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We calculate the energy and angular-momentum fluxes across the event horizon of a tidally deformed,
rapidly rotating black hole to next-to-leading order in the curvature of the external spacetime. These are
expressed in terms of tidal quadrupole moments and their time derivatives, which provide a characterization
of a generic tidal environment. As an application of our results, we provide an expression for the energy and
angular-momentum fluxes across the horizon when the black hole is a member of a binary system on a
slowly moving, quasicircular orbit. Our expressions are accurate to 1.5 post-Newtonian order beyond the
leading-order fluxes, but they are valid for arbitrary mass ratios. We compare our results to those previously
obtained in the case of an extreme mass ratio binary, and find that they do not agree at the 1.5 post-
Newtonian order. We investigate a number of possible sources for this discrepancy, but are ultimately

unable to resolve it.
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I. INTRODUCTION

Astrophysically realistic black holes (BHs) are never in
isolation. From the viewpoint of a given background BH,
the external universe induces gravitational perturbations
that heat and torque the background BH. This heating and
torquing is a flux of energy and angular momentum across
the background BH’s horizon that lead to a change in its
mass and spin. These fluxes are sometimes called horizon
fluxes [1,2] or BH absorption [3] to distinguish them from
the fluxes associated with gravitational radiation carried out
to infinity.

The horizon fluxes can be computed analytically by
integrating the Teukolsky equation for the Newman-
Penrose (NP) scalar y, assuming that the effect of the
external universe is small [4]. In these circumstances, y, can
be expanded in powers of the ratio of the background BH’s
mass to the radius of curvature of the external universe, which
can be parametrized with electric and magnetic tidal tensors.
The horizon fluxes can then be computed by evaluating v
at the horizon and performing some operations on it.

Until recently, the calculation of the horizon fluxes for
generic, slowly varying tidal environments had only been
carried out to leading order in an expansion in inverse
powers of the radius of curvature of the external universe
[4-6]. In [7] we calculated these fluxes to next-to-leading
order. Here, we improve on these results in two ways: (i) we
correct the calculation of the horizon fluxes for binary BHs
in a slowly moving, quasicircular orbit at 1.5 post-
Newtonian (PN) order, completing our previous computa-
tion in [7], and (ii) we provide ready-to-use flux formulas
for comparisons with numerical relativity and for direct use
in gravitational-wave modeling.

2470-0010/2016/94(8)/084043(13)

084043-1

Ready-to-use expressions are useful because they enable
the construction of accurate templates for the gravitational
waves emitted by inspiraling BH binaries. This calculation
requires knowledge of how the orbit decays due to the loss
of energy and angular momentum to the waves. Through a
balance law [8], the rates of change of the orbital binding
energy and the angular momentum are related to the energy
and angular-momentum fluxes out to infinity and into the
BH’s horizons. For a quasicircular binary composed of
spinning BHs, the leading-order term in a PN expansion' of
the energy horizon flux is proportional to V!>, where V is
the orbital velocity. This corresponds to a 2.5PN order
correction relative to the leading-order (quadrupole) energy
flux radiated out to infinity, which is proportional to V0.
In the test-particle limit and for quasicircular orbits, the
horizon energy flux into a spinning BH is known to 20PN
order relative to the V!> leading-order horizon flux [9—13].
Here we provide expressions for the horizon energy and
angular-momentum fluxes accurate through 1.5PN order
relative to the leading-order horizon flux, i.e. up to V'8, but
valid for an arbitrary mass ratio. These expressions would
aid in the construction of waveform templates for compa-
rable-mass, spinning BH quasicircular inspirals.

A surprising outcome of our calculations is that we do
not find agreement between our results in the limit of an
extreme mass ratio and the test-particle calculation of [11]
at 1.5PN order. We do find agreement at leading-order and

'The PN approximation is one in which the field equations are
solved as an expansion in small velocities (relative to the speed of
light) and weak fields. A term of relative O(V?4) is said to be of
Ath PN order.
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at 1PN order. We describe a number of possible culprits for
this discrepancy, but ultimately we fail to resolve it. We
must thus, unfortunately, leave this question open for the
time being.

II. FORMALISM

Consider a perturbed Kerr BH with mass M, spin angular
momentum J = Ma, and dimensionless spin parameter
y =J/M?. The horizon fluxes of energy and angular
momentum can be computed from (see [7] for more details)
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where (v,r,0,y) are ingoing Kerr coordinates, while
k= (r.—M)/(r2 +a*) and Qy = a/(r2. + a®) are the
surface gravity and the angular velocity of the unperturbed
BH, respectively [4]. The integrated curvatures ®' (and

their complex conjugates ®”') are defined through
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where U is the Teukolsky potential, defined by
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where A = 2 —=2Mr +a?, r. = M £ VM? — a?, and
is one of the NP scalars in the Kinnersley tetrad. The axial

symmetry of the Kerr solution allows us to decompose W in
decoupled azimuthal modes,

U(0.0.p) =Y U"(v,0)e™. (6)

The first law of BH mechanics allows us to also compute
the rate of change of the horizon area via
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The NP scalar y, can be computed as an expansion in
inverse powers of the radius of curvature of the external
universe. Working in Fourier space, we express it as [7]

0= Zem(@)Roen(r),S " (0)e™, (8)
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where R, (r) are functions that satisfy the radial
Teukolsky equation, ,S““™(6) are spin-weight +2 sphe-
roidal harmonics, and Z,,,(®) are complex amplitudes. A
calculation of the horizon fluxes requires the determination
of these ingredients, which are then inserted in the
expressions of the integrated curvatures before substitution
into the flux formulas.

