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We study here a complete quantization of a Callan-Giddings-Harvey-Strominger vacuum model
following loop quantum gravity techniques. Concretely, we adopt a formulation of the model in terms of a
set of new variables that resemble the ones commonly employed in spherically symmetric loop quantum
gravity. The classical theory consists of two pairs of canonical variables plus a scalar and diffeomorphism
(first class) constraints. We consider a suitable redefinition of the Hamiltonian constraint such that the new
constraint algebra (with structure constants) is well adapted to the Dirac quantization approach. For it, we
adopt a polymeric representation for both the geometry and the dilaton field. On the one hand, we find a
suitable invariant domain of the scalar constraint operator, and we construct explicitly its solution space.
There, the eigenvalues of the dilaton and the metric operators cannot vanish locally, allowing us to conclude
that singular geometries are ruled out in the quantum theory. On the other hand, the physical Hilbert space
is constructed out of them, after group averaging the previous states with the diffeomorphism constraint. In
turn, we identify the standard observable corresponding to the mass of the black hole at the boundary, in
agreement with the classical theory. We also construct an additional observable on the bulk associated with
the square of the dilaton field, with no direct classical analog.
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I. INTRODUCTION

Since the early days of the search for a quantum theory of
gravity, there has always been the expectation that one of
the results that such a complete theory will yield would be
the resolution of the spacetime singularities. The first and
simplest reason for this argument is that singularities are in
a way places where general relativity and the continuous
description of spacetime break down. As in other instances
in the history of physics, this is the regime where one
should look for a new theory. Obviously, any of those new
theories should be able to produce the previously known
results of the old theory and also be able to describe the
physics in the regime where the old theory broke down.
Owing to the fact that working with the full theory is,

so far, intractable, it has become standard practice to
work with lower dimensional models or symmetry reduced
ones, since generally this allows more control over the
analysis. One of these systems is the well known Callan-
Giddings-Harvey-Strominger (CGHS) model [1]. It is a

two-dimensional dilatonic model that, in spite of being
simpler and classically solvable, has nontrivial and inter-
esting properties such as a black hole solution, Hawking
radiation, etc. It has been proven to be a very convenient
model for testing some of the quantum gravity ideas in the
past, and it has been subject to many analyses over the past
20 years [2,3] which have shed some light on the properties
of the quantum theory of the full four-dimensional theory.
In particular, additional studies of the classical [4] and the
semiclassical [5] regimes of this model, as well as several
studies of its quantization [6–8], have yielded a deeper
understanding of some of the interesting physical phenom-
ena in this toy model that can be expected to be valid also in
more realistic situations, like four-dimensional black holes.
However, there are still several questions that remain
unanswered, one of them being the way in which a
quantum theory of gravity resolves the classical singularity.
In this article, we study the quantization of the CGHS

model in a new perspective, namely within the framework
of loop quantum gravity (LQG) [9–11]. This program
pursues a background independent nonperturbative quan-
tization of gravity. It provides a robust kinematical frame-
work [12], while the dynamics has not been completely

*corichi@matmor.unam.mx
†jolmedo@lsu.edu
‡saeed@xanum.uam.mx

PHYSICAL REVIEW D 94, 084050 (2016)

2470-0010=2016=94(8)=084050(18) 084050-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.084050
http://dx.doi.org/10.1103/PhysRevD.94.084050
http://dx.doi.org/10.1103/PhysRevD.94.084050
http://dx.doi.org/10.1103/PhysRevD.94.084050


implemented. The application of LQG quantization tech-
niques to simpler models, known as loop quantum cosmol-
ogy (LQC), has dealt with the question of the resolution
of the singularity at different levels in models similar to
the one under study—see for instance Refs. [5,13–20]
among others. In particular, we pay special attention to
Refs. [19,20], where a complete quantization of a 3þ 1
vacuum spherically symmetric spacetime has been pro-
vided, and the singularity of the model is resolved in a very
specific manner. The concrete mechanisms are based on the
requirement of self-adjointness of some observables of
the model, and on the fact that, at the early stages of the
quantization, there is a natural restriction to a subspace of
the kinematical Hilbert space whose states correspond
to eigenstates of the triad operators with nonvanishing
eigenvalues, from which the evolution is completely
determined.
The purpose of the present work is to put forward a

quantization of the CGHS model, by extending the meth-
ods of [20] to the case at hand. A study of the dilatonic
systems in the lines of Poisson sigma models in LQG was
already carried out in Ref. [21]. The feasibility of the
project we are considering rests on a classical result that
allows us to cast the CGHS model in the so-called polar-
type variables [22], similar to the ones used for the 3þ 1

spherically symmetric case. These variables were intro-
duced in [23,24] and were further generalized in [25].
Concretely, one introduces a triadic description of the
model for the geometry, together with a canonical trans-
formation in order to achieve a description as similar as
possible to the one of Ref. [22] in 3þ 1 at the kinematical
level. Then, after considering some second class conditions
and solving the Gauss constraint classically, one ends with
a totally first class system with a Hamiltonian and a
diffeomorphism constraint. Furthermore, based on a pro-
posal in Refs. [24,25], a redefinition of the scalar constraint
is made, such that this constraint admits the standard
algebra with the diffeomorphism constraint, while having
vanishing brackets with itself. In this situation, we can
follow similar arguments to those in [20] to achieve a
complete quantization of the CGHS model, showing that
the quantum theory provides a description where the
singularity is resolved in a certain way. Additionally some
new observables emerge in the quantum regime, which
have no classical analogues.
The structure of this paper is as follows: in Sec. II, we

present a very brief review of the CGHS model to show that
it contains a black hole solution with a singularity.
Section III is dedicated to recalling how one can derive
polar-type variables for the Hamiltonian formulation of the
CGHS and 3þ 1 spherically symmetric models from a
generic two-dimensional dilatonic action, and thus showing
the underlying similarity between the two models in these
variables. In Sec. IV, we illustrate a way to turn the Dirac
algebra of the constraint in the CGHS model into a Lie

algebra, and thus prepare it for the Dirac quantization.
Section V is about quantization: we first introduce the
kinematical Hilbert space of the theory in VA; we then
represent the Hamiltonian constraint on this space in V B,
and in Sec. V C, we argue for the resolution of the
singularity in the CGHS model. Then we put forward a
discussion about the properties of the solutions to the
Hamiltonian constraint in Sec. V D. Finally we note in
Sec. V E that the same observables first derived in [19] can
also be introduced here.

II. BRIEF REVIEW OF THE CGHS MODEL

The CGHS model [1] is a two-dimensional dilatonic
model. It has a black hole solution, Hawking radiation, and
is classically solvable. This, together with the fact that it is
easier to handle than the full four-dimensional theory or
many other models, makes it a powerful test bench for
many of the ideas in quantum gravity. There has been
extensive previous work on this model in the literature in
the classical and the quantum/semiclassical regime.
The CGHS action is

Sg-CGHS ¼
1

2G2

Z
d2x

ffiffiffiffiffiffiffiffiffi
−jgj

p
e−2ϕ

× ðRþ 4gab∂aϕ∂bϕþ 4λ2Þ; ð2:1Þ

where G2 is the two-dimensional Newton constant, ϕ is the
dilaton field and λ is the cosmological constant. In double
null coordinates x� ¼ x0 � x1 and in conformal gauge

gþ− ¼ −
1

2
e2ρ; g−− ¼ gþþ ¼ 0; ð2:2Þ

the solution is

e−2ρ ¼ e−2ϕ ¼ G2M
λ

− λ2xþx−; ð2:3Þ

whereM is a constant of integration which can be identified
as the Arnowitt-Deser-Misner (ADM) (at spatial infinity) or
the Bondi (at null infinity) mass. The scalar curvature turns
out to be

R ¼ 4G2Mλ
G2M
λ − λ2xþx−

; ð2:4Þ

which corresponds to a black hole with mass M with a
singularity at

xþx− ¼ G2M
λ3

: ð2:5Þ

The Kruskal diagram of the CGHS black hole is very
similar to the four-dimensional Schwarzschild model and is
depicted in Fig. 1.
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III. SIMILARITY OF THE CGHS AND 3þ 1
SPHERICALLY SYMMETRIC MODELS

As we mentioned in Sec. I, the key point of the ability to
extend the results of [20] to the CGHS model is writing the
latter in polar-type variables [22]. This has been mainly
done in [23–25]. Here, we give a brief review of this
formulation and its key similarities and differences to the
3þ 1 spherically symmetric gravity.
Let us start by considering the most generic two-dimen-

sional diffeomorphism-invariant action yielding second
order differential equations for the metric g and a scalar
(dilaton) field Φ [2],

S ¼ 1

G2

Z
d2x

ffiffiffiffiffiffiffiffiffi
−jgj

p
× ðYðΦÞRðgÞ þ Vðð∇ΦÞ2;ΦÞÞ: ð3:1Þ

Within this class we choose a subclass [4,26,27] that is
generic enough for our purposes,

Sg-dil ¼
1

G2

Z
d2x

ffiffiffiffiffiffiffiffiffi
−jgj

p
×

�
YðΦÞRðgÞ þ 1

2
gab∂aΦ∂bΦþ VðΦÞ

�
: ð3:2Þ

Here, YðΦÞ is the nonminimal coupling coefficient, VðΦÞ is
the potential of the dilaton field, and 1

2
gab∂aΦ∂bΦ is its

kinetic term. The latter can be removed at will by a
conformal transformation. With the choice YðΦÞ ¼ 1

