −
i
4

�
k
m

�
2

; μ ¼ 1

4
: ð83Þ

The properly normalized (using the Wronskian 13.14.30
from Ref. [40]) CTBD mode function is

uRðk; ηÞ ¼
ffiffiffiffiffiffiffiffiffi
H
2m2

r
e−

πk2

8m2 ×W− ik2

4m2;
1
4

�
im2

H2

�
; ð84Þ

where W is the Whittaker function. By examining the UV
expansion k → ∞ of (84) (corresponding to the large
parameter expansion 9.229 from Ref. [39]),

uRðk; ηÞ⟶k→∞ e−
ik
Hffiffiffiffiffi
2k

p × exp

�
iπ
2
þ ik2

4m2
−

ik2

4m2
ln

�
ik2

4m2

��
;

ð85Þ
we see that it indeed is the positive-frequency mode
function (the time-independent phase is irrelevant since
it cancels out in all the physical quantities, and the mode
function is defined up to such a phase).
Next, we want to find the expansion of this function

in small parameter ma=H ¼ m2=H2, but valid for all
momenta. In order to accomplish this, we view the function
as a function of momenta. In particular, we represent it as a
uniformly convergent power series in momenta. The
coefficients in this expansion are functions of m and H,
and we expand them in this small ratio.
It is more convenient to express theWhittaker function in

terms of confluent hypergeometric functions,

W− ik2

4m2;
1
4

�
im2

H2

�
¼−2

ffiffiffi
π

p
e−

im2

2H2

Γð1
4
þ ik2

4m2Þ

�
im2

H2

�3
4

1F1

�
3

4
þ ik2

4m2
;
3

2
;
im2

H2

�

þ
ffiffiffi
π

p
e−

im2

2H2

Γð3
4
þ ik2

4m2Þ

�
im2

H2

�1
4

1F1

�
1

4
þ ik2

4m2
;
1

2
;
im2

H2

�
:

ð86Þ
The radius of convergence of the power series
representation of the confluent hypergeometric function
is infinite, so we may safely examine it and do manipu-
lations of it,

1F1

�
1þσ

2
þ ik2

4m2
;1þσ;

im2

H2

�

¼
X∞
n¼0

ð1þσ
2
þ ik2

4m2ÞðnÞ
ð1þσÞðnÞ

1

n!

�
im2

H2

�
n
;

�
σ¼�1

2

�
; ð87Þ

where ðxÞðnÞ ¼ xðxþ 1Þðxþ 2Þ…ðxþ n − 1Þ is the
Pochhammer symbol. What we aim to do is to rewrite it
as the power series in k=H.3 In order to do this, we write out
the Pochhammer symbol,�

1þ σ

2
þ ik2

4m2

�ðnÞ
¼

Xn
s¼0

dðσÞn;s

�
ik2

4m2

�
n−s

; ð88Þ

2This equation can also be put into the form of Weber’s
differential equation and solutions expressed in terms of parabolic
cylinder functions (as was done in Ref. [18]) and also as
Kummer’s differential equation with solutions expressed in terms
of confluent hyperbolic functions.

3We could also start by rewriting it as a function of k=m̄ and
ultimately arrive at the same result. Expressing it as a function of
k=H is convenient though, since it is easy to take the massless
limit for which mode functions are known and considerably
simpler.
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where d-coefficients can be determined by writing out the
Pochhammer symbol. Using this, the power series repre-
sentation (87) of the confluent hypergeometric function can
be rewritten as

1F1

�
1þ σ

2
þ ik2

4m2
; 1þ σ;

im2

H2

�

¼
X∞
s¼0

�
ima
H

�
s
×
X∞
n¼0

dðσÞnþs;s

ðnþ sÞ!ð1þ σÞðnþsÞ

�
−k2

4H2

�
n
:

ð89Þ
This power series is now straightforward to approximate for
small ma=H—we simply throw away all the terms except
the first three,

1F1

�
1þσ

2
þ ik2

4m2
;1þσ;

im2

H2

�

≈
X3
s¼0

�
ima
H

�
s
×
X∞
n¼0

dðσÞnþs;s

ðnþsÞ!ð1þσÞðnþsÞ

�
−k2

4H2

�
n
: ð90Þ

This approximation can be seen to be valid for all the
ranges of momenta. For k ≫ ma, this is just an expansion
in ma which is the smallest scale in the hierarchy. For
k≲ma the function is well described by a double
expansion in ma=H and k=H; the form (90) just retains
more terms than are necessary in this limit, ultimately
producing subleading terms that we neglect in the end
anyway. Now, we need only the first three d-coefficients
introduced in (88),

dðσÞn;0 ¼ 1; dðσÞn;1 ¼
Xn−1
l¼0

�
1

2
þ σ þ l

�
¼ nðnþ σÞ

2
; ð91Þ

dðσÞn;2 ¼
Xn−2
l¼0

Xn−1
j¼lþ1

�
1

2
þ σ þ l

��
1

2
þ σ þ j

�

¼ nðn − 1Þ
24

�
3n2 þ ð6σ − 1Þn −

1

4

�
: ð92Þ

The approximations for the confluent hypergeometric
functions are then

1F1

�
3

4
þ ik2

4m2
;
3

2
;
im2

H2

�
≈
H
k
sin

�
k
H

�
þ
�
ma
H

�
×
iH
2k

sin
�
k
H

�
þ
�
ma
H

�
2

×

��
−
1

8
−
H2

4k2
þ H4

4k4

�
H
k
sin

�
k
H

�
þ
�
H2

6k2
−
H4

4k4

�
cos

�
k
H

��
; ð93Þ

1F1

�
1

4
þ ik2

4m2
;
1

2
;
im2

H2

�
≈ cos

�
k
H

�
þ
�
ma
H

�
×
i
2
cos

�
k
H

�
þ
�
ma
H

�
2

×

��
−
1

8
þH2

4k2

�
cos

�
k
H

�
þ
�
1

6
−
H2

4k2

�
H
k
sin

�
k
H

��
:

ð94Þ
After approximating the confluent hypergeometric functions in the small mass limit, we only need to approximate the
exponential in (86),

e−
im2

2H2 ≈ 1 −
ima
2H

−
ðmaÞ2
8H2

; ð95Þ

to arrive at an approximation for the full CTBD mode function in the radiation period,

uRðk; ηÞ ¼ −i3=4
ffiffiffiffiffiffiffiffiffi
2πm

p
e−

πk2

8m2

Γð1
4
þ ik2

4m2Þ

�
1

k
sin

�
k
H

�
þ
�
ma
H

�
2
�
−
�
1 −

H2

k2

�
H2

4k3
sin

�
k
H

�
þ
�
1 −

3H2

2k2

�
H
6k2

cos

�
k
H

���

þ i1=4
ffiffiffiffiffiffiffi
π

2m

r
e−

πk2

8m2

Γð3
4
þ ik2

4m2Þ

�
cos

�
k
H

�
þ
�
ma
H

�
2
�
−
H2

4k2
cos

�
k
H

�
−
�
1 −

3H2

2k2

�
H
6k

sin

�
k
H

���
: ð96Þ

Numerical comparisons with the exact CTBD mode
function (84) show this is a very good approximation
for small mass, ma ≪ H, for all the ranges of momenta.
Note that we cannot expand the time-independent coeffi-
cients multiplying the curly brackets if we want this
approximation to be valid for both small and large momenta.
One important property that these coefficients satisfy is

ℑ

("
−i3=4

ffiffiffiffiffiffiffiffiffi
2πm

p
e−

πk2

8m2

Γð1
4
þ ik2

4m2Þ

#�
×

"
i1=4

ffiffiffiffiffiffiffi
π

2m

r
e−

πk2

8m2

Γð3
4
þ ik2

4m2Þ

#)
¼ 1

2
:

ð97Þ

In the next subsection, we develop a method to obtain
this approximation directly from the equation of motion
(78). We will be able to determine the time-dependent
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functions in the curly brackets in (96), but not the time-
independent coefficients in front of the brackets. However,
the important property (97) will follow.

2. Approximate CTBD mode functions from the
equation of motion

Here, we wish to derive the approximation (96) directly
from the equation of motion (78). The reason for doing
this alongside having an exact solution (85) is to establish
the approximation method on an example where we can
compare and test it. Then, afterward, we will apply this
method to the matter period case where the exact solution is
not available.
The method is in the spirit of the way in which we

derived the small mass expansion of the mode function in
the previous subsection. We use the Frobenius method [41]
to find the power series solution to the equation of motion
and then reorganize it to write it as a double power series
in ma=H and k=H, which is then straightforward to
approximate.
Starting from the equation of motion (78) and making a

variable substitution,

z ¼ k
H

; ð98Þ

puts the equation in the form� ∂2

∂z2 þ 1þm4

k4
z2
�
U ¼ 0: ð99Þ

The Frobenius method consists of assuming a power series
solution,

UðλÞ ¼
X∞
n¼0

CðλÞ
n znþλ; ð100Þ

plugging it in Eq. (99), and solving order by order
for the coefficients. The resulting equation, ordered in
powers of z, is

0 ¼ λðλ − 1ÞCðλÞ
0 zλ−2 þ ð1þ λÞλCðλÞ

1 zλ−1

þ ½ð2þ λÞð1þ λÞCðλÞ
2 þ Cλ

0�zλ

þ ½ð3þ λÞð2þ λÞCðλÞ
3 þ CðλÞ

1 �zλþ1

þ
X∞
n¼0

�
ðnþ λþ 4Þðnþ λþ 3ÞCðλÞ

nþ4

þ CðλÞ
nþ2 þ

m4

k4
CðλÞ
n

�
zλþ2þn: ð101Þ

Coefficients multiplying different powers of z must vanish
independently, which gives us an infinite set of equations.
The leading order gives the so-called indicial polynomial

0 ¼ λðλ − 1Þ; ð102Þ

the roots of which,

λ1 ¼ 1; λ2 ¼ 0; ð103Þ
distinguish between the two linearly independent solutions.