III. ASYMPTOTIC MATCHING

The functions R,,.,, (r) must satisfy the radial Teukolsky
equation, and they must be regular at the BH’s horizon.
Because the differential equation is homogeneous, the
regular solution is determined up to an overall multiplica-
tive constant which can be chosen arbitrarily. The infor-
mation about the tidal environment is then encoded in the
amplitudes Z,,(w), which must be determined. We adopt
the following strategy.

In Appendix A we construct the metric of a slowly
rotating BH that is placed in a generic, time-dependent tidal
environment characterized by quadrupole moments &,,(v)
and B, (v). In this computation the BH’s dimensionless
angular momentum y is assumed to be small, and all
equations are linearized with respect to y. The calculation
generalizes [14] to account for the time-dependence of the
tidal moments, whose derivatives with respect to v enter in
a 1.5PN calculation of the horizon fluxes. The metric of the
perturbed BH is next used to compute the NP scalar v,
which is then evaluated in the asymptotic region r > M.
This expression is exploited to fix the normalization of
R,/ (r) and determine the amplitudes Z.,,(w) in terms of
the tidal moments.

It may appear objectionable that a y, calculated to linear
order in y—the one obtained in Appendix A—is used to
determine the asymptotic behavior (and therefore the
amplitude of each mode) of a y calculated to all orders
in y—the one that appears in the flux formulas of Sec. II.
Does not the asymptotic behavior of v contain terms of
higher order in y? The answer to this objection, the key to a
successful implementation of our strategy, goes as follows.
First, our 1.5PN calculation of the fluxes requires ampli-
tudes Z,,, (@) that can be determined from the leading-order
asymptotic behavior of R, (r) together with subleading
terms of relative order M/r; additional terms of order
(M /r)? and beyond are not required. Second, a study of the
Teukolsky equation [see Appendix B, especially Egs. (B15)
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and (B16)] reveals that once the leading-order asymptotic
term in R,.,(r) is chosen to be independent of y, the
subleading term of order M/r is necessarily linear in y;
higher-order terms in y appear only in the additional terms
of order (M/r)? and beyond. These observations therefore
imply that a 1.5PN calculation of the horizon fluxes
requires amplitudes Z,,, (@) that can be determined from
the asymptotic behavior of y, calculated to first order in y.
This information can be provided by the calculation
presented in Appendix A.

The final outcome of this exercise, in which we match
Eq. (A13) to Eq. (8), is a radial function normalized by

r r p
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where the quantities a,, and $,, are defined in terms of &,
and B,, in Appendix A.

We note that the metric of Appendix A is not complete,
because it does not include terms involving the octupole tidal
moments. In an expansion of the metric in inverse powers of
the radius of curvature of the external universe, the octupole
moments do appear at the same order as terms involving
the time derivative of the quadrupole tidal moments.
Nevertheless, the octupole moments can be ignored, because
they appear only in the £ = 3 mode of y, which does not
contribute to the horizon fluxes at 1.5PN order.

IV. TEUKOLSKY FUNCTION EVALUATED
ON THE HORIZON

The radial function can be decomposed as R, =
Rypo + @MR,,, | + O(w?) with the asymptotic behavior
of each term obtained from Eq. (9). The components were
obtained in [7] by solving the radial Teukolsky equation
order by order in . We have
Ropo = Appyx 2 (1 +x)72F(=4,1;2imy — 1;—x),  (13)
where F(a,b;c;z) is the hypergeometric function. The
constant A,,, is determined by ensuring that the asymptotic
behavior of this solution matches Eq. (9):

Ay = —imy(l +imy)(1 + 4m?y?),

. (14

where y :=a/(r, —r_). We also have
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R2m,l = ARZm,O + R2m,pv (15)

where A is a constant and R,,, , is the particular solution
given in Egs. (81) and (82) of [7].

As first noted in [7], to leading order the asymptotic
behavior of R,,,; is ir/3, thus satisfying Eq. (9). The
subleading behavior fixes the constant A. This information
was not yet available at the time of [7], and we made the
choice of fixing A through the requirement that the NP scalar
beregularin the y — 0 limit. We must, however, determine A
by demanding that Eq. (15) agrees with Eq. (9):
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where yg is the Euler gamma, y(")(x) is the polygamma

function, and ¢ = /1 — y*. With this result we can evaluate
v at the horizon and retrace our steps from [7] to calculate
the horizon fluxes.

V. HORIZON FLUXES

The calculation of the horizon fluxes from wy is
described in detail in [7]. Here we omit details and directly
present the final results. Defining the invariants

E| = E,EP, B, = B,,B, (17)

E, = &E,,s"&%5¢, B, = B,,s"Bs¢, (18)

E; = (&zbsasb)z’ B; = (Babsasb)27 (19)

E, = e,,chpaégsa B, = quCBP“BZsC, (20)

Es = €pqc556"Zs“shs", Bs = epchZl?Zs“shs", (21)

where s¢ = (0,0, 1) is the direction of the BH spin and

A, = % {VAO) (3 n zm’;() +y0 (3 —im —)] . (22)

B, = 211 {1//(0) <3 + lm%_) —y® <3 - zm—ﬂ . (23)
we find

(i) = (W), (24)

(J) = (9 + () + @G + G (25)

() = =0y 4 (19 + (GO + 4P, (26)
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where
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The superscripts (4) and (5) give the order of each term in
an expansion in powers of 1 /R, with R denoting the radius
of curvature of the external universe.

