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In this work, we extend the so-called typicality approach, originally formulated in statistical mechanics
contexts, to SUð2Þ-invariant spin-network states. Our results do not depend on the physical interpretation
of the spin network; however, they are mainly motivated by the fact that spin-network states can describe
states of quantum geometry, providing a gauge-invariant basis for the kinematical Hilbert space of several
background-independent approaches to quantum gravity. The first result is, by itself, the existence of a
regime in which we show the emergence of a typical state. We interpret this as the proof that in that regime
there are certain (local) properties of quantum geometry which are “universal.” Such a set of properties is
heralded by the typical state, of which we give the explicit form. This is our second result. In the end, we
study some interesting properties of the typical state, proving that the area law for the entropy of a surface
must be satisfied at the local level, up to logarithmic corrections which we are able to bound.
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I. INTRODUCTION

In recent years, quantum statistical mechanics and quan-
tum information theory have played an increasingly central
role in quantum gravity. Such an interplay has proven
particularly insightful both in the context of the holographic
duality in AdS/CFT [1–5] as well as for the current
background-independent approaches to quantum gravity,
including loop quantum gravity (LQG) [6–9], the related
spin-foam formulation [10], and group field theory [11].
Interestingly, the different background-independent

approaches today share a microscopic description of
space-time geometry given in terms of discrete, pregeo-
metric degrees of freedom of combinatorial and algebraic
nature, based on spin-network Hilbert spaces [12–16]. In
this context, entanglement has provided a new tool to
characterize the quantum texture of space-time in terms of
the structure of correlations of the spin-networks states.
Along this line, several recent works have considered the

possibility of using specific features of the short-range
entanglement in quantum spin networks (area law and
thermal behavior) to select quantum geometry states which
may eventually lead to smooth space-time geometry
classically [17–21]. This analysis usually focuses on states
with few degrees of freedom, leaving open the question of
whether a statistical characterization may reveal new
structural properties, independent from the interpretation
of the spin-network states.
In this work, we propose the use of the information

theoretical notion of quantum canonical typicality, as a tool
to investigate and characterize universal local features of
quantum geometry, going beyond the physics of states with
few degrees of freedom.
In quantum statistical mechanics, canonical typicality

states that almost every pure state of a large quantum

mechanical system, subject to the fixed energy constraint,
is such that its reduced density matrix over a sufficiently
small subsystem is approximately in the canonical state
described by a thermal distribution à la Gibbs [22–26].
Such a statement goes beyond the thermal behavior. For

a generic closed system in a quantum pure state, subject to
some global constraint, the resulting canonical description
will not be thermal but generally defined in relation to the
constraint considered [27,28]. Again, in this case, some
specific properties of the system emerge at the local level,
regardless of the nature of the global state. These properties
depend on the physics encoded in the choice of the global
constraints.
Within this generalized framework, we exploit the notion

of typicality to study whether and how “universal” stat-
istical features of the local correlation structure of a spin-
network state emerge in connection with the choice of the
global constraint.
We focus our analysis on the space of the N-valent

SUð2Þ-invariant intertwiners, which are the building blocks
of the spin-network states. In LQG, such intertwiners can
be thought of dually as a region of 3D space with an S2

boundary [13].
We reproduce the typicality statement in the full space of

N-valent intertwiners with a fixed total area, and we
investigate the statistical behavior of the canonical reduced
state, dual to a small patch of the S2 boundary, in the large
N limit. Eventually, we study the entropy of such a reduced
state and its scaling behavior in different regimes.
The content of the manuscript is organized as follows.

Section II introduces the statement of canonical typicality
in a formulation particularly suitable for the spin-network
Hilbert space description. Section III shortly reviews the
notion of the state of quantum geometry in terms of the
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spin-network basis. In Sec. IV, we reformulate the state-
ment of quantum typicality in this context. We obtain the
canonical reduced state of the N-valent intertwiner spin-
network system in Sec. IV B, and we prove the existence of
a regime of typicality for such a system in Sec. V. The
entropy of the typical state and its thermodynamical
interpretation are investigated in Sec. VI. We conclude
in Sec. VII with a short discussion of our results. Technical
details of all the computations are given in the
Supplemental Material [29].

II. TYPICALITY

We start with a brief summary of the result achieved in
Ref. [27]. Suppose we have a generic closed system, which
we call “universe,” and a bipartition into “small system” S
and “large environment” E. The universe is assumed to be
in a pure state. We also assume that it is subject to a
completely arbitrary global constraint R. For example, in
the standard context of statistical mechanics, it can be the
fixed energy constraint. Such a constraint is concretely
imposed by restricting the allowed states to the subspace
HR of the states of the total Hilbert spaceHU which satisfy
the constraint R:

HR ⊆ HU ¼ HE ⊗ HS: ð1Þ

HS and HE are the Hilbert spaces of the system and
environment, with dimensions dS and dE, respectively. We
also need the definition of the canonical state of the system
ΩS, obtained by tracing out the environment from the
microcanonical (maximally mixed) state IR,