The leading order coefficient CðσÞ
0 is the overall normali-

zation of the function and cannot be determined by this
method [stemming from the fact that Eq. (99) is linear and
homogeneous].
The second order requires

0 ¼ ð1þ λÞλCðλÞ
1 ; ð104Þ

which is satisfied by setting CðσÞ
1 ¼ 0.4 It is also straight-

forward to see that all the rest of the odd coefficients must
vanish as well,

CðλÞ
2nþ1 ¼ 0; ðn ∈ NÞ: ð105Þ

This leaves the even coefficients to be determined. Order zλ

gives

CðλÞ
2 ¼ −1

ð2þ λÞð1þ λÞC
ðλÞ
0 ; ð106Þ

and the remaining coefficients are determined by the
recurrence relation,

CðλÞ
2nþ4 ¼ −

CðλÞ
2nþ2 þ m4

k4 C
ðλÞ
2n

ð2nþ λþ 4Þð2nþ λþ 3Þ ; ðn ∈ N0Þ: ð107Þ

We do not bother to solve this recurrence relation exactly,
since the order of approximation we are after does not
require it. Instead, we note that the coefficients have the
following form:

CðλÞ
4n ¼ CðλÞ

0

Xn
s¼0

lðλÞ
2n;s

�
m
k

�
4s
;

CðλÞ
4nþ2 ¼ CðλÞ

0

Xn
s¼0

lðλÞ
2nþ1;s

�
m
k

�
4s
: ð108Þ

Plugging in this into the initial power series (100), and
reorganizing, gives the desired double power series
(remember that m2=H2 ¼ ma=H),

UðλÞ ¼ CðλÞ
0

�
k
H

�
λ X∞
n¼0

Xn
s¼0

�
lðλÞ
2n;s

�
ma
H

�
2s
�
k
H

�
4n−4s

þ lðλÞ
2nþ1;s

�
ma
H

�
2s
�
k
H

�
4n−4sþ2

�
: ð109Þ

The approximation to first subleading order in small mass
now consists of keeping just s ¼ 0 and s ¼ 1 terms,

4Strictly speaking, for σ ¼ σ0 ¼ 0, coefficient Cð0Þ
1 is unde-

termined from this equation and can be chosen arbitrarily, so we
set it to zero for convenience. In fact, picking a nonzero value
of it corresponds to choosing a different linear combination of
independent solutions.
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UðλÞ ¼ CðλÞ
0

�
k
H

�
λ
�X∞

n¼0

lðλÞ
n;0

�
k
H

�
2n
þ
�
ma
H

�
2

×
X∞
n¼0

lðλÞ
nþ2;1

�
k
H

�
2n
�
: ð110Þ

What remains is to solve for the needed l-coefficients by using (108) and the recurrence relation (107),

lðλÞ
n;0 ¼

ð−1Þn
ðλþ 1Þð2nÞ ; ð111Þ

lðλÞ
n;1 ¼ −

ð−1Þn
ðλþ 1Þð2nÞ ×

ðn − 1Þ
3

½4n2 þ nð6λ − 5Þ þ 3λðλ − 1Þ�; ð112Þ

and to resum the power series in (109) using these coefficients. The two linearly independent solutions (λ1 ¼ 1, λ2 ¼ 0) that
we find are

vR1 ¼
1

k
sin

�
k
H

�
þ
�
ma
H

�
2

×

�
−
�
1 −

H2

k2

�
H2

4k3
sin

�
k
H

�
þ
�
1 −

3H2

2k2

�
H
6k2

cos

�
k
H

��
; ð113Þ

vR2 ¼ cos

�
k
H

�
þ
�
ma
H

�
2

×

�
−
H2

4k2
cos

�
k
H

�
−
�
1 −

3H2

2k2

�
H
6k

sin

�
k
H

��
; ð114Þ

where we have picked the normalizations Cð1Þ
0 ¼ 1=k and

Cð0Þ
0 ¼ 1 for convenience and so that the k → 0 limit is well

defined for both functions. These two functions are
exactly the ones in curly brackets in (96) that were
found by expanding the exact solution (84) in the
small mass.
The CTBDmode function in the radiation period is some

linear combination of (113) and (114),

uRðk; ηÞ ¼ ARðk;mÞvR1ðk; ηÞ þ BRðk;mÞvR2ðk; ηÞ: ð115Þ
Since CTBD mode functions are assumed to satisfy the
Wronskian normalization (25), it is easy to compute that the
coefficients above must satisfy

ℑ½A�
Rðk;mÞBRðk;mÞ� ¼ 1

2
: ð116Þ

This is in fact an exact relation between these coefficients,
valid to all orders in m, which we have already calculated
from the exact solution in (97). We cannot say more about
these coefficients just based on the equation of motion, but
luckily we do not have to for the purposes of computing the
backreaction energy-momentum tensor; Eq. (116) will be
the only property needed.
Later, we will need an IR expansion of the mode

functions (113) and (114) which we include here:

vR1≈H−1
�
1−

1

20

�
ma
H

�
2

þO
�
ma
H

�
4
�
þO

�
k
H

�
2

; ð117Þ

vR2 ≈
�
1 −

1

12

�
ma
H

�
2

þO
�
ma
H

�
4
�
þO

�
k
H

�
2

: ð118Þ

C. Matter era

Here, we apply the method introduced in the previous
subsection from the start since the exact solution for the
mode function is not known. During the matter period
(ϵ ¼ 3=2), the background satisfies aH2 ¼ a2H2

2. The
equation of motion for the modes (26), after a variable
substitution

z ¼ 2k
H

; ð119Þ

is put into the form� ∂2

∂z2 þ 1þ ~m6

16k6
z4 −

2ð1 − 6ξÞ
z2

�
U ¼ 0; ð120Þ

where we have defined a mass parameter

~m ¼ ½ma2H2
2�1=3; ð121Þ

which satisfies

~m3

H3
¼ ma

H
≪ 1: ð122Þ

We do not know the exact solutions of the equation of
motion (120). That is why we will resort to the approxi-
mation scheme for the small mass expansion developed in
the previous subsection.
As before, we use the Frobenius method to obtain a

power series solution to the equation,

UðλÞ ¼
X∞
n¼0

CðλÞ
n znþλ: ð123Þ

Organizing the equation in powers of z yields
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0 ¼ ½λðλ − 1Þ − 2ð1 − 6ξÞ�CðλÞ
0 zλ−2 þ ½ðλþ 1Þλ − 2ð1 − 6ξÞ�CðλÞ

1 zλ−1 þ f½ðλþ 2Þðλþ 1Þ − 2ð1 − 6ξÞ�CðλÞ
2 þ CðλÞ

0 gzλ

þ f½ðλþ 3Þðλþ 2Þ − 2ð1 − 6ξÞ�CðλÞ
3 þ CðλÞ

1 gzλþ1 þ f½ðλþ 4Þðλþ 3Þ − 2ð1 − 6ξÞ�CðλÞ
4 þ CðλÞ

2 gzλþ2

þ f½ðλþ 5Þðλþ 4Þ − 2ð1 − 6ξÞ�CðλÞ
5 þ CðλÞ

3 gzλþ3 þ
X∞
n¼0

�
½ðλþ 6þ nÞðλþ 5þ nÞ − 2ð1 − 6ξÞ�CðλÞ

nþ6

þ CðλÞ
nþ4 þ

~m6

16k6
CðλÞ
n

�
: ð124Þ

Coefficients multiplying different powers of z must
vanish independently. The order zλ−2 gives the indicial
polynomial,

λðλ − 1Þ − 2ð1 − 6ξÞ ¼ 0; ð125Þ
the solutions of which are

λ1 ¼
1

2

h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ð1 − 6ξÞ

p i
≡ 1

2
þ ν; ð126Þ

λ2 ¼
1

2

h
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ð1 − 6ξÞ

p i
≡ 1

2
− ν; ð127Þ

and CðλÞ
0 is the overall normalization constant. Note that

in (126) and (127) above we have introduced the definition
of ν,

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ 2ð1 − 6ξÞ

r
; ð128Þ

which would be the index of the Hankel functions in the
CTBD mode function of the matter period in the massless

limit. The next order requires that CðλÞ
1 ¼ 0, and in fact all

the odd coefficients must vanish,

CðλÞ
2nþ1 ¼ 0; n ∈ N: ð129Þ

Orders zλ and zλþ2 give

CðλÞ
2 ¼ −CðλÞ

0

2ð2λþ 1Þ ; CðλÞ
4 ¼ CðλÞ

0

4ð2λþ 3Þ ; ð130Þ

which serve as initial conditions for the recurrence relation

CðλÞ
2nþ6 ¼

−CðλÞ
2nþ4 −

~m6

16k6
CðλÞ
2n

2ð3þ nÞð2λþ 5þ 2nÞ ; ðn ∈ N0Þ: ð131Þ

The indicial polynomial (125) was used to simplify the
denominators of the above expressions for the coefficients.
In a similar fashion as for the case of the radiation period

in the previous section, the coefficients in the expansion
(123) can be seen from (131) to have the form

CðλÞ
6n ¼ C0

Xn
s¼0

l3n;s

�
~m6

16k6

�
s
; ð132Þ

CðλÞ
6nþ2 ¼ C0

Xn
s¼0

l3nþ1;s

�
~m6

16k6

�
s
; ð133Þ

CðλÞ
6nþ4 ¼ C0

Xn
s¼0

l3nþ2;s

�
~m6

16k6

�
s
; ð134Þ

where we will not need to solve for all the l-coefficients.
Plugging these into the power series (123) and reorganiz-
ing gives

