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By applying loop quantum gravity techniques to 3D gravity with a positive cosmological constant Λ, we
show how the local gauge symmetry of the theory, encoded in the constraint algebra, acquires the quantum

group structure of soqð4Þ, with q ¼ exp ðiℏ ffiffiffiffi
Λ

p
=2κÞ. By means of an Inonu-Wigner contraction of the

quantum group bi-algebra, keeping κ finite, we obtain the kappa-Poincaré algebra of the flat quantum
spacetime symmetries.
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I. INTRODUCTION

What are the symmetries of flat quantum spacetime?
Given the fundamental role the Poincaré group—the group
of symmetries of the flat Minkowski spacetime—plays in
quantum field theory, answering this question is most likely
a prerequisite for understanding physics at the Planck scale
and beyond. It is widely believed that quantum gravity
changes dramatically the spacetime structure at small
distances, allowing for fluctuations of spacetime itself.
One could expect therefore that, as a result of the presence
of these quantum fluctuations, the symmetries of such
quantum spacetime, even in the flat limit, where spacetime
curvature is negligible, in some sense should differ from the
classical Poincaré symmetries. Over many years more and
more circumstantial evidence has accumulated indicating
that the symmetries of flat quantum spacetime should be
described by some kind of quantum deformation of the
Poincaré group, and that the infinitesimal generators of the
deformed group are to be described by a Hopf algebra,
which is a deformation of the Poincaré algebra.
One of the possible Hopf-deformed Poincaré algebras is

the so-called κ-Poincaré algebra, constructed 25 years ago
by Lukierski, Nowicki, Ruegg and Tolstoy in [1–3] and
brought into its final form in [4]. It turns out that the
construction of this algebra is highly nontrivial due to the
fact that the classical Poincaré algebra, which is a semi-
direct product of Lorentz algebra and a commuting algebra
of translations, is not simple and the standard Drinfeld-
Jimbo methods of constructing the deformed algebras do
not work here. Instead the authors of [1–3] took as their
starting point the deformed anti–de Sitter algebra (in four
spacetime dimensions) soqð3; 2Þ and then performed its
contraction, by going to the limit of vanishing cosmological

constant. As we will see below even taking such a
contraction limit is not completely straightforward.
The construction of κ-Poincaré algebra sparked a lot of

interest and many of its properties have been investigated
(in particular in the context of quantum gravity phenom-
enology, see [5] and references therein), but the most
fundamental question as to whether κ-Poincaré indeed has
anything to do with quantum spacetime symmetries has
never been answered in a satisfactory way. In this paper we
would like to do so in the context of a toy model of
quantum gravity in three spacetime dimensions.
Since the steps of our argument, which will be presented

in the following sections, are pretty technical, we will
present here an extensive overview of what we are going to
do. The reader is referred to the rest of this paper for more
detailed technical discussion.
The starting point of the next section is the algebra of

constraints of classical general relativity in three dimen-
sions. It consists of two generators of spatial diffeomor-
phism DiðxÞ and Hamiltonian constraint HðxÞ. One can
integrate these constraints on a spacelike surface with some
smearing functions,

D½f� ¼
Z

d2xfaðxÞDaðxÞ; H½g� ¼
Z

d2xgðxÞHðxÞ; ð1Þ

obtaining in this way an equivalent description of the
constraints. Their Poisson algebra is not a Lie algebra
however, because on the right-hand side of the brackets we
have to deal with a metric dependent structure function,
instead of structure constants. However, if we choose the
smearing functions NiðxÞ and MðxÞ to be linear in x, and
assume that the spacetime metric is the flat Minkowski one,
the algebra of constraints (1) becomes the Poincaré algebra.
This is easy to understand, because in this case the smeared
constraint becomes a natural generalization of the Poincaré
generators of translations, boosts and rotation. If, instead,
we make the smearing functions equal to the components of
the Killing vectors of (anti)-de Sitter space, and substitute
the corresponding (anti)-de Sitter space metric on the
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right-hand side, we obtain an algebra isomorphic to
soð3; 1Þ [or soð2; 2Þ] in the case of the positive (or
negative) cosmological constant.
In this paper, for technical reasons, we will work in

Euclidean spaces, but the results described above hold
here as well, and the algebra of smeared constraints with
appropriate smearing functions becomes isomorphic to
isoð3Þ for λ ¼ 0, soð4Þ for Λ > 0 and soð3; 1Þ (with
compact boosts) for Λ < 0.
The above concerned the metric formulation of 3D

gravity. In the Chern-Simons formulation of this theory
instead of the diffeomorphism and Hamiltonian constraints
we have to deal with six constraints corresponding to a
gauge symmetry group, which is1 ISOð3Þ in the case of
vanishing cosmological constant and SOð4Þ in the case of
positive Λ. The relation between these constraints and the
ones of the metric formulation is highly nontrivial in
general, but, as explained in Secs. II and III, these
two sets of constraints become essentially identical,
if we assume that the metric of spacetime is maximally
symmetric.
We conclude therefore that the algebra of gauge con-

straints is the algebra of spacetime symmetries in the case
of (Euclidean) flat or de Sitter spacetimes. The aim of this
paper is to employ this identification on the quantum level,
in order to find out what are the symmetries of quantum de
Sitter and flat Euclidean spaces.
The logic of this construction is depicted in Fig. 1. The

starting point is the set of gauge constraints of Euclidean
3D gravity with positive cosmological constant. We include
the cosmological constant from the very start because it
serves as a necessary infrared regulator for the quantization
procedure, rendering the gauge group manifold compact. In
Secs. II and III we also make use of the decomposition of
the algebra soð4Þ into the direct sum of two suð2Þ algebras,
decomposing the gauge generators appropriately. In this
way we obtain the two commuting algebras of gauge
generators, which we consider separately, for a while.
In Sec. IV we take the first step towards the central result

of our paper, the route from the classical algebra of soð4Þ
to its quantum counterpart soqð4Þ. To this end, we replace
the classical generators of the suð2Þ gauge algebra with the
corresponding quantum operators, using the loop quantum
gravity (LQG) techniques [6]. This construction relies on
earlier results [7,8]. Having defined the quantum con-
straints we turn to calculating their commutators. It turns
out that in general the algebra of commutators of con-
straints is anomalous, but the anomaly can be removed
when a natural condition is imposed (36). It is remarkable
that the primary reason for the emergence of the deformed
Hopf structure in the theory is anomaly cancellation.

The analysis of Sec. IV reveals not only the fact that
the algebra of quantum constraints is deformed (which
by itself is not very informative, because we can always
rescale the quantum constraints, so as to make the
algebra undeformed), but the form of the R-matrix,
which carries rescaling-independent information about
the Hopf algebra structure. We discuss this R-matrix in
detail in Sec. V.
In general knowing just the algebra and the R-matrix is

not sufficient to reconstruct the whole Hopf algebra
structure. In the case at hand this can be done, fortunately.
The reason is that in the case of slð2;CÞ [and of its real
forms such as suð2Þ] the complete classification of
possible deformations is known, and knowing the R-matrix
one can read-off the form of the coproduct and the
antipode.
In Sec. II we are starting with the classical symmetry

algebra soð4Þ which we decompose into two copies of
suð2Þ. After quantization each copy becomes a deformed
Hopf algebra suqð2Þ. As we show in Sec. VI these two
deformed groups can be combined into a Hopf algebra of
deformed soð4Þ. Having obtained the deformed symmetry
algebra for the case of the Euclidean de Sitter quantum
gravity in 3D, we now want to make the contraction Λ → 0,
so as to obtain a symmetry that replaces, according to what
was said above, the standard Poincaré symmetry in the case
of quantum spacetime. It turns out that taking the con-
traction limit is highly nontrivial and can be performed if
the deformation parameters q1, q2 of the two deformed
suqð2Þ algebras satisfy q1 ¼ q−12 [9]. (The divergencies are
not visible on the level of the algebra, but can be seen when
one wants to find the expression of coproducts in the
contraction limit; for this reason they were missed in [10].)
The so constructed symmetry algebra of flat quantum
spacetime in 3D turns out to be the κ-Poincaré algebra.
This is the main and final result of our paper, and it is
presented in Sec. VII.

FIG. 1. The logical steps of the paper.

1From now on we restrict ourselves to the case of the
Euclidean, positive (or zero) cosmological constant that we are
going to analyze in this paper.
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We comment on the possible physical implications of
our analysis in the presence of coupled point particles in
Sec. VIII. Conclusions are presented in Sec. IX.