ΩS ≡ TrE½IR� IR ≡ 1R
dR

; ð2Þ

where 1R is the projector on HR and dR ¼ dimHR. This
corresponds to assigning a priori equal probabilities to all
states of the universe consistent with the constraints R.
In this setting, given an arbitrary pure state of the

universe satisfying the constraint R, i.e. jϕi ∈ HR, the
reduced state ρSðϕÞ≡ TrE½jϕihϕj� will almost always be
very close to the canonical state ΩS.
Concretely, such a behavior can be stated as a theorem

[27], showing that for an arbitrary ε > 0 the distance
between the reduced density matrix of the system ρSðϕÞ
and the canonical state ΩS is given probabilistically by

Vol½ϕ ∈ HRjDðρSðϕÞ;ΩSÞ ≥ η�
Vol½ϕ ∈ HR�

≤ η0; ð3Þ

where the trace-distance D is a metric1 on the space of the
density matrices [30,31], while

η0 ¼ 4Exp

�
−

2

9π3
dRε2

�
η ¼ εþ 1

2

ffiffiffiffiffiffiffi
dS
deffE

s
; ð4Þ

with the effective dimension of the environment defined as

deffE ≡ 1

TrE½ðTrSIRÞ2�
≥
dR
dS

: ð5Þ

The bound in Eq. (3) states that the fraction of the volume
of the states which are far away from the canonical state ΩS
more than η decreases exponentially with the dimension of
the “allowed Hilbert space” dR ¼ dimHR and with

ε2 ¼ ðη − 1
2

ffiffiffiffiffi
dS
deffE

q
Þ2. This means that, as the dimension of

the Hilbert space dR grows, a huge fraction of states gets
concentrated around the canonical state.
The proof of the result relies on the concentration of

measure phenomenon. The key tool to proving this result is
the Levy lemma, which we briefly report for completeness
in Appendix.
In the following, we will reconsider this argument for a

peculiar class of high-dimensional quantum systems, the
quantum spin-network states. The interest in testing
the notion of typicality in quantum gravity resides in the
kinematic nature of the statement, a fundamental feature to
study the possibility of a thermal characterization of
reduced states of quantum geometry, regardless of any
Hamiltonian evolution in time.

III. STATES OF QUANTUM GEOMETRY

In several background-independent approaches to quan-
tum gravity, the spin-network states provide a kinematical
description of quantum geometry, in terms of superposi-
tions of graphs Γ labelled by group or Lie algebra elements
representing holonomies of the gravitational connection
and their conjugate triad [6,8,13].
These states are constructed as follows (for a thorough

introduction to spin networks, we refer to Refs. [12–16]).
To each edge e ∈ Γ, one associates an SUð2Þ irreducible
representation (irrep) labelled by a half-integer je ∈ N=2
called spin. The representation (Hilbert) space is denoted
Vje and has dimension dje ¼ 2je þ 1. To each vertex v of
the graph, one attaches an intertwiner Iv, which is an
SUð2Þ-invariant map between the representation spaces Vje

associated to all the edges e meeting at the vertex v,

Iv∶ ⊗
e ingoing

Vje → ⊗
e outgoing

Vje : ð6Þ

One can alternatively consider Iv as a map from ⊗e∈v
Vje → C≃ V0 and call the intertwiner an invariant tensor
or a singlet state between the representations attached to all
the edges linked to the considered vertex. Once the je’s are
fixed, the intertwiners at the vertex v actually form a Hilbert
space, which we will call1We use the definition Dðρ1; ρ2Þ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ1 − ρ2Þ†ðρ1 − ρ2Þ

p
.
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Hv ≡ Intv½⊗
e
Vje �: ð7Þ

A spin-network state jΓ; fjeg; fIvgi is defined as the
assignment of representation labels je to each edge and
the choice of a vector jfIvgi ∈ ⊗v Hv for the vertices. The
spin-network state defines a wave function on the space of
discrete connections SUð2ÞE=SUð2ÞV ,

ϕfjeg;fIvg½ge� ¼ hhejIvi≡ tr⊗
e
DjeðheÞ ⊗ ⊗

v
Iv; ð8Þ

where we contract the intertwiners Iv with the (Wigner)
representation matrices of the group elements ge in the
chosen representations je.
Therefore, upon choosing a basis of intertwiners for

every assignment of representations je, the spin networks
provide a basis of the space of wave functions associated to
the graph Γ,

HΓ ¼ L2½SUð2ÞE=SUð2ÞV � ¼ ⨁
fjeg

⊗
v
Hv: ð9Þ

Such discrete and algebraic objects provide a description
of the fundamental excitations of quantum space-time.
From a geometrical point of view, classically, given a
cellular decomposition of a three-dimensional manifold, a
spin-network graph with a node in each cell and edges
connecting nodes in neighboring cells is said to be dual to
this cellular decomposition. Therefore, each edge of the
graph is dual to a surface patch intersecting the edge, and
the area of such patch is proportional to the representation
je. Analogously, vertices of a spin network can be dually
thought of as chunks of volume (see Fig. 1 for an example).
See Refs. [32–36] for the geometric interpretation of spin-
network states as a collection of polyhedra.
In the following, we will focus on a fundamental

building block of a spin-network graph, the Hilbert space
of a single intertwiner with N legs.