UðλÞ ¼ CðλÞ
0

�
2k
H

�
λ X∞
n¼0

Xn
s¼0

�
2ma
H

�
2s
�
lðλÞ
3n;s þ lðλÞ

3nþ1;s

�
2k
H

�
2

þ lðλÞ
3nþ2;s

�
2k
H

�
4
��

2k
H

�
6ðn−sÞ

; ð135Þ

which is straightforward to approximate in the ma ≪ H limit, by keeping only s ¼ 0 and s ¼ 1 terms,

UðλÞ ≈ CðλÞ
0

�
2k
H

�
λ
�X∞

n¼0

lðλÞ
n;0

�
2k
H

�
2n
þ 4

�
ma
H

�
2X∞
n¼0

lðλÞ
nþ3;1

�
2k
H

�
2n
�
: ð136Þ

Now, the l-coefficients we need can be found from (131), and they are

lðλÞ
n;0 ¼

ð−1Þn
4nn!ð1

2
þ λÞðnÞ ; ð137Þ

lðλÞ
n;1 ¼

ð−1Þn
4nn!ð1

2
þ λÞðnÞ ×

4nðn − 1Þðn − 2Þ
15

½24 − 39nþ 12n2 − 50λþ 30nλþ 20λ2�: ð138Þ

Resumming the series (136) yields the two linearly independent solutions to first subleading order in small ma=H,
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vM1 ¼ Γð1þ νÞk−νH−1=2Jν

�
2k
H

�
þ
�
ma
H

�
2

×
Γð1þ νÞ

30
k−1−νH1=2

��
−6þ ð1 − νÞð2 − νÞH

2

k2

�
J1þν

�
2k
H

�

þ ð2 − νÞ
�
3 − ð1 − νÞð2þ νÞH

2

k2

�
H
k
J2þν

�
2k
H

��
þO

�
ma
H

�
4

; ð139Þ

vM2 ¼ Γð1 − νÞkνH−1=2J−ν

�
2k
H

�
þ
�
ma
H

�
2

×
Γð1 − νÞ
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��
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ma
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; ð140Þ

where a convenient overall normalization was chosen,

Cð1=2þνÞ
0 ¼ ð2kÞ−1=2−ν and Cð1=2−νÞ

0 ¼ ð2kÞ−1=2þν, and ν
was defined in (126).
The CTBD mode function in the matter period is some

linear combination of the two independent solutions above,

uMðk; ηÞ ¼ AMðk;mÞvM1ðk; ηÞ þ BMðk;mÞvM2ðk; ηÞ:
ð141Þ

We cannot determine them just from the equation of
motion, but they satisfy

ℑ½A�
Mðk;mÞBMðk;mÞ� ¼ 1

2ν
; ð142Þ

which follows from the Wronskian normalization (25) and
the Wronskian of the functions (139) and (140). We expect
this to be an exact relation in the sameway as the analogous
one for the radiation period (116), but we have not checked
it explicitly. We will not need any other properties of the
coefficients other than (142) in order to compute the
energy-momentum tensor of the backreaction in the matter
period.
Later, we will need also an IR expansion of the mode

functions (139) and (140), which we give here,

vM1 ≈ H−1=2−ν
��

1 −
1

3ð3þ νÞ
�
ma
H

�
2

þO
�
ma
H

�
4
�

þO
�
k
H

�
2
�
; ð143Þ

vM2 ≈ H−1=2þν

��
1 −

1

3ð3 − νÞ
�
ma
H

�
2

þO
�
ma
H

�
4
�

þO
�
k
H

�
2
�
: ð144Þ

VII. ENERGY DENSITY AND PRESSURE

This section is devoted to computing the leading
contributions to integrals (35), using the rationale from
Sec. V, and the mode functions are derived in Sec. VI.
The computation is made for all three cosmological eras
(Fig. 1), up until the onset of DE domination. The final
answers are leading contributions in the small ratios of
physical parameters (which satisfy a hierarchy from
Fig. 2). Also, the computations are restricted to the
regions long enough after the transition periods so that
this hierarchy can be exploited. At the end of each
subsection, the minimally coupled limit is discussed and
compared to Ref. [18], as well as the limits of small
nonminimal coupling which is the main focus of
this work.

A. Inflationary era

For the exact de Sitter inflationary era, we can actually
evaluate the integrals (35) for the energy-momentum tensor
exactly, and there is no need to resorting to approximations.
First, we compute the IR part of (35), using the CTBD
mode function (73),

I IR
0 ¼

Z
μ

k0

dk k2juIðk; ηÞj2

¼ μ2

4
þH2

4

�
ν2I −

1
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�
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4
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1

2
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− ψ
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−
1

2
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��

þ 22νI−3Γ2ðνIÞ
πðνI − 3

2
Þ H2νI−1k3−2νI0

�
1þO

�
k0
H

�
2
�
;

ð145Þ
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I IR
1 ¼

Z
μ

k0

dk k4juIðk; ηÞj2

¼ μ4

8
þH2μ2
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4
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�
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�
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�
: ð146Þ

Plugging these integrals into expressions (33) and (34) gives us the IR contributions to energy density and pressure during
the inflationary period. Combining these with the UV contributions (A29) and (A30) specialized to ϵ ¼ 0 [including the
conformal anomaly (A33) as well], the dependence on the artificially introduced UV cutoff cancels as promised, and the
physical renormalized quantity remains,

ρQ ¼ H4
I

32π2

�
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30
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þ 6ξ

�
þ
�
m
HI

�
2
�
H4

I

�
a0HI

k0

�
2νI−3

�
a
a0

�
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; ð147Þ

pQ ¼ H4
I

32π2

�
ð1 − 6ξÞ2 − 1

30
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��
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��
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�
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; ð148Þ

where

C0 ¼ 2 ln 2 − 1 − ψ

�
−
1

2
þ νI

�
− ψ

�
−
1

2
− νI

�
; ð149Þ

and νI is given in (74). In the expressions above, we have
reverted to using the physical Hubble rate HIð¼ aHÞ,
assumed to be constant during inflation (ϵ ¼ 0), in order to
make the expression more transparent.
The IR cutoff k0 in (147) and (148) (and in the results to

follow) can be given physical meaning by relating it to the
Hubble scale at the beginning of inflation H0. In Ref. [33]
(and Ref. [14]), the IR regularization method employed
was matching the inflationary period onto a preinflationary
radiation-dominated period, where IR issues are absent
(due to the vanishing Ricci scalar), so the Hubble rate at the
beginning of inflation was explicitly introduced. By spe-
cializing that result to ϵ ¼ 0, and comparing it to the one
above, we see that k0 ∼H0 of course. In this paper, we will
be dealing with the nonminimal coupling restricted to
0 ≤ −ξ ≪ 1, in which case on de Sitter the two scales
coincide to leading order in ξ, k0 ¼ H0. Therefore, from
now on, we will be making this identification.

1. Minimally coupled limit

Setting the nonminimal coupling ξ to zero and working
in the small mass limit gives

ρQ ¼ −
119H4

I

960π2
þ 3H4

I

16π2

h
1 − e

−2
3
m2

H2
I
Ni

; ð150Þ

pQ ¼ 119H4
I

960π2
−

3H4
I

16π2

h
1 − e

−2
3
m2

H2
I
Ni

; ð151Þ

for the backreaction energy density and pressure, which
is a standard result. In the expressions above, N stands
for the number of e-foldings from the beginning of
inflation, N ¼ lnða=a0Þ. The first term corresponds to the
energy density and pressure of an exactly massless scalar
in a CTBD state during de Sitter inflation [12,42]. The
second term is a contribution from m2hϕ2i, the behavior
of which is well known for (slow roll) inflationary
backgrounds [15,16,43]. For an extremely long inflation,
the energy density and pressure saturate to

ρQ¼ 61H4
I

960π2
; pQ¼−

61H4
I

960π2
; NI ≫

�
m
HI

�
−2

ð152Þ

and contribute just a tiny correction to the effective
cosmological constant (determined by the expansion
rate). This limit was used in Ref. [17] in the context
of late-time quantum backreaction. For a “short” infla-
tion, the backreaction at the end of inflation can be
approximated to be
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ρQ ¼ −
119H4

I

960π2
þH2

Im
2

8π2
NI;

pQ ¼ 119H4
I

960π2
−
H2

Im
2

8π2
NI;

NI ≪
�
m
HI

�
−2
; ð153Þ

where here and henceforth NI is the total number of
e-foldings of inflation. But NI does not have to be small;
in fact, it can still be very large if m is very small
compared to HI . This limit proved better when con-
structing a DE model based on backreaction [18].

2. Limit ðm=HIÞ2 ≪ jξj ≪ 1

This is effectively a massless limit of the full result (147)
and (148) and coincides with the results in Ref. [33],

ρQ ≈ −
3H4

I

32π2
e8jξjNI ½1þOðξÞ�; pQ ≈ −ρQ: ð154Þ

This result also follows from the result for the scalar field
variance hχ2iREN (corresponding to hϕ2i in this work) of
Sec. III.C in Ref. [16]. In the end, we will be interested
in this range of parameters during inflation, when we try
to construct a model in which the quantum backreaction
is small throughout the expansion history and becomes
large only at the onset of the DE-dominated period
(Fig. 1). We see that the backreaction (154) is negative
and grows in amplitude exponentially with N during
inflation, and how much it grows depends on the value of
nonminimal coupling and the duration of inflation. Since
we want the backreaction to remain perturbative during
inflation, this imposes a constraint on the ξ − NI param-
eter space depicted in Fig. 5, which was derived by
requiring ρQ=ρB < 1. This implies for the number of
e-foldings

NI ≤
1

8jξj ln
�
4π

�
EP

ℏHI

�
2
�
; ð155Þ

where the dimensionful units were restored, EP ¼
ðℏc5=GNÞ1=2 is the Planck energy, and the inflationary
Hubble scale is taken to be ℏHI ∼ 1013 GeV.
Although strong backreaction in inflation would be very

interesting to study in its own right (especially since its
energy density has a negative sign which would work
toward slowing down inflation), here we restrict ourselves
to studying just the DE scenarios, for which we assume
small backreaction at the end of inflation.