8
Φ2

and VðΦÞ ¼ 1
2
Φ2λ2, we obtain the CGHS model [1], which

is given by the action

SCGHS ¼
1

G2

Z
d2x

ffiffiffiffiffiffiffiffiffi
−jgj

p
×

�
1

8
Φ2Rþ 1

2
gab∂aΦ∂bΦþ 1

2
Φ2λ2

�
; ð3:3Þ

with λ being the cosmological constant. It coincides with
Eq. (2.1) for Φ ¼ 2e−ϕ.
In the same way, we may notice the parallelism with

3þ 1 spherically symmetric gravity in vacuum. By using
the spherical symmetry ansatz,

ds2 ¼ gμνdxμdxν þ Φ2ðdθ2 þ sin2ðθÞdϕ2Þ; ð3:4Þ

with μ, ν ¼ 0, 1, for the metric of the four-dimensional
model, its action can be written as

Sspher ¼
1

G

Z
d2x

ffiffiffiffiffiffiffiffiffi
−jgj

p
×

�
1

4
Φ2Rþ 1

2
gab∂aΦ∂bΦþ 1

2

�
; ð3:5Þ

where G is the Newton’s constant in four-dimensional
Einstein’s theory. One can see that this is identical to (3.2) if
one chooses YðΦÞ ¼ 1

4
Φ2, VðΦÞ ¼ 1

2
, and replaces G2 with

G. Note that although the actions of both CGHS and four-
dimensional models contain the variable Φ, the interpre-
tation of this variable is different in each of these cases. In

FIG. 1. The Kruskal diagram of the CGHS black hole without matter field.
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four-dimensional spherical gravity, Φ is actually a part of
the metric, the coefficient multiplied by the two-sphere part
of the metric as can be seen from (3.4). In the CGHS,
however, it is a nongeometric degree of freedom corre-
sponding to the scalar dilaton field.

A. Polar-type variables for the spherically
symmetric model

As can be seen in detail in [23], one can write (3.5) in
terms of the polar-type variables. Here we only explain the
procedure briefly. In the 3þ 1 spherically symmetric case,
one first removes the dilaton kinetic term by a conformal
transformation and then writes the theory in tetrad varia-
bles. One then adds the torsion free condition, multiplied by
a Lagrange multiplier XI, to the Lagrangian. Here I is a
Lorentz internal index representing the internal local gauge
group of the theory. One then makes an integration by
parts such that derivatives of XI appear in the Lagrangian.
After ADM decomposition of the action and some
further calculations, it turns out that the configuration
variables are

f�XI ¼ ϵIJXJ;ω1g; I; J ¼ f0; 1g ð3:6Þ
where ω1 is the spatial part of the spin connection. The
corresponding momenta are then

PI ¼
∂L
∂� _XI ¼ 2

ffiffiffi
q

p
nI; ð3:7Þ

Pω ¼ ∂L
∂ _ω1

¼ 1

2
Φ2: ð3:8Þ

Here nI ¼ nμeμI is the Ith (internal) component of the
normal to the spatial hypersurface, with eμI being the
tetrad, and q is the determinant of the spatial metric. Then
by a Legendre transformation one can arrive at the
Hamiltonian in these variables. From this Hamiltonian
one can get to the Hamiltonian in polar-type variables
by considering the following relation:

∥P∥2 ¼ −jPj2 ¼ −ηIJPIPJ ¼ 4q: ð3:9Þ
Then we adopt the parametrization

q ¼ ðEφÞ2
ðExÞ12 ; ð3:10Þ

based on the form of the 3þ 1 metric in terms of the polar-
type variables. Equation (3.9) leads to the following
canonical transformation to polar-type variables:

Pω ¼ Ex; ð3:11Þ

∥P∥ ¼ 2Eφ

ðExÞ14 ; ð3:12Þ

P0 ¼
2Eφ

ðExÞ14 coshðηÞ; ð3:13Þ

P1 ¼
2Eφ

ðExÞ14 sinhðηÞ: ð3:14Þ

The first equation above is just a renaming, and the rest of
them follow naturally from (3.9). By finding a generating
function for this canonical transformation, one can find
the corresponding canonical variables fKx; Kφ; Qηg to the
above momenta fEx; Eφ; ηg and then write the Hamiltonian
in these variables. The Hamiltonian is the sum of three
constraints as expected,

H ¼ 1

G

Z
dxðNHþ N1Dþ ω0GÞ; ð3:15Þ

where N and N1 are lapse and shift, respectively, ω0 is the
“time component” of the spin connection which is another
Lagrange multiplier, and H, D and G are Hamiltonian,
diffeomorphism and Gauss constraints, respectively. In
order to make things simpler, Gambini et al. in [20] take
η ¼ 1 and since this is second class with the Gauss
constraint, they can be solved to yield the final Hamiltonian

H ¼ 1

G

Z
dx

�
N

� ½ðExÞ0�2
8

ffiffiffiffiffiffi
Ex

p
Eφ

−
Eφ

2
ffiffiffiffiffiffi
Ex

p − 2Kφ

ffiffiffiffiffiffi
Ex

p
Kx

−
EφK2

φ

2
ffiffiffiffiffiffi
Ex

p −
ffiffiffiffiffiffi
Ex

p ðExÞ0ðEφÞ0
2ðEφÞ2 þ

ffiffiffiffiffiffi
Ex

p ðExÞ00
2Eφ

�
þ N1ðEφK0

φ − ðExÞ0KxÞ
�
: ð3:16Þ

B. Polar-type variables for the CGHS model

By guidance from the procedure done in the spherically
symmetric case, one can arrive at similar variables for the
CGHS model. Most of the steps are, in principle, similar,
but there are also some important differences. The details
can be found in [24] and, again, we describe the process in a
brief manner. First, we should mention that, although
almost all of the studies of the CGHS model have utilized
a conformal transformation to remove the dilaton kinetic
term in an effort to render the theory as a first class system,
we proceeded instead with that term present. The main
reason was that, in this way, the variables admit a natural
geometrical interpretation, and the quantization of the
model can be carried out following the ideas of loop
quantum gravity. The geometric implications can be read
more easily and directly. In any case, this is just a choice
and it is not of crucial importance.
It turns out that, by following the same procedure of

adding the torsion free condition, writing in tetrad variables
and adopting an ADM decomposition, and because the
kinetic term (and hence the time derivative) of the dilaton is
present, the configuration variables are
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f�XI;ω1;Φg I; J ¼ f0; 1g ð3:17Þ

with the corresponding momenta

PI ¼
∂L
∂� _XI ¼ 2

ffiffiffi
q

p
nI; ð3:18Þ

Pω ¼ ∂L
∂ _ω1

¼ 1

4
Φ2; ð3:19Þ

PΦ ¼ ∂L
∂ _Φ

¼
ffiffiffi
q

p
N

ðN1Φ0 − _ΦÞ; ð3:20Þ

where again N and N1 are lapse and shift, respectively. An
important consequence of these is that (3.19) is now a new
primary constraint

μ ¼ Pω −
1

4
Φ2 ≈ 0: ð3:21Þ

In the next step, by making a Legendre transformation, we
get to a Hamiltonian which now should also contain the
new primary constraint (3.21). To obtain the polar-type
variables we use a similar relation to (3.9) which, in the
case of the CGHS model, reads

∥P∥2 ¼ 4q ¼ 4ðEφÞ2 ð3:22Þ
where we have used again a natural parametrization for q in
terms of Eφ for the CGHS model. Then, we get the new
variables

Pω ¼ Ex; ð3:23Þ
∥P∥ ¼ 2Eφ; ð3:24Þ

P0 ¼ 2 coshðηÞEφ; ð3:25Þ
P1 ¼ 2 sinhðηÞEφ: ð3:26Þ

Again, they follow naturally from (3.22) with a bit of an
educated guess. These transformations do not affect the pair
fΦ; PΦg. Once again, by finding a generating function for
this canonical transformation, we can find the correspond-
ing conjugate variables fKx; Kφ; Qη;Φg to the above
momenta fEx; Eφ; η; PΦg and then write the Hamiltonian
in these variables. The Hamiltonian is the sum of four
constraints

H ¼ 1

G2

Z
dxðNHþ N1Dþ ω0Gþ BμÞ ð3:27Þ

with B being another Lagrange multiplier. Note that, in this
case, unlike the spherically symmetric case, we have

Kx ¼ ω1: ð3:28Þ
Also note that there is an important difference here between
the 3þ 1 spherically symmetric case and the CGHS model:

as a consequence of what we also mentioned in the
beginning of Sec. III and due to (3.19) and (3.21), one
can see that Ex is classically associated to the dilaton field
in the CGHS model. It has nothing to do with the metric
and is a truly distinct degree of freedom. Although, as we
mentioned, it is a component of the metric in the 3þ 1
spherically symmetric case.
Continuing with the Dirac procedure, since we have a

new primary constraint μ, we need to check its consistency
under the evolution. This leads to a new secondary
constraint α, namely

_μ ≈ 0 ⇒ α ¼ Kφ þ
1

2

PΦΦ
Eφ ≈ 0: ð3:29Þ

Preservation of α then leads to no new constraint. It turns
out that these two new constraints are second class together,

fμ; αg ≈ 0; ð3:30Þ

and thus we need to follow the second class Dirac
procedure for this case. So we solve them to get