IV. INTERTWINER TYPICALITY

Now, we consider a large quantum system given by a
collection of N edges, represented by N independent edges

states. The Hilbert space of the system is the direct sum
over fjig’s of the tensor product of N irreducible repre-
sentations Vji ,

H ¼ ⨁
fjig

⊗
N

i¼1
Vji : ð10Þ

This set of independent edges plays the role of the universe.
Notice that, despite its extreme simplicity, this system has a
huge Hilbert space. The single representation space Vj has
finite dimension dji ¼ 2ji þ 1. However, dji is summed
over all ji ∈ N

2
. Therefore, each Wilson line state (edge)

lives in an infinite-dimensional Hilbert space.2 In the
following, we will always consider a cutoff in the value
of the SUð2Þ representation labelling the edge,3

⨁
fjig

→ ⨁
ji≤Jmax

fjig
; with Jmax ≫ 1: ð11Þ

This will allow us to deal with a very large but finite-
dimensional space.
Now, we want to split the universe into system and

environment. We do so simply by defining two subsets of
edges E and S, with f1;…; kg ∈ S and fkþ 1;…; Ng ∈ E,
such that k ≪ N. Consequently, we can write the Hilbert
space of the universe as the tensor productH ¼ HE ⊗ HS.
We would like to stress here that, for our result to hold,
the k links of the system do not need to be adjacent. Despite
that, we are interested in the local properties of an
intertwiner, and therefore we will always think about
these links as adjacent and forming a simply connected
2D patch.
The next step toward typicality consists in defining the

constraint which restricts the allowed states of the system
and environment to a subspace of the total Hilbert space.

A. Definition of the constraint

Two main ingredients are necessary to the definition of
the constraint. The first one is the SUð2Þ gauge invariance.
This choice reduces the universe Hilbert space to the
collection of the SUð2Þ-invariant linear spaces

HN ¼ ⨁
fjig

InvSUð2Þ½⊗
N

i¼1
Vji �;

(a) (b)

FIG. 1. (a) Example of a four-valent node dual to a tetrahedron,
describing the fundamental cell of a triangulated 3D space.
(b) The edges of the dual graph are labelled with spins fjig,
while Iv labels the intertwiner tensor at the node.

2An important detail is how we deal with spin-zero represen-
tations. In LQG, these are avoided by introducing cylindrical
consistency which requires that such links are equivalent to
nonexistent links. We do not require cylindrical consistency, and
hence spin-zero representations are allowed.

3Another way to introduce a cutoff in the representations,
which has already been explored in the literature [37–42], is to
consider the so-called q-deformation of SUð2Þ. This is usually
done in LQG to include a cosmological constant.
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spanned by N-valent intertwiner states. Invariance under
SUð2Þ is the first ingredient defining our subsystem con-
strained space.
It has been proven in Ref. [43] that the Hilbert space of

the N-valent intertwiners naturally decomposes into sub-
spaces of constant total area,4 which, following the notation

in Ref. [43], we call HN . Therefore, H ¼ ⨁
J
HðJÞ

N . We

further constrain our system by considering only the
invariant tensor product Hilbert space, with total spin fixed
to J¼ J0 (see Fig. 2). This is the last ingredient. Eventually,

the constrained Hilbert space is given by HR ¼ HðJ0Þ
N .

It was also proven in Ref. [43] that each subspaceHðJÞ
N of

N-valent intertwiners with fixed total area J carries an
irreducible representation of UðNÞ. In this context, one can
interpret J0 as the total area dual to the set of N legs of the

intertwiner. The main reason behind the choice of HðJ0Þ
N as

constrained space is that in the semiclassical limit one can
think of this system, dually, as a closed surface with area
J0l2P ≫ l2P, where lP is the Planck length.

B. The canonical state of the system

Once the constrained space has been defined, in order to
compute the canonical reduced state, we need the expres-
sion of the maximally mixed state IR over HR. This is
formally given by

IR ≡ 1

dR
1R ¼ 1

dR
PR; ð12Þ

where PR projects the states of ⊗l Hjl onto the SUð2Þ
gauge-invariant subspacewith fixed total spin numberHðJ0Þ

N .