VI. CIRCULAR BINARY

One of the most interesting astrophysical applications of
our results is the case of a circular binary with an external
BH with mass M, and dimensionless spin parameter y,,
and a background BH. The angular velocity of the tidal
fields in the BH frame is [14]

Q= \/T{I—EB%—M

where € = +1 (—1) if the orbital and spin angular momen-
tum of the unperturbed BH are aligned (antialigned),
N = ffex 1s the symmetric mass ratio, My = M + M
is the total mass, f = M /My and f. = M.y /My are the
mass fractions, b is the orbital separation in harmonic
coordinates, V = (M7/b)"/?, and 7 = f(1 + )y + 31y ext-
Equation (28) corrects Eq. (120) in [7], which did not
include the V3 term.

The angular velocity of the tidal fields is not equal to the
orbital angular velocity. The latter is given in the PN
barycentric frame by

1
- E;?V3 +0O(VY |, (28)

where 7= (2f% +3n)y + (37 + 2% )¥ext- Even though
functionally Q looks similar to @y, these expressions
are clearly not the same because y # J.

Evaluation of the horizon fluxes when the background
BH is a member of a binary requires expressions for the
tidal fields that are accurate to the appropriate PN order.
The tidal fields were obtained to 1PN order in [15], and
extended to 1.5PN order in [14]; they can be used to
compute the horizon fluxes to O(V3) relative to the
leading-order horizon absorption term. The relevant electric
tidal fields are

1 M.,
5(511 +522) 2;; |:1 +§V2 6fexl)(exlv3 + O(V4) P
(30)
1 3M., —4
5(511 —&n)=- 21?3,t [1 +f B V2= 2fextexV?
—I—(’)(V“)} cos 2Q1, (31)
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3Mext f_4

Ep=— s 1 JFTV2 —2f exilext V> +O(V*) | sin2Qz1,
(32)
and the relevant magnetic tidal fields are
3Mext 3
‘813 == b3 V(l _fext)(extv) cos Qf + O(V )’ (33)
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improving Eqs. (122)—(126) of [7]. Defining
16,20 5 12 2
S, 2 2
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the energy and the angular-momentum flux become

dJ

=Y =(Qy —Q)Cy, 36

(40) = @u-ac (36)
M

— ) =Q(Qy —Q)Cy, 37

(%) =@y -ac, )

respectively, while the change in horizon area is simply

dA 8
— ) =—-—(Qy —Q)*Cy. 38
<M> (@ - QPCy (38)
These expressions correct Eqgs. (127)-(129) in [7],

which miscalculated the V3, VI8, and V! terms,
respectively.

Equations (36)—(38) are presented in their factorized
form, in that the fluxes are all proportional to Qp — Q.
This form includes more terms than what we are formally
allowed to keep. For example, the energy flux in Eq. (37)
contains terms proportional to V'° to V24, none of which
we are formally allowed to retain, since Eq. (35) has
uncontrolled remainders of O(V*). However, these factor-
ized expressions make it clear that the fluxes vanish in the
case of corotation, which we expect on physical grounds.
Comparison with numerical simulations could determine
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whether the factorized forms are more accurate than the
fully expanded forms.

The expressions for the horizon fluxes computed above
have been written in terms of the variable V = /M /b,
which is clearly coordinate dependent through the har-
monic orbital separation . A more meaningful expression
may be obtained if we adopt x = (Myw.y)'/? as a
coordinate-invariant expansion parameter. The relation is
provided by

V=x [1 + é (3—n)x* + é)})@ + (’)(x“)} . (39)

while the angular velocity of the tidal field is

Q= e% [1 — nx? +%()~( —7)x + O(x“)} . (40)

Moreover, Egs. (36)—(38) are perhaps not in an ideal
form yet, because the time derivatives refer to v, an
advanced-time coordinate on the BH horizon. This is
related in a simple way to 7, a time coordinate defined
in the local asymptotic rest frame of the BH. The
relation between 7 and the PN barycentric time ¢ is
given by [15]

(= (143 F + 3o +O)|7 (@1)

and it was confirmed in [14] that there are no terms at
order x3.

We thus arrive at expressions that could be directly
implemented in gravitational waveform construction for
comparable-mass, spinning BH binaries in quasicircular
orbits. Translating the d/dv fluxes to d/dt fluxes and
expressing them in terms of x, we obtain

<%> — (Qy-Q)C,, (42)
<‘%4> — Q(Qy - Q)C.. (43)
<%> — _87” (Qy — Q)C,. (44)

where now Q is given by Eq. (40) and
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C,= —15—6M2f2772(1 + a)xlz{l +3y7
+%[3<2 +17) +2f(1+37) 2+ 3f)l?
+ {gef(l +3¢%) (7% = 3B2) = 2fx(1 +37°)(f - 3)
_24_7€f)([362 + 1356 + (762 + 810

_%fext)(ext(‘l'fext - 3(1 + 4f))(2)}x3 + O(X4)}
(45)