B. Radiation era

Some time after the transition to the radiation period, the
hierarchy of scales k0 ≪ H ≪ H1 is reached [together with
the assumed ðmaÞ2=H2 ≪ 1]. The relevant contribution to
integrals (35) is

In ≈
Z

μ

k0

dk k2þ2nZBogðk; ηÞ; ð156Þ

as was established in Sec. V B 1, with

k0 ≪ H ≪ μ ≪ H1; ð157Þ
and the integrand, as defined in (58), is

ZBogðk; ηÞ ¼ 2jβRðkÞj2juRðk; ηÞj2
þ αRðkÞβ�ðkÞu2Rðk; ηÞ
þ α�RðkÞβRðkÞ½u2Rðk; ηÞ��: ð158Þ

The Bogolyubov coefficients in this integrand are deter-
mined by the fast transition from the inflationary period
to the radiation one. For the scales integrated over in (156),
they are well approximated by the sudden transition
ones (52) and (53),

αRðkÞ ¼ −i½uIðk; η1Þu0�R ðk; η1Þ − u0Iðk; η1Þu�Rðk; η1Þ�;
ð159Þ

βRðkÞ ¼ i½uIðk; η1Þu0Rðk; η1Þ − u0Iðk; η1ÞuRðk; η1Þ
�
: ð160Þ

The inflationary CTBD mode function in Bogolyubov
coefficients above is given by (73), and the radiation
CTBD mode function is given by (115). For the range
of integration in (156), the mode functions inside of
Bogolyubov coefficients are in fact very well described
by the small momentum limit (on top of the small mass
limit). We use this to simplify the integrand before
integration.
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0

50

100

150

200

250

300

65

N
I

FIG. 5. Parameter space of nonminimal coupling ξ and the
total number of e-foldings of inflation NI . The bold curve
corresponds to the condition ρQ=ρB ¼ 1 at the end of inflation
(HI ¼ 1013 GeV), and the shaded region corresponds to situa-
tions when quantum backreaction starts to dominate even before
the end of inflation. This part of parameter space is not examined
in this work, but we rather concentrate on the white region where
quantum backreaction stays perturbative during inflation. The
dashed line represents the requirement on the minimal duration of
inflation. It follows that we restrict ourselves to considering
−0.05≲ ξ ≤ 0 in this work.
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Using the IR expansion (75) for the inflationary CTBD
mode function, it follows that

u0Iðk; η1Þ ≈
�
νI −

1

2

�
H1uIðk; η1Þ; ð161Þ

and the Bogolyubov coefficients simplify to

αRðkÞ ≈ −juIðk; η1Þj
�
u0�R ðk; η1Þ −

�
νI −

1

2

�
H1u�Rðk; η1Þ

�

≡ −juIðk; η1Þj~β�RðkÞ; ð162Þ

βRðkÞ ≈ juIðk; η1Þj
�
u0Rðk; η1Þ −

�
νI −

1

2

�
H1uRðk; η1Þ

�

≡ juIðk; η1Þj~βRðkÞ ð163Þ

and to leading order satisfy

αRðkÞ ≈ −β�RðkÞ; ð164Þ

which implies the following simplification for the integrand
(158):

ZBogðk; ηÞ ≈ 4juIðk; η1Þj2fℑ½ ~β�RuRðk; ηÞ�g2: ð165Þ

This integrand is further simplified by considering the
small mass limit ma=H ≪ 1, using the approximate mode
functions (113) and (114),

ℑ½ ~β�RðkÞuRðk; ηÞ� ≈ ℑ½A�
Rðk;mÞBRðk;mÞ� ×

�
v0R2ðk; η1ÞvR1ðk; ηÞ − v0R1ðk; η1ÞvR2ðk; ηÞ

−
�
νI −

1

2

�
H1½vR2ðk; η1ÞvR1ðk; ηÞ − vR1ðk; η1ÞvR2ðk; ηÞ�

�

¼ 1

2

�
v0R2ðk; η1ÞvR1ðk; ηÞ − v0R1ðk; η1ÞvR2ðk; ηÞ

−
�
νI −

1

2

�
H1½vR2ðk; η1ÞvR1ðk; ηÞ − vR1ðk; η1ÞvR2ðk; ηÞ�

�
; ð166Þ

where the property (116) was used, and it is the only place where we need to refer to coefficients AR and BR, no matter how
complicated they may be. Furthermore, we may expand this expression to leading order in H1 because of hierarchy (157),
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; ð167Þ

so that now, after plugging in (73), the full integrand is well approximated by

ZBog ≈
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Finally, we can perform the integrals (156) using this approximated integrand. We expand the result according to the
hierarchy (157),
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Then, plugging them into (33) and (34) gives the backreaction energy density and pressure (in the small mass limit),

ρQ ≈
ΓðνIÞH4

I

25−2νIπ3

�
νI −

1

2

�
eð2νI−3ÞNI

�ðνI − 1
2
ÞΓðνIÞ

ðνI − 3
2
Þ

�
6ξ

�
a1
a

�
4

þ ð1 − 3ξÞ
�
m
HI

�
2
�

−
ðνI − 1

2
ÞΓðνIÞ

ðνI − 3
2
Þ

�
H0

μ

�
2νI−3

�
a1
a

�
4

−
ffiffiffi
π

p ðνI − 1ÞΓ
�
3

2
− νI

��
ð1 − 6ξÞ

�
a1
a

�
4

−
ð1 − 6ξÞðνI − 3

2
Þ þ 3νIðνI þ 3

2
Þ þ 2ð1 − 6ξÞν2I ðνI þ 3

2
Þ

6νIðνI − 1ÞðνI þ 1
2
ÞðνI þ 3

2
Þ

�
m
HI

�
2
��

H0

H

�
3−2νI

�
; ð171Þ
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We have given some parts of the expressions above in terms
of physical quantities for the sake of clarity. The comment
of the dependence on the arbitrary cutoff μ is warranted. It
is bound to cancel with the same contribution from the
remaining part of the integration interval, and it does not
contribute to the full result. The reason we kept it explicitly
is because we want to take the minimally coupled limit,
which we do and discuss in the next subsection.

1. Minimally coupled limit

The minimally coupled limit consists in taking ξ ¼ 0 and
then expanding νI , defined in (74), for small mass in (171)
and (172),
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Note that the dependence on μ has persisted in the final
answer. This does not signal that the answer is wrong
but rather that the UV does not contribute a suppressed
contribution. In the exactly massless limit of this result,
the first terms drop out from the energy density and
pressure above, and what remains is exactly the result
from Ref. [12], where the massless minimally coupled
case was studied from the start. What effectively cuts
off the UV radiationlike contribution is the finite time
of transition τ between the inflationary and radiation
period.
We have assumed here that the radiation period does not

last excessively long; more precisely,

NR ≪
�
m
HI

�
−2
; ð175Þ

where NR is the total number of e-foldings of the radiation
period, which will be satisfied by the requirements in the
end. This first terms in (173) and (174) coincide with the
ones computed in Ref. [18], since they are derived from
m2hϕ̂2i term. Note that this term is not the dominant one for
a very small mass.
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2. Limit ðm=HÞ2 ∼ jξj ≪ 1

The leading order contribution in this limit is
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; ð177Þ

where we have assumed that the radiation period will not
last longer (in e-foldings) than the inflationary period
(NI > NR ∼ 60), which will be true in the end for the
ranges of nonminimal couplings of interest in this work.
There are two qualitatively different contributions to the
energy density and pressure above. The first contribution is
radiationlike, and it redshifts just as the background does.
It is easy to see that if the constraint from Fig. 5 is satisfied,
this contribution will never dominate in the radiation
period.
The second contribution is of the CC type, and its energy

density has a positive sign. For suitable choices of
parameters, one can get this contribution to be the dominant
one in the backreaction during the radiation period. And
since it does not redshift away, the ratio ρQ=ρB grows, and
it might grow to order 1 for suitable masses and small
enough nonminimal couplings. But we are not interested in
this scenario happening in the radiation period. What we
are interested in is realizing it in the matter period, which
we turn to next. During the radiation period, we require the
CC-type contribution to be negligible, in which case (176)
and (177) reduce to the massless limit of Ref. [14],

ρQ ≈ −
3H4

I

32π2
e8jξjNI

�
a1
a

�
4

; pQ ≈
1

3
ρQ: ð178Þ

C. Matter era

After the transition to the matter era, the following
hierarchy of scales is reached (Fig. 2),

H0 ≪ H ≪ μ ≪ H2 ≪ H1; ð179Þ
where μ is a fiducial scale, introduced for the sake of
isolating the relevant contribution to integrals (35),

In ≈
Z

μ

H0

dk k2þ2nZBogðk; ηÞ; ð180Þ

as discussed in Sec. V. The integrand here is

ZBog ¼ 2jβMðkÞj2juMðk; ηÞj2 þ αMðkÞβ�MðkÞu2Mðk; ηÞ
þ α�MðkÞβMðkÞ½u2Mðk; ηÞ��; ð181Þ

where the Bogolyubov coefficients are well approximated
by the sudden transition ones (52) and (53) determined by
two fast transitions—from inflation to radiation and from
radiation to matter,

αMðkÞ ¼ −i½αRðkÞuRðk; η2Þ þ βRðkÞu�Rðk; η2Þ�u0�Mðk; η2Þ
þ i½αRðkÞu0Rðk; η2Þ þ βRðkÞu0�R ðk; η2Þ�u�Mðk; η2Þ;