When dealing with SUð2Þ quantum numbers, there are
two common choices for the basis of the Hilbert space: the
coupled and the decoupled bases. The coefficients which
connect the two bases are the well-known Clebsh-Gordan
coefficients. Considering that the main task is to perform
the partial trace of IR over the environment, a suitable
basis to write the projector PR is a semidecoupled basis in
which all the quantum numbers within the system and
within the environment, respectively, are coupled but the
environment and the system are not. A graphic illustration
of the semidecoupled basis can be found in Fig. 3 while a
graphic representation of the split of the intertwiner into
system and environment can be found in Fig. 4.
Using such a semidecoupled basis, we can write the

projector as

PR ¼
XðJ0Þ

fjE;jSg

X
ηE;σS

X
j~JSj;MS;M0

S

ð−1ÞMSþM0
S

dj~JSj

· jfjE; jSg; ηE; σS; j~JSj;−MS; j~JSj;MSi
× hfjE; jSg; ηE; σS; j~JSj;−M0

S; j~JSj;M0
Sj; ð13Þ

where with jfjE; jSg; ηE; σS; j~JSj;−MS; j~JSj;MSi we

mean jfjEg;ηE; j~JSj;−MSiE ⊗ jfjSg;σS; j~JSj;MSiS, dj~JSj ≡
2j~JSj þ 1 and

PðJ0Þ
fjE;jSg means that we are summing only

over the configurations of the spins fjig such thatP
i∈Eji þ

P
k∈Sjk ¼ J0. The quantum numbers σS and

ηE stand for the recoupling quantum numbers necessary
to write the state in the coupled basis, respectively, within

the system and the environment. Eventually, j~JSj and MS
are, respectively, the norm of the total angular momentum

of the system and its projection over the z axis; j~JEj andME
have the same meaning, but they refer to the environment.
The details of the generic element of the semidecoupled

basis and of the way in which we obtain the projector can
be found in the Supplementary Material [29].

FIG. 2. The N-legged intertwiner system describes a convex
polyhedron with N faces, with the topology of a 2-sphere. The N
(oriented) edges are dual to the elementaryN surfaces comprising
the surface of the polyhedron [32–36]. The intertwiner contains
information on how the elementary surfaces, dual to the links, are
combined together to form a surface boundary of the space region
dual to the node [6,7].

FIG. 3. Here, we show a graphic illustration of the semi-
decoupled basis that we are using to write the projector PR onto
the constrained Hilbert space HR. For a recent work on the
splitting of a gauge-invariant system, we suggest Ref. [44].

4The choice of a linear area spectrum j × l2P is favored by the
forthcoming approach involving the UðNÞ structure of the
intertwiner space.
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The dimension of the constrained Hilbert space dR ≡
dimðHRÞ counts the degeneracy of the N-valent inter-
twiners with fixed total spin J0. Given the equivalence

between the spaceHðJ0Þ
N of N-valent intertwiners with fixed

total area
P

iji ¼ J0 [including the possibility of trivial
SU(2) irreps] and the irreducible representation of UðNÞ
formalism for SUð2Þ intertwiners [43], dR can be calcu-
lated as the dimension of the equivalent maximum weight
UðNÞ irrep with Young tableaux given by two horizontal
lines with equal number of cases J0,

dR ¼ 1

J0 þ 1

�
N þ J0 − 1

J0

��
N þ J0 − 2

J0

�
: ð14Þ

Thanks to the tensor product structure of the semi-
decoupled basis, with respect to the bipartition of the
universe into system and environment, we can easily
perform the partial trace operation over the environment.
The details of the computation can be found in the
Supplementary Material [29]. The final expression of the
canonical state of the system is

ΩS ¼
X

JS≤J0=2

X
σS;j~JSj;MS

XJS
fjSg

DðN−kÞðj~JSj; J0 − JSÞ
dj~JSjdR

· jfjSg; σS; j~JSj;MSihfjSg; σS; j~JSj;MSj; ð15Þ

where
PJS

fjSg means that we are summing over the

configurations of the spins of the system fjSg such thatP
k∈Sjk ¼ JS. Moreover, the definition of the D-functions

is

DðQÞðx; yÞ≡ 2xþ 1

xþ yþ 1

�
Qþ yþ x− 1

xþ y

��
Qþ y− x− 2

y− x

�
:

ð16Þ

We also define the following short-hand notation WE ≡
DðN−kÞðj~JSj;J0−JSÞ. We will also callWS ≡DðkÞðj~JSj; JSÞ

the dimension of the system’s degeneracy space with fixed

area JS and closure defect j~JSj, derived from the equivalent
UðNÞ representation as for the case of the environment
in Eq. (16).
The canonical weight WE encodes all the information

about the local structure of correlations of the reduced
intertwiner state. The specific form of this factor tells us
about the physics of the system, defined by the specific
choice of constraints: the SU(2) gauge symmetry and the
fixed total area constraint. Given the global constraint, the
split into system and environment breaks the gauge
symmetry. Due to the presence of the constraint, onto

HR the quantum numbers of system ðfjSg; σS; j~JSj;MSÞ
are intertwined with those of the environment

ðfjEg; ηE; j~JEj ¼ j~JSj;ME ¼ −MSÞ. This is why, besides
the expected dependence on the total area of the system JS,
the canonical weight carries some interesting extra infor-

mation on the local closure defect j~JSj.

