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Following previous works on generalized Abelian Proca theory, also called vector Galileon, we
investigate the massive extension of an SU(2) gauge theory, i.e., the generalized SU(2) Proca model, which
could be dubbed non-Abelian vector Galileon. This particular symmetry group permits fruitful applications
in cosmology such as inflation driven by gauge fields. Our approach consists in building, in an exhaustive
way, all the Lagrangians containing up to six contracted Lorentz indices. For this purpose, and after
identifying by group theoretical considerations all the independent Lagrangians which can be written at
these orders, we consider the only linear combinations propagating 3 degrees of freedom and having
healthy dynamics for their longitudinal mode, i.e., whose pure Stückelberg contribution turns into the
SU(2) multi-Galileon dynamics. Finally, and after having considered the curved space-time expansion of
these Lagrangians, we discuss the form of the theory at all subsequent orders.
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I. INTRODUCTION

In the search for well-motivated theories that describe the
primordial Universe, several attempts have been made to
obtain inflationary descriptions from particle physics (the
Standard Model, supersymmetry, grand unified theories,
etc.; see, e.g., Refs. [1–5]), or from quantum theories of
gravity such as supergravity, string theory, and loop
quantum gravity (see, e.g., Refs. [6–10]). This top-down
approach has been very fruitful, providing new ways to
understand the structure of the high energy theories
necessary to reproduce the observable properties of the
Universe, ranging from cosmic microwave background
radiation (CMB) to the large-scale structure (LSS).
However, little is known from the observational point of
view for many of these theories (those whose characteristic
energy scale is much higher than the electroweak one), the
CMB and LSS being, at present, the only situations in

which they would have had observable consequences and
would thus leave testable signatures. Since the power of the
current and proposed accelerators is not going to increase
as much as would be needed to directly test these theories in
the foreseeable future, we need to devise another approach
to the fundamental theory that describes nature.
Such an approach already exists, and it boils down to the

question of whether there is any choice in formulating the
fundamental theory. This bottom-up approach consists in
finding an action completely free of pathologies, the first
of them being the Ostrogradski instability [11] (the
Hamiltonian could be unbounded from below), and satisfy-
ing a given set of assumptions, e.g., symmetry requirements.
One then needs to define thematerial content of theUniverse
(scalar fields, vector fields, …), although, in principle, the
construction itself and the stability requirements constrain
some content and allow others so that thematerial content is,
once the conditions are applied, somehow redefined. This
very ambitious program is just beginning to be imple-
mented, and interesting works have been carried out in
which the extra material content (on top of gravity) is
composed of one or many scalar fields. It was Horndeski

*allys@iap.fr
†peter@iap.fr
‡yeinzon.rodriguez@uan.edu.co

PHYSICAL REVIEW D 94, 084041 (2016)

2470-0010=2016=94(8)=084041(19) 084041-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.084041
http://dx.doi.org/10.1103/PhysRevD.94.084041
http://dx.doi.org/10.1103/PhysRevD.94.084041
http://dx.doi.org/10.1103/PhysRevD.94.084041


[12] who found, for the first time, themost general action for
a scalar field and gravity that produces second-order
equations of motion. In general, if the Lagrangian is non-
degenerate, having equations of motion of second order at
most is a necessary requirement to avoid the Ostrogradski
instability [13,14]. By pursuing this goal, an action is found
that, however, still requires a Hamiltonian analysis in order
to guarantee that the instability is not present.
Horndeski’s construction was rediscovered in the context

of what is nowadays called Galileons [15]. The Galileons
are the scalar fields whose action, in flat spacetime, leads to
equations of motion that involve only second-order deriv-
atives. The idea has been extended by finding the so-called
generalized Galileons, allowing for lower-order derivatives
in the equations of motion [16,17]. The background space-
time geometry where these generalized Galileons live can
be promoted to a curved one by replacing the ordinary
derivatives with covariant ones and adding some counter-
terms that involve nonminimal couplings to the curvature
[18,19]. The latter guarantees the equations of motion for
both geometry and matter are still second order, so the
Galileons, both generalized and covariantized, are found.
This procedure is equivalent to that proposed by Horndeski
for one scalar field [20], but it loses some interesting terms
when more than one scalar field is present [21]. The
Galileon approach for scalar fields has found multiple
applications in cosmology, ranging from inflation (see, e.g.,
Refs. [22–32]) to dark energy (see, e.g., Refs. [33–50]).
The original proposal was based on the requirement of