ð182Þ

βMðkÞ ¼ i½αRðkÞuRðk; η2Þ þ βRðkÞu�Rðk; η2Þ�u0Mðk; η2Þ
þ i½αRðkÞu0Rðk; η2Þ þ βRðkÞu0�R ðk; η2Þ�uMðk; η2Þ:

ð183Þ
Bogolyubov coefficients in the radiation period αR and βR,
appearing in the expression above, were already approxi-
mated in the previous subsection, where it was found that
αR ≈ −β�R. Applying this here gives

αMðkÞ ≈ −2ℑ½β�RðkÞuRðk; η2Þ�u0�Mðk; η2Þ
þ 2ℑ½β�RðkÞu0Rðk; η2Þ�u�Mðk; η2Þ; ð184Þ

βMðkÞ ≈ 2ℑ½β�RðkÞuRðk; η2Þ�u0Mðk; η2Þ
− 2ℑ½β�RðkÞu0Rðk; η2Þ�uMðk; η2Þ; ð185Þ

from where we see that again

αMðkÞ ≈ −β�MðkÞ: ð186Þ

Now, the integrand (181) simplifies to

ZBogðk; ηÞ ≈ 4fℑ½β�MðkÞuMðk; ηÞ�g2; ð187Þ

which we can write out as

ℑ½β�MðkÞuMðk; ηÞ�
¼ 2ℑ½β�RðkÞuRðk; η2Þ�ℑ½u0�Mðk; η2ÞuMðk; ηÞ�
− 2ℑ½β�RðkÞu0Rðk; η2Þ�ℑ½u�Mðk; η2ÞuMðk; ηÞ�: ð188Þ

Part of this integrand was already approximated in (168).
Because of the hierarchy of scales (179) in the matter
period, we may expand this further in the IR limit,

ℑ½β�RðkÞuRðk; η2Þ� ≈ −
2νI−2ffiffiffi

π
p ΓðνIÞ

�
νI −

1

2

�
HνIþ1=2

1 H−1
2 k−νI

×

�
1 −

1

20

�
ma2
H2

�
2
�
; ð189Þ

ℑ½β�RðkÞu0Rðk; η2Þ� ≈ −
2νI−2ffiffiffi

π
p ΓðνIÞ

�
νI −

1

2

�
HνIþ1=2

1 k−νI

×

�
1 −

1

8

�
ma2
H2

�
2
�
: ð190Þ

In the remaining part of the integrand, we first use the
property (142) to express it solely in terms of mode
functions (139) and (140),
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ℑ½u0�Mðk; η2ÞuMðk; ηÞ� ¼ ℑ½A�
Mðk;mÞBMðk;mÞ�½vM1ðk; η1ÞvM2ðk; ηÞ − vM2ðk; η2ÞvM1ðk; ηÞ�

¼ 1

2ν
½vM1ðk; η1ÞvM2ðk; ηÞ − vM2ðk; η2ÞvM1ðk; ηÞ�; ð191Þ

and then we use the hierarchy (179) to simplify it further by expanding it to leading order in H2,

ℑ½u�Mðk; η2ÞuMðk; ηÞ� ≈
ΓðνÞ
2

H−1=2þν
2 H−1=2k−ν

�
Jν

�
2k
H

�
þ
�
ma
H

�
2

×
H
30k

��
−6þ ð1 − νÞð2 − νÞH

2
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2k
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�

þ ð2 − νÞ
�
3 − ð1 − νÞð2þ νÞH

2

k2

�
H
k
J2þν

�
2k
H

���
; ð192Þ

ℑ½u0�Mðk; η2ÞuMðk; ηÞ� ≈ −
1

2

�
ν −

1

2

�
H2 × ℑ½u�Mðk; η2ÞuMðk; ηÞ�: ð193Þ

The full integrand is now given approximately as

ZBogðk; ηÞ ≈
22νI−2

π
Γ2ðνIÞ

�
νI −

1

2

�
2
�
νþ 3

2

�
2

H2νI−1
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: ð194Þ

Given the approximation (194), we can now perform integrals (35) and expand the result according to the hierarchy
(179),

I0 ≈
Γ2ðνIÞΓ2ðνÞ
25−2νIπ

�
νI −

1

2
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2
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I1 ≈
Γ2ðνIÞΓ2ðνÞ
25−2νIπ
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Plugging these two integrals into (33) and (34) yields the backreaction energy density and pressure in the matter era,

ρQ ≈
Γ2ðνIÞH4

I

25−2νI
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2
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; ð197Þ

pQ ≈
Γ2ðνIÞH4
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: ð198Þ

The terms containing factors H0=H must be negligible in order for us to have control over the approximation. The reason
behind this lies in the IR regularization employed in this computation. We have introduced a sharp IR cutoff k0 ¼ H0 in
comoving momentum space, arguing that it is an approximation of the contribution coming from a full state (from all scales)
that is smoothly suppressed in the deep IR. The deep IR scales are assumed to contribute subdominantly, and hence they
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were dropped right from the start by the introduction of this
cutoff. But once H < H0 is reached by the cosmological
evolution, it means that there are no more modes in the IR
except the ones below the cutoff scale k0, so they are the
only ones contributing relevantly to the backreaction (this
was treated in the massless limit in Ref. [14]). This is where
our approximation breaks down. The physical requirement
that we make on the model is that the inflation lasts long
enough for the expressions above to be reliable. This will
indeed be true for the cases of interest in this work.

1. Minimally coupled limit

Setting ξ ¼ 0 in (197) and (198) produces the minimally
coupled limit,

ρQ ≈
3H4

I

32π2
eð2νI−3ÞNI−4NR

�
a2
a

�
3

þ 3H4
I

16π2

h
1 − e

−2
3
m2

H2
I
NI
i
;

ð199Þ

pQ ≈ −
3H4

I

16π2

h
1 − e

−2
3
m2

H2
I
NI
i
: ð200Þ

There are two types of contributions to the backreaction
energy density and pressure here. The first one scales like
nonrelativistic matter and redshifts at the same rate as the
background fluid driving the expansion. It is a contribution
that was found in the massless minimally coupled case
[12]. The second contribution is of the CC type, making it
interesting in the context of DE scenarios. There are two
limits one can discuss regarding the second term, which we
do in the following.
In the limit of very long inflation, NI ≫ ðm=HIÞ−2, the

CC-type contribution saturates to a maximum value during
inflation and remains constant throughout expansion (pro-
vided m ≪ H always). It is easy to see that it contributes
dominantly to (199) and (200) (since it does not redshift
away),

ρQ ≈
3H4

I

16π2
; pQ ≈ −ρQ: ð201Þ

This is a scenario that was suggested in Ref. [17], although
the rigorous computation, which we supply in this paper,
was not performed. It was found that in order for this limit
to work as a DE model (requiring ρQ=ρB ∼ 1), i.e. for the
backreaction to have the right value at the late-time matter
era, one must considerably lower the inflationary Hubble
scale ðℏHIÞ ≲ 6 × 10−3 eV (corresponding to the energy
scale of inflation EI ≲ 5 × 103 GeV). The conditions
NI ≫ ðm=HIÞ−2 for very long inflation and m=Htoday<1

then imply that NI ≳ 1060.
In the limit of short inflation, NI ≲ ðm=HIÞ2, the CC-

type contribution in (199) and (200) does not have enough
time to reach its maximum value in inflation, but the value
it has at the end of inflation freezes throughout subsequent

expansion (provided m ≪ H always). For short enough
inflation, the backreaction energy density and pressure at
late times in the matter era are

ρQ ≈
H2

Im
2

8π2
NI; pQ ≈ −ρQ: ð202Þ

The matterlike contribution never becomes important [12]
compared to the background, and that is why we have
neglected it above. This is the result and the scenario
suggested in Ref. [18]. It was found that in order to work as
a DE scenario, one does not have to lower the inflationary
scale, ðℏHIÞ ∼ 1013 GeV, but still a very long inflation is
required, NI ≳ 1013 (together with the mass being lighter
than the Hubble rate today, m≲ 10−33 eV). The compu-
tations of the quantum backreaction in Ref. [18] were
performed for inflationary and radiation periods, but a
rigorous computation for the matter period was missing
(even though the predicted result was correct), which is
supplied by the limit taken in this subsection.

2. Limit ðm=HÞ2 ∼ jξj ≪ 1

In this limit, the leading contributions to the quantum
backreaction energy density and pressure are

ρQ ≈ −
3H4

I

32π2
e8jξjNI

�
e−4NR

�
a2
a

�
3

−
1

6jξj
�
m
HI

�
2
�
; ð203Þ

pQ ≈ −
3H4

I

32π2
e8jξjNI

�
1

6jξj
�
m
HI

�
2
�
: ð204Þ

One can recognize two types of contributions—first, one
that survives in the massless limit and scales like non-
relativistic matter and another that behaves like the CC and
depends on the mass. We want to discuss in which cases
the CC-type contribution dominates the backreaction and
under which conditions can it be large enough to influence
the background dynamics.
First, since the first matterlike contribution behaves like a

tracer solution in the matter and radiation eras [see (176)
and (177)], its ratio compared to the background is
determined by the ratio at the end of inflation, which then
freezes for subsequent evolution. So, if the conditions of
Fig. 5 are met, if the backreaction is small at the end of
inflation (ρQ=ρB ≪ 1), this term will never be important.
The second CC-type contribution does not redshift away

and can become comparable to the background, under the
condition that m≲Htoday (otherwise, the field becomes
heavy and starts contributing like nonrelativistic matter).
A more precise constraint on the scalar field mass is to
compare it to the Hubble rate at the onset of DE domination
which we take to be the time of equality of the CC and
matter defined by ρM ¼ ρCC. It follows quickly from the
first Friedmann equation and the density parameters of CC
and matter today, ΩCC ¼ 0.68 and ΩM ¼ 0.32 [3,4], that
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HDE ¼ Htoday ×
ffiffiffiffiffiffiffiffiffiffiffi
2ΩCC

p
¼ 1.7 × 10−33 eV; ð205Þ

corresponding to 0.25 e-foldings in the past of today
(redshift z ¼ 0.29). The measure of the strength of the
backreaction at late times is the ratio