V. TYPICALITY OF THE REDUCED STATE

In this section, we study the region of the space of the
parameters ðN; k; J0; JmaxÞ where the canonical reduced
state is typical. In other words, we investigate the distance
of the canonical state from a randomly chosen pure state
in HR.
Concretely, following the approach described in Sec. II,

we want to show that for the overwhelming majority of
intertwiner states jIi ∈ HR ⊆ HE ⊗ HS the trace distance
DðρS;ΩSÞ between the reduced density matrix of the system
ρS ¼ TrEðjIihI jÞ and the canonical state ΩS is extremely
small.5 This amounts to proving two things. First is that the
Hilbert space average of such a trace distance is itself quite
small in the regime in which we are interested

E½DðρS;ΩSÞ� ≪ 1; ð17Þ

where E indicates the Hilbert space average performed
using the unique unitarily invariant Haar measure [26,30].
Second is that the fraction of states for which such a
distance is higher than a certain ϵ is exponentially vanishing
in the dimension of the Hilbert space.
Now, following Ref. [27], one can recast the condition in

Eq. (3) with the following bound on the average distance,

0 ≤ E½DðρS;ΩSÞ� ≤
ffiffiffiffiffiffiffi
dS
deffE

s
≤

dSffiffiffiffiffiffi
dR

p : ð18Þ

FIG. 4. A local patch of the 2D surface (in red), associated to a
subset of intertwined links fj1;…; jkg defining the “system.” The
“environment” is identified with the complementary 2D surface
associated to the set of links fjkþ1;…; jNg, with N ≫ k.

5We remember that the trace distance has an important
physical interpretation: Dðρ; σÞ is the probability to tell apart ρ
and σ, by means of the most effective quantummeasurement [31].
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Concretely, the first step toward the statement of typi-
cality in our context amounts to studying in which region of
the parameter space ðJ0; N; k; JmaxÞwe have dS=

ffiffiffiffiffiffi
dR

p
≪ 1.

A. Evaluation of the bound

The Hilbert space of the system is the tensor product
Hilbert space of the set of irreps Vji with a given cutoff

Jmax. We assume Jmax ≥ J0, in order to be sure that HðJ0Þ
N

will always carry an irreducible representation of UðNÞ.
Each Vj has dimension dj ¼ 2jþ 1. Therefore, consider-
ing the set of k edges comprising the system, we have

dS ¼
Yk
i¼1

XJmax

ji¼0;1
2

ð2ji þ 1Þ ¼ ð2Jmax þ 1ÞkðJmax þ 1Þk: ð19Þ

Analogously, for the environment, we get dE ¼
ð2Jmax þ 1ÞN−kðJmax þ 1ÞN−k.
Since dR is given in Eq. (14), we can focus on the last

inequality in Eq. (18) and define the regime where
E½DðρS;ΩSÞ� ≪ 1.
Studying the ratio

d2S
dR

¼ ð2Jmax þ 1Þ2kðJmax þ 1Þ2k
1

J0þ1
ðNþJ0−1

J0
ÞðNþJ0−2

J0
Þ ; ð20Þ

we can see that N and J0 play a rather symmetric role in
making this quantity small. The region of interest is
certainly J0 ≫ 1 or N ≫ 1, or both. As we will argue in
the next section, J0; N ≫ 1 is precisely the regime of
interest for the thermodynamical limit. Therefore, we focus
on this region, where there are two different regimes: J0 ≫
N ≫ 1 and N ≥ J0 ≫ 1. In both cases, there are wide
regions of the parameters space where the inequality
E½DðρS;ΩSÞ� ≪ 1 holds. We were able to extract the
following two conditions which guarantee an exponential
decay of Eq. (20), either on N or on J0:

J0
k
> log Jmax ðJ0 ≫ N ≫ 1Þ ð21aÞ

N
k
log j0 > 2 log Jmax ðN ≥ J0 ≫ 1Þ: ð21bÞ

The details can be found in the Supplemental Material [29],
but we would like to present a physically motivated
argument to provide a meaningful value for the cutoff
Jmax and check the plausibility of the given bounds. As
argued in Ref. [45], if we look at a sphere with small radius
l, placed at a large distance L, we will see it within a small
angle ϕ ∼ l

L. Therefore, using the scale of the radius of the
observed universe LU and assuming that there is nothing
with size smaller than the Planck length lP, we will never
see something with an angular extension smaller than
ϕmin ∼

lP
LU
.

A spherical harmonics of representation j is able to
discriminate angular distances of the order 4π

2jþ1
. Therefore,

the existence of ϕmin means that there is an upper bound to
the representation that we need to consider which is

Jmax ∼ 4π
ϕ2
min

¼ 4π
L2
U
l2P
. Using this argument, we obtain the

following cutoff:

Jmax ∼ 4π
L2
U

l2P
≈ 3 × 10124 ∼ e124×log 10: ð22Þ

Putting the numbers in Eqs. (21a) and (21b), we obtain

J0
k
≳ 3 × 102 ðJ0 ≫ N ≫ 1Þ ð23aÞ

N
k
≳ 6 × 102 ðN ≥ J0 ≫ 1Þ: ð23bÞ

B. Levy’s lemma

Following Refs. [27,28], we can use Levy’s lemma (see
Appendix) to bound the fraction of the volume of states
which are ε more distant than dSffiffiffiffiffi

dR
p from ΩS as

Vol
h
jIi ∈ HRjDðρS;ΩSÞ − dSffiffiffiffiffi

dR
p ≥ ε

i

Vol½jIi ∈ HR�
≤ BϵðdRÞ

BϵðdRÞ≡ 4Exp

�
−

2

9π3
dRε2

�
: ð24Þ

The dimension dR can be evaluated numerically because
we have an exact expression. We give a numeric example to
show that it is not necessary to have huge areas or number
of links for the typicality to emerge. Suppose we have a
huge sensitivity on the trace distance: ϵ ¼ 10−10. Moreover,
2
9π3

∼ 7 × 10−3. With these numbers, we have

B10−10ðdRÞ ¼ 4Exp½−7 × 10−23dR�: ð25Þ

Suppose we look at the most elementary patch, just a few
links (k ¼ 1, 2). The set of numbers J0 ¼ N ¼ 104 gives
the following bounds, using a cutoff given by the cosmo-
logical horizon:

N
k
∼ 104 ≫ 6 × 102 ð26aÞ

B10−10ðdRÞ ¼ 4Exp½−5.6 × 105992� ≪ 1: ð26bÞ

As we can see, the typicality emerges quite easily, due to
the exponential-like growth of the constrained Hilbert
space on the number of links N and on the total area J0.
The existence of a typical behavior indicates the emer-

gence of a regime where the properties of the reduced state
of theN-valent intertwiner state are universal. The structure
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of local correlations carried by the reduced state is
independent from the specific shape of the pure intertwiner
state, and it is locally the same everywhere. Due to the
global symmetry constraint, though, the canonical weight
presents a very involved analytic form, despite the extreme
simplicity of the system under study. In order to
extract some physical information from this coefficient,
we are going to study its behavior in the thermody-
namic limit.

VI. THERMODYNAMIC LIMIT
AND AREA LAWS

In this section, we investigate the behavior of the entropy
of the reduced state, in the thermodynamic limit.
In the standard context of statistical mechanics, when

performing the thermodynamic limit, the density of par-
ticles must be finite; otherwise, the energy density would
diverge: N, V → þ∞ with N

V < þ∞. As we will see in the
forthcoming argument, the area is playing here the role of
the energy, and therefore we think that the correct way to
perform the thermodynamic limit consists in taking N,
J0 → ∞ with J0

N ≡ j0 < þ∞, where j0 is the average spin
of the intertwiner.
The entropy of the system is given by the von Neumann

entropy,

SðΩSÞ ¼ −Tr½ΩS logΩS�: ð27Þ

Given the diagonal form of the canonical reduced density
matrix ΩS in Eq. (16), this can be written as

SðΩSÞ ¼ −
1

dR

X
JS≤J0=2;j~JSj

WSWE log

�
WE

dj~JSjdR

�
: ð28Þ

Within the typicality regime (N, J0 ≫ 1), we can use the
Stirling approximation for the factorials, to simplify the
form of the binomial coefficients in WE , WS , and dR. We
will study separately the three regimes j0 ≫ 1, j0 ≪ 1, and
j0 ∼ 1. The details of the computation can be found in the
Supplemental Material [29], and here we only summarize
the results.

A. Small average spin: j0 ≪ 1

In the case of small average spin, the leading term in the
thermodynamic limit is

SðΩSÞ≃ βh2JSi þ small corrections; ð29Þ

where h·i is the quantum mechanical average, on the
canonical state ΩS, while

β≡
�
1þ log

N − k
J0

�
ð30Þ

is formally identified as the “temperature” of the environ-
ment. It turns out to be a function of the averaged spin of
the environment.
Despite being quite far from the standard setting, a hint

toward a thermodynamical interpretation of this result
comes from the UðNÞ description of the SUð2Þ intertwiner
space. Using the Schwinger representation of the suð2Þ Lie
algebra [43,46], one can describe the N-valent intertwiner
state as a set of 2N oscillators, ai, bj. The quadratic

operators Eij ≡ ða†i aj − b†i bjÞ, E†
ij ¼ Eji act on couples of

punctures ði; jÞ and form a closed uðNÞ Lie algebra. The
uð1Þ Casimir operator is given by the oscillators’ energy
operator E≡P

iEi, with Ei ≡ Eii, and its value on a state
gives twice the sum of the spins on all legs, 2

P
iji.

Therefore, one can interpret E as measuring (twice) the
total area of the boundary surface around the intertwiner.
In statistical mechanics, the thermal behavior of the

canonical state relies on the constraint of energy conserva-
tion. The emergence of the canonical state from the
microcanonical state occurs as the degeneracy of the
environment grows exponentially with the energy, hence
decreasing exponentially with the system energy.
In these terms, constraining the total area is equivalent to

fixing a shell of eigenvalues (in fact a single eigenvalue) of
the energy operator acting on the full system. In the limit
N ≫ J0 ≫ 1, the degeneracy of the single energy level
grows exponentially.
For such a reason, the area scaling described by Eq. (29)

is consistent with a thermal interpretation for our reduced
surface state. It is also worth it to mention that the departure
from the exact thermal behavior, à la Gibbs, is a signature
of the breaking of the global SU(2) symmetry (closure
defect), witnessed by the explicit dependence of the
reduced state on j~JSj.