second-order equations of motion for all the additional
degrees of freedom to gravity, all of them therefore being
dynamical so that the system is nondegenerate. The
generalization to the so-called extended Horndeski theories
also includes nonphysical degrees of freedom and thus
considers degenerate theories [51–55]. Such a construction
is by now well understood, and some cosmological
applications have also been considered [55–63].
However, scalar fields are not the only possibilities as the

matter content of the Universe. Horndeski indeed wondered
some 40 years ago what the action would be for an Abelian
vector field in curved spacetime [64]. Working with
curvature is a way to bypass the no-go theorem presented
in Ref. [65], which states that the only possible action for an
Abelian vector field in flat spacetime that leads to second-
order equations of motion is the Maxwell-type one.
Relaxing the gauge invariance allows for a nontrivial action
in flat spacetime, in this way generalizing the Proca
action [66,67]. The construction of the resulting vector
Galileon action has been well investigated and discussed,
so there is already a consensus about the number and type
of terms in the action, even in the covariantized version
[68–70]. Moreover, the analogous extended Horndeski
theories have been built for a vector field [71,72], and
the corresponding cosmological applications have been
explored [67,73–78].

Some cosmological applications of vector fields have
been investigated, and interesting scenarios, such as the fF2

model [79] and the vector curvaton [80,81], have been
devised. There is, however, an obstacle when dealing with
vector fields in cosmology: they produce too much
anisotropy, both at the background and at the perturbation
levels, well above the observable limits, unless one imple-
ments some dilution mechanism or considers only the
temporal component of the vector field (which is, however,
usually nondynamical). In the fF2 model, the potentially
huge anisotropy is addressed by coupling thevector field to a
scalar that dominates the energy density of theUniverse and,
therefore, dilutes the anisotropy; in contrast, in the vector
curvaton scenario, the anisotropy is diluted by the very rapid
oscillations of thevector curvaton around theminimumof its
potential. Another dilution mechanism is to consider many
randomly oriented vector fields [82]; however, this requires
a large number of them, indeed hundreds, so it is difficult to
justify it from a particle physics point of view. There is,
nevertheless, another possibility, the so-called “cosmic
triad” [82,83], a situation in which three vector fields
orthogonal to each other and of the same norm can give
rise to a rich phenomenology while making the background
and perturbations completely isotropic [84]. A couple of
very interesting models, gauge-flation [85,86] and chromo-
natural inflation [87], have implemented this idea by
embedding it in a non-Abelian framework and exploiting
the local isomorphism between the SO(3) and SU(2) groups
of transformations. At first sight, the cosmic triad configu-
ration looks very unnatural, but dynamical system studies
have shown that it represents an attractor configuration [88].
Unfortunately, although the background dynamics of these
twomodels is successful, their perturbative dynamicsmakes
them incompatible with the latest Planck observations
[89,90]. Despite this failure, such models have shown the
applicability that non-Abelian gauge fields can have in
cosmological scenarios.
Having in mind the above motivations, the purpose of

this paper is to build the first-order terms of the generalized
SU(2) Proca theory and to discuss the general form of the
complete theory. For the most part, we focus on those
Lagrangians containing up to six contracted Lorentz
indices, which we obtain exhaustively. To ensure that we
do not forget some terms, we first construct from group
theoretical considerations all possible Lagrangians at these
orders, before imposing the standard dynamical condition,
i.e., that only 3 degrees of freedom propagate. Then, after
identifying all the Lagrangians that imply the same dynam-
ics, e.g., those related by a conserved current, we verify that
the pure Stückelberg part of the Lagrangians is healthy, i.e.,
that it implies the SU(2) multi-Galileon dynamics. To this
end, it is useful to derive all the equivalent formulations of
the SU(2) adjoint multi-Galileon model, which we provide
in Appendix A. Then, after computing the relevant curved
space-time extension of our Lagrangians, we conclude
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about the status of the complete formulation of the theory,
i.e., that containing the higher order terms we did not
consider in this work.
The layout of this paper is the following. In Sec. II, the

generalized non-Abelian Proca theory is introduced, and
some technical aspects needed for later sections are laid
out; the procedure to build the theory is also described. In
Sec. III, the building blocks of the Lagrangian are sys-
tematically obtained. Section IV deals with the right
number of propagating degrees of freedom and the con-
sistency of the obtained Lagrangian with the scalar
Galileon nature of its longitudinal part. The covariantiza-
tion of the theory is performed in Sec. V, and the final
model, together with a discussion and comparison with the
Abelian case, is presented in Sec. VI. Appendix A presents
the construction of the multi-Galileon scalar Lagrangian in
the three-dimensional representation of SU(2) and its
equivalent formulations. Throughout this paper, we have
employed the mostly plus signature, i.e., ημν ¼ diagð−;þ;
þ;þÞ, and set ℏ ¼ c ¼ 1.