Eventual comparisons with numerical results on the
tidal heating and torquing of a spinning BH will have to
clarify the relation between the time coordinate used in
the numerical simulation and the PN barycentric time. It
may be wiser to adopt a coordinate-invariant parametriza-
tion based on the orbital angular velocity @y, which
monotonically increases with time because of radiation
reaction. An expression for dw,y,/dt that includes 1.5PN
terms can be found in Eq. (4.14) of [16]. Using
x = (M7wo)'/? instead of @y, we find

<%> — (Qu - Q)C,. (46)
<‘2_1‘f> — Q(Q, - Q)C. (47)

where

1
C.= —§M2f211(1 +0)x3 { 14342

1 5
+ {ﬁ(1247—|—2481)(2)+Z(3—f)f(1+3;(2)}xz

+{§ef(1 +3)(2)(ﬂ2)(—332)+%f;((1+3)(2)(21 +2f)

1
— 5 een| =89+ 14f =21(17=2f)*]

—%ef)([362+ 1356+ (762+810)y?] }x3 +O(x%) }
(49)

We recall that the fluxes are here presented in a factorized-
resummed form and include uncontrolled PN order terms.
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VII. SMALL MASS RATIOS

The expressions for the horizon fluxes derived here are
limited to 1.5PN order, but they are valid for arbitrary mass
ratios. On the other hand, Ref. [11] uses the formalism of
[17,18] to calculate the energy flux to higher PN order
(4PN), but the expression is restricted to test particles.
Appendix D in [11] gives the energy flux across the horizon
as a function of x = (M;@,y,)"/> when a test particle orbits
a Kerr BH. This result truncated to 1.5PN order should be
identical to our Eq. (43) in the limit of small mass ratios.
We find that this is not the case.

The difference between our Eq. (43) and the test-mass
result of [11] arises at the 1.5PN order, and is given by

8
ﬁxmnz){z [872 + 2751y — 727 (1 + 3x%)].  (50)
Despite the extensive investigations of our calculation
described in the following section, we are unable to locate
the source of the disagreement.

VIII. DISCUSSION AND CONCLUSIONS

The discrepancy between our results in the test-mass
limit and the results of [11] merits further investigation.
Below we revisit the individual elements of our calculation
and describe how we have checked their validity.

A. Solution to the Teukolsky equation

The first ingredient of our calculation—and indeed
of the calculation of [11]—is a homogeneous solution
to the Teukolsky equation to the appropriate order in
M ~ M/R. Mano, Suzuki, and Takasugi [19] found an
exact solution to the homogeneous Teukolsky equation as a
series in hypergeometric and Coulomb functions. This
solution is utilized in the calculation of [11] but not here
(or in [7]), because we opted to integrate the Teukolsky
equation order by order in .

To test whether our solution to the Teukolsky equation
contains errors that could account for the energy flux
discrepancy, we first substituted it back to the Teukolsky
equation and determined that it is indeed a solution. We
also repeated our calculations using the series solution of
[19]. The details are provided in Appendix B. We find that
the flux calculated in this way is identical to Eq. (43),
showing that our solution to the Teukolsky equation is
correct.

B. Asymptotic matching

With a solution to the homogeneous Teukolsky equation
in hand, our next step is to determine its amplitude by
examining its asymptotic behavior at infinity. This is
obtained in Appendix A, where we construct the perturbed
metric of a slowly rotating BH and extract y, from this
construction. We have investigated a number of subtleties
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of the calculation (listed below) that might have led to an
incorrect NP scalar at infinity, but without encountering
an error.

(1) We use the metric of a tidally deformed, slowly
rotating BH to calculate the asymptotic expression
of the NP scalar to all orders in y. We have shown
that corrections in the NP scalar that enter at relative
order M/r must be linear in y, so they are fully
captured with a metric linearized in y. This con-
clusion is supported by Eq. (B16), which reveals
that indeed, all M/r terms are linear in y. Higher
orders in y will appear through terms that go as
a®/r* ~ y*M?/r?. Such terms would be necessary in
a calculation of the fluxes to next-to-next-to-leading
order, but they are not needed here.

(2) We ignore the octupole tidal moments that enter the
perturbed metric at the same order as the derivatives
of the quadrupole moments. However, octupole
moments affect only the # =3 mode of the NP
scalar [20], which does not contribute to the 1.5PN
fluxes [7]. So even though our perturbed metric is
not complete at next-to-leading order, it is sufficient
for our purposes.

That the £ = 3 mode does not affect the fluxes to
next-to-leading order is not obvious; after all it is
the next-order mode after the leading £ = 2 one.
However, as explained in more detail in [7], the NP
scalar needs to be squared and angle averaged over
in order to calculate the horizon fluxes. Squaring
makes terms obtained by a product of # = 3 modes
too high of an order for our purposes, while angle
averaging kills any cross terms mixing £ = 3 and
¢ =2 modes. As a consequence, all £ = 3 modes
drop out of the next-to-leading horizon fluxes.

(3) The metric of Eq. (A5) is written in light-cone
coordinates in which the azimuthal angle ¢ is
constant on incoming null geodesics. On the other
hand, the NP scalar is decomposed in spherical
harmonics with an angle y that is constant on the
ingoing principal congruence of the Kerr spacetime.
The mapping between the two angles is given in
Eq. (A4) to leading order in y. As we have argued,
this relation, which neglects terms of order y> and
beyond, is adequate for the computation of the
asymptotic behavior of .