B. High average spin: j0 ≫ 1

Here, we study the behavior of the entropy in the regime
J0 ≫ N ≫ 1. Up to Oð1=J0Þ, the logarithm of the nor-
malized canonical weight is given by

− log

�
WE

dJSdR

�

≃ − log

�
J0e
N − k

�
−2k

þ 3k
N

−
2kJS
J0

−
2JS þ 2j~JEj

J0

≃ k log

�
J0e
N − k

�
2

þ small corrections: ð31Þ

Interestingly, the leading term does not depend on the
quantum numbers of the system. Therefore, the entropy is
counting the number of orthogonal states on which the
canonical state has nonzero support,
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SðΩSÞ≃ 2k

�
1þ log

�
J0
N

��
þO

�
k
N
;
1

J0

�
: ð32Þ

This makes the entropy extensive in the number of edges
comprising the dual surface of the system. In this sense, the
term ½ð J0eN−kÞ2�k defines some kind of effective dimension of
the system, suggesting that the following two things happen
in such regime: first, the canonical state has approximately
a tensor product structure; second, the total spin is equally
distributed among all spins in the universe, and therefore
the accessible Hilbert space of each spins is roughly limited
by a representation of the order of j0. The validity of this
interpretation can be checked assuming a tensor product
structure of k links with single-link Hilbert space limited to
the representation α × j0 and computing the entropy Seff as
the logarithm of the dimension of this space. If we can find
an α ∼ 1 such that the difference SðΩSÞ − Seff is propor-
tional only to small corrections Oð1N ; 1

J0
Þ, we can say that

our argument is not too far from what is happening in such
a regime. With these assumptions, the effective dimension
of the Hilbert space of the system is

deffS ¼
Y
i

Xαj0
ji¼0;1

2

ð2ji þ 1Þ ¼ ð2αj0 þ 1Þkðαj0 þ 1Þk: ð33Þ

In the j0 ≫ 1 regime, we can write it as deffS ≃
2kα2kj2k0 þOð kj0Þ which gives

Seff ≡ log deffS ≃ 2k log

�
J0
N

�
þ kðlog 2α2Þ: ð34Þ

The difference between the two entropies

SðΩSÞ − Seff ≃ kð2 − log 2α2Þ þO

�
1

N
;
1

J0

�
ð35Þ

is given only by small corrections of order Oð1N ; 1
J0
Þ when

α≃ 2.
This simple computation provides evidence that the

result in Eq. (32) follows from the two aforementioned
assumptions.

C. Order 1 average spin: j0 ∼ 1

Eventually, we compute the behavior of the entropy in
the intermediate regime J0 ∼ N ≫ 1. With respect to the
previous cases, this regime does not add anything new to
the analysis. The observed behavior is extensive in the
number of links of the system, with a coefficient which is
slightly different from the previous one:

SðΩSÞ≃ ð2k − 3Þ
�
1þO

��
k
N

�
2
��

: ð36Þ

The relevant computation can be found in the
Supplemental Material [29].

VII. SUMMARY AND DISCUSSION

In this manuscript, we extend the so-called typicality
approach, originally formulated in statistical mechanics
contexts, to a specific class of tensor network states given
by SUð2Þ-invariant spin networks. In particular, following
the approach given in Ref. [27], we investigate the notion of
canonical typicality for a simple class of spin-network
states given by N-valent intertwiner graphs with a fixed
total area. Our results do not depend on the physical
interpretation of the spin network; however, they are mainly
motivated by the fact that spin networks provide a gauge-
invariant basis for the kinematical Hilbert space of several
background-independent quantum gravity approaches,
including loop quantum gravity, spin-foam gravity, and
group field theories.
The first result is the very existence of a regime in which

we show the emergence of a canonical typical state, of
which we give the explicit form. Geometrically, such a
reduced state describes a patch of the surface comprising
the volume dual to the intertwiner. The structure of
correlations described by the state should tell us how local
patches glue together to form a closed connected surface in
the quantum regime.
We find that, within the typicality regime, the canonical

state tends to an exponential of the total spin of the
subsystem with an interesting departure from the Gibbs
state. The exponential decay á la Gibbs of the reduced state
is perturbed by a parametric dependence on the norm of the
total angular momentum vector of the subsystem (closure
defect). Such a feature provides a signature of the nonlocal
correlations enforced by the global gauge symmetry con-
straint. This is our second result.
We study some interesting properties of the typical state