II. CLASSICAL PHASE SPACE
AND CONSTRAINT ALGEBRA

We want to study the algebra of constraints of Euclidean
gravity on a three-dimensional manifold M with positive
cosmological constant Λ. The phase space of the theory is
parametrized by three-dimensional connection 1-form ω
and the suð2Þ-valued triad 1-form e. The action of the
theory is given by

S½e;ω� ¼ κ

Z
M

tr

�
e∧FðωÞ þ Λ

3
e∧e∧e

�
; ð2Þ

where FðωÞ is the connection curvature, the trace is
defined through an suð2Þ Killing form and κ ¼ ð4πGÞ−1
is the Planck mass. Upon a canonical decomposition of M
into a time direction and a Riemann surface Σ, namely
M ¼ Σ ×R, the canonical phase space is parametrized by
the pull back of ω on Σ, which we denote Ai

a ¼ 1=2ϵijkω
jk
a ,

and its conjugate momentum Eb
j ¼ κϵbcekcηjk. In our nota-

tion, a ¼ 1, 2 are space coordinate indices onΣ, i, j ¼ 1, 2, 3
label internal suð2Þ indices, which we raise and lower with
the Killing metric δij, and ϵab ¼ −ϵba with ϵ12 ¼ 1. The
canonical phase space variables satisfy the Poisson bracket

fAi
aðxÞ; Eb

j ðyÞg ¼ δbaδ
i
jδ

ð2Þðx; yÞ: ð3Þ
Thevariation of the actionwith respect to the variables eit and
ωij
t leads to two sets of smeared constraints,

G½α� ¼
Z
Σ
αiGi ¼

Z
Σ
αiDAEi ¼ 0; ð4Þ

CΛ½N� ¼
Z
Σ
NiCi

Λ ¼
Z
Σ
Ni

�
κFiðAÞ þ Λ

2κ
ϵijkEj∧Ek

�
¼ 0;

ð5Þ
where α, N are arbitrary suð2Þ-valued test functions,
independent of the connection and momentum variables.
The constraint (4) is called the Gauss constraint and it
implements the local SUð2Þ gauge invariance of the theory;
the second constraint (5) is called the curvature constraint and
it encodes the information that the connection is no longer flat
(as it was in the Λ ¼ 0 case) and it also generates gauge
symmetries.
The classical constraint algebra of the theory reads

fCΛ½N�; CΛ½M�g ¼ ΛG½½N;M��;
fCΛ½N�; G½α�g ¼ CΛ½½N;α��;
fG½α�; G½β�g ¼ G½½α; β��; ð6Þ

where ½a; b�i ¼ ϵijka
jbk is the commutator of suð2Þ.

In order to use the techniques and results of [7,8], we
define a new noncommutative connection

A�i
a ¼ Ai

a �
ffiffiffiffi
Λ

p
eia ¼ Ai

a �
ffiffiffiffi
Λ

p

κ
ϵbaEb

i ; ð7Þ

such that the Gauss and curvature constraints can be
expressed as

CΛ½N� ¼ 1

2
ðHþ½N� þH−½N�Þ; ð8Þ

G½N� ¼ 1

2
ffiffiffiffi
Λ

p ðHþ½N� −H−½N�Þ; ð9Þ

where

H�½N�≡ κ

Z
Σ
NiFiðA�Þ ð10Þ

is the curvature constraint for the noncommutative con-
nection AΛ.
Therefore, the set of constraints (10) is equivalent to the

constraints (4) and (5), and their algebra is

fH�½N�; H�½M�g ¼ �2
ffiffiffiffi
Λ

p
H�½½N;M��

fHþ½N�; H−½M�g ¼ 0; ð11Þ
corresponding to two copies of suð2Þ, i.e. the constraints of
the theory generate a local suð2Þ ⊕ suð2Þ symmetry.

III. CONSTRAINTS AND SYMMETRIES OF
MAXIMALLY SYMMETRIC SPACETIMES

Wewant to show now the relation between the structures
introduced in the previous section and the diffeomorphism
constraints, and how, for a maximally symmetric space-
time, these reproduce the algebra of relativistic symmetries.
The diffeomorphism constraints, generating the trans-

formation xμ → xμ þ ξμ, can be expressed as a linear
combination of the Gauss and curvature constraints by
means of smearing functions depending on phase space
variables:

D½ξ� ¼ CΛ½ξμeiμ� þ G½ξμAi
μ�: ð12Þ

This is proved in the Appendix, where we derive the
Poisson brackets action of the diffeomorphism constraints
on the phase space variables and show that it is the Lie
derivative along the vector field ξμ. Substituting the
relations (7) into (12), the diffeomorphism constraints
can be expressed in terms of the H� constraints (10) as

D½ξ� ¼ 1

2
ffiffiffiffi
Λ

p ðHþ½ξμAþ
μ � −H−½ξμA−

μ �Þ; ð13Þ

where it is important to notice that the smearing functions
depend in general on the phase space variables.
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We restrict now to the case of a maximally symmetric
spacetime, and in particular we consider the case of an
empty homogeneous and isotropic universe with positive
cosmological constant Λ in 2þ 1 dimensions and
Euclidean signature, which we call “Euclidean de Sitter”
and whose manifold can be described by the 3-sphere S3

with (constant) radius 1=
ffiffiffiffi
Λ

p
, invariant under SO(4) sym-

metries. Being a maximally symmetric spacetime, it admits
six Killing vectors, forming the soð4Þ algebra. In order to
make contact with relativistic symmetries, we express the
soð4Þ Killing vectors as generators of time translations,
space translations, boosts and rotations for the Euclidean
ð2þ 1ÞD case, which we call respectively ξðEÞ, ξðPaÞ, ξðNaÞ
and ξðMÞ. Here we denote ξðXÞ the Killing vector labeled
by X. These vectors satisfy the commutation relations

½ξðEÞ; ξðPaÞ� ¼ ΛξðNaÞ; ½ξðP1Þ; ξðP2Þ� ¼ ΛξðMÞ;

½ξðNaÞ; ξðEÞ� ¼ ξðPaÞ; ½ξðNaÞ; ξðPbÞ� ¼ −δabξðEÞ;

½ξðN1Þ; ξðN2Þ� ¼ ξðMÞ; ½ξðMÞ; ξðNaÞ� ¼ ϵabξðNbÞ;

½ξðMÞ; ξðPaÞ� ¼ ϵabξðPbÞ; ½ξðMÞ; ξðEÞ� ¼ 0; ð14Þ

where for ξðIÞ ¼ ξμðIÞ∂μ, and ½ξðIÞ; ξðJÞ� ¼ ξμðIÞ∂μξðJÞ−
ξμðJÞ∂μξðIÞ.
We now notice that the symmetries of the spacetime

manifold can be conveniently described in terms of left and
right invariant vector fields of the SUð2Þ group [11], Li and
Ri, respectively. In fact, the Killing vectors (14), which
are elements of the soð4Þ algebra, can be arranged as
two commuting sets of suð2Þ Killing vectors ξþðiÞ and ξ−ðiÞ
through the relations

ξðEÞ ¼ −
ffiffiffiffi
Λ

p

2
ðξþð3Þ þ ξ−ð3ÞÞ; ξðPaÞ ¼ −

ffiffiffiffi
Λ

p

2
ϵabðξþðbÞ − ξ−ðbÞÞ;

ξðMÞ ¼
1

2
ðξþð3Þ − ξ−ð3ÞÞ; ξðNaÞ ¼ −

1

2
ðξþðaÞ þ ξ−ðaÞÞ; ð15Þ

from which it follows that ξ�ðiÞ satisfy two copies of the

suð2Þ algebra (in the “chiral” basis)

½ξ�ðiÞ; ξ�ðjÞ� ¼ �2ϵij
kξ�ðkÞ; ½ξþðiÞ; ξ−ðjÞ� ¼ 0 ð16Þ

so that ξþðiÞ ≡ LðiÞ and ξ−ðiÞ ≡ RðiÞ. This enables one to

choose as triads (modulo a factor 1=
ffiffiffiffi
Λ

p
) the inverse

cotriads Xi, Yi corresponding to LðiÞ and RðiÞ, respectively.
For instance, in the former case, one has

ei ¼ 1ffiffiffiffi
Λ

p Xi Xi
μL

μ
ðjÞ ¼ δij; ð17Þ

such that spin connections are given by

ωij ¼ ϵijkXk; ð18Þ

and A−i ¼ 0, Aþi ¼ 2Xi. Hence, one finds

D½ξþi � ¼ D½LðiÞ� ¼
1ffiffiffiffi
Λ

p Hþ½Lμ
ðiÞXμ� ¼

1ffiffiffiffi
Λ

p Hþ½δðiÞ� ð19Þ

with δjðiÞ ¼ δji . Similarly, by choosing ei ¼ Yi=
ffiffiffiffi
Λ

p
, with

Yi
μR

μ
ðiÞ ¼ δij, one gets ωij ¼ − 1

2
ϵijkYi, from which

Aþi ¼ 0, A−i ¼ −2Yi and

D½ξ−i � ¼ D½RðiÞ� ¼
1ffiffiffiffi
Λ

p H−½δðiÞ�: ð20Þ

This shows that when restricting to S3, the diffeomor-
phism constraints can be expressed in terms of smearing
functions that do not depend on the phase variables, and in
particular they split into two sets of constraints correspond-
ing to the two copies of constraints (10). Therefore, in order
to study symmetries of (Euclidean) de Sitter spacetime it is
enough to consider the algebra (11), in which the smearing
functions are proportional to δ’s. Let us see this in more
detail.
Let