II. GENERALIZED NON-ABELIAN
PROCA THEORY

Our aim is to generalize the non-Abelian Proca theory,
described below, to include all possible second-order ghost-
free terms propagating only 3 degrees of freedom. After
discussing the general symmetry case, we concentrate on
the SU(2) symmetry, which is particularly interesting in a
cosmological perspective, as discussed in the Introduction,
and we roughly present the procedure, which will be
thoroughly explained below.

A. Non-Abelian Proca theory

Let us first present the nowadays standard non-Abelian
Proca theory. Also called a massive Yang-Mills model, this
theory had been extensively studied in the past, such as,
e.g., in Refs. [91–95], with a Hamiltonian formulation
detailed in Refs. [96,97]. Our starting point Lagrangian,
including the mass term, reads

L ¼ −
1

4
Fμν
a Fa

μν þ
1

2
m2Aμ

aAa
μ; ð1Þ

with the non-Abelian Faraday tensor given by

Fa
μν ¼ ∂μAa

ν − ∂νAa
ν þ gfabcAb

μAc
ν; ð2Þ

with g being the coupling constant and fabc the structure
constants of the symmetry group under consideration. This
can be considered as the limit of a valid particle physics
model based on a Higgs condensate whose corresponding
degree of freedom is assumed to be frozen, hence breaking
the relevant symmetry [73,74].
Let us emphasize a technical point at this stage: one

could work with the vector field assumed as an operator,
namely,

AμðxÞ ¼ Aa
μðxÞTa; ð3Þ

with Ta representing the operators associated with corre-
sponding elements of the underlying group in a given
representation. We then have, by definition of the algebra,
the commutation relations

½Ta; Tb� ¼ ifabcTc: ð4Þ
Since this work concentrates on the vector fields them-
selves and not on their action on other fields, it is simpler to
restrict our attention to the fields themselves, i.e.,

AμðxÞ ¼ fAa
μðxÞg; ð5Þ

which are in the Lie algebra of the symmetry group under
consideration. These two ways of writing the field oper-
ators are, of course, strictly equivalent, but the latter
formalism, with group indices attached to the vectors
themselves, merely does not need the introduction of the
algebra operators themselves and is thus more appropriate
for our purpose.
Any action needs to be a scalar, and this includes not

only the Lorentz group but also any internal symmetry,
such as that stemming from the algebra in Eq. (4). If the
relevant symmetry is of the local type, and for an
infinitesimal transformation, the vectors transform through

δAa
μ ¼ −

1

g
∂μα

aðxÞ þ fabcαbðxÞAc
μ; ð6Þ

which leaves invariant only the kinetic term Fa
μνF

μν
a , but of

course not even a mass term Aa
μA

μ
a, much less any extension

such as those we want to consider below. This is merely a
restatement of the well-known fact that mass breaks gauge
symmetry. We therefore restrict our attention to global
transformations of the kind

∂μα
a ¼ 0 ⇒ δAa

μ ¼ fabcαbAc
μ; ð7Þ

i.e., we assume the vector field itself transforms as the
adjoint representation, with dimension equal to that of the
symmetry group itself. It is also profitable, and maybe more
enlightening, to look at the effect of a finite local trans-
formation of the group, still described by a set of param-
eters αaðxÞ. Under this transformation, the vector field
transforms as

AμðxÞ ¼ Aa
μðxÞTa↦U½αaðxÞ�

�
−
1

g
∂μ þ AμðxÞ

�
U−1½αaðxÞ�;

ð8Þ
where U½αaðxÞ� describes the action of the group element
labeled by αaðxÞ. This allows us to emphasize that in the
case where the symmetry becomes global, i.e., where αaðxÞ
no longer depends on the space-time point, the vector field
transforms exactly as the adjoint representation of the
symmetry group. This is indeed the symmetry assumed
for the non-Abelian Proca (massive Yang-Mills) field. In
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the Abelian case, this transformation is trivial because the
action of the group commutes with the vector field, and the
transformation in Eq. (8) thus reduces to the identity in the
global symmetry case. In the non-Abelian case, however,
one needs to specify how the extra indices are to be
summed over in order to produce a singlet with respect to
this global symmetry transformation. To relate the set of
theories under considerations here with the more usual ones
in particle physics involving a local symmetry broken by
means of a Higgs field, one can envisage our transforma-
tion in Eq. (7) as the limit of that in Eq. (6).
With these motivating considerations, we now move on

to evaluating the most general theory with a massive vector
field transforming according to the adjoint representation of
a given global symmetry group.