μ ¼ 0 ⇒ Φ ¼ 2
ffiffiffiffiffiffi
Ex

p
; ð3:31Þ

α ¼ 0 ⇒ PΦ ¼ −
KφEφffiffiffiffiffiffi

Ex
p : ð3:32Þ

This eliminates the pair fΦ; PΦg in the Hamiltonian. In
order to simplify the process of quantization, we introduce
the new variable

Ax ¼ Kx − η0; ð3:33Þ

and choose η ¼ 1 which is again second class with the
Gauss constraint. Then, solving these second class con-
straints together yields an expression for Qη in terms of the
remaining variables. In this way, the pair fQη; ηg is also
eliminated from the Hamiltonian. A similar procedure has
also been done in the spherically symmetric case in [20].
Note that we now have

Ax ¼ ω1: ð3:34Þ

The Dirac brackets now become

fKxðxÞ; ExðyÞgD ¼ fKφðxÞ; EφðyÞgD
¼ G2δðx − yÞ; ð3:35Þ

fKxðxÞ; KφðyÞgD ¼ G2

Kφ

Ex δðx − yÞ; ð3:36Þ

fKxðxÞ; EφðyÞgD ¼ −G2

Eφ

Ex δðx − yÞ; ð3:37Þ

with any other brackets vanishing. These brackets can be
brought to the canonical from
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fUxðxÞ; ExðyÞgD ¼ fKφðxÞ; EφðyÞgD
¼ G2δðx − yÞ; ð3:38Þ

by introducing the redefinition

Ux ¼ Kx þ
EφKφ

Ex : ð3:39Þ

Finally, we are left with the Hamiltonian

H ¼ 1

G2

Z
dx½NHþ N1D�

¼ 1

G2

Z
dx

�
N

�
−KφUx −

Eφ0Ex0

Eφ2 −
1

2

Ex02

EφEx þ
Ex00

Eφ

þ 1

2

K2
φEφ

Ex − 2EφExλ2
�

þ N1ð−UxEx0 þ EφK0
φÞ
�
: ð3:40Þ

IV. PREPARING THE CGHS HAMILTONIAN
FOR QUANTIZATION

At this point, and in order to proceed with the Dirac
quantization of the system, we adopt an Abelianization of
the scalar constraint algebra. The reason is the following:
the Dirac quantization approach involves several consis-
tency conditions. For instance, the constraint algebra at the
quantum level must agree with the classical one. It is well
known that anomalies in the algebra can emerge, and spoil
the final quantization. Usually, this situation is more likely
to be satisfied if the constraints fulfil a Lie algebra (with
structure constants instead of structure functions of phase-
space variables). An even more favorable situation is when
part of the algebra is strongly Abelian. We already know
that the brackets fHðNÞ;DðN1Þg and fDðN1Þ;DðM1Þg
involve structure constants and close under the bracket. But
this is not the case for fHðNÞ;HðMÞg. Although, in
principle, nothing prevents us carrying on with the study
in this situation, we adopt a strategy based on strong
Abelianization that allows us to complete the quantization,
since other choices are either not fully understood or not
considerably developed. This strategy consists in a redefi-
nition of the shift function

N1 ¼ N1 þ NKφ

ðExÞ0 ; ð4:1Þ

followed by a redefinition the lapse function as

N ¼ N
EφEx

ðExÞ0 : ð4:2Þ

These yield

H ¼ 1

G2

Z
dx½NHþ N1D�

¼ 1

G2

Z
dxN

� ∂
∂x

�
1

2

Ex02

Eφ2Ex − 2Exλ2 −
1

2

K2
φ

Ex

��
þ N1ð−UxðExÞ0 þ EφK0

φÞ: ð4:3Þ

One can check that now

fHðN̄Þ;HðN̄0ÞgD ¼ 0; ð4:4Þ
and thus the Dirac quantization, particularly the loop
quantization strategy, is expected to be simpler and poten-
tially successful with respect to other choices considered
so far.
We can take advantage of this form of the Hamiltonian

constraint and, by making an integration by parts,1 write
Eq. (4.3) as

H ¼ 1

G2

Z
dxN0

×

�
1

2

ðEx0Þ2
Eφ2Ex − 2Exλ2 −

1

2

K2
φ

Ex þ λG2M

�
þ N1ð−UxðExÞ0 þ EφK0

φÞ; ð4:5Þ
whereM is the ADMmass of the CGHS black hole and G2

is the dimensionless Newton’s constant in two-dimensional
spacetimes.
At this point we first consider the Hamiltonian constraint

and prepare it for representation on the kinematical Hilbert
space. Regarding the diffeomorphism constraint, we adopt
the group averaging technique, since, as is well known in
loop quantum gravity, only finite spatial diffeomorphisms
are well-defined unitary operators on the Hilbert space.
If we rename N0 → N, the Hamiltonian constraint can

now be written as

HðNÞ ¼ 1

G2

Z
dxN

×

�
1

2

½ðExÞ0�2
Eφ2Ex − 2Exλ2 −

1

2

K2
φ

Ex þ λG2M

�
: ð4:6Þ

Our final step, before quantization, is to bring the above
constraint in a form that admits a natural representation on a
suitable Hilbert space. This is achieved by rescaling the
lapse function N → 2NEφðExÞ2 such that

HðNÞ ¼ 1

G2

Z
dxNEx

�
4ðExÞ2Eφλ2 þ K2

φEφ

− 2λG2MEφEx −
½ðExÞ0�2
Eφ

�
: ð4:7Þ

1In this work, we do not provide details about the boundary
terms. A detailed analysis can be found in Ref. [7].
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V. QUANTIZATION

A. The kinematical Hilbert space

To quantize the theory, we first need an auxiliary (or
kinematical) vector space of states. Then we should equip it
with an inner product and carry out a Cauchy completion of
this space. We then end up with a kinematical Hilbert space.
Afterwards, we need to find a representation of the phase-
space variables as operators acting on this Hilbert space. In
order to study the dynamics of the system, since we are
dealingwith a totally constrained theory, we follow theDirac
quantization approach. Here, one identifies those quantum
structures that are invariant under the gauge symmetries
generated by the constraints. In this particular model, we
have the group of spatial diffeomorphisms (generated by the
diffeomorphism constraint) and the set of time reparamet-
rizations (associated with the Hamiltonian constraint). In the
loop representation, only the spatial diffeomorphisms are
well understood. Then, we must look for a suitable repre-
sentation of the Hamiltonian constraint (4.7) as a quantum
operator, and look for its kernel which yields a space of
states that is invariant under this constraint. Finally, one
should endow this space of solutions with a Hilbert space
structure and suitable observables acting on it.
Here, we adhere to a loop representation for the

kinematical variables, except the mass, for which a standard
Fock quantization is adopted. Our full kinematical Hilbert
space is the direct product of two parts,

Hkin ¼ HM
kin ⊗ ð⨁

g
Hg

kin-spinÞ: ð5:1Þ

One part, HM
kin ¼ L2ðR; dMÞ, is associated to the global

degree of freedom of the mass of the black hole M. The
other part, associated to the gravitational sector, is the direct
sum of the spaces, Hg

kin-spin, each corresponding to a given
graph (spin network) g for which we use the polymer
quantization. This choice seems to be natural in 3þ 1
spherically symmetric models for the geometrical variables,
and due to the parallelism between that model and the
CGHS model, we adopt a similar representation here.
To constructHg

kin-spin, we first take the vector space Cylg,
of all the functions of holonomies along the edges of a
graph g, and the point holonomies “around” its vertices,
and equip this vector space with the Haar measure to get the
gravitational part of the kinematical Hilbert space of the
given graph g. In our case these states are

hUx; Kφjg; ~k; ~μi ¼
Y
ej∈g

exp

�
i
2
kj

Z
ej

dxUxðxÞ
�

×
Y
vj∈g

exp
�
i
2
μjKφðvjÞ

�
: ð5:2Þ

Here ej are the edges of the graph, vj are its vertices,
kj ∈ Z is the edge color, and μj ∈ R is the vertex color. We

indicate the order (i.e. number of the vertices) of the graph g
by V. Since μj ∈ R, the above belongs to the space of
almost-periodic functions and the associated Hilbert space
is nonseparable.
It is evident that this Hilbert space, Hg

kin-spin, can be
decomposed into a part associated with the normal holon-
omies along the edges, which is the space of square
summable functions l2, and another part associated to
the point holonomies, which is the space of square
integrable functions over the Bohr-compactified real line
with the associated Haar measure, L2ðRBohr; dμHaarÞ. The
construction for the mass degree of freedom is similar and
well known, and we do not give additional details here.
Thus, the full kinematical Hilbert space can be written as

Hkin ¼ HM
kin ⊗

�
⨁
g
Hg

kin-spin

�
¼ L2ðR; dMÞ

⊗
�
⨁
g

h
⊗
vj∈g

l2
j ⊗ L2

jðRBohr; dμHaarÞ
i�

: ð5:3Þ

Let us call the kinematical Hilbert space of a single graph
Hg

kin ¼ HM
kin ⊗ Hg

kin-spin (not to be confused with Hg
kin-spin).

There is a basis of states in this Hilbert space denoted by

fjg; ~k; ~μ;Mig. Then, since now we have a measure, and
thus a Hilbert space, we can define the inner product on
Hg

kin and thus on Hkin. As usual in loop quantum gravity, a
spin network defined on g can be regarded as a spin
network with support on a larger graph g ⊃ g by assigning
trivial labels to the edges and vertices which are not in g.
Consequently, for any two graphs g and g0, we take
g ¼ g∪g0 and the inner product of g and g0 is

hg; ~k; ~μ;Mjg0; ~k0; ~μ0;M0i ¼ δðM −M0Þ
Y
edges

δkj;k0j

Y
vertices

δμj;μ0j

¼ δðM −M0Þδ~k;~k0δ~μ;~μ0 : ð5:4Þ

Obviously, the inner product can be extended to arbitrary
states by superposition of the basis states.