Li ¼D½ξþ� ¼Hþ½δðiÞ�=
ffiffiffiffi
Λ

p
; Ri ¼D½ξ−� ¼H−½δðiÞ�=

ffiffiffiffi
Λ

p

ð21Þ

be the generators associated to the Killing vectors ξ�i .
Using Eq. (11) we find

½Li;Lj� ¼ ½D½ξþi �; D½ξþj �� ¼
1

Λ
½Hþ½δðiÞ�; Hþ½δðjÞ��

¼ 2ffiffiffiffi
Λ

p Hþ½½δðiÞ; δðiÞ�� ¼ ϵij
k 2ffiffiffiffi

Λ
p Hþ½δðkÞ� ¼ 2ϵkijLk:

ð22Þ

Similarly, using again (11), we find that Li and Ri form
two copies of suð2Þ

½Li;Lj� ¼ 2ϵij
kLk; ½Ri;Rj� ¼ −2ϵijkRk; ½Li;Rj� ¼ 0;

ð23Þ

i.e. Li and Ri are left and right generators of suð2Þ in the
chiral basis.
We define now the generators associated to the Killing

vectors (14) as

E¼D½ξðEÞ�; Pa¼D½ξðPaÞ�; Na¼D½ξðNaÞ�; M¼D½ξðMÞ�:
ð24Þ

From the definitions (21) and the maps (15) it follows for
instance that
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E ¼
ffiffiffiffi
Λ

p

2
D½ξþð3Þ þ ξ−ð3Þ� ¼

ffiffiffiffi
Λ

p

2
ðD½ξþð3Þ� þD½ξ−ð3Þ�Þ

¼
ffiffiffiffi
Λ

p

2
ðL3 þR3Þ: ð25Þ

Then, using (21), (15), and (23), we obtain the algebra

½E;Pa� ¼ΛNa; ½P1;P2� ¼ΛM

½Na;E� ¼Pa; ½Na;Pb� ¼−δabE; ½N1;N2� ¼M;

½M;Na� ¼ ϵabNb; ½M;Pa� ¼ ϵabPb; ½M;E� ¼ 0: ð26Þ

This algebra is isomorphic to the algebra of the associated
Killing vectors (14), showing the consistency of our
approach, and moreover one notices that this is nothing
but the soð4Þ algebra expressed in terms of translation,
boost and rotation generators for the “Euclidean” de Sitter
spacetime (see for instance [12]), as can be easily shown
by identifying E ¼ ffiffiffiffi

Λ
p

M03, Pa ¼
ffiffiffiffi
Λ

p
Ma3, Na ¼ M0a,

M ¼ M12, where

½MAB;MCD� ¼ δe½Aδ
f
½BηC�D�Mef

¼ ηACMBD þ ηBDMAC

− ηADMBC − ηBCMAD; ð27Þ

and η ¼ diagðþ þ þþÞ, with A ¼ 0, 1, 2, 3.
It is worth noting that the ð2þ 1ÞD de Sitter algebra

(with Lorentzian signature) can be obtained by a Wick
rotation for boosts and time translation: E → −iE,
Na → −iNa.

IV. QUANTUM PHASE SPACE
AND CONSTRAINT ALGEBRA

In order to quantize the theory presented in the previous
section, we are going to use the LQG formalism. In three
dimensions, the Riemannian theory with vanishing cos-
mological constant can be quantized using LQG techniques
both in the covariant and canonical formalisms and the two
quantizations have been shown to be equivalent [13] (see
also [14] for a review of this topic). In the case of Λ ≠ 0 the
canonical quantization has been implemented in [7,8], and
it was shown to reproduce the physical transition ampli-
tudes of the Turaev-Viro state sum [15], which provides a
covariant quantization of the theory (see also [16,17] for
alternative approaches to the LQG quantization). Here we
want to study the off-shell algebra of the constraints, which
is the new result of this section. Let us start by briefly
reviewing the main ingredients of the LQG quantization
(see [6] for more details).
The auxiliary kinematical Hilbert space Hkin of the

theory is constructed by replacing functionals of the
connection variable with cylindrical functionals of holon-
omies along paths γ ⊂ Σ, which are called generalized

connections. Holonomies are given by a path ordered
exponential of A, namely

hγ½A� ¼ P exp
Z
γ
A; ð28Þ

and they represent quantum, polymerlike excitation of the
gravitational field. A particular example of gauge-invariant
cylindrical functionals of holonomies are represented by
spin networks. Given a finite graph Γ ⊂ Σ, whose links and
nodes we indicate respectively l, n, we assign to each link
with a spin jl labeling an SUð2Þ irreducible representation
and to each node an invariant tensor ιn, called an inter-
twiner, in the tensor product of SUð2Þ irreducible repre-
sentations labeling the edges attached to the node. The
corresponding spin network functional is defined

Ψγ;fιngfjlg½A� ¼ ⊗
n⊂Γ

ιn ⊗
l⊂n

Π
jlðhl½A�Þ; ð29Þ

where we have omitted the indices of the representation
matrices,Π’s, and of the intertwiners to lighten the notation.
Notice that the assignment of an SUð2Þ irreducible repre-
sentation to each link implies that there is a certain vector
space associated to each link, namely the representation
vector space; for a given spin-j representation, the asso-
ciated vector space is the tensor product of 2j copies of C2,
where C2 is the representation vector space of the funda-
mental representation spin-1=2. By introducing the
Ashtekar-Lewandowski measure [18] [constructed in terms
of the SUð2Þ Haar measure] in the space of generalized
connections in order to define a notion of kinematical inner
product, it can be shown that spin network functions define
a complete orthogonal basis of Hkin.
In order to define a representation of the action of the

Gauss and curvature constraints on Hkin, we start with the
action of quantum holonomies and fluxes.
The generalized connection is represented as a self-

adjoint quantum holonomy operator in the kinematical
Hilbert space that acts by multiplication

ĥγ½A�Ψ½A� ¼ hγ½A�Ψ½A�: ð30Þ

The operator associated to the momentum E in Hkin is
defined by smearing the 1-form Ea

i ϵab along the one-
dimensional path ηaðtÞ ⊂ Σ, namely

EðηÞ≡
Z

Ea
i τ

iϵab
dηa

dt
¼

Z
Ea
i τ

inadt; ð31Þ

where we have defined na ≡ ϵab
dηa

dt the normal to the path.
Therefore, EðηÞ represents the flux of the E field across one-
dimensional line η. By replacing Ea

i with the functional
derivative with respect to Ai

a, the action of the associated
quantum operator on a spin network link γ can be defined as
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ÊðηÞΨγ½A� ¼
1

2
ℏ

�
oðpÞτiΨγ½A� if γ ends at η

oðpÞΨγ½A�τi if γ starts at η;
ð32Þ

where oðpÞ ¼ �1 is the orientation of the intersection
p ∈ Σ between the two oriented curves ðη; γÞ.
Due to the smeared nature of the quantum phase space

variables, in order to write the quantum version of the
constraints (4) and (8), we need first to introduce a regulator
consisting of an arbitrary finite cellular decomposition ΔΣ
of Σ—with plaquettes p ∈ ΔΣ of coordinate area smaller or
equal to ϵ2. The constraints can then be written as

H�½N� ¼ lim
ϵ→0

X
p∈ΔΣ

tr½NpWpðA�Þ� ¼ 0; ð33Þ

where WpðA�Þ is the holonomy of the connection A�

around the given plaquette p.