ρQ
ρB

¼ e8jξjNIGNH2
I

24πjξj
�

m
HDE

�
2

: ð206Þ

When this becomes of order 1, the backreaction starts
dominating. Up until that moment, the quantum back-
reaction behaves like a cosmological constant with positive
energy density, so its tendency would be to speed up the
expansion rate. The exact details of this process are a matter
of performing the full self-consistent evolution, but at least
the initial tendency is clear.
This model has three parameters—m, ξ, and NI—that

are not completely independent. The mass is constrained
to be smaller than the Hubble rate at the start of DE
domination,

m
HDE

< 1: ð207Þ

The nonminimal coupling ξ and the duration of inflation
NI are constrained in Fig. 5 by the requirement that
backreaction remains perturbative during inflation. The
crucial requirement for the model to work is that the ratio
(206) is of order 1. This condition determines the number
of e-foldings as a function of the nonminimal coupling
ξ and the ratio (207),

NI ¼
1

8jξj ln
�
24πjξj

�
HDE

m

�
2
�
EP

ℏHI

�
2
�
; ð208Þ

where EP ¼ ðℏc5=GNÞ1=2 is the Planck energy. The plot
of NIðξÞ for the case ðm=HDEÞ2 ¼ 0.1 is shown in Fig. 6.
Part of the curve in Fig. 6 does not lie in the allowed
region of Fig. 5, and hence the model does not work for
the whole considered range of nonminimal couplings
−0.1 < ξ < 0, but still 0 > ξ ∼ −10−3 is allowed. Of
course, the limits on nonminimal coupling depend on
(207). In fact, we can derive this bound on nonminimal
coupling dependent on the ratio m=HDE by requiring that
the predicted number of e-foldings (208) satisfies the
constraint from inflation (155), which gives

ξ > −
1

6

�
m

HDE

�
2

; ð209Þ

which does not depend on the inflationary scale HI .
Since for the case depicted in Fig. 6 ðm=HDEÞ2 ¼ 0.1,
the results should be trusted to the 10% level due to
possible subleading mass corrections.

VIII. DISCUSSION AND OUTLOOK

In this paper, we investigate the evolution of quantum
fluctuations of a very light, nonminimally coupled, spec-
tator scalar field (11) throughout the history of the
Universe, from the beginning of inflation and throughout
inflation, the radiation and matter eras. When the field
couples to a fixed classical homogeneous and isotropic
cosmological background [characterized by the Hubble
rate as a function of time, H ¼ HðtÞ] and when gravity is
assumed nondynamical (i.e. the quantum gravitational
effects are turned off), the relevant scalar field equation (20)
is linear and can thus in principle be solved exactly, at least
with the help of numerical methods. Since here we are
interested in the (one-loop quantum) backreaction of the
scalar quantum fluctuations on the background space-time,
numerically solving our problem turns out to be tedious
(but can be done as in Ref. [44]). Instead, here we resort to
an approximate analytical treatment. Indeed, as illustrated
in Fig. 1, it is convenient to split the history of the Universe
into relatively long epochs, during which the principal slow
roll parameter, ϵ ¼ − _H=H2, is to a good approximation
constant, and relatively short transition periods, during
which ϵ rapidly changes. We show that, provided the
transition periods are sufficiently short (for the transition
in question, that means that the characteristic time scale
must be shorter than the Hubble time at the transition), they
can be treated in a sudden transition approximation. This is
so because the main contribution to the energy-momentum
tensor, that determines the backreaction on the background
space-time, comes from the infrared modes for which the
sudden transition approximation applies.
It is important to investigate how the results depend on

the choice of initial state (which when chosen naively
suffers from IR divergences) and the IR regularization
method. We have argued in Sec. III C that the three viable
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FIG. 6. The relation between the nonminimal coupling param-
eter ξ and the total number of e-foldings of inflation NI

determined by condition ρQ=ρB ¼ 1 and ðm=HDEÞ2 ¼ 0.1, rep-
resented by the bold curve. The shaded region is excluded by the
requirements that the quantum backreaction stays perturbative
until late times (Fig. 5).
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regularization methods must give at least qualitatively the
same answer, which was supported by comparisons of
explicit computations done using different schemes.
Therefore, the results of our analysis are quite generic,
i.e. to a large extent independent on the choice of the
initial state.
It is also important to emphasize that, in the process of

calculating the one-loop energy-momentum tensor, we
have used dimensional regularization to remove all
divergences and that our final result for the renormalized
energy-momentum tensor is finite and cutoff independent.
The cutoff independence is not trivial to achieve, since in
the process of dimensional regularization one has to
introduce an ultraviolet cutoff splitting the UV and IR
parts. Regularization and renormalization procedures for
the UV part are outlined in the Appendix. The cutoff
dependence introduced this way is only fiducial and
cancels completely when the two parts are added up,
resulting in a cutoff independent, fully regulated, finite
answer.
It is now a good moment to state the most important

results of this work. The one-loop late-time contribution to
the energy density and pressure in the matter era, in the
limit when jξj ≪ 1 and m=HDE < 1, are of the form [see
(203)–(204)]

ρQ ≈
ℏ
c3

×
H2

I

8π2

�
mc2

ℏ

�
2

×
e8jξjNI

8jξj ;

pQ ≈ −ρQ; ð210Þ
where m is the scalar field mass and ξ is its nonminimal
coupling to the Ricci scalar [see action (11)]; ℏHI ∼
1013 GeV is the inflationary Hubble rate. Note that
seemingly the one-loop energy density and pressure in
(210) are proportional to ℏ−1. This is a consequence of
the convention for writing the quadratic part of the
potential in terms of particle mass m. But mc2=ℏ,
which appears in action (11) instead of m when
dimensionful units are restored, should be considered
as constant and not as singular in the classical limit
ℏ → 0. This means (210) is proportional to ℏ in the
usual one-loop sense.
Since ρQ is approximately constant and pQ ≈ −ρQ, this

contribution can be a good candidate for dark energy. The
principal goal of the upcoming work [45]—in which we
study in the Gaussian approximation the self-consistent
one-loop backreaction in the model (11)—is to establish
whether this naive proposition is justified. Namely,
the perturbative treatment employed in this work fails to
be reliable when the backreaction becomes significant,
which is precisely when it becomes interesting from the
dark energy point of view. The contribution (210) can be
compared with the energy density at the onset of DE
domination, ρB¼3M2

PH
2
DE [where ℏHDE¼1.7×10−33 eV

was defined in (205)], to give

ρQ
ρB

≈
1

3π

�
ℏHI

EP

�
2

×

�
mc2

ℏHDE

�
2

×
e8jξjNI

8jξj ; ð211Þ

where the last factor represents the enhancement factor
due to the inflationary particle production. In Sec. VII C,
we show [see Eq. (209)] that the expression (211) is valid
provided the following inequalities are satisfied:

mc2

ℏHDE
< 1; 0 > ξ > −

1

6

�
mc2

ℏHDE

�
2

: ð212Þ

The enhancement factor e8jξjNI=ð8jξjÞ in Eq. (211) needs to
be sufficiently large to compensate the loop suppression
factor, ðℏHIÞ2=½3πE2

P� ¼ GNH2
Iℏ=½3πc5� ∼ 10−13, and the

factor ½mc2=ðℏHDEÞ�2. The number of e-foldings of infla-
tion required for that follows immediately from (211),

NI ¼
1

8jξj ln
�
24πjξj

�
ℏHDE

mc2

�
2
�

EP

ℏHI

�
2
�
; ð213Þ

where EP ≃ 1.2 × 1019 GeV is the Planck energy. This
number of e-foldings, also shown in Fig. 6, must be
consistent with the requirement that particle production
does not lead to dominant contribution to the energy
density during inflation, i.e. must be consistent with the
bound shown in Fig. 5. Albeit these two conditions
significantly restrict the allowed parameter space for jξj,
one can show that, provided ξ < 0 and jξj ≪ 1, there still
exists an ample set of allowed choices for ξ.
In the following, we discuss how our result (213) for the

required number of e-foldings in our model with negative
nonminimal coupling ξ compares with other models, in
particular with the minimally coupled case (when ξ ¼ 0)
studied in Refs. [17,18]. In the minimally coupled case, the
amplification factor in (210) is simply NI, such that