B. Representation of operators

Now that we have a kinematical Hilbert space, the next
step is to represent the phase-space variables on it as
operators. We follow a similar strategy as the one of
Ref. [20]. First, we choose the polymerization
Kφ → sinðρKφÞ=ρ. Looking at (4.7), we note that we need
to represent the following phase-space variables:

Ex; ðExÞ0; Eφ;
1

Eφ ; K
2
φEφ;M: ð5:5Þ

Due to our polymerization scheme and the classical algebra
(i.e. Dirac brackets), the momenta can be represented as
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cEφjg; ~k; ~μ;Mi ¼ ℏG2

X
vj∈g

δðx − xjÞμjjg; ~k; ~μ;Mi; ð5:6Þ

cExjg; ~k; ~μ;Mi ¼ ℏG2kjjg; ~k; ~μ;Mi; ð5:7Þ

where ℏG2 is the Planck number (recalling that ℏ has
dimensions ½LM�). The presence of the Dirac delta function
in (5.6) is due to Eφ being a density. The global degree of
freedom M, corresponding to the Dirac observable on the
boundary associated to the mass of the black hole, can be
represented as

M̂jg; ~k; ~μ;Mi ¼ Mjg; ~k; ~μ;Mi: ð5:8Þ
To represent the last contribution in (4.7), we combine Ex0

with 1
Eφ, and use the Thiemann’s trick [28] to represent it as

d�½ðExÞ0�2
Eφ

�
jg;~k; ~μ;Mi¼

X
vj∈g

δðx−xðvjÞÞ

×
sgnðμjÞℏG2

ρ2
ðkj−kj−1Þ2½jμjþρj1=2

− jμj−ρj1=2�2jg;~k; ~μ;Mi: ð5:9Þ

This is due to the operator dNφ
nρ corresponding to Kφ, which

is represented by the action of the point holonomies of
length ρ,

dNφ
�nρðxÞjg; ~k; ~μ;Mi ¼ jg; ~k; ~μ0�nρ;Mi; n ∈ N: ð5:10Þ

In this expression, the new vector ~μ0�nρ either has the same
components as ~μ but shifted by �nρ, i.e. μj → μj � nρ,
if x coincides with a vertex of the graph located at xðvjÞ,
or it is ~μ but with a new component �nρ, i.e. it is
f…; μj;�nρ; μjþ1;…g, if xvj < x < xvjþ1

.
The final term to be considered is K2

φEφ. For it, we
choose the representation proposed in [29,30], that is we
define this operator as

Θ̂ðxÞjg; ~k; ~μ;Mi ¼
X
vj∈g

δðx − xðvjÞÞ

× Ω̂2
φðvjÞjg; ~k; ~μ;Mi; ð5:11Þ

where the nondiagonal operator Ω̂φðvjÞ is written as

Ω̂φðvjÞ ¼
1

4iρ
jcEφj1=4½ dsgnðEφÞðdNφ

2ρ − dNφ
−2ρÞ

þ ðdNφ
2ρ − dNφ

−2ρÞ dsgnðEφÞ�jcEφj1=4jvj : ð5:12Þ

This shows that we need to also represent jEφj1=4 and
sgnðEφÞ. This can be achieved by means of the spectral
decomposition of cEφ on Hkin as

jcEφj1=4ðvjÞjg; ~k; ~μ;Mi ¼ jμjj1=4jg; ~k; ~μ;Mi; ð5:13Þ

sgn dðEφðvjÞÞjg; ~k; ~μ;Mi ¼ sgnðμjÞjg; ~k; ~μ;Mi: ð5:14Þ

Combining these, a representation of our Hamiltonian
constraint on Hkin is

ĤðNÞ ¼
Z

dxNðxÞcEx

	
Θ̂þ ð4λ2cEφcEx2 − 2λG2M̂ cEφ cExÞ

−
d�½ðExÞ0�2
Eφ

�

: ð5:15Þ

C. Hamiltonian constraint: singularity
resolution and solutions

1. Relation between volume and singularity

Our singularity resolution argument is based on having a
zero volume at some point (or region) classically or having
a zero volume eigenvalue for the quantum volume operator
in quantum theory. In other words, a vanishing volume
(spectrum) at a point or region means we have a singularity
there. Here we give an argument supporting this statement
for a generic two-dimensional metric (with generic lapse
and shift).
A generic ADM decomposed two-dimensional metric

can be written as

gμν ¼
�
−N2 þ ðN1Þ2q11 −N1q11

−N1q11 q11

�
ð5:16Þ

where q11 is the spatial metric and N and N1 are lapse and
shift, respectively. Since we have a one-dimensional spatial
hypersurface,

q11 ¼ detðqÞ: ð5:17Þ

Classically we have for the volume of a region R in a spatial
hypersurface Σ

VðRÞ ¼
Z
R
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
: ð5:18Þ

So if at some region we have detðqÞ ¼ 0, this means that we
get VðRÞ ¼ 0 in that region. On the other hand, if
detðqÞ ¼ 0, then due to (5.16) and (5.17), we have for
that region a metric

gμν ¼
�
−N2 0

0 0

�
ð5:19Þ

independently of the lapse and shift. It turns out that the
Riemann invariants of the above metric (in that region)
blow up and thus we have a singularity there. So we
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conclude that in two dimensions, a vanishing volume in a
region means existence of singularity in that region.
However, this does not happen for a generic genuine
four-dimensional metric.
Now, for the quantum volume operator of the CGHS we

have

V̂jg; ~k; ~μ;Mi ∝
X
vj∈g

jμjjjg; ~k; ~μ;Mi; ð5:20Þ

whichmeans that a vanishing volume in a region corresponds
to having all the μj’s equal to 0 for that region (and not for the
whole spatial hypersurface). If we assume that the statement
“VðRÞ ¼ 0 ⇒ singularity” can be carried on to the quantum
level, then we can say that a region (or hypersurface)
described by a state with none of its μj’s being 0 is a region
that does not contain any singularity. This argument which

to our knowledge only works generically for genuine
two-dimensional spacetime metrics is the one we use to
argue for singularity resolution in the next subsection.

2. Properties of the Hamiltonian constraint and
singularity resolution

Keeping the argument of the previous subsection in mind
and having obtained a representation of the Hamiltonian
constraint (5.14) on Hkin, we study some interesting
properties of this quantum Hamiltonian constraint. These
properties facilitate the identification of the space of
solutions of this constraint, and its relation with the
singularity resolution it provides.

Let us consider any basis state jg; ~k; ~μ;Mi ∈ Hkin. It
turns out that the action of this constraint on it yields

ĤðNÞjg; ~k; ~μ;Mi ¼
X
vj∈g

ðNðxjÞðℏG2kjÞ × ½f0ðμj; kj;MÞjg; ~k; ~μ;Mi − fþðμjÞjg; ~k; ~μþ4ρj ; Mi − f−ðμjÞjg; ~k; ~μ−4ρj ; Mi�Þ;

ð5:21Þ
where the functions f read

f�ðμjÞ ¼
ℏG2

16ρ2
jμjj1=4jμj � 2ρj1=2jμj � 4ρj1=4½sgnðμj � 4ρÞ þ sgnðμj � 2ρÞ�½sgnðμj � 2ρÞ þ sgnðμjÞ�; ð5:22Þ

f0ðμj;kj;kj−1;MÞ¼ ðℏG2Þ3λ2
�
1−

G2M̂
2ℏG2kjλ

�
μjk2j −

ℏG2

ρ2
ðjμjþρj1=2− jμj−ρj1=2Þ2½kj−kj−1�2

þ ℏG2

16ρ2
fjμjj1=2jμjþ2ρj1=2½sgnðμjÞþ sgnðμjþ2ρÞ�2þjμjj1=2jμj−2ρj1=2½sgnðμjÞþ sgnðμj−2ρÞ�2g:

ð5:23Þ

Looking at (5.21) and the form of (5.22) and (5.23), we
notice some important points.
(1) The scalar constraint admits a natural decomposi-

tion on each vertex vj, such that it can be regarded
as a sequence of quantum operators acting almost
independently on them, up to the factors
Δkj ¼ kj−kj−1. In other words, there would not
be coupling among different vertices if it were not
for the factor Δkj.

(2) The number of vertices on a given graph g is
preserved under the action of the Hamiltonian
constraint.

(3) The constraint (5.21) leaves the sequence of integers
fkjg of each graph g invariant. For instance, if we

consider a ket jg; ~k; ~μ;Mi, the successive action of
the scalar constraint on it generates a subspace

characterized by the original quantum numbers ~k.
(4) The restriction of the constraint to any vertex vj acts

as a difference operator mixing the real numbers μj.

In this case, this difference operator only relates
those states which have μj’s that belong to semi-
lattices of step 4ρ due to the form of f�ðμjÞ that
vanishes in the intervals ½0;∓ 2ρ�.

(5) Starting from a state for which none of the μj’s are 0
(i.e. a state containing no singularity), the result of
the action of the constraint never leaves us in a state
with any of the μj’s being 0 (also look at the details
in Sec. V D).