(4) A number of other possible coordinate mismatches
have also been explored. For example, the radial
coordinate r, that enters the metric of Eq. (A5) could
be related to the ry of the Teukolsky equation by an
equation of the form r, = rp + ka*/ry + ..., where
k is an unknown constant, and the remaining terms
are higher order in a. But Egs. (A13) show that such
a mismatch would have no impact on our results:
transforming the expressions from r, to ry would
keep them unchanged, with the mismatch merely
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contributing to the neglected terms of order M/ rr.
As another example, the advanced-time coordinate
v, of the perturbed metric could differ from the vy of
the Teukolsky equation by a term of the form
Ka*/r+ .... A careful inspection of the develop-
ments in Appendix A reveals that again, such a
mismatch has no impact on our result.

(5) Apart from coordinate differences, matching calcu-
lations can suffer from differences in how the
spacetime parameters (M and a) are defined in each
part of the calculation. However, such a difference
would appear at leading order in the fluxes. The fact
that we only find a discrepancy at relative order x*
indicates that there is a problem with a certain PN
expansion, rather than a parameter mismatch.

After this examination we find no reason to suspect the
matching procedure and must conclude that it is robust.
This conviction is reinforced by the fact that we have
verified that the NP scalar of Eq. (A10) satisfies the
Teukolsky equation to leading order in y.

C. Tidal fields

The quadrupole tidal fields caused by a companion BH
in a circular binary with the background BH were calcu-
lated in [14]. A slowly rotating BH metric that included
only quadrupole tidal moments was expanded to 1.5PN
order and matched to a PN metric valid to the same order,
after both metrics were expressed in the same coordinate
system. The result of the matching procedure were the
quadrupole tidal fields &£,, and B,, as a function of the
parameters that appear in the metric.

Two ingredients are missing from the perturbed metric of
[14] in order for it to be complete at 1.5PN order: time

derivatives of the quadrupole moments £,, and Bah, and
octupole moments &,;,. and B,;,.. The latter can be safely
ignored since the 1.5PN horizon fluxes depend only on the
¢ = 2 mode of the NP scalar; octupole moments and the
resulting £ = 3 modes enter at higher orders. Moreover, it

was argued in [14] that terms proportional to é’ab and Bab
result only in a phase shift of the tidal fields. As such, they
do not affect our flux calculations. We should also note that

terms proportional to ;(é'a,, and ;(Ba,, were not explicitly
included in the analysis of [14]; however, Eq. (AS) implies
that they make no contribution at 1.5PN order.

Finally, we should note that the 1.5PN contributions to
the tidal fields calculated in [14] depends only on the
external BH and not on the background BH, as does the
IPN term. This seemingly curious result can be easily
explained: the tidal fields are caused by the external BH and
depend on the background BH only through nonlinear
interactions between the two BHs. Therefore they have no
contribution at 1.5PN order.

We conclude that the tidal fields obtained in [14]
are accurate enough for our purpose of obtaining
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next-to-leading order horizon fluxes and we find no reason
to suspect their derivation.

D. Conclusions

We have calculated the energy and angular-momentum
horizon fluxes, as well as the change in horizon area, for a
Kerr BH in a circular binary with another BH to next-to-
leading order in the curvature of the external spacetime.
When taking the test-particle limit of our results we do not
recover the results of [11]. We have performed a systematic
analysis of our calculations in an attempt to locate the cause
of the discrepancy, though without success. Apart from the
conceptual issues we extensively explored in the previous
subsections, we can confidently rule out computational
errors: our calculation was performed three times inde-
pendently, always yielding the same result.

Even though we cannot confidently locate the origin of
the discrepancy, a simple observation provides a clue: our
result contains factors of 72 while the test-particle one does
not. These factors originate from the asymptotic behavior
of the Teukolsky function calculated in Appendix A; see
Eq. (A13) and the subsequent discussion. It then would
be reasonable to speculate that the discrepancy originates
from the matching procedure, however, we find no further
indication that this might be the case.

As a concluding remark, we mention that the results
of [11] were checked against the numerical results in
[1,21-25], both employing the Mano-Suzuki-Takasugi
(MST) machinery of [19] and with the independent
formulation of [26,27]. Moreover, the analytic calculation
of [11] was independently verified in [28], further reinforc-
ing confidence in the results of [11]. We must unfortunately
leave this matter unresolved for the time being.
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APPENDIX A: SLOWLY ROTATING BH IN A
TIME-DEPENDENT TIDAL ENVIRONMENT

In order to specify the asymptotic behavior of the NP
scalar when r > M, we construct the metric of a slowly
rotating BH with mass M and dimensionless spin vector y*
placed in a tidal environment characterized by quadrupole
tidal moments &,,(v) and B, (v). The metric of the
deformed BH is calculated in a region that excludes the
external matter responsible for the tidal field. We generalize
the results of [14] by accounting for the time dependence

PHYSICAL REVIEW D 94, 084043 (2016)

of the tidal moments; terms proportional to é‘ab =d€&,,/dv
and B,, = dB,, /dv are now included in the metric, but
second-derivative terms are neglected. With this metric in
hand, we calculate the NP scalar y, and extract its
asymptotic behavior.

1. Tidal potentials

The construction of tidal potentials is presented in detail
in [14]. Here we summarize the main results, and introduce

new potentials associated with é’ab and Bdb.

The potentials are obtained by combining y,, €45, Bups
and Q“ = [sin 0 cos ¢, sin O sin ¢, cos 0] in various irreduc-
ible ways, with each potential having a specific multipole
order # and a specific parity label (even or odd).