NI ¼ 3π

�
ℏHDE

mc2

�
2
�

EP

ℏHI

�
2

: ð214Þ

While the number of e-foldings implied by Eq. (213) is
typically hundreds or thousands, the number of e-foldings
implied by the minimally coupled case (214) is of the order
or greater than 1013 (for ℏHI ≃ 1013 GeV), which is many
orders of magnitude larger. There is a simple explanation
for this large difference: while the rate of particle produc-
tion in the minimally coupled case generates secular effects
in the one-loop energy-momentum tensor that grow linearly
in time, due to the tachyonic scalar mass generated by a
negative ξ during inflation particle production rate in the
nonminimally coupled case generates an exponentially
growing contribution to the one-loop energy-momentum
tensor. This, at first sight small difference in the model, has
thus very important consequences for model building and
arguably favors scalar models with negative nonminimal
coupling as the model of choice for dark energy from
inflationary quantum fluctuations.
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This paper is not the first to investigate the possibility
that vacuum fluctuations of matter fields may be respon-
sible for dark energy, and here we make a cursory overview
of these earlier works. Apart from our earlier papers
[12,14], in which we investigated the late-time one-loop
quantum backreaction from one-loop inflationary fluctua-
tions of massless and minimally and nonminimally coupled
scalars and of gravitons, probably the closest to our work
are the papers of Ringeval et al. [17]; of Aoki and Iso [18],
the results of which we discussed in the previous para-
graph; of Parker and Raval [20–24]; and of Parker
and Vanzella [46,47]. References [17,18] investigated the
late-time one-loop quantum backreaction from one-loop
inflationary fluctuations of very light minimally coupled
scalars. The conclusion of Ref. [17] is that, provided
inflation lasts long enough and it is at the right scale,
the model can account for the observed dark energy, while
the conclusion of Ref. [18] (which improves on Ref. [17]
by performing a computation similar to the one presented in
this work) is that inflation can occur at the grand-unified
scale, and provided it lasts for about 1013 e-foldings [see
(214)], scalar field fluctuations can account for the dark
energy. However, in Ref. [18], a careful removal of all
cutoff dependences and a careful construction of approxi-
mate mode functions in the matter era, which we properly
include in this paper, are not accounted for.
In a series of papers that appeared soon after the original

supernovae results, Parker and Raval [20–24] used the
effective gravitational action obtained by integrating out
the matter fields. The method used was the Schwinger-
DeWitt proper time method and ζ function regularization
[48–50], which is an ultraviolet expansion of the effective
action (that holds at short geodesic distances), and the final
effective action is presented as an expansion in powers of
1=M2, whereM is the effective mass of the field (in the case
of a nonminimally coupled scalar, M2 ¼ m2 þ ðξ − 1

6
ÞR,

where m is the tree-level scalar mass and R denotes the
Ricci scalar curvature). In their effective action Parker
and Raval maintain the terms of the order M4, M2, M0,
M4 lnðM2=μ2Þ, M2 lnðM2=μ2Þ, and M0 lnðM2=μ2Þ, thus
neglecting the inverse powers of M2. Strictly speaking,
this expansion applies (and hence the truncation is reason-
able) when M2 ≫ ∥Riem∥; ∥Ricc∥; ∥□∥, where ∥ · ∥
denote a suitably chosen norm. A careful look at those
papers reveals that the analysis was conducted strictly
speaking where the expansion does not apply, i.e. in the
region of parameter space where M2 is of the order or
smaller than the components of the Ricci tensor, making
the conclusions questionable [in fact, abundant particle
production in the Parker-Raval model occurs when
m2 ∼ ð1

6
− ξÞR, which is precisely where M2 ∼ 0, at which

point the expansion used to construct the model is
unreliable]. In contrast, the analysis in this work is
performed in the opposite regime, namely, in the regime
when m2 ≪ ∥Riem∥; ∥Ricc∥. This is not just a technical

point but an essential assumption required to get abundant
particle production during inflation that we need in order to
get the large quantum backreaction discussed in this paper.
Making a more detailed comparison with the first paper
[20] reveals that a large late-time backreaction was
obtained when ðξ − 1

6
Þ < 0, i.e. when ξ is close to, but

smaller than, conformal coupling, ξc ¼ 1
6
. This is to be

contrasted with our results, which indicate that a large
quantum backreaction is obtained only when both con-
ditions, (1) ξ < 0 and (2) there is a sufficiently long
inflationary period preceding the radiation era, are satisfied.
Furthermore, the quantum backreaction in Ref. [20]
becomes large (during the matter era) at a particular
redshift zj given by ð1þ zjÞ3 ¼ m2M2

P=½ρm0ð1=6 − ξÞ� ¼
m2Ωm0=½3H2

0ð16 − ξÞ� (here, ρm0 denotes the matter density
today and Ωm0 ¼ ρm0=½3M2

PH0�≃ 0.3 and H0 is the
Hubble parameter today), at which moment a large particle
production occurs due to an instability. We see no sign of
this kind of instability, albeit in fairness to the reader, we
note that our analysis is perturbative and therefore we might
not be able to see such an instability. In the remaining
papers [21–24], the same effective action is used, and hence
the same comparative analysis applies.
The results presented in this work provide a very good

motivation for further studies of the quantum backreaction
effects in connection to the dark energy problem. In
particular, the model presented here invites more detailed
studies that would:

(i) treat the backreaction self-consistently,
(ii) confront the model with the currently existing dark

energy data,
(iii) make forecasts that would test the model against the

upcoming data,
(iv) examine the clustering properties of dark energy in

this model,
(v) address the issue of a very light scalar field mass

required for the model to work.
By self-consistent treatment, we mean solving self-

consistently the quantum-corrected Friedmann equations
(with the one-loop backreaction included) together with the
scalar field equations. The perturbative treatment executed
in this work fails as soon as the one-loop backreaction
terms become comparable with the background contribu-
tions ρB and pB. The idea of the upcoming work [45] is to
extend the Starobinsky stochastic formalism [43,51] for
inflation to subsequent epochs and solve the resulting scalar
field equations together with the Friedmann equations (that
include the backreaction from the field fluctuations). This
will allow us to get detailed predictions on how the (global)
Hubble parameter depends on time when the backreaction
starts dominating and to study its dependence on the
principal parameters of our model: m, ξ, and NI . Of course
the choice of these parameters is already quite limited by
the constraints discussed at length in this work. The results
of the self-consistent study can then be used to confront the
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model with the existing (and upcoming) data that already
today put rather strict constraints on the recent evolution of
dark energy.
While in the initial work in Ref. [45] we intended to

study the dynamics of the Universe in the Gaussian
approximation, in the follow up work, we intend to
generalize that work and calculate (perturbatively) the
higher order (non-Gaussian) correlators, which can be used
to further test the model. Namely, one of the hot topics in
current studies of dark energy models involves the question
of whether dark energy clusters and, if it does, how much.
We expect that our model makes very specific predictions
on how large non-Gaussian features in dark energy are
today and how they evolved in recent times.
Next, we would like to make theoretical improvements

of the model discussed in this work. In order for our model
to work, the scalar field mass has to be very light. More
precisely, it has to satisfy (212), which means that m has
to be smaller than the Hubble scale at the onset of DE
domination, ðℏHDEÞ≃ 1.7 × 10−33 eV. Unless one has a
mechanism for generation of such a tiny mass scale, this
very light scalar mass remains a mystery of the model. In
future work, we intend to investigate (dynamical) mech-
anisms that can shed light on the question why the scalar
mass is so tiny today.
To conclude, in light of the results presented in this work,

it is clear that the possibility that inflationary quantum
fluctuations could be responsible for the observed dark

energy should be taken seriously. However, it is also clear
that much more work is needed to put that idea on more
solid foundations.
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APPENDIX: REGULARIZATION
AND RENORMALIZATION

This Appendix summarizes the dimensional regulariza-
tion of the energy-momentum tensor integrals (30) and (31)
and the renormalization procedure by introducing counter-
terms. It is composed of well-known results [29,32].
The first task is to isolate the divergences in (30) and

(31). In order to do that, we examine just the UV parts of
the integrals,

ρUV;0Q ¼ a−D

ð4πÞD−1
2 ΓðD−1

2
Þ

Z
∞

μ
dk kD−2

�
2k2jUj2 − 1

2
½D − 2 − 4ξðD − 1Þ�H0jUj2

þ 2m2a2jUj2 − 1

2
½D − 2 − 4ξðD − 1Þ�H ∂

∂η jUj2 þ 1

2

∂2

∂η2 jUj2
�
; ðA1Þ

pUV;0
Q ¼ δija−D

ð4πÞD−1
2 ΓðD−1

2
Þ

Z
∞

μ
dk kD−2

�
2k2

ðD − 1Þ jUj2 − 1

2
½D − 2 − 4ξðD − 1Þ�H0jUj2

−
1

2
½D − 2 − 4ξðD − 1Þ�H ∂

∂η jUj2 þ ð1 − 4ξÞ
2

∂2

∂η2 jUj2
�
; ðA2Þ

where the UV scale μ is assumed to be larger than any other
physical scale (such as the curvature and the mass of the
scalar). The momentum in the integrands is then much
larger than any other physical scale appearing, which is
exploited in the following subsection.

1. Mode function in the UV

The exact momentum dependence of the mode function
is not needed in order to isolate the UV divergences in (A1)
and (A2); the asymptotic expansion of the mode function in
powers of 1=k (where k ¼ ∥~k∥) is enough in order to
accomplish the task. For that reason, we first solve the
equation of motion (26),

U00ðk; ηÞ þ ½k2 þM2ðηÞ�Uðk; ηÞ ¼ 0;

k → ∞; ðA3Þ
in the UV limit. The WKB method is well suited for that.
Here, we implement a somewhat simpler method, which is
directly expanding the solution in inverse powers of
momenta,

Uðk; ηÞ ¼ e−ikηffiffiffiffiffi
2k

p
�
1þ iU1ðηÞ

k
þU2ðηÞ

k2
þ iU3ðηÞ

k3
þ U4ðηÞ

k4

þ iU5ðηÞ
k5

þOðk−6Þ
�
; ðA4Þ
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where we have assumed the mode function to be a pure
positive-frequency one in the UV. The coefficient functions
Ui are all real, which does not seem to be a general ansatz,
but it can be shown that their imaginary parts can always be
absorbed into a time-independent phase, which we can
always add since it does not show up in physical quantities.
It is enough to determine U1-U4 for the purpose of

isolating UV divergences in (A1) and (A2). The equation of
motion they satisfy is obtained by plugging ansatz (A4) into
(A3) and organizing it order by order in momenta,

U0
1ðηÞ ¼ −

1

2
M2ðηÞ; ðA5Þ

U0
2ðηÞ ¼

1

2
½U00

1ðηÞ þM2ðηÞU1ðηÞ�; ðA6Þ

U0
3ðηÞ ¼ −

1

2
½U00

2ðηÞ þM2ðηÞU2ðηÞ�; ðA7Þ

U0
4ðηÞ ¼

1

2
½U00

3ðηÞ þM2ðηÞU3ðηÞ�: ðA8Þ

We also have to impose the Wronskian normalization (25),
which we do order by order as well,