The point number 5, which may be the most important of
these, states that the subspace of Hkin containing spin
networks for which no μj is 0 is preserved under the action
of the Hamiltonian constraint. Simply put, if one originally
starts with a state with no singularity (in the sense of
μj ¼ 0), then one never ends up in a state containing a
singularity. Analogous arguments could be applied to the kj
quantum numbers; however as mentioned above, kj are
already preserved by the constraint (unlike the μj valences
of the vertices).
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Thus, one can restrict the study only to the subspace of
Hkin for which there is no μj ¼ 0 and kj ¼ 0. As a result of
this restriction, we expect that also in the physical Hilbert
space, we will never have any state with a singularity.

D. Solutions to the Hamiltonian constraint
and the physical Hilbert space

Let us consider a generic solution, hΨgj, to the
Hamiltonian constraint, i.e., a generic state annihilated
by this constraint. Assuming hΨgj belongs to the algebraic
dual of the dense subspace Cyl on the kinematical Hilbert
space, and that it can be written as

hΨgj ¼
Z

∞

0

dM
X
~k

X
~μ

hg; ~k; ~μ;MjψðMÞχð~kÞ

× ϕð~k; ~μ;MÞ; ð5:24Þ

the annihilation by the Hamiltonian constraint dictates that

hΨgjĤðNÞ† ¼
X
vj∈g

hΨgjNjĤ
†
j ¼ 0; ð5:25Þ

where Ĥj are difference operators acting on each vertex vj
and Nj ¼ NðxjÞ is the lapse function evaluated on the

corresponding vertex. In this case the functions ϕð~k; ~μ;MÞ
admit a natural decomposition of the form

ϕð~k; ~μ;MÞ ¼
YV
j¼1

ϕjðkj; kj−1; μj;MÞ: ð5:26Þ

One can then easily see that the solutions must fulfil, at
each vj, a difference equation of the form

− fþðμj − 4ρÞϕjðkj; kj−1; μj − 4ρ;MÞ
− f−ðμj þ 4ρÞϕjðkj; kj−1; μj þ 4ρ;MÞ
þ f0ðkj; kj−1; μj;MÞϕjðkj; kj−1; μj;MÞ ¼ 0; ð5:27Þ

which is a set of difference equations to be solved together.
We provide a partial resolution of the problem by means of
analytical considerations. All the details can be found in
Appendix A. Let us consider a particular vertex vj. In the
following we omit any reference to the label of the vertex.
Due to the property 4, where μ belongs to the semilattices
of the form μ ¼ ϵ� 4ρn where n ∈ N and ϵ ∈ ð0; 4ρ�,
different orientations of μ are decoupled. Without loss of
generality, we restrict the study to a particular subspace
labeled by ϵ, unless otherwise specified. This shows that
the Hamiltonian constraint only relates states belonging
to separable subspaces of the original kinematical
Hilbert space.
These properties of the solutions together with their

asymptotic limit μ → ∞, assuming the solutions are

smooth there, allow us to understand several aspects of
the geometrical operators (under some assumptions about
their spectral decomposition). More concretely, the solu-
tions for μ → ∞ satisfy, up to a global factor ½ðℏG2Þ2k�, the
differential equation

− 4μ∂2
μϕ − 4∂μϕ −

4Δk2 − 1

4μ
ϕ

þ
�
1 −

G2M
2ℏG2λk

�
ðℏG2λÞ2k2μϕ ¼ 0; ð5:28Þ

in a very good approximation if they are smooth functions
of μ. The last term plays the role of the square of a
frequency of a harmonic oscillator. But the sign of this term
depends on the concrete quantum numbers. Therefore, this
equation admits both oscillatory solutions and exponen-
tially growing or decreasing ones. More concretely, this
differential equation is a modified Bessel equation if the
sign of its last coefficient is positive, i.e. k < M=2ℏλ, and a
Bessel equation whenever that coefficient is negative, i.e.
k > M=2ℏλ. In Appendix A we include the details about
the properties of the solutions in these two different
regimes. Let us summarize the results obtained there.

(i) For k < M=2ℏλ, the Hamiltonian constraint takes
the form

ωþ
�
1 −

G2M̂
2ℏG2λk

�
ðℏG2λÞ2k2 ¼ 0; ð5:29Þ

where ω is the positive eigenvalue of the difference
operator of (A28) that belongs to its continuous
spectrum and which is nondegenerate. The corre-
sponding eigenfunction jϕcnt

ω i behaves as an exact
standing wave in μ of frequency σðωÞ in the
limit μ → ∞.

(ii) On the other hand, for k > M=2ℏλ, the constraint is
simply

ωnðM; k; ϵÞ − Δk2 ¼ 0; ð5:30Þ

where, again, ωn is the positive eigenvalue of the
difference operator defined in (A12), but this time it
belongs to its discrete spectrum and is also non-
degenerate. The corresponding eigenstates jϕdsc

n i,
with n ∈ N, emerge out of μ≃ ϵ, growing exponen-
tially until they reach a stable regime, and at some
μ≃ μr the eigenfunction enters a classically for-
bidden region and decays exponentially (see [31] for
a related treatment). Besides, the eigenfunctions ωn
form a discrete sequence of real numbers, all of them
depending continuously on the parameter ϵ. This
dependence is crucial in order to have a consistent
constraint solution, since the sequence of discrete
Δk2 is not expected to coincide with the sequence of
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ωn for a global fixed ϵ. Therefore, we expect that the
parameter ϵ must be conveniently modified accord-
ing to the values of M, k and the constraint
equation (5.30).

These previous results have not been confirmed numeri-
cally (as well as those of [20]), though they will be a matter
of future research. Let us comment, however, that they are
based on very robust, previous results on different scenarios
already studied in the LQC literature (see [30–34]).
Therefore, unless a very subtle point comes into play,
the mentioned properties are expected to be fulfilled.
In a final step, one should build the physical Hilbert

space. The states belonging to this space are the ones that
admit the symmetries of the model, i.e. the states which are
invariant under both the Hamiltonian and diffeomorphism
constraints. As usual in LQG, one applies the group
averaging technique to get these states and the induced
inner product on the resultant subspace that is provided by
this process. One can start with the Hamiltonian constraint.

Then the states averaged by members of the group
associated to the Hamiltonian constraint are

hΨH
g j ¼

Z
∞

−∞

YV
n¼1

dgn

Z
∞

0

dM
X
~k

X
~μ

hg; ~k; ~μ;Mj

× ψðMÞχð~kÞϕð~k; ~μ;MÞ; ð5:31Þ
where

g ¼ eig ð5:32Þ
is the group member associated to the member of the Lie
algebra g. In the case of the algebra member, being the
Hamiltonian constraint ĤðNjÞ ¼

P
vjNjĤj, we have

g ¼ ĤðNlÞ ¼
X
vl

NlĤl: ð5:33Þ

Thus in this case, from (5.31) we get for the group
averaged state

hΨH
g j ¼

1

ð2πÞV
Z

∞

−∞
deiN1Ĥ1…

Z
∞

−∞
deiNVĤV

Z
∞

0

dM
X
~k

X
~μ

hg; ~k; ~μ;Mjψð~k; ~μ;MÞ

¼ 1

ð2πÞV
Z

∞

−∞
dN1…

Z
∞

−∞
dNV exp

�
i
XV
n¼1

NnĤn

� Z
∞

0

dM
X
~k

X
~μ

hg; ~k; ~μ;Mjψð~k; ~μ;MÞ: ð5:34Þ

The final states are endowed with a suitable inner
product defined as

∥ΨH
g ∥2 ¼ hΨH

g jΨgi; ð5:35Þ
where the ket belongs to the kinematical Hilbert space and
the bra is the corresponding state after being averaged with
the Hamiltonian constraint. In order to obtain explicitly the
inner product, we may write jΨgi in the basis of states of
the geometrical operators involving the scalar constraint
(see Appendix A). In this case

hΨH
g jΨgi ¼

Z
∞

0

dM
X
~k

Z
dω1…dωV

×
YV
j¼1

δðωj − Fðkj;MÞÞjψð~k; ~ω;MÞj2; ð5:36Þ

where Fðkj;MÞ, at each vertex vj, is given by the last
addend in the left-hand side of Eq. (A21) or (A36)
depending on whether ðkj −M=2ℏλÞ is positive or neg-
ative, respectively, i.e.