The coupling of y, and &, produces the pseudotensors

F a = Sab)( bv

~¢.abc = g(ab)h')’ (Al)

with angular brackets denoting symmetrization and trace
removal. The coupling of y, and B, produces the tensors

Ka = Bab)(bv Kabc = B(ab)(c)' (AZ)

The independent components of &5, Bap, Far Faves Kas
Kapes and y, can be packaged in spherical-harmonic
coefficients £, B, F9, F9, K4, K9, and 49, respec-
tively. The definitions are given in Table II of [14].

The tidal potentials are decomposed in scalar, vector, and
tensor spherical-harmonic functions of the angular coor-
dinates * = (0, ¢). The decomposition involves the scalar
harmonics of Table I of [14], and the even- and odd-parity
harmonics of Eqs. (2.12) and (2.13) of [14].

The decomposition of the tidal potentials in spherical
harmonics is described by Eq. (2.15) of [14]. Together
with these we introduce “dotted potentials” that are con-
structed in an analogous way from Sab =d€,,/dv and
B, = dB,,/dv. For example,

S SR CL i oS
m m

. 1 .
Kis =32 Kn¥ij
m

are dotted potentials, with éﬂq F ?n, and ICﬂ1 constructed

from é’ab and Bab (and y“) in the manner described in
Table II of [14].

2. Metric of the deformed BH

The metric of an isolated, slowly rotating BH of mass M
and dimensionless spin y can be expressed as
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TABLE 1.

PHYSICAL REVIEW D 94, 084043 (2016)

Radial functions appearing in the metric of Eq. (A5), expressed in terms of x = r/(2M).

eg _ 3(;;;31)2 ln(x) + (x—1)(4x4+5i;27x2+7x+3)
e? _ 2(;1) In(x) + (x—l)(6x4+136);35—15x2—9x—3)
eg _ 3(25x_;—1)1n(x) + (x—l)(S.x3;i3x2+4x—3)
bg _ @ ln(x) + (x—1)2(6x3;;153x2+4x+1)
pd — %ln(x) + (x—l)(5x3;;£0x2+x—l)
o = UV dilog(x) + U5 In(x)? — DO n() — 42 4§04 BT - 80 4 488 2y -
&l = 2(;_21) dilog(x) + 57 In(x)* = 2551= In(x) - 5 A o T e e+ g @
&3 = 2251 dilog(x) + 25t In(x)? ~ G in ) 4 L gl g B el
13? = _Z(X—_zl)dﬂog( )= X_l FIn(x)* + 12 —10x Hn(x) + 94 wt % - % - W + 278x4 tos tae 54x
HE X‘ldllog( ) — f‘zilln( )2 +%1 () + 0+ e+ g —ges ﬁ—ﬁ
i = - In(x) - 85+ ¢ s - A+ b e e~ e
kS = — 355 In(x )—Cdﬁ—cdﬁ—m 5~ 3o 50 120w
13 = =Sn(e) + 7t ot~ e~ e
kS = (3x+;)£x D In(x) + O 1520 =380 +ggggx*—660x R L e i |
K = ‘ﬁ’;jln(x)—i—com"x —3800;(9%}1(520)( “lix3_ goSyhl 1097y Sass_ sy Loy B 43 7
kg = —2=lin(x ) + co 2602 —7966(()));4»66)6 3o L1091 lon L s L
fs= %XS In(x) +r° 32 - B+ - P o tow — ﬁ ~ 5
fe==25n0x) + 5 + s - et R — it o T s
2
= —f,dv? + 2dvdr + r*dQ* — 22"TM sin*0dvddp, y=¢ —x% +0(). (Ad)
(A3)
The metric of a slowly rotating BH immersed in a

where f,=1-2M/r and dQ? = Q,zdf*do® = d6>+  tidal field produced by remote matter is obtained by
sin®@d¢>. The metric is displayed in coordinates  perturbing Eq. (A3). The methods to construct the

(v,r,0,¢) that are well behaved on the event horizon.
They are tied to the behavior of incoming null geodesics
that are tangent to converging null cones: each surface v =
constant is a null hypersurface, the null generators move
with constant values of @ and ¢, and —r is an affine
parameter on each null geodesic [29]. The azimuthal
coordinate ¢ differs from y, which is constant on the
ingoing principal congruence of the Kerr spacetime; the
relation is

1
gvv:_f _req€q+3

egéq - rzé?;(6¢5q + r3ég)(8¢<éq + rzk?ICd + r3kgI.Cd —

perturbation are described in detail in [14], in the case
when the time dependence of the tidal moments can be
neglected.

We continue to work in light-cone coordinates, so that
the coordinates (v, r, 8, ¢) keep their geometrical meaning
in the perturbed spacetime. This implies that g, =1,

rr = 0= dra> SO that Gvvs Gurs Gvas and gap are the Only
nonvanishing components of the metric [20].
The perturbed metric is written as

rPROKC + rPRSK°,  (ASa)
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Gvr = 17 (ASb)
2M? 2 1 . . . . R
JpA = —;(A - gr 3(e gé'j - bgBﬂ) + §r4(eg€g - bgBj) - r3)(8,/,(6252 - bng) + r4)(8(/,(egc‘fg + bgBj)
P(IFS = KS) + r(FEFR + kEKR) + P (ST + kKR) + r(f3FR + k2KR), (A5c)
1 5 ) . . o
gap = r*Qap — g”4(33533 - bngB) + ﬁrs egg?\B - bngAB) - r418¢(€3533 - bgB?lB)
+ ”5)(845(@?523 + BngB) - "4( 9}—23 - k?’CgB) + rs(fé’ffig + kS’CXB), (ASd)

in which 23, 59, k9, k°, 79, and f2 are functions of r that
are determined by solving the vacuum Einstein field
equations. They are listed in Table I of this paper and in
Table III of [14].