B. Restricting attention to the SU(2) case

In view of the potentially relevant cosmological conse-
quences, from now on we restrict our attention to the case
for which the relevant symmetry group is SU(2), with
dimension equal to 3, and therefore consider a vector field
also of dimension 3. Since SU(2) is locally isomorphic to
SO(3), one can then simply use a vector representation with
group indices varying from 1 to 3 in Aa

μ; i.e., we restrict our
attention to the fundamental representation of SO(3).
The set of SU(2) structure constants is identical to the

three-dimensional Levi-Civita tensor ϵabc, whereas the
group metric gab, given by gab ¼ −fadefbed, is simply
the flat metric 2δab. The only primitive invariants are ϵabc
and δab [98–100], and one can therefore write all possible
contractions by merely contracting fields with contravariant
indices with all appropriate combinations of those two
primitive invariants written with covariant indices. Recall
also the further simplification induced by the fact that
contractions among structure constants (Levi-Civita sym-
bols in the case at hand) leaving one, two or three free
indices will, respectively, lead to a vanishing result, or
terms proportional to δab and ϵabc [101]; it is therefore often
unnecessary to use multiple contractions.
As already alluded to earlier, choosing SU(2) is not

innocuous as we aim at cosmological applications, in view,
in particular, of implementing inflation driven by gauge
fields (see, e.g., Refs. [85–90,102–115]): since its adjoint
representation is three dimensional, SU(2) permits us to
generate configurations for which all three vectors are
nonvanishing while ensuring isotropy.

C. Generalization

What follows is very similar to the generalized Abelian
Proca case as discussed, e.g., in Refs. [66–70,116] (see also
Refs. [117–119] for the equivalent curved space-time
construction). In brief, we construct the most general action
generalizing that of Proca for a massive SU(2) vector
field, i.e.,

SProca ¼
Z

LProcad4x ¼
Z �

−
1

4
Fa
μνF

μν
a þ 1

2
m2

AX

�
d4x;

ð9Þ

where X ≡ Aa
μA

μ
a. To the above action (9), we add all

possible terms containing not only functions of X but also
derivative self-interactions. These terms will have to fulfill
some conditions for the corresponding theory tomake sense.
We first split the vector into a scalar-pure vector decom-
position

Aa
μ ¼ ∂μπ

a þ Āa
μ; ð10Þ

where πa is a scalar multiplet in the 3 representation of
SU(2), i.e., the Stückelberg field generalized to the non-
Abelian case, and Āa

μ is a divergence-free vector
(∂μĀμa ¼ 0), containing the curl part of the field, i.e., that
for which the Abelian form of the Faraday tensor is non-
vanishing. The conditions one then must impose on the
theory in order for it to make (classical) sense are
(a) the equations of motion for all physical degrees of

freedom, i.e., for both Āa
μ and πa, and hence Aa

μ and πa,
must be at most second order, thus ensuring stability
[11,13,14],

(b) the action may contain at most second-order derivative
terms in πa and first-order derivatives for Aa

μ,
(c) each component of the SU(2) multiplet propagates

only 3 degrees of freedom, the zeroth component
being nondynamical.

In what follows, we apply these conditions and restrict our
attention to the theories involving terms with up to six
Lorentz indices contracted. From the cosmological perspec-
tive, such theories are expected to allow for a richer
phenomenology since this is what happens for the
Abelian Proca case [67,73–78].

D. Procedure

We now proceed along the lines of Ref. [68]; i.e., we
build, in Sec. III, a complete basis of linearly independent
test Lagrangians describing all possible Lagrangians con-
taining a given number of vector fields and their derivatives;
the detailed prescription is given in Sec. III A. Next we
demand only 3 degrees of freedom per multiplet component
of the vector field, which translates into a condition on the
Hessian [66,68], the latter being defined by

Hμνde ¼ ∂
∂ð∂0AμdÞ

∂
∂ð∂0AνeÞ

L; ð11Þ

for a given Lagrangian L. This functional over the fields is
symmetric under the index exchange ðμ; dÞ ↔ ðν; eÞ.
In