The quantization of the holonomy of the noncommuta-
tive connection as an operator acting on the kinematical
Hilbert space of LQG has been performed in [7]. In that
analysis, one considers two holonomies, hη, hγ , of the
noncommutative connection on intersecting paths η, γ
acting on the vacuum. The action of the first holonomy
is the same as for the case of the commutative holonomy
(30) and it simply creates a spin network state associated to
the path defining the holonomy. The second noncommu-
tative holonomy then acts nontrivially on this state. One can
expand it in powers of

ffiffiffiffi
Λ

p
and look at this action order by

order. In this expansion, the presence of powers of flux
operators all acting at the same point introduces ordering
ambiguities. Relying on the use of the Duflo map to solve
these ambiguities, it was shown that the series expansion
converges and the action can be expressed in terms of the
Kauffman bracket [19] crossing identities, namely

ð34Þ

ð35Þ

In this case, the over-crossing and under-crossing notation
is used to distinguish between the two connections Aþ and
A−. The skein relations associated to the two connections
are simply related by the switch of deformation parameters
A → A−1 (this relation will play a crucial role when
performing the contraction of the coproduct sector).
Using this result, the algebra of the quantum constraint

Ĥþ½N� with itself (it is immediate to see that the same result
applies also to Ĥ−½N�) on a gauge invariant state has been
computed in [8], by means of techniques developed in
[20,21]. It was found that the algebra is anomaly-free if and
only if the following condition holds:

ð36Þ

where A ¼ eiℏ
ffiffiffi
Λ

p
=4κ and Wp is the holonomy of the

commutative connection Ai around p. With this condition,
corresponding to the second (quantum dimension)
Kauffman bracket, the off-shell algebra of the generators
Ĥ�½N� can be computed by acting on a simple not gauge-
invariant state living on the dual cellular decompositionΔΣ�

formed by plaquettes p�s dual to the ps. More precisely,
given a plaquette p on which the constraints are defined, we
consider the state schematically depicted

ð37Þ

and formed by two open links of spin-1=2 obtained by
removing a bivalent intertwiner from a single link living in
ΔΣ� . Generalization to more open links and/or higher spin
is a lengthy but straightforward calculation that does not
affect the form of the algebra.
It is immediate to see that commutators between

generators defined on different plaquettes commute,
hence we can restrict to the case of Ĥ�½Np� at the same
plaquette, when studying the algebra. By repeated appli-
cations of the skein relations (34), (35), and (36), a lengthy
but straightforward calculation yields [upon removal of
the anomalous terms by means of (36)] the off-shell
algebra

½Ĥ�½Np�;Ĥ�½Mp��jΨi¼�
ffiffiffiffi
Λ

p
ðA2þA−2ÞĤ�½½Np;Mp��jΨi;

ð38Þ
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½Ĥ�½Np�; Ĥ∓½Mp��jΨi ¼ 0: ð39Þ

In the (naive) classical limit ℏ → 0 with Λ and κ kept
finite, A2 þ A−2 → 2, the algebra gives back the first
Poisson brackets in (11).
Therefore, we see from (38) that at the quantum level the

algebra of constraints is deformed. We know already from
the q-deformed skein relations (34), (35), and (36) that
the new symmetry replacing the classical SUð2Þ one, is
described by the quantum group (deformed Hopf algebra)
which we denote by2 suqð2Þ ¼ Uqðsuð2ÞÞ. This is a well-
known fact, but to clarify the investigation of deformed
spacetime symmetry arising from the discrete structures
underlying the loop quantization, it is important to make
this point clear. In order to do that, the algebra itself is not
very relevant, since one can always rescale the constraint
operators so as to formally remove the deformation. The
relevant structure to look at is the R-matrix structure behind
the crossing properties of two noncommutative holonomies
defining the constraints. By explicitly showing that the q-
deformed crossing identity (34) and (35) can be represented
in terms of the suqð2Þ R-matrix, we can unravel the
quantum group symmetry encoded in the constraint algebra
of 2þ 1 LQG with a positive cosmological constant.
We do this in the next section.

V. THE R-MATRIX

As the constraint algebra encodes the isometries of
spacetime and the constraints are expressed in terms of
noncommutative holonomies, the crossing properties of
such noncommutative holonomies are expected to encode
the information about the R-matrix of the quasitriangular
bialgebra governing the symmetries of quantum spacetime,
and eventually the braiding properties of point particles
coupled to this quantum background geometry (see
Sect. VIII below for a discussion on this). In this section
we are going to unravel such a connection. Namely, we
want to study the R-matrix associated to the crossing of two
noncommutative holonomies which are part of the loop
operators corresponding to the generators Ĥþ½Np�.
Let us concentrate on the constraint Ĥþ, a completely

similar derivation follows for H−. We have seen that

noncommutative holonomy operators satisfy (34), which
also implies

ð40Þ

in order for the algebra of the constraints to close.
Let us consider two holonomies of the noncommutative

connection (7) on crossing loops like in the figure below
(corresponding to the Hopf link):

We see that each crossing is followed by two nonoverlap-
ping parts. When acting on the vacuum, these straight
(in the figure) parts of the holonomies act like standard
commutative holonomy operators, thus creating two single
link states in the fundamental representation 1=2. We can
then interpret each crossing of the two holonomies as
operators acting on these two states. Since each link-1=2
carries a representation vector space V ¼ C2, we can derive
the form of the R-matrix associated to the generators
Ĥþ½Np� by studying the action of the crossing operators
on the tensor product vector space V ⊗ V. We can then
interpret the diagrammatic relations (34) and (40) above as
relations between operators:

ð41Þ

Given an orthonormal basis of V ¼ C2 formed by the
vectors v1, v2, we want to define the action of the cup and

2It is common use in the literature to describe the resulting
quantum group in terms of a generic real form Uqðslð2;CÞRÞ.
The choice of real form is determined by the reality conditions on
the algebra (i.e. the choice of the �-structure), giving rise
to three different possibilities: Uqðsuð2ÞÞ, Uqðsuð1; 1ÞÞ and
Uqðslð2;RÞÞ (see for instance [22]). In our case the Hermiticity
of the symmetry generators is defined, corresponding to the one
of suð2Þ [as may be obvious since we start our analysis from
SUð2Þ symmetries], so that we can specify from the beginning
which real form characterizes our deformation. We will come
back to this point at the end of Sec. VI, where we will discuss the
reality conditions of our deformed symmetry algebra.
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cap operators, respectively and , on such basis
which is compatible with the relations (34) and such that
the bracket (40) as well as the identity

ð42Þ

are satisfied. This happens for the following actions of the
cup and cap operators:

ð43Þ

ð44Þ

Let us first check the skein relation (40) by applying the cap
and cup operators in succession:

1 → −Av1 ⊗ v2 þ A−1v2 ⊗ v1

→ −AðAÞ þ A−1ð−A−1Þ ¼ −ðA2 þ A−2Þ:

We now verify the lhs of (42) (the rhs follows in
a similar way); the graphical notation has to be understood
as we start with v1;2 · 1, apply the cap to 1 and end
up with v1;2 ⊗ α ⊗ β with α, β ∈ V and finally apply
the cup to the v1;2 ⊗ α part to end up with a vector in V,
namely

Therefore, the actions (43) and (44) fulfill the desired properties. Let us now compute the action of the crossing operators
(34) on the basis of the tensor product vector space V ⊗ V. This is where the suqð2Þ algebra structure becomes clear. We
concentrate on the crossing and use the rhs of the second skein relation in (34), together with the actions (43) and (44) to
see what the crossing does to the basis vectors. We have

ð45Þ

We now want to show that the action above of the crossing
operator corresponds exactly to the action of the suqð2Þ R-
matrix in the spin-1=2 (2-dim) representation on C2 ⊗ C2.
Let us first recall a few facts about suqð2Þ (see for instance
[22] or [23]).
Let q ¼ eh and let suqð2Þ be the algebra generated by

Xþ; X−; ehH with relations

XþX− − X−Xþ ¼ e2hH − e−2hH

q − q−1
;

ehHXþ ¼ qXþehH; ehHX− ¼ q−1X−ehH; ð46Þ

i.e. the q-deformation of the suð2Þ algebra in Cartan-Weyl
basis. We then obtain a bialgebra given by the coproducts
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ΔXþ ¼ Xþ ⊗ ehH þ e−hH ⊗ Xþ;

ΔX− ¼ X− ⊗ ehH þ e−hH ⊗ X−; ΔehH ¼ ehH ⊗ ehH;

ð47Þ

antipodes

SðHÞ ¼ −H; SðX�Þ ¼ −e�hX�; ð48Þ
and counits

eðXþÞ ¼ eðX−Þ ¼ 0; eðehHÞ ¼ 1: ð49Þ
This gives a quasitriangular bialgebra with R ∈ suqð2Þ ⊗
suqð2Þ given by

R ¼
X∞
n¼0

q
n
2
ðnþ1Þð1 − q−2Þn

½n�q!
e2hðH⊗HÞXnþ ⊗ Xn

−; ð50Þ

where

½n�q ¼
qn − q−n

q − q−1
: ð51Þ

The two-dimensional representation ρ of suqð2Þ, in which
Xþ, X−, H act as linear transformations on C2, is given by

ρðXþÞ¼
�
0 1

0 0

�
; ρðX−Þ ¼

�
0 0

1 0

�
; ρðHÞ ¼

� 1
2

0

0 − 1
2

�
;

ð52Þ

and

ρðehHÞ ¼
�
e
h
2 0

0 e−
h
2

�
: ð53Þ

Notice that, in this fundamental representation, the algebra
(46) reduces to the standard (nondeformed) suð2Þ algebra;
this, again, signals that the algebra itself is not very
indicative of the symmetry deformation.
The action of the R-matrix (50) on V ⊗ V provides a

representation of the noncommutative holonomies braiding
(34). More precisely, the crossing of two noncommutative
holonomies can be represented as the action of the R-matrix
on the tensor product vector space of two copies of V,
followed by the switch of the two vector spaces.
Diagrammatically we have