As documented in [14], the general solution for each
radial function involves two types of integration constants.
The first corresponds to a redefinition of a tidal multipole
moment, and these constants can be set equal to zero
without loss of generality. The second type corresponds to
the residual freedom of the light-cone gauge, and these
constants can be assigned arbitrarily without altering the
geometrical meaning of the coordinates. In [14] the six
gauge constants yd, 79, ¥°, 9, ¢9, and ¢°® were eventually
determined by anchoring the coordinates to the null
generators of the event horizon. We forego this exercise
here, and keep the constants arbitrary. In addition to these,

the new terms involving é’ab and Bab feature a set of six
additional constants denoted }'/d, 79, 7°, ¢9, 9, and ¢°; we
trust that this notation will not induce confusion, but state
nevertheless that, for example, ¢9 is not the time derivative
of the constant c9.

We also note that the radial functions associated with the
new terms involving &,, and B, feature the dilogarithm
function, defined by

dilog(x) = —

(A6)

3. Teukolsky function

We can now use the metric obtained in Sec. A2 to
calculate the NP scalar

Yo = —Cayﬂék“m}’kﬁm‘s (A7)

of a slowly rotating, tidally deformed BH. Here C,,45 is the

NP tensor of the perturbed spacetime, and k* and m® are

two members of a null tetrad required to be aligned with the

Kinnersley tetrad in the background spacetime. By virtue of

the algebraic structure of the NP tensor in the background
spacetime, the computation of i requires only the

perturbation of the NP tensor, and the background tetrad
vectors, which are given by

2 M(1+2M
ko — [_ 1,0 M} , (A8)
s r°fs
I M '
me = T <1 - i)(TCOS 9) [i)(M sind, 0, l,ﬁ} (A9)

in (v,r,0,¢) coordinates. These expressions are valid to
first order in y.

Using the spin-weighted spherical harmonics , Y7 (0, y),
with the explicit form employed in [7] and noting that the
azimuthal dependence is described by w, as defined by
Eq. (A4), we find that the NP scalar can be decomposed as

wo(v,r.0,p) = Zy/o v.r,0.¢), (Al0a)
m==2
Wi (v.r,0,¢) = Ry (v, r), Y2 (0. w), (A10b)
with
R (v, r) = a, (v)P5(r) + @, (v)M Q5 (r)
+ B, (0)SE(r) + iB, (V)MT 5 (r). (Al

where a,, and S, are defined in terms of £, and BJ, in
Egs. (28) of [7], and where the radial functions are given by

(2y —1)(6y* —6y — 1) .

m——1 imy,

2T R

(Al2a)

4y> —2y* =26y + 31y —4y — 1
6(y = 1)%y

Qy =21n(y) +

+ |2dilog(y) + In(y)? (A12b)
598y — 1214y3 + 361y? + 204y + 33 im
108(y — 1)2y2 i
(Al2c)
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(2y — 1)(6y* =6y — 1) |

S — 1 — , Al2d
? ny-nnr (Al2d)
4yS —2y* —26y° +31y* =4y — 1
Th =2In(y) +
? 6(y —1)%?

+ |2dilog(y) + In(y)? (A12e)

285y* — 558y + 443y? — 136y — 22
_ oY Y+ andy YT imy, (Al2f)

72(y — 1)%y?

where y = r/(2M). The decomposition of w7 includes
terms with Z =2 and ¢ = 3, but the latter were not
displayed here because they do not contribute to the
horizon fluxes. We have verified that y (with all terms
included) satisfies the Teukolsky equation linearized with
respect to y.

The expressions displayed in Eq. (A12) imply that the
asymptotic behavior of the radial functions is given by

M
n=8r=-1- Zim)(7 + O(M?/r?), (A13a)

2 9
QF = 42— +1- (”——2>imx+O(M/r),

M M 3 54
(A13b)
Tp— L pom 1o (215, +OM/r)
=— — —|=+=]im r).
2 T3y M 3 To4)t

(A13¢)

The constant terms in these expressions, including the
terms proportional to imy, are important for our purposes,
because they determine the overall normalization of the
Teukolsky function. We wish to call attention to the 7°
terms, and recall the observation made in Sec. VII, that our
final expressions for the fluxes disagree with those obtained
in [11] for the test-particle limit. The discrepancy, given in
Eq. (50), contains a term proportional to z2, while no such
term is present in the test-particle result. The asymptotic
behavior derived in Eq. (A13) is the first introduction of
factors of 72 in our calculation,” and this indeed happens for
all m #0 modes. This leads us to suspect that the
discrepancy might originate in the asymptotic behavior
of the Teukolsky function; see Sec. VIII B though for a
detailed defense of the above calculation.