Fðkj;MÞ ¼ ðΔkjÞ2 if kj > M=2ℏλ;

Fðkj;MÞ ¼
�
1 −

G2M
2ℏG2λkj

�
ðℏG2λÞ2k2j ð5:37Þ

otherwise. The final step is to construct the solutions to the
Hamiltonian constraint which are invariant under the spatial
diffeomorphisms (generated by the diffeomorphism con-
straint). In this case we follow the ideas of the full theory
[35]. There, one constructs a rigging map from the original
Hilbert space to the space of diffeomorphism invariant
states by averaging the initial states with respect to the
group of finite diffeomorphisms. The resulting averaged
states are a superposition of the original states but with
their vertices in all possible positions in the original one-
dimensional manifold, but preserving the order of the edges
and vertices. So a physical state is

hΨphysj ¼
X
g∈½g�

hΨH
g j ð5:38Þ

and the inner product is then

∥Ψphys∥2 ¼ hΨphysjΨgi; ð5:39Þ
where, again, the ket belongs to the kinematical Hilbert
space and the bra is the physical solution. In the last
product, only a finite number of finite terms contribute, for
all jΨgi in the kinematical Hilbert space, so the inner
product is finite and well defined. Let us mention that the
diffeomorphism invariance of the inner product is guaran-
teed since if we compute Eq. (5.39) with any other state
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related to jΨgi by a spatial diffeomorphism, it yields
exactly the same result. For a recent discussion see [36].
At the end of this process, we are left with a vector space

of states that are invariant under both constraints, and an
inner product on this space, induced by the group averaging
processes, rendering this vector space a Hilbert space. The
resultant Hilbert space of diffeomorphism invariant states is
the equivalence classes of diffeomorphism invariant graphs
[g], solutions to the scalar constraint.
Let us conclude with some remarks. In the classical

theory, the geometry possesses a singularity whenever the
determinant of the metric q vanishes at some point. In this
manuscript, the vanishing of q corresponds to the vanishing
of Eφ at a given region (local singularity). In the quantum
theory we can find an analogous situation, for instance if a
graph g has μj ¼ 0 at one or some given vertices.
Fortunately, the quantum theory allows us to avoid these
undesired divergences. The key idea consists in identifying
a suitable invariant domain of the scalar constraint, free of
such states with nonvanishing μj. In this way, the solutions
to the constraints have support only on them, preventing the
vanishing of μj (and kj) at any vertex. It is straightforward
to prove, as a direct consequence of the previous points 3
and 4, that the subspace formed by kets, such that their
sequences fμjg (and fkjg) contain no vanishing compo-
nents, remains invariant under the action of the
Hamiltonian constraint (5.21). In particular, point 4 tells
us that we can never reach a vanishing μj by successive
action of the scalar constraint, and point 3 tells us that any
sequence of fkjg remains invariant. In conclusion, the
restriction to this invariant domain allows us to resolve the
classical singularity.
However, given that the sequences fkjg are unaltered by

the scalar constraint, and since they apparently have no
significance in singularity resolution of this model, we
do not see any fundamental argument for discriminating
those with vanishing fkjg components with respect to the
remaining ones. In [19] it was suggested that the reality
conditions of some observables of the model provide a
quantum theory free of singularities. However, due to some
important differences of that model compared with the
present one, we have not been able to identify such suitable
observables in our model along those lines.

E. Quantum observables

We saw in Sec. V D that the Hamiltonian constraint does
not create any new vertices in the graph g on which it acts
(and obviously neither does the diffeomorphism con-

straint). This means that there is a Dirac observable N̂ v
in the bulk corresponding to the fixed number of vertices
N v ¼ V of a graph g,

N̂ vΨphys ¼ N vΨphys: ð5:40Þ

This observable is strictly quantum and has no counterpart
in the classical theory.
On the other hand, since this model has only one spatial

direction, under the action of the diffeomorphism constraint
the points cannot pass each other, i.e., the order of the
positions of the vertices is preserved. This means that,
associated to this preservation, we can identify another new
strictly quantum observable in the bulk, ÔðzÞ such that

ÔðzÞΨphys ¼ kIntðzN vÞΨphys; z ∈ ½0; 1� ð5:41Þ

where IntðzN vÞ is the integer part of zN v. Together with
them, we also have the observable corresponding to the
mass M̂, which does have an analogous classical Dirac
observable.
Besides, as it was first observed by the authors of

Ref. [19,20], one can construct an evolving constant
associated to Ex from the above observable as

cExðxÞΨphys ¼ ℏG2ÔðzðxÞÞΨphys; ð5:42Þ

with zðxÞ∶ ½0; x� → ½0; 1�. Since Ex has a classical and
quantum mechanically different interpretation in the CGHS
model than in 3þ 1 spherical symmetry, i.e., in the former
it is related to the dilaton field, one should also be cautious
about its interpretation.
These two observables were first introduced for the

3þ 1 spherically symmetric case in [19] and due to the
similarities of the two models, we can see that they exist
also for the CGHS model. Particularly, the observable in
(5.41) arises due to the existence of only one (radial)
direction in both cases. So one can expect that such a
quantum observable will exist in many genuinely two-
dimensional and symmetry-reduced models with only one
radial direction in which the quantum theory implements
the spatial diffeomorphism symmetry as in loop quantum
gravity.
It is worth commenting that one can promote the metric

component Êφ as a parametrized observable. For it, we can
choose the phase-space variable Kφ as an internal time
function (or parametric function). Moreover, by means of
the Hamiltonian constraint (on shell), it is possible to define
the parametrized observable

ÊφðxÞΨphys¼
∂x
cExðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4½cExðxÞ�2λ2þsin2ðρKφÞ
ρ2

−2λG2M̂cExðxÞ
q Ψphys;

ð5:43Þ

which is defined in terms of the parameter functions zðxÞ
and KφðxÞ, and the observables M̂ and Ô [through the

definition of cExðxÞ].
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VI. SUMMARY AND CONCLUSION

We have shown that, with the introduction of polar-type
variables for a CGHS dilatonic black hole and a rewrite of
its Hamiltonian in terms of those variables, one can follow
recent LQG inspired methods, first introduced in the 3þ 1
spherically symmetric case—also written in polar-type
variables—to remove the singularity of the CGHS model.
The proposal is based on the assumption (proven here for
the case of a two-dimensional generic metric) that states
with zero volume are those containing a spacetime singu-
larity. Then singularity resolution follows if one can show
that if one starts from a state without a zero volume present
in it, one can restrict the evolution to a subspace of the
Hilbert space that contains no zero volume states. In other
words, the subspace of quantum spacetime states without a
singularity is preserved under the action of the quantum
Hamiltonian constraint.
This analysis may be extended further when a matter field

is present in the theory and one might then study the
backreaction, but that analysis will certainly be more
involved and is outside the scope of this paper. Although
it has been shown recently [25] that even in the presence of
matter (more precisely, the massless scalar field), one can get
a Lie algebra of constraints by strong Abelianization of the
fHðNÞ;HðMÞg part of the classical constraint algebra, it is
not clear whether the quantum theory is anomaly free and
also whether one can get some useful information about the
Hamiltonian constraint, as was possible in the present case
without matter. Furthermore, the representation of this
constraint on the Hilbert space is expected to be much more
involved. For a minimally coupled scalar field (in the
classical theory its dynamics reduces to the one of a scalar
field in Minkowski) one can expect a more treatable model
with respect to its analogue in 3þ 1 spherically symmetric
spacetimes, regarding its solubility. Nevertheless, this is an
interesting future project worth pursuing, as is the study of
the Hawking radiation based on these results.

In any case, the analysis here presented must be viewed
as a first step that requires further understanding, analysis
and level of precision. It can hopefully be further extended
to give more insights on generic black hole singularity
resolution and, more generally, on quantum gravity itself.
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APPENDIX: SPECTRUM OF GEOMETRICAL
OPERATORS

In this appendix we discuss some properties of the
Hamiltonian constraint restricted to one arbitrary vertex vj
(we omit the label j in the following). Let us recall that the
local scalar constraint of this model, once promoted to a
quantum operator, acts (almost) independently on each
vertex. Its action on the corresponding states is

Ĥjg; k; μ;Mi ¼ ðℏG2kÞ½f0ðμ; k;MÞjg; k; μ;Mi
− fþðμÞjg; k; μþ 4ρ;Mi
− f−ðμÞjg; k; μ − 4ρ;Mi�; ðA1Þ

with the functions

f�ðμÞ ¼
ℏG2

16ρ2
jμj1=4jμ� 2ρj1=2jμ� 4ρj1=4½sgnðμ� 4ρÞ þ sgnðμ� 2ρÞ�½sgnðμ� 2ρÞ þ sgnðμÞ�; ðA2Þ

f0ðμ; k;MÞ ¼ λ2
�
1 −

G2M
2ℏG2kλ

�
ðℏG2Þ3μk2 þ

ℏG2

16ρ2
fjμj1=2jμþ 2ρj1=2½sgnðμÞ þ sgnðμþ 2ρÞ�2

þjμj1=2jμ − 2ρj1=2½sgnðμÞ þ sgnðμ − 2ρÞ�2g − ℏG2

ρ2
ðjμþ ρj1=2 − jμ − ρj1=2Þ2Δk2: ðA3Þ

Here,Δk is proportional to the eigenvalue of the operatordðExðxÞÞ0. This operator is diagonal on the spin network
basis of states and its explicit form depends on the
definition of the operator Êx.
The action of the scalar constraint resembles the one of a

second order difference operator since it relates three

consecutive points in a lattice with constant step. The
consequence is that any function ϕðk; μ;MÞ that is a
solution to the equation ðϕjĤ† ¼ 0 has support on lattices
of step 4ρ, as we can deduce by direct inspection of
Eq. (A1). Moreover, due to the functions ½sgnðμ� 2ρÞ þ
sgnðμÞ� in (A2), f�ðμÞ vanishes on ½0;∓ 2ρ�, respectively.
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Thus different orientations of μ are decoupled by the
difference operator (A1). We conclude that μ belongs to
semilattices of the form μ ¼ ϵ� 4ρn where n ∈ N and
ϵ ∈ ð0; 4ρ�. Without loss of generality, we restrict the study
to a particular subspace labeled by ϵ, unless otherwise
specified. This shows that the Hamiltonian constraint only
relates states belonging to separable subspaces of the
original kinematical Hilbert space.
The solutions ϕðk; μ;MÞ fulfil the equation