ð54Þ

Let us show this explicitly by computing the action of ρðRÞ
on a basis of V ⊗ V expressed in terms of the v1, v2 basis
of V ¼ C2 and compare it with (45). In general, if we
express R ¼ P

i;jR
ijGi ⊗ Gj, with Gi any basis for

suqð2Þ, its action on a given vector v ⊗ v0 ∈ V ⊗ V 0 is
given by

ρðRÞðv ⊗ v0Þ ¼
X
ij

RijSðρðGiÞv ⊗ ρðGjÞv0Þ

¼
X
ij

RijρðGjÞv0 ⊗ ρðGiÞv ∈ V 0 ⊗ V;

ð55Þ
where S is the “switch” operator. Therefore, the action of
the two-dimensional representation of the R-matrix (50)
on C2 ⊗ C2 in terms of a basis v1, v2 ∈ C2 with
ρðXþÞv1 ¼ ρðX−Þv2 ¼ 0, ρðEÞv2 ¼ v1, ρðX−Þv1 ¼ v2,
ρðHÞv1 ¼ 1=2v1, ρðHÞv2 ¼ −1=2v2 is given by [notice
that only the terms up to n ¼ 1 in (50) contribute in the
2-dim representation]

ρðRÞðv1 ⊗ v1Þ¼ Sðρðe2hðH⊗HÞÞv1 ⊗ v1Þ¼ e
h
2v1⊗ v1;

ρðRÞðv1 ⊗ v2Þ¼ Sðρðe2hðH⊗HÞÞv1 ⊗ v2Þ¼ e−
h
2v2⊗ v1;

ρðRÞðv2 ⊗ v1Þ¼ Sðρðe2hðH⊗HÞÞv2 ⊗ v1

þðeh−e−hÞρðe2hðH⊗HÞXþ ⊗X−Þv2⊗ v1Þ
¼ e−

h
2v1⊗ v2þðeh−e−hÞe−h

2v1⊗ v2;

ρðRÞðv2 ⊗ v2Þ¼ Sðρðe2hðH⊗HÞÞv2 ⊗ v2Þ¼ e
h
2v2⊗ v2:

ð56Þ

We see that, for

A ¼ e
h
2; h ¼ iℏ

ffiffiffiffi
Λ

p

2κ
; ð57Þ

the actions (45) and (56) coincide. Therefore, the crossing
(34) of two noncommutative holonomies, in terms of which
the curvature constraint is written, can be represented in
terms of the generators Xþ, X−, ehH of the quasitriangular
bialgebra suqð2Þ through its R-matrix.
Let us summarize: we found that the R-matrix associated

to the crossing of two operators corresponding to the
generators Ĥþ½Np� is the R-matrix of the Hopf algebra

suqð2Þ with q ¼ expðiℏ ffiffiffiffi
Λ

p
=2κÞ. By the same argument,

the R-matrix associated to the crossing of two operators
corresponding to the generators Ĥ−½Np� is the R-matrix of

the Hopf algebra suq0 ð2Þ with q0 ¼ expð−iℏ ffiffiffiffi
Λ

p
=2κÞ, see

(34) and (35). The fact that the deformation parameters of
these two sectors are inverse to each other is remarkable
and, as we will see below, crucial for the existence of the
nonsingular Λ → 0 limit (see [9]). As illustrated above, this
relation between the deformation parameters of the two
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sectors follows from recasting the constraint operators as
functionals of the noncommutative connections Aþ and A−,
i.e. it is enforced directly by the structure of the isometry
group of the classical spacetime and the application of
quantization techniques of the LQG formalism.
Recalling [see Eq. (21)] that the left chiral suð2Þ

generators Li correspond to Hþ½δi�=
ffiffiffiffi
Λ

p
, while the right

chiral suð2Þ generators Ri correspond to H−½δi�=
ffiffiffiffi
Λ

p
, in

the following we will denote by HL, XLþ, XL
− the suL

q ð2Þ
generators associated to the quantization ofHþ, and byHR,
XRþ, XR

− the suR
q ð2Þ generators associated to the quantiza-

tion of H−. The (complex) deformation parameters of the
left and right copies are related by

qL ¼ q−1R ¼ q ¼ expðiℏ
ffiffiffiffi
Λ

p
=2κÞ: ð58Þ

VI. FROM suqð2Þ ⊕ suq−1ð2Þ TO soqð4Þ
We have explicitly shown how the introduction of a

regulator, in the form of a discrete structure, required by the
LQG quantization scheme, leads to a quantum deformation
of the local suð2Þ ⊕ suð2Þ symmetry generated by the
classical constraint algebra (6). At the quantum level, the
local isometry becomes3 suqð2Þ ⊕ suq−1ð2Þ, where we
have taken into account Eq. (58). At the same time we have
shown in Sec. III how the diffeomorphism constraints
generating the isometries of S3, closing the Lie algebra
soqð4Þ, are related to the curvature constraints H�½δðiÞ�
generating the local suð2Þ ⊕ suð2Þ symmetry.
Starting now from suqð2Þ ⊕ suq−1ð2Þ, we can reverse

the procedure in order to find the deformed algebra of the
symmetry generators of soqð4Þ. In this way we will obtain
the (Hopf) algebra describing the relativistic symmetries of
the deformed de Sitter spacetime with Euclidean signature.
From now on we will set ℏ ¼ 1.
Recall first that the maps (15) define the relations

between the soð4Þ generators (26) and the chiral suð2Þ ⊕
suð2Þ ones (23) to be

E ¼ −
ffiffiffiffi
Λ

p

2
ðL3 þR3Þ; Pa ¼ −

ffiffiffiffi
Λ

p

2
ϵabðLb −RbÞ;

M ¼ 1

2
ðL3 −R3Þ; Na ¼ −

1

2
ðLa þRaÞ; ð59Þ

where remember that Li ¼ Hþ½δi�=
ffiffiffiffi
Λ

p
and

Ri ¼ H−½δi�=
ffiffiffiffi
Λ

p
. In order to recover soqð4Þ from

suqð2Þ ⊕ suq−1ð2Þ, we first need the relation between
the left and right chiral generators Li, Ri, and the Cartan-
Weyl generatorsHL, XL

� andHR, XR
� characterizing the two

copies of suL
q ð2Þ and suR

q ð2Þ, each one described by

Eqs. (46), (47), and (48). This map is given, for each of
the two copies, by

HL ¼ i
2
L3; XL

� ¼ i
2
ðL1 � iL2Þ;

HR ¼ −i
2
R3; XR

� ¼ −i
2
ðR1 � iR2Þ; ð60Þ

and is such that, if Li and Ri close the classical algebra
(23), then HL, XL

� and HR, XR
� close two copies of the

suð2Þ algebra4 in the Cartan-Weyl basis

½Hi;Hj� ¼ 0; ½Hi; Xj
�� ¼ �δijX

j
�;

½Xiþ; Xj
−� ¼ 2δijHj; i; j ¼ L;R: ð61Þ

Composing (59) with (60) we finally obtain the relations
between the soð4Þ generators (26) and the suð2Þ generators
in Cartan-Weyl basis (61):

E ¼ i
ffiffiffiffi
Λ

p
ðHL −HRÞ; M ¼ −iðHL þHRÞ;

P1 ¼
ffiffiffiffi
Λ

p

2
ðXLþ − XL

− þ XRþ − XR
−Þ;

P2 ¼ −
i

ffiffiffiffi
Λ

p

2
ðXLþ þ XL

− þ XRþ þ XR
−Þ;

N1 ¼
i
2
ðXLþ þ XL

− − XRþ − XR
−Þ;

N2 ¼ −
1

2
ð−XLþ þ XL

− þ XRþ − XR
−Þ: ð62Þ

We can now turn to the deformed case. In the quantum
theory, we have seen that the local isometry is codified
by two copies suL

q ð2Þ and suR
q ð2Þ, each one being the

quantum deformation of (61). For each copy, the algebra is
given by Eq. (46), which we rewrite as

½Hi;Hj� ¼ 0; ½Hi;Xj
��¼�δijX

j
�;

½Xiþ;Xj
−� ¼ δij

sinhð2hiHiÞ
sinhðhiÞ ;

i;j¼L;R: ð63Þ

The coalgebra sector is given by Eq. (47):

ΔHi ¼ Hi ⊗ 1þ 1 ⊗ Hi;

ΔXi
� ¼ Xi

� ⊗ ehiH
i þ e−hiH

i ⊗ Xi
�;

i; j ¼ L; R; ð64Þ

and the antipodes by Eq. (48),

SðHiÞ ¼ −Hi; SðXi
�Þ ¼ −e�hiXi

�; i; j ¼ L; R: ð65Þ

Notice that, in our case [see Eq. (58)],

hL ¼ −hR ¼ h ¼ iz; z ¼
ffiffiffiffi
Λ

p
=2κ; ð66Þ

3Notice that the deformation parameter is complex, with
jqj ¼ 1, so that q−1 ¼ q�, and we could also write the algebra
as suqð2Þ ⊕ suq� ð2Þ.