*The factor of 72 arises from the asymptotic behavior of the
dilog function in Eq. (A12).
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APPENDIX B: MANO-SUZUKI-TAKASUGI
RADIAL FUNCTION

In order to test the robustness of our solution to the
Teukolsky equation, we calculate the energy flux using the
series solution obtained in [19] (hereafter referred to as
MST) rather than Eqgs. (13) and (15). We then use the
results of Sec. III and Appendix A to normalize the MST
radial function. The resulting energy flux is unaltered from
Eq. (43); it suffers from the same discrepancy from the
results of [11] indicating that our solution to the Teukolsky
equation is robust.

The (exact) Teukolsky equation is written in Kerr
coordinates (v, r,0,y), and each mode of the NP scalar
is decomposed as

(o) = R} (r)S7 (0)e™, (B1)
with a tilde indicating a frequency-domain function.
The complete function is obtained by multiplying by =",
and summing over # and m. To integrate the Teukolsky
equation we follow MST and define

k=1/1—yx>

replace r with a new independent variable £ defined by

€ =2Mw, 7= (e—my)/k, (B2)

r=M(1+k—-2k¢), (B3)
and replace R”(r) with a new dependent variable p(&)
defined by

Ry =Ny (=8)7 (1= &) p(&). (B4)
where N7' is a normalization constant and s = +2. It
should be noted that the range r > r,. = M(1 + k) corre-
sponds to £ < 0.

The function p%(¢) is expressed in MST as a sum of
hypergeometric functions,

(e

Py = Z A,W)Fn+v+1—-it,—n—-v—ir;

n=-—co

x1—s—iec—iré), (B5)
where the coefficients A,(v) satisfy a three-point recur-
rence relation (A, can be set equal to unity without loss of
generality), and v is a generalized angular-momentum
parameter defined to ensure that the sum converges. An
alternative representation of p(&) is

pr (&) = a7 ;&) + a7 (-v = 1;¢) (B6)

with
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S I(1-s—ie—it)[(2n+2v+1)
q,/#(l/’é)* Z An(y)r(n+y+1_lr)r‘(n+y+l—S—le)

n=—oo

X (=& TF (—n—v—it,—n—v+s+ie;—2n

=2u;1/&). (B7)

Equation (B5) is useful when one is interested in the
behavior of the radial function near { =0 (r = r, ). The
alternative form of Egs. (B6) and (B7) is useful when
—E>1(r/M>1).

For our purposes it is sufficient to set £ = 2 and expand
R (r) to first order in €. We have v =2 — 1% ¢2 + O(e3),

210
28 . .

Ay = mm)((lc —imy)(2x — imy)e + O(e*),  (BY)

28 . .
A, =- ﬁm)((lc —imy)(2x — imy)e + O(e?),  (BY)

2i . 2

Ay :§(2K— imy)e + O(e”), (B10)
Ao =1, (B11)
Ay = — 3k + imy)e + O(2), (B12)

90

and all other coefficients are higher order in €. These results
can be inserted in Eq. (B5) to obtain p4'(£) to first order in
€. The angular functions are known also to admit an
expansion in €, given schematically by

SP(0)e™ =, Y2 (0,w) + e[, Y2 (0, w)uy +, Y7 (0, p)]
+ O(e?), (B13)

where u, are numbers proportional to y [7]. Making the
substitution in Eq. (B1) gives

()3 = RE(1), Y2 (0.y) + RE(r),Y2(0.)
+RY (), Y7(0.y) + O(€), (B14)
where Ry (r) = O(1) 4+ O(e) is equal to the radial function
R% expanded to first order in €, while R}, (r) = O(e) are
constructed from RY (truncated to order €°) and . .
To normalize the radial function we examine the regime
r/M > 1. Making the substitutions in Egs. (B4), (B6), and
(B7), and making use of Eq. (B3), we find

PHYSICAL REVIEW D 94, 084043 (2016)
(Wo)3' ~R3(r), Y5 (0.w) + R (r), Y5 (0.w) + O(M*w?),
(B15)

with

RY(r) = _231{1 —l—%wr[l += <6lnﬁ— 1 +§imx>]

+OM/r, Mza)z)}, (B16)

where Z' is a new normalization related to N3’ by

241 (-1 —ie—ir) _,
Z"’l — _Nm —l(':, B17
2 2T(G— i) (1—ie) (B17)

and RY' o iMwZ%'. Notice that the asymptotic behavior of
the radial function is linear in y, enabling us to use the
asymptotic value of the radial function derived through a
first-order-in-y metric of Appendix A.

Equations (B15) and (B16) can now be compared with
Egs. (A10), (Al1), and (A13) to determine the amplitude
Z% in relation to a,,(w) and B, (w), the Fourier transforms
of the time-domain tidal moments «,(v) and fS,(v),
respectively. While the radial functions Rj(r) and
R4 (r) are formally distinct—the first is valid to all orders
in y, while the second is linearized with respect to y—they
can nevertheless be identified in the asymptotic regime,
which is insensitive to higher-order terms in y. Simple
algebra then yields

70 = (1 = i0\Mw)a,, + (1 — iT,Mo)if,, + O(M*w?),

(BIS)

with

F_i+”_2@' ]"-i_}.ﬂ_z_’_ﬁ'

1= 73T 3 7 5g )M 27T 3 g )
(B19)

With N7’ related to Z%' through Eq. (B17), the normaliza-
tion of the MST radial function is now determined. Using
this form for the Teukolsky function and following the
same steps as Sec. V, we again arrive at Eq. (43). Both
methods to solve the Teukolsky equation produce the same
discrepancy with the results as [11].
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