− fþðμ − 4ρÞϕðk; μ − 4ρ;MÞ
− f−ðμþ 4ρÞϕðk; μþ 4ρ;MÞ
þ f0ðk; μ;MÞϕðk; μ;MÞ ¼ 0: ðA4Þ

One can straightforwardly realize that, for any choice of the
initial triad section μ ¼ ϵ, they are completely determined
by their initial data ϕðk; μ ¼ ϵ;MÞ. In particular, our
difference operator evaluated at μ ¼ ϵ relates the solution
coefficient ϕðk; μ ¼ ϵþ 4ρ;MÞ with only the initial data
ϕðk; μ ¼ ϵ;MÞ, which can be solved easily. Therefore, the
difference equation evaluated at the next successive lattice
points can also be solved straightforwardly, once the
initial data ϕðk; μ ¼ ϵ;MÞ are provided. Without loss of
generality, we fix it to be real. This allows us to conclude
that, since the coefficients of the corresponding difference
equation (A4) are also real functions, the solutions
ϕðk; μ;MÞ at any triad section μ ¼ ϵ� 4ρn will also be
real functions.
Besides, the solutions to Eq. (A4), for constant values of

the quantum numbers k, M, and the cosmological constant
λ, have different asymptotic limits at μ → ∞. Concretely,
if they fulfil k < M=2ℏλ or k > M=2ℏλ, the physically
relevant solutions either oscillate or decay exponentially,
respectively, in that limit.
We focus now on the study of the solutions in the

cases in which k > M=2ℏλ. In this regime, it is more
convenient to carry out a transformation in the
functional space of solutions in order to achieve a
suitable separable form of the constraint equation. In
particular, following the ideas of Ref. [30], we introduce
a bijection on the space of solutions defined by the
scaling of the solutions

ϕdcrðk; μ;MÞ ¼ ðℏG2Þ1=2b̂ðμÞϕðk; μ;MÞ; ðA5Þ
with

b̂ðμÞ ¼ 1

ρ
ðjμ̂þ ρj1=2 − jμ̂ − ρj1=2Þ: ðA6Þ

We might notice that the functions b̂ðμÞ only vanish for
μ ¼ 0. But this sector has been decoupled, since μ
belongs to semilattices with a global minimum at
μ ¼ ϵ > 0. Therefore, the function b̂ðμÞ never vanishes

and the previous scaling is invertible. The new functions
ϕdcrðk; μ;MÞ now fulfil the difference equation

− fdcrþ ðμ − 4ρÞϕdcrðk; μ − 4ρ;MÞ
− fdcr− ðμþ 4ρÞϕdcrðk; μþ 4ρ;MÞ
þ fdcr0 ðk; μ;MÞϕdcrðk; μ;MÞ ¼ 0; ðA7Þ

where the new coefficients are now

fdcr� ðμÞ ¼ 1

16ρ2bðμÞbðμ� 4ρÞ jμj
1=4jμ� 2ρj1=2jμ� 4ρj1=4

× ½sgnðμ� 4ρÞ þ sgnðμ� 2ρÞ�
× ½sgnðμ� 2ρÞ þ sgnðμÞ�; ðA8Þ

fdcr0 ðμ; k;MÞ ¼ μ

bðμÞ2
�
1 −

G2M
2ℏG2λk

�
ðℏG2λÞ2k2

þ 1

16ρ2bðμÞ2 ½ðjμjjμþ 2ρjÞ1=2

× ½sgnðμÞ þ sgnðμþ 2ρÞ�2
þ ðjμjjμ − 2ρjÞ1=2½sgnðμÞ þ sgnðμ − 2ρÞ�2�
− Δk2: ðA9Þ

This difference operator can be naively interpreted as a
densitized scalar constraint, for instance, like the one
emerging after choosing the lapse function Nb̂ðμÞ−2
(together a suitable factor ordering and a global factor
ℏG2). Let us denote this scalar constraint in the original
scaling by Ĥ, and the corresponding scalar constraint by
Ĥdcr in the new one. Both are related by

Ĥdcr ¼ b̂ðμÞ−1Ĥ b̂ðμÞ−1: ðA10Þ

Now, we study the difference operator

ĥdcr ¼ Ĥdcr þ Δk2: ðA11Þ

We can deduce several properties about the spectrum of this
difference operator as well as of its eigenfunctions. Let us
consider, for consistency, its positive spectrum. The eigen-
value problem

ĥdcrjϕdcr
ω i ¼ ωjϕdcr

ω i ðA12Þ

corresponds to a difference equation similar to Eq. (A7) but
with functions

~fdcr� ðμÞ ¼ 1

16ρ2bðμÞbðμ� 4ρÞ jμj
1=4jμ� 2ρj1=2jμ� 4ρj1=4

× ½sgnðμ� 4ρÞ þ sgnðμ� 2ρÞ�
× ½sgnðμ� 2ρÞ þ sgnðμÞ�; ðA13Þ

CORICHI, OLMEDO, and RASTGOO PHYSICAL REVIEW D 94, 084050 (2016)

084050-14



~fdcr0 ðμ;k;M;ωÞ

¼ μ

bðμÞ2
�
1−

G2M
2ℏG2λk

�
ðℏG2λÞ2k2

þ 1

16ρ2bðμÞ2 ½ðjμjjμþ 2ρjÞ1=2½sgnðμÞþ sgnðμþ 2ρÞ�2

þðjμjjμ− 2ρjÞ1=2½sgnðμÞþ sgnðμ− 2ρÞ�2�−ω:

ðA14Þ

Let us assume that the solutions to this difference
equation have a well-defined and smooth limit μ → ∞.
For practical purposes this limit is similar to the limit
ρ → 0, but keeping in mind that while the former is
expected to be well defined in our quantum theory, the
latter is not. This assumption involves the solutions ϕdcr

ω ðμÞ
being continuous functions of μ. But this is not true for
scales Δμ of the order of 4ρ (in the previous asymptotic
limit). This must be tested carefully, but we do not deal with
this question now. We assume its validity, at least for
eigenvalues with typical scales much bigger than 4ρ.
Within this asymptotic regime and approximation, the

solutions to the previous difference equation (A12) satisfy
in a very good approximation the differential equation

0 ¼ − ~fdcrþ ðμ − 4ρÞϕdcr
ω ðk; μ − 4ρ;MÞ

− ~fdcr− ðμþ 4ρÞϕdcr
ω ðk; μþ 4ρ;MÞ

þ ~fdcr0 ðk; μ;M;ωÞϕdcr
ω ðk; μ;MÞ

¼ −4μ2∂2
μϕ

dcr
ω ðk; μ;MÞ − 8μ∂μϕ

dcr
ω ðk; μ;MÞ

þ
��

1 −
G2M

2ℏG2λk

�
ðℏG2λÞ2k2μ2 − γ2

�
ϕdcr
ω ðk; μ;MÞ

þOðρ2=μ2Þ; ðA15Þ
with γ2 ¼ ωþ 3=4. Let us recall that this differential
equation can be analogously achieved if instead of adopting
a loop quantization, one adheres to a Wheeler-DeWitt
(WDW) representation for this setting, with a suitable
factor ordering. It corresponds to a modified Bessel
equation, where its solutions are combinations of modified
Bessel functions of the form

lim
μ→∞

ϕdcr
ω ðk; μ;MÞ ¼ Ax−1=2KiγðxÞ

þ Bx−1=2I iγðxÞ; ðA16Þ
with

x ¼ μ
ℏG2λk

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

G2M
2ℏG2λk

�s
: ðA17Þ

In the limit μ → ∞, the solutions I and K grow and
decay exponentially, respectively. Therefore, the latter is
the only contribution to the spectral decomposition of ĥdcr.

In consequence, its possible (positive) eigenvalues ω
are nondegenerate. Besides, the functions KiγðxÞ are
normalized to

hKiγjKiγ0 i ¼ δðγ − γ0Þ; ðA18Þ

in L2ðR; x−1dxÞ, since the normalization in this case is
ruled by the behavior of KiγðxÞ in the limit x → 0, which
corresponds to

lim
x→0

KiγðxÞ → A cos ðγ ln jxjÞ: ðA19Þ

For additional details see, for instance, Ref. [37]. This result
is fulfilled in the continuous theory, whenever (A15) is
valid globally. But let us recall that we are dealing with a
difference equation possessing, in a good approximation, a
continuous μ → ∞ limit, but not at all for μ → 0. Therefore,
the previous normalization (A18) and the asymptotic limit
(A19) have no meaning in our discrete theory. In this case,
and in the absence of a meticulous numerical study of the
solutions of this equation, we can only infer some proper-
ties about ϕdcr

ω ðk; μ;MÞ. One can convince oneself that our
difference equation is similar to the one studied in [31] for a
closed Friedmann-Robertson-Walker spacetime. In particu-
lar, the eigenfunctions of such a difference operator have a
similar asymptotic behavior for v → ∞ (or equivalently
μ → ∞ in our model). Nevertheless, the spectrum of the
corresponding difference operator turns out to be discrete
(instead of continuous like the corresponding differential
operator) owing to the behavior of its eigenfunctions at
v≃ ϵ (i.e. μ≃ ϵ). Therefore, we expect, following the
results of Ref. [31], that the eigenvalues ω of the difference
operator ĥdcr belongs to a countable set, which we call
fωðnÞg. One also expects that the possible (positive) values
of ωðnÞ depend on ϵ ∈ ð0; 4ρ�, and for a given ϵ, they
also depend on k and M. Let us comment that
the particular values of the sequence fωðnÞg as well as
the explicit form of the eigenfunctions ϕdcr