4Where in that case the coproducts are primitive
ΔX ¼ X ⊗ 1þ 1 ⊗ X, as customary for a standard Lie algebra.
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(i.e. qL ¼ q−1R ¼ eh), with h given in (57). The opposite
sign of hL and hR will play a crucial role in the discussion,
presented in the next section, of the Λ → 0 contraction limit
of the deformed algebra.
We will use now the maps (62) together with relations

(63), (64), and (65) to obtain the deformed algebra soqð4Þ
as soqð4Þ≃suqLð2Þ⊕suqRð2Þ¼suqð2Þ⊕suq−1ð2Þ. Using
(62) with (63), the algebraic part of soqð4Þ is then
½E; Pa� ¼ ΛNa; ½Na; E� ¼ Pa;

½P1; P2� ¼ Λ
sinh ðzMÞ
sinðzÞ cosh ðzE=

ffiffiffiffi
Λ

p
Þ;

½Na; Pb� ¼ −δab
ffiffiffiffi
Λ

p sinh ðzE= ffiffiffiffi
Λ

p Þ
sinðzÞ cosh ðzMÞ;

½N1; N2� ¼
sinh ðzMÞ
sinðzÞ cosh ðzE=

ffiffiffiffi
Λ

p
Þ;

½M;Na� ¼ ϵbaNb; ½M;Pa� ¼ ϵbaPb; ½M;E� ¼ 0: ð67Þ

Notice that the algebraic part does not depend on the
relative sign of hL and hR (we would have obtained the
same commutators choosing hL ¼ hR ¼ h). This is not true
for the coalgebraic part of soqð4Þ. Using (62), (64), and
(65), we find

ΔE ¼ E ⊗ 1þ 1 ⊗ E; ΔM ¼ M ⊗ 1þ 1 ⊗ M;

ΔPa ¼ Pa ⊗ e
1
2
zE=

ffiffiffi
Λ

p
cosh

�
1

2
zM

�

þ e−
1
2
zE=

ffiffiffi
Λ

p
cosh

�
1

2
zM

�
⊗ Pa

þ ϵab

� ffiffiffiffi
Λ

p
Nb ⊗ e

1
2
zE=

ffiffiffi
Λ

p
sinh

�
1

2
zM

�

−
ffiffiffiffi
Λ

p
e−

1
2
zE=

ffiffiffi
Λ

p
sinh

�
1

2
zM

�
⊗ Nb

�
;

ΔNa ¼ Na ⊗ e
1
2
zE=

ffiffiffi
Λ

p
cosh

�
1

2
zM

�

þ e−
1
2
zE=

ffiffiffi
Λ

p
cosh

�
1

2
zM

�
⊗ Na

− ϵab

�
1ffiffiffiffi
Λ

p Pb ⊗ e
1
2
zE=

ffiffiffi
Λ

p
sinh

�
1

2
zM

�

−
1ffiffiffiffi
Λ

p e−
1
2
zE=

ffiffiffi
Λ

p
sinh

�
1

2
zM

�
⊗ Pb

�
; ð68Þ

SðMÞ ¼ −M; SðEÞ ¼ −E;

SðPaÞ ¼ − cosðzÞPa −
ffiffiffiffi
Λ

p
sinðzÞNa;

SðNaÞ ¼ − cosðzÞNa þ
1ffiffiffiffi
Λ

p sinðzÞPa: ð69Þ

If we had the same sign for the two deformation param-
eters, hL ¼ hR ¼ h, we would obtain the same coproducts

but with the role of E=
ffiffiffiffi
Λ

p
and M inverted. This will turn

out to be crucial for the convergence of the coproduct in the
contraction limit.
It is worth pointing out that taking the limit z → 0, one

recovers the soð4Þ Lie algebra (26) (with primitive cop-
roducts and antipodes), as it should be. It is clear then that
our deformed algebra describes a genuine deformation of
the soð4Þ algebra described in Sec. (III).
Let us now pause for a moment and discuss the reality

conditions of the deformed algebra soqð4Þ that we have
found. These determine the �-operation defined on the
deformed algebra (an antilinear anti-involution correspond-
ing to a complex conjugation), and the unitarity of the
R-matrix. Notice first that the soqð4Þ generators E, Pa, Na,
M are anti-Hermitian operators, as is clear from their
commutation relations and the fact that conjugation extends
as an antialgebra map. It follows from relations (62) that the
generators Hi and Xi

� (i ¼ L, R) of suqð2Þ (suq−1ð2Þ)
satisfy the reality conditions:

ðHiÞ� ¼Hi; ðXiþÞ� ¼Xi
−; ðXi

−Þ� ¼Xiþ; i¼L;R:

ð70Þ

This justifies the name suqð2Þ (suq−1ð2Þ) for the corre-
sponding algebras. The fact that jqj ¼ 1 implies that we
have to deal with the case discussed in [24–26], where the
�-operation is lifted to the tensor product soqð4Þ ⊗ soqð4Þ
by the “flip”

ða ⊗ bÞ� ¼ b� ⊗ a�; ð71Þ
so that soqð4Þ≃ suqð2Þ ⊕ suq−1ð2Þ is endowed with a
(flipped) �-algebra homomorphism5

ðΔhÞ� ≔ τ∘ðΔhÞ�⊗� ¼ Δðh�Þ h ∈ soqð4Þ: ð72Þ

Under such “flipped” �-operation the R matrix of
suqð2Þ ⊕ suq−1ð2Þ is unitary in the sense that

R� ¼ τðR�⊗�Þ ¼ R−1; ð73Þ
as it can be shown by considering its related classical
R-matrix obtained by taking the linear order of R in h
[q ¼ expðhÞ and R ¼ Rsuqð2ÞRsuq−1 ð2Þ ≃ 1þ r, with

Rsuqð2Þ given by Eq. (50)]:

r ¼ 2hðHL ⊗ HL −HR ⊗ HR þ XLþ ⊗ XL
− − XRþ ⊗ XR

−Þ:
ð74Þ

Then, under the flipped �-operation, using Eqs. (70) and
(71), r� ¼ −r for h purely imaginary, as it is in our case,
and R is unitary.

5Here τða ⊗ bÞ ¼ b ⊗ a is the flip operation, while
ða ⊗ bÞ�⊗� ¼ a� ⊗ b�.
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We close this section by observing that one can obtain
the Lorentzian version soqð3; 1Þ of our deformed algebra
by a Wick rotation6 E → −iE, Na → −iNa, z → iz. It is
worth noting that in this case the deformation parameter q
becomes real, and the soqð3; 1Þ splits in a direct sum
suqð2Þ ⊕ suq−1ð2Þ of two (mutually commuting) copies
of suqð2Þ, with a (flipped) �-structure that interchanges the
two factors

ðHLÞ� ¼ HR; ðXLþÞ� ¼ XR
−; ðXL

−Þ� ¼ XRþ;

ðHRÞ� ¼ HL; ðXRþÞ� ¼ XL
−; ðXR

−Þ� ¼ XLþ; ð75Þ

as in the complexification procedure discussed for instance
in [22] Sec. VII C.