within two complementary regimes, N ≫ J0 ≫ 1 and
J0 ≥ N ≫ 1. In both cases, we find that the area law for
the entropy of a surface patch must be satisfied at the local
level, up to subleading logarithmic corrections due to the
unavoidable dependence of the state from the closure
defect. However, the area scaling interpretation of the
entropy in the two regimes is quite different. In the N ≫
J0 ≫ 1 regime, the result is related to the definition of a
generalized Gibbs equilibrium state. The area is playing the
role of the energy, as imposed by the specific choice of the
global constraint, requiring total area conservation.
On the other hand, in the J0 ≥ N ≫ 1 regime, the area

scaling is given by the extensivity of the entropy in the
number of links comprising the reduced state, as for the
case of the generalized [non-SUð2Þ-gauge-invariant] spin
networks [47]. In this regime, each link contributes
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independently to the result, indicating that the global
constraints are affecting very little the local structure of
correlations of the spin-network state. Still, interestingly,
the remainder of the presence of the constraints can be read
in the definition of what looks like an effective dimension
for the single link Hilbert space.
We interpret these results as the proof that, within the

typicality regime, there are certain (local) properties of
quantum geometry which are universal, namely, indepen-
dent of the specific form of the global pure spin-network
state and descending directly from the physical definition
of the system encoded in the choice of the global
constraints.
We would like to stress that our result is purely

kinematic, being a statistical analysis on the Hilbert space
of spin-network states. For the case of a simple intertwiner
state, such study necessarily requires one to consider a
system with a large number of edges, beyond the very large
dimensionality of the Hilbert space of the single constitu-
ents. In this sense, the presented statistical analysis and
thermal interpretation is very different from what was
recently done in Refs. [18–20], considering quantum
geometry states characterized by few constituents with a
high-dimensional Hilbert space. In fact, we expect a large
number statistical analysis to play a prominent role in
facing the problem of the continuum in quantum gravity.
Therefore, we think it is important to propose and develop
new technical tools which are able to deal with a large
numbers of elementary constituents and extract physically
interesting behaviors.
The kinematic nature of the statement of typicality

together with its general formulation in terms of con-
strained Hilbert spaces given in Ref. [27] provide an
important tool to study the possibility of a thermal
characterization of reduced states of quantum geometry,
regardless of any Hamiltonian evolution in time. Beyond
the simple case considered in the paper and in a more
general perspective, we expect typicality to be useful to
understand how large the effective Hilbert space of the
theory can be, given the complete set of constraints
defining it. It will also help in understanding which typical
features we should expect to characterize a state in such a
space. If we think of dynamics as a flow on the constrained
Hilbert space, we generally expect that, even if the initial
state is highly untypical after a certain “time” scale, we will
find the system in a state which is extremely close to the
typical state. This happens because, as it has been shown in
the original paper on typicality, the number of states close
to the typical state are the overwhelming majority.
Finally, it is interesting to look at the proposed “gener-

alized” thermal characterization of a local surface patch,
within the standard LQG description of the horizon, as a
closed surface made of patches of quantized area.
Differently from the isolated horizon analysis (see, e.g.,

Refs. [21,48,49]), in our description, the thermal character
of the local patch is not (semi)classically induced by the
thermal properties of a black hole horizon geometry but
emerges from a purely quantum description. In this sense,
our picture goes along with the informational theoretic
characterization of the horizon proposed in Ref. [50].
In fact, we think that typicality could be used to define an

information theoretic notion of the quantum horizon, as the
boundary of a generic region of the quantum space with an
emergent thermal behavior. We leave this for future work.
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APPENDIX: THE LEVY LEMMA

In order to better understand the result, it is useful to look
at its most important step, which is the so-called Levy
lemma. Take a hypersphere in d dimensions Sd, with
surface area V. Any function f of the point which does
not vary too much

f∶ Sd ∋ ϕ → fðϕÞ ∈ R j∇fj ≤ 1

will have the property that its value on a randomly chosen
point ϕ will approximately be close to the mean value,

Vol½ϕ ∈ Sd∶fðϕÞ − hfi ≥ ϵ�
Vol½ϕ ∈ Sd� ≤ 4Exp

�
−
dþ 1

9π3
ϵ2
�
;

where Vol½ϕ ∈ Sd∶ fðϕÞ − hfi ≥ ϵ� stands for “the vol-
ume of states ϕ such that fðϕÞ − hfi ≥ ϵ.” hfi is the
average of the function f over the whole Hilbert space, and
Vol½ϕ ∈ Sd� is the total volume of the Hilbert space.
Integrals over the Hilbert space are performed using the
unique unitarily invariant Haar measure.
The Levy lemma is essentially needed to conclude that

all but an exponentially small fraction of all states are quite
close to the canonical state. This is a very specific
manifestation of a general phenomenon called the concen-
tration of measure, which occurs in high-dimensional
statistical spaces [51].
The effect of such a result is that we can rethink about the

“a priori equal probability” principle as an “apparently
equal probability,” stating that as far as a small system is
concerned almost every state of the universe seems similar
to its average state, which is the maximally mixed
state ER ¼ 1

dR
IR.
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