0 ¼ 2U2ðηÞ þ U2
1ðηÞ −U0

1ðηÞ; ðA9Þ

0 ¼ 2U4ðηÞ þ 2U3ðηÞU1ðηÞ þ U2
2ðηÞ −U0

3ðηÞ
þU1ðηÞU0

2ðηÞ − U0
1ðηÞU2ðηÞ: ðA10Þ

The solutions to equations of motion (A5)–(A8) and
constraints (A9) and (A10) are

U1ðηÞ ¼ −
1

2

�Z
η

η0

dτM2ðτÞ
�
; ðA11Þ

U2ðηÞ ¼ −
M2ðηÞ

4
−
1

8

�Z
η

η0

dτM2ðτÞ
�
2

; ðA12Þ

U3ðηÞ ¼
1

8

�
½M2ðηÞ�0 − ½M2ðη0Þ�0

�

þM2ðηÞ
8

�Z
η

η0

dτM2ðτÞ
�
þ 1

48

�Z
η

η0

dτM2ðτÞ
�
3

þ 1

8

�Z
η

η0

dτM4ðτÞ
�

ðA13Þ

U4ðηÞ ¼
½M2ðηÞ�00

16
þ 5M4ðηÞ

32
þ 1

16
ð½M2ðηÞ�0 − ½M2ðη0Þ�0Þ

�Z
η

η0

dτM2ðτÞ
�

þM2ðηÞ
32

�Z
η

η0

dτM2ðτÞ
�
2

þ 1

384

�Z
η

η0

dτM2ðτÞ
�
4

þ 1

16

�Z
η

η0

dτM2ðτÞ
��Z

η

η0

dτM4ðτÞ
�
: ðA14Þ

The dependence on an arbitrary time η0 [which corresponds to integration constants from (A5)–(A8)] is physically
irrelevant in the sense that it can be absorbed into the time-independent overall phase which has no physical meaning. In
fact, what we need to calculate (A1) and (A2) is just the modulus squared,

jUðk; ηÞj2 ¼ 1

2k

�
1þ 1

k2
½2U2ðηÞ þ U2

1ðηÞ� þ
1

k4
½2U4ðηÞ þ 2U1ðηÞU3ðηÞ þ U2

2ðηÞ� þOðk−6Þ
�
; ðA15Þ

which is independent of all the integration constants,

jUðk; ηÞj2 ¼ 1

2k

�
1 −

M2ðηÞ
2k2

þ 1

8k4
½3M4ðηÞ þ ½M2ðηÞ�00� þOðk−6Þ

�
: ðA16Þ

Now, it is straightforward to evaluate integrals (A1) and (A2),

ρUV;0Q ¼ 1

16π2a4
ð−μ4 − μ2½ð1 − 6ξÞH2 þ ðmaÞ2�Þ þ μD−4

ðD − 4Þ

×
a−D

ð4πÞD−1
2 ΓðD−1

2
Þ

�ðmaÞ4
8

þ ðD − 6Þ
16

½D − 2 − 4ξðD − 1Þ�ðmaÞ2H2

þ 1

128
½D − 2 − 4ξðD − 1Þ�2½8H00H − 4ðH0Þ2 − 3ðD − 2Þ2H4�

�
þOðμ−2Þ; ðA17Þ
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pUV;0
Q ¼ 1

48π2a4
ð−μ4 þ μ2½ð1 − 6ξÞð2H0 −H2Þ þ ðmaÞ2�Þ

þ μD−4

ðD − 4Þ ×
a−D

ð4πÞD−1
2
ðD−1ÞΓðD−1

2
Þ

�
−
3ðmaÞ4

8
−
ðD − 6Þ

16
½D − 2 − 4ξðD − 1Þ�ðmaÞ2ð2H0 þH2Þ

þ 1

128
½D − 2 − 4ξðD − 1Þ�2½−8H000 þ 8H00H − 4ðH0Þ2 þ 12ðD − 2Þ2H0H2 − 3ðD − 2Þ2H4�

�
þOðμ−2Þ:

ðA18Þ

2. Counterterms

The action for the counterterms, which include a
cosmological constant one, a Newton’s constant one, and
a higher-derivative one, is given by

Sct ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
GNΔG−1

N

16πGN
R −

2ΔΛ
16πGN

þ ðαþ ΔαÞR2

�
;

ðA19Þ
from where their contribution to the energy-momentum
tensor follows,

Tct
μν ¼

−2ffiffiffiffiffiffi−qp δSct
δgμν

¼ ΔΛ
8πGN

gμν −
ΔG−1

N

8π
Gμν þ ðαþ ΔαÞð1ÞHμν; ðA20Þ

where

ð1ÞHμν ¼ 4∇μ∇νR − 4gμν□Rþ gμνR2 − 4RμνR: ðA21Þ
Specialized to FLRW space-time, the counterterms’ con-
tribution to the energy-momentum tensor is diagonal,

ρct ¼
ΔΛ
8πGN

þ ΔG−1
N

16π
ðD − 1ÞðD − 2ÞH

2

a2

þ ðαþ ΔαÞ ðD − 1Þ2
a4

½−8H00Hþ 4ðH0Þ2

− 8ðD − 4ÞH0H2 − ðD − 2ÞðD − 10ÞH4�; ðA22Þ

pct ¼ −
ΔΛ
8πGN

þ ΔG−1
N

16π

ðD − 2Þ
a2

½2H0 þ ðD − 3ÞH2�

þ ðαþ ΔαÞ ðD − 1Þ
a4

½8H000 þ 8ð2D − 9ÞH00H

þ 4ð3D − 11ÞðH0Þ2 þ 12ðD2 − 10Dþ 20ÞH0H2

þ ðD − 2ÞðD − 5ÞðD − 10ÞH4�: ðA23Þ
We choose the coefficients of the counterterms to be

ΔΛ ¼ −
GNm4

4ð4πÞD−3
2 ΓðD−1

2
Þ

μD−4

ðD − 4Þ ; ðA24Þ

ΔG−1
N ¼ ðD − 6Þ½D − 2 − 4ξðD − 1Þ�m2

8ð4πÞD−3
2 ðD − 2ÞΓðD−1

2
Þ

μD−4

ðD − 4Þ ; ðA25Þ

Δα ¼ ½D − 1 − 4ξðD − 1Þ�2
128ðD − 1Þ2ð4πÞD−1

2 ΓðD−1
2
Þ

μD−4

ðD − 4Þ ðA26Þ

in order to absorb the divergences from (A17) and (A18).
The finite parts of these coefficients were picked for
convenience so as to cancel as much of finite parts of
the bare expectation value as possible.

3. Renormalized UV contribution

The renormalized UV contribution to the energy density
and pressure is obtained by adding the counterterms’
contribution (A22) and (A23) to the bare contribution
(A17) and (A18),

ρUVQ ¼ 1

16π2a4
f−μ4 − μ2½ð1 − 6ξÞH2 þ ðmaÞ2�g − m4

32π2
lnðaÞ þ ð1 − 6ξÞm2

16π2a2
H2 lnðaÞ

þ ð1 − 6ξÞ2
32π2a4

f½lnðaÞ þ ~α�½−2H00Hþ ðH0Þ2 þ 3H4� − 2ðH0H2 þH4Þg; ðA27Þ

pUV
Q ¼ 1

48π2a4
f−μ4 þ μ2½ð1 − 6ξÞð2H0 −H2Þ þ ðmaÞ2�g þ m4

32π2

�
lnðaÞ þ 1

3

�
−
ð1 − 6ξÞm2

48π2a2
½ð2H0 þH2Þ lnðaÞ þH2�

þ ð1 − 6ξÞ2
96π2a4

f½lnðaÞ þ ~α�½2H000 − 2H00Hþ ðH0Þ2 − 12H0H2 þ 3H4� þ 4H00Hþ 3ðH0Þ2 þ 6H0H2 − 5H4g;
ðA28Þ

where ~α ¼ 1152α=ð1 − 6ξÞ2. Specialized to constant ϵ FLRW backgrounds, these contributions are
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ρUVQ ¼ 1

16π2a4
f−μ4 − μ2½ð1 − 6ξÞH2 þ ðmaÞ2�g − m4

32π2
lnðaÞ þ ð1 − 6ξÞm2

16π2a2
H2 lnðaÞ

þ ð1 − 6ξÞ2
32π2

ð2 − ϵÞH
4

a4
f3ϵ½lnðaÞ þ ~α� − 2g; ðA29Þ

pUV
Q ¼ 1

48π2a4
f−μ4 þ μ2½ð1 − 6ξÞð1 − 2ϵÞH2 þ ðmaÞ2�g þ m4

32π2

�
lnðaÞ þ 1

3

�
−
ð1 − 6ξÞm2

48π2
H2

a2
½ð3 − 2ϵÞ lnðaÞ þ 1�

þ ð1 − 6ξÞ2
96π2

ð2 − ϵÞH
4

a4
f−3ϵð3 − 4ϵÞ½lnðaÞ þ ~α� þ ð6 − 11ϵÞg: ðA30Þ

Had we performed the renormalization procedure on arbitrary curved backgrounds, we would have found another
contribution that breaks the classical conformal invariance—the conformal anomaly [52,53],

ρCA ¼ 1

2880π2a4
½2H00H − ðH0Þ2�; ðA31Þ

pCA ¼ −
1

8640π2a4
½2H000 − 2H00Hþ ðH0Þ2�; ðA32Þ

which should be added to the contributions above. Specialized to constant ϵ backgrounds, it is

ρCA ¼ ð1 − ϵÞ2H4

960π2a4
; pCA ¼ −

ð1 − ϵÞ2ð3 − 4ϵÞH4

2880π2a4
: ðA33Þ
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