VII. FROM soqð4Þ TO κ-POINCARÉ

In this section, we derive the κ-Poincaré algebra,
coproducts and antipodes from the Inonu-Wigner contrac-
tion [27] of (67), (68), and (69). The contraction is
performed by substituting z ¼ ffiffiffiffi

Λ
p

=2κ and then taking the
limit

ffiffiffiffi
Λ

p
, z → 0 while keeping κ ¼ ffiffiffiffi

Λ
p

=2z finite. We get

½E;Pa� ¼ ½P1; P2� ¼ 0; ½Na; E� ¼ Pi;

½Na; Pb� ¼ −δabκ sinh ðE=κÞ; ½Na; Nb� ¼ M cosh ðE=κÞ;
½M;Na� ¼ ϵabNb; ½M;Pa� ¼ ϵabPb; ½M;E� ¼ 0;

ð76Þ

ΔE ¼ E ⊗ 1þ 1 ⊗ E; ΔM ¼ M ⊗ 1þ 1 ⊗ M;

ΔPa ¼ Pa ⊗ e
1
2
E=κ þ e−

1
2
E=κ ⊗ Pa;

ΔNa ¼ Na ⊗ e
1
2
E=κ þ e−

1
2
E=κ ⊗ Na

−
1

2κ
ϵabðPb ⊗ e

1
2
E=κM − e−

1
2
E=κM ⊗ P2Þ; ð77Þ

SðMÞ ¼ −M; SðEÞ ¼ −E;

SðPaÞ ¼ −Pa; SðNaÞ ¼ −Na þ
1

κ
Pa: ð78Þ

Equations (76), (77), and (78) define the ð2þ 1ÞD κ-
Poincaré algebra in standard basis and Euclidean signature.
It is at this point that the fact that hL and hR have

opposite sign becomes crucial. As said before, had we had
hL ¼ hR ¼ h, the role of E=

ffiffiffiffi
Λ

p
and M in the coproducts

(68) would have been inverted. One can easily see that
performing the contraction

ffiffiffiffi
Λ

p
, z → 0 with κ ¼ ffiffiffiffi

Λ
p

=2z
finite in (68), the coproducts of the boosts Na would have
diverged. The role of the opposite sign of h for the two
copies in the convergence of the contraction was first

noticed in [9]. As pointed out at the end of Sec. V, this is
indeed the case for the two R-matrices associated to the
generators Ĥþ, Ĥ− corresponding to the left and right
suqð2Þ copies. Therefore, the relations (66) that we
obtained consistently with the LQG quantization of the
constraint algebra of the theory, are also the ones that
guarantee the convergence of the contraction.
It is a straightforward but tedious calculation to show that

if in (67), (68), and (69) we change the generators as (see
[4] and [10])

E ¼ ~E; M ¼ ~M; Pa ¼ ez ~E=ð2
ffiffiffi
Λ

p
Þ ~Pa;

Na ¼ ez ~E=ð2
ffiffiffi
Λ

p Þ
�
~Na −

z

2
ffiffiffiffi
Λ

p ϵab ~M ~Pb

�
; ð79Þ

then the contracted algebra becomes the ð2þ 1ÞD
κ-Poincaré algebra in the bicrossproduct basis and
Euclidean signature (after removing the tildes):

½E; Pa� ¼ ½P1; P2� ¼ 0; ½Na; E� ¼ Pa;

½Na; Pb� ¼ −δab
�
κ

2
ð1 − e−2E=κÞ − 1

2κ
~P2

�
−
1

κ
PaPb;

½N1; N2� ¼ M; ½M;Na� ¼ ϵabNb;

½M;Pa� ¼ ϵabPb; ½M;E� ¼ 0: ð80Þ

ΔE ¼ E ⊗ 1þ 1 ⊗ E; ΔM ¼ M ⊗ 1þ 1 ⊗ M;

ΔPa ¼ Pa ⊗ 1þ e−E=κ ⊗ Pa;

ΔNa ¼ Na ⊗ 1þ e−E=κ ⊗ Na −
1

κ
ϵabPb ⊗ M; ð81Þ

SðMÞ ¼ −M; SðEÞ ¼ −E;

SðPaÞ ¼ −eE=κPa; SðNaÞ ¼ −eE=κNa þ
1

κ
ϵabeE=κPbM:

ð82Þ

Again, if E → −iE, Na → −iNa, κ → −iκ, we recover the
κ-Poincaré Hopf algebra in Lorentzian signature.

VIII. COUPLING TOMASSIVE POINT PARTICLES

We have shown that the local isometry soð4Þ≃ suð2Þ ⊕
suð2Þ of classical 3D gravity with a positive cosmological
constant is deformed at the quantum level, where the
spacetime local symmetry becomes the quantum
group soqð4Þ.
We can now imagine coupling massive point particles to

the theory. We are not going to present a technical analysis
of the problem, but only discuss the possible implications
of our results presented above in the presence of particles.
This section does not contain any new results, but its
motivation is to highlight possible implications and, at the
same time, to emphasize further the physical relevance of

6This has to be intended as a formal transformation that does
not affect reality of the generators and constants.
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the deformed quantum spacetime symmetries we derived in
the previous sections.
It is well known [28–31] that massive particles represent

topological degrees of freedom, introducing conical sin-
gularities at their location with deficit angle θ ¼ 4πGm
proportional to the mass m of the particle. However, it can
be shown that massive particles have no gravitational
interaction in three dimensions, i.e. they do not affect
the geometry of spacetime. This aspect represents a crucial
departure from the four-dimensional case and it allows for a
different approach to the quantization of the system. In
order to clarify this point, let us first recall some basic
elements of the inclusion of particles in 3D gravity (see, for
instance, [14,30–35] and references therein).
The main relevant feature to our discussion represents

the fundamental role played by the isometry algebra of
gravity. More precisely, one can describe the coupling of a
point particle to classical gravity in the Chern-Simons
approach evolving in a homogenous 3D spacetime using
an algebraic formalism. In the case of our interest
(Riemannian gravity with Λ > 0), the homogenous space
is given by the sphere S3, which can be seen as the coset
G=H, with G ¼ SOð4Þ and H ¼ SUð2Þ. The degrees of
freedom of the particle are given by a group element g ∈ G,
which, by means of the map G → G=H ×H, can be
decomposed into g ¼ qp → ðq; pÞ. Then, q ∈ G=H can
be associated to the position of the particle in spacetime,
while p ∈ H is associated to its momentum. In this way, the
degrees of freedom of a relativistic particle at rest are
encoded in two half-integer parameters ðm; sÞ labeling the
unitary irreducible representations of the isometry group G
and entering the values of the two Casimir operators of
soð4Þ, written in terms of the generators Pi, Ji. The
half-integer m is interpreted as the mass of the particle
and s as its spin.
The equation of motion derived from the algebraic action

can be shown to imply geodesic equations for the position
variable q on G=H. Moreover, the invariance of the action
under (global) left multiplication of the isometry group on
itself have the physical interpretation of the theory being
invariant under a change of inertial frame. This leads to
the appearance of the momentum pi and the total angular
momentum ji conserved Noether charges for the particle,
satisfying the Poisson algebra

fji;jjg¼ ϵij
kjk; fpi;pjg¼−ϵijkjk; fji;pjg¼−ϵijkpk:

ð83Þ
In particular, the quadratic Casimir relations

pipi − jiji ¼ m2 − s2; piji ¼ ms ð84Þ
defining the particle mass and spin show how the dynamics
of a free particle with mass m and spin s on the
homogenous space G=H ∼ S3 is correctly encoded in the
algebraic action formalism.

The configuration space of the point particle is given by
the coadjoint orbits of the soð4Þ Lie algebra

Cm;s ≡ fg ¼ hðmJ0 þ sP0Þh−1jh ∈ Gg; ð85Þ

with the Cartan subalgebra generators J0, P0 defining the
rest frame of the particle. When coupling the particle action
to gravity, it can be shown that the interaction term can be
gauged away and the particle evolves as a free particle. As
pointed out above, this indicates the insensitivity of
massive point particles to the gravitational field in three
dimensions.
In the absence of particles the noncommutative Chern-

Simons connection, which can be written as in (7), is flat
everywhere. If particles are present, the conical singular-
ities they induce on the spacelike surface Σ are completely
encoded in the conjugacy class of the group elements
corresponding to the holonomies of the Chern-Simons
connection on small loops going around the punctures.
The gauge group C∞ðΣ; GÞ on the space of regular G-
connections on Σ has an adjoint action also on the coadjoint
orbits Cm;s of the particles. It is this extended simultaneous
action on the whole phase space of gravity plus punctures
which provides an effective coupling between flat con-
nections and particles degrees of freedom. This effective
coupling is a crucial aspect. In fact, it implies that, at the
quantum level, the mass and the spin of particles are given
by unitary irreducible representations of the isometry group
of quantum geometry.
In the context of canonical combinatorial quantization of

Chern-Simons theory, this has been shown in [36], allowing
one to construct the kinematical Hilbert space of the theory
in terms of a tensor product of unitary irreducible repre-
sentations of SLqð2Þ. In the context of LQG quantization of
Riemannian 3D gravity with Λ ¼ 0, a similar construction
has been performed in [37]. However, in the case of a
vanishing cosmological constant, the presence of particles
is crucial for the Drinfeld double symmetry to emerge. This
can be understood from the fact that the local conical
singularities induced by the particles play a role analogous
to the presence of a local constant curvature given by a
nonvanishing cosmological constant.
In fact, in our analysis, when Λ > 0 we have shown that,

even when particles are not present, loop quantization
induces a deformation of the isometry group of classical 3D
gravity encoded in the replacement of the SUð2Þ recoupling
theory with the SLqð2Þ one and leading to the appearance
of the Drinfeld double DSLqð2Þ isometry. Since in 3D
matter and gravity are not really interacting, one could
imagine to couple classical massive point particles to the
quantum background geometry defined by the LQG physi-
cal Hilbert space defined in [8]. The arguments above
would then motivate the expectation that n-particle states
transform as representations of soqð4Þ under rotations and
translations, leading to deformed transformations laws with
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respect to the classical soð4Þ ones. In other words, the local
isometry of geometry gets deformed at the quantum level
and, through the induced gauge action of gravity on
coupled point particles, this would lead to a classification
of particles in terms of unitary irreducible representations
of such deformed isometry group.
A low energy regime of the theory could then be

investigated by removing (integrating out) the quantum
gravity effects, which effectively amounts to taking the
Λ → 0 limit (while keeping lP finite). This could generally
lead to a deformation of gravity classical isometry group in
the Minkowski regime. Indeed, as we saw in the previous
section, such contraction leads to the appearance of a
κ-Poincaré deformed symmetry. This suggests that, at the
Planck scale, the effective theory for the matter sector
would correspond to a noncommutative quantum field
theory symmetric under the κ-Poincaré group. This sce-
nario was realized in [38], by applying the covariant
formalism of LQG to Riemannian 3D gravity with
Λ ¼ 0 coupled to a scalar matter field. Our analysis
provides further evidence of this picture from the canonical
approach.