ω ðk; μ;MÞ, to the
knowledge of the authors, can only be determined numeri-
cally by now, unless new analytical tools are developed. In
addition, a second look at the difference equation (A12)
tells us that the eigenfunctions are completely determined
by their value at the initial data section ϕdcr

ω ðk; μ ¼ ϵ;MÞ.
Therefore, the spectrum of ĥdcr will be nondegenerate.
Moreover, let us recall that, if we choose the initial data to
be real, all the coefficients ϕdcr

ω ðk; μ;MÞ for any μ will also
be real.
Eventually, the corresponding eigenfunctions, as func-

tions of μ, will be square summable, fulfilling the nor-
malization condition

hϕdcr
ωn
jϕdcr

ωn0 i ¼
X
n

ϕdcr
ωn
ðk; ϵþ 4nρ;MÞ

× ϕdcr
ωn0 ðk; ϵþ 4nρ;MÞ ¼ δnn0 ; ðA20Þ
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recalling that these coefficients are real. It is worth
commenting that due to the scaling (A5), the coefficients
in the previous sum are weighted simply with the unit. This
is not the case, for instance, in Ref. [31] where the norm of
the corresponding eigenfunctions includes a weight func-
tion different from the unit, since no scalings of the
solutions are considered.
The constraint in this basis takes the algebraic form

ωðnÞ − Δk2 ¼ 0: ðA21Þ
Let us now study the solutions to the constraint when

k < M=2ℏλ. In this case we follow again the ideas of [30]
in order to render our equation in a suitable representation
where it again becomes separable. Let us comment that
the solutions to the difference equation for k < M=2ℏλ
have different asymptotic behaviors at μ → ∞ than the ones
for k > M=2ℏλ. It involves requiring that the change of
representation that is considered in each case, in order to
express the constraint equation in a simple separable form,
must not be the same.
With all this in mind, let us consider this invertible

scaling:

ϕcnt
j ðk; μ;MÞ ¼ ðℏG2μ̂Þ1=2ϕðk; μ;MÞ: ðA22Þ

As before, μ ¼ 0 could be problematic in order to define
this redefinition properly. But let us recall that this sector
has been decoupled from the quantum theory. As a
consequence μ has a global minimum equal to ϵ > 0.
Therefore, the previous scaling (A22) can be inverted and
the original description recovered. The new functions
ϕcntðk; μ;MÞ now fulfil the difference equation

− fcntþ ðμ − 4ρÞϕcntðk; μ − 4ρ;MÞ
− fcnt− ðμþ 4ρÞϕcntðk; μþ 4ρ;MÞcnt
þ fcnt0 ðk; μ;MÞϕcntðk; μ;MÞ ¼ 0; ðA23Þ

but this time the coefficients are

fcnt� ðμÞ ¼ 1

16ρ2
jμj−1=4jμ� 2ρj1=2jμ� 4ρj−1=4

× ½sgnðμ� 4ρÞ þ sgnðμ� 2ρÞ�
× ½sgnðμ� 2ρÞ þ sgnðμÞ�; ðA24Þ

fcnt0 ðμ;k;MÞ¼ 1

16ρ2μ
½ðjμjjμþ2ρjÞ1=2½sgnðμÞþsgnðμþ2ρÞ�2

þðjμjjμ−2ρjÞ1=2½sgnðμÞþsgnðμ−2ρÞ�2�

−
sgnðμÞ
μρ2

Δk2ðjμþρj1=2−jμ−ρj1=2Þ2:

ðA25Þ
This version of the scalar constraint, as we mentioned

previously, can be naively understood as a densitized

version of the original classical constraint after the choice
of Nμ−1 as the new lapse function (and an adequate factor
ordering and a global factor ℏG2). Following the notation
that we introduced, we denote this new scalar constraint
by Ĥcnt. It is related with the original one by means of

Ĥcnt ¼ ðℏG2μ̂Þ−1=2ĤðℏG2μ̂Þ−1=2: ðA26Þ

The difference operator that is studied now reads

ĥcnt ¼ Ĥcnt −
�
1 −

G2M
2ℏG2λk

�
ðℏG2λÞ2k2: ðA27Þ

Therefore, we have written again the original constraint Ĥ
in a suitable separable form according to the condition
k < M=2ℏλ.
We now study the spectrum of the difference operator

ĥcnt, by means of the eigenvalue problem

ĥcntjϕcnt
ω i ¼ ωjϕcnt

ω i; ðA28Þ

for ω ≥ 0, which are the physically interesting values. This
equation can be written in the form of (A23), but with
coefficients

~fcnt� ðμÞ ¼ 1

16ρ2
jμj−1=4jμ� 2ρj1=2jμ� 4ρj−1=4

× ½sgnðμ� 4ρÞ þ sgnðμ� 2ρÞ�
× ½sgnðμ� 2ρÞ þ sgnðμÞ�; ðA29Þ

~fcnt0 ðμ; k;M;ωÞ

¼ 1

16ρ2μ
½ðjμjjμþ 2ρjÞ1=2½sgnðμÞ þ sgnðμþ 2ρÞ�2

þðjμjjμ − 2ρjÞ1=2½sgnðμÞ þ sgnðμ − 2ρÞ�2�

−
sgnðμÞ
jμjρ2 Δk2ðjμþ ρj1=2 − jμ − ρj1=2Þ2 − ω: ðA30Þ

Let us recall, again, that the coefficients ϕcnt
ω ðk; μ;MÞ of

these eigenstates are determined by their initial data
ϕcnt
ω ðk; μ ¼ ϵ;MÞ through the difference equation (A28).

In consequence, the (positive) spectrum of ĥcnt is non-
degenerate. Moreover, the coefficients ϕcnt

ω ðk; μ;MÞ will be
real if ϕcnt

ω ðk; μ ¼ ϵ;MÞ ∈ R, since the previous functions
~fcnt0 and ~fcnt� are also real.
We assume, again, that these solutions have a well-

defined and smooth asymptotic behavior for μ → ∞. Let us
recall that this involves eigenvalues with typical scales
much bigger than 4ρ. This continuity condition allows us to
approximate the difference equation for those large scale
eigenvalues at μ → ∞ by
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0 ¼ − ~fcntþ ðμ − 4ρÞϕcnt
ω ðk; μ − 4ρ;MÞ

− ~fcnt− ðμþ 4ρÞϕcnt
ω ðk; μþ 4ρ;MÞ

þ ~fcnt0 ðk; μ;M;ωÞϕcnt
ω ðk; μ;MÞ

¼ −4∂2
μϕ

cnt
ω ðk; μ;MÞ − γ2

μ2
ϕcnt
ω ðk; μ;MÞ − ωϕcnt

ω ðk; μ;MÞ

þOðρ2=μ2Þ; ðA31Þ

but this time with γ2 ¼ Δk2 þ 3=4. Let us comment that
this very same differential equation would have been
obtained if we had considered a WDW representation,
instead of the loop quantization, with a suitable choice in
the ordering of the operators for the definition of the
corresponding Hamiltonian constraint.
The solutions to this differential equation are linear

combinations of Hankel functions of first Hð1Þ
iγ ðyÞ and

second Hð2Þ
iγ ðyÞ kind, multiplied by a factor y1=2, where

y ¼ μ
ffiffiffiffi
ω

p
=2. As a consequence, the asymptotic limit of the

eigenstates is

lim
μ→∞

ϕcnt
ω ðk; μ;MÞ ¼ Ay1=2Hð1Þ

iγ ðyÞ

þ By1=2Hð2Þ
iγ ðyÞ: ðA32Þ

These functions have a well-known asymptotic limit at
y → ∞, corresponding to

Hð1Þ
iγ ðyÞ ¼

ffiffiffiffiffi
2

πy

s
eiðy−π=4þγπ=2Þ; ðA33Þ

with Hð2Þ
iγ ðyÞ ¼ ðHð1Þ

iγ ðyÞÞ�. This asymptotic limit of the
Hankel functions, together with (A32) and the fact that
ϕcntðk; μ;MÞ ∈ R at any μ, allows us to conclude that

lim
μ→∞

ϕcnt
ω ðk; μ;MÞ ¼ A cos

� ffiffiffiffi
ω

p
2

μþ β

�
; ðA34Þ

with A being a normalization constant and β a phase that is
expected to depend on Δk, and ϵ. This asymptotic behavior
is radically different in comparison with the eigenstates
ϕdcr
ω ðk; μ;MÞ. Instead of decaying exponentially, they

simply oscillate as standing waves (up to negligible
corrections) of frequency

ffiffiffiffi
ω

p
=2. Therefore, our experience

in loop quantum cosmology [30,32,33] tells us that these
eigenfunctions are normalizable functions of μ (in the
generalized sense),

hϕin
ω jϕin

ω0 i ¼
X
n

ϕcnt
ω ðk; ϵþ 4nρ;MÞ

× ϕcnt
ω0 ðk; ϵþ 4nρ;MÞ ¼ δð ffiffiffiffi

ω
p

=2 −
ffiffiffiffiffi
ω0p
=2Þ:
ðA35Þ

Eventually, the constraint in the basis of states jϕin
ωi takes

the form

ωþ
�
1 −

G2M
2ℏG2λk

�
ðℏG2λÞ2k2 ¼ 0: ðA36Þ

It is worth commenting that these results might be
modified for those “high frequency” eigenvalues, where
the discreteness of the lattice in μ is important. This will be
a matter of future research.
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