IX. CONCLUSIONS

We have studied the LQG quantization of the off-shell
constraint algebra of 2þ 1 gravity with a positive cosmo-
logical constant. By rewriting the constraints in terms of
holonomies of the noncommutative connection (7) we have
unraveled the quantum group structure arising from the
discrete, extended structure at the core of the LQG
kinematical Hilbert space construction. We have shown
how, in the low energy regime where the gravitational field
is constant and backreaction can be ignored, the contraction
performed by sending the cosmological constant to zero
leads to a deformation of the Euclidean flat spacetime
symmetries, encoded in the κ-Poincaré algebra.
The idea of a Poincaré algebra modification following

from a linear (lapse and shift functions) limit of deformed
hypersurface-deformation algebra of general relativity
through LQG quantization techniques was originally pro-
posed in [39]. However, in [39] it was argued that in 4D the
κ-Poincaré algebra cannot be recovered from the LQG
corrections in general since these do not affect the spatial
diffeomorphisms sector of the algebra. Nevertheless, we
have shown in Secs. III and IV that this is not the case in
3D, namely diffeomorphisms can be expressed in terms of
noncommutative holonomies and these are exactly the
generators that lead to a deformed constraint algebra
symmetry. Whether a κ-Poincaré symmetry can indeed
be derived also in the 4D case or not using techniques
analogous to those introduced in [7,8] is hard to say, since
the extension to four dimensions is highly nontrivial from a
technical point of view (see [40] for a recent alternative
attempt to circumvent the obstruction found in [39]).

Despite these technical difficulties, we expect that the
results obtained in this paper might have important con-
sequences for symmetries of quantum spacetime in physi-
cal four spacetime dimensions. Namely (see [41] for details
of the argument), a planar system in four dimensions is
described by 3D gravity, but at the same time is a
configuration of 4D gravity. It follows that the symmetries
of flat 4D quantum spacetime should contain somehow the
symmetries of the 3D one. But as we have shown the latter
is deformed, and therefore the former must be deformed
too. Of course this argument should be confirmed by
detailed calculations within 4D quantum gravity. The work
in this direction is in progress and important insights might
be provided by the results of [42], where an interesting
connection between 4D loop quantum gravity with a
cosmological constant and SLð2; CÞ Chern-Simons theory
in 3D has been discovered.
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APPENDIX: DIFFEOMORPHISMS
IN 3D GRAVITY

In this Appendix, we will demonstrate the validity
of (12).
The explicit expression of D½0; ~ξ� ¼ D½ξ�, using

eia ¼ −ϵabEb
i , reads

D½ξ� ¼
Z
Σ
d2xξað−2Fi

abE
b
i þ Ai

aDbEb
i Þ

¼
Z
Σ
d2xξa½ð∂bAi

a − ∂aAi
bÞEb

i þ Ai
a∂bEb

i �; ðA1Þ

from which one gets the following transformations for Aa
i

and Ea
i :

δ~ξA
i
a ¼ −Ai

b∂aξ
b − ξb∂bAi

a ¼ L~ξA
i
a ðA2Þ

δ~ξE
a
i ¼ Eb

i ∂bξ
a − ξb∂bEa

i − Ea
i ∂bξ

b ¼ L~ξE
a
i ; ðA3Þ

and they coincide with the Lie derivatives of Ai
a and Ea

i

along ~ξ [note that Ea
i is a density and that is the reason why

the term −Ea
i ∂bξ

b is present in (A3)].
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For ξ ¼ ðξ; ~0Þ ¼ ξt, one has

D½ξt� ¼
Z
Σ
ξ

�
eit

�
Fi
abϵ

ab þ Λ
2
ϵijkEa

jE
b
kϵab

�
þ Ai

tDaEa
i

�
;

ðA4Þ
from which one gets

δξtAi
a ¼ −DaðξAi

tÞ ¼ −Ai
t∂aξ − ξDaAi

t − ΛξϵijkejtEb
kϵab

¼ −Ai
t∂aξ − ξ∂tAi

a ¼ LξtAi
a; ðA5Þ

where we used the equation of motion 2Fta ¼ ∂tAi
a−

DaAi
t ¼ −Λϵijke

j
teka. Similarly for Ea

i one has

δξtEa
i ¼ ϵbaDbðξeitÞ þ ξϵijkA

j
tEa

k

¼ −ϵabeit∂bξ − ξðϵabDbeit − ϵijkA
j
tEa

kÞ
¼ −ϵabeit∂bξ − ξϵabðDbeit − ϵijkA

j
tekbÞ

¼ −ϵabeit∂bξ − ξϵab∂teib ¼ ϵabLξteib; ðA6Þ

where we used the equation of motionDaeit ¼ Dteia and the
relation Ea

i ¼ ϵabeib.
Equations (A2), (A3), (A5) and (A6) provide an outline

to show that (12) generates diffeomorphisms xμ → xμ þ ξμ

in phase space.
Let us now consider a 2þ 1 splitting of the metric tensor:

given generic coordinates yμ a family of spatial hyper-
surfaces is defined by

yμ ¼ yμðt; xaÞ; ðA7Þ
xa being coordinates on each hypersurface, while t is a
parameter labeling each hypersurface. The deformation
vector is defined as

dy

dt
¼ Nnþ Naba; ðA8Þ

n and ba being the normal and tangential vectors to spatial
hypersurfaces, respectively. N and Na are the lapse
function and the shift vector. The metric in coordinates
ðt; xaÞ reads

gμν ¼
�
sN2 þ NaNa Na

Na hab

�
; ðA9Þ

hab being the spatial metric and Na ¼ habNb, while
s ¼ þ1, −1 for Euclidean and Lorentzian spacetimes,
respectively. The inverse metric is given by

gμν ¼
� s 1

N2 −s Na

N2

−s Na

N2 hab þ s NaNb

N2

�
: ðA10Þ

From (A8) it follows that the normal vector n has the
following components:

n ¼
�
1

N
;−

Na

N

�
; ðA11Þ

such that one can write

nμ ¼ sNgtμ: ðA12Þ

The constraint D½~f� generates spatial diffeomorphisms

ξμ ¼ ð0; ~fÞ, thus from (11)

D½~f� ¼ D½0; ~f� ¼ CΛ½faeia� þG½faAi
a�: ðA13Þ

The constraint H½g� generates those diffeomorphisms
orthogonal to spatial hypersurfaces, thus along n. Hence,

H½g� ¼ D½gn� ¼ CΛ½gnμeiμ� þ G½gnμAi
μ�; ðA14Þ

which using (A12) can be rewritten as

H½g� ¼ CΛ½sgNeti� þ G½sgNgtμAi
μ�: ðA15Þ

It can be shown that (A13) and (A15) generate the standard
constraints algebra

½D½f1�;D½f2�� ¼ D½½f1; f2�� ðA16Þ

½D½f�;H½g�� ¼ H½fa∂ag� ðA17Þ

½H½g1�;H½g2�� ¼ D½fðg1; g2Þ�; ðA18Þ

where

½f1; f2� ¼ fa1∂a
~f2 − fa2∂a

~f1

faðg1; g2Þ ¼ habðg1∂bg2 − g2∂bg1Þ; ðA19Þ

hab being the inverse spatial metric. In particular, the
following identities, relating metric components with
momenta Ea

i , are to be used:

eti ¼
1

2
ffiffiffiffiffi
sg

p ϵijkEa
jE

b
kϵab; gtt ¼ etie

t
i; N ¼ 1ffiffiffiffiffiffiffi

sgtt
p
ðA20Þ

eai ¼
1ffiffiffiffiffi
sg

p ϵijke
j
tEa

k; gta ¼ etie
a
i ðA21Þ

ffiffiffiffiffi
sg

p ¼ 1

2
ϵijkeitEa

jE
b
kϵab hab ¼ eiaeib: ðA22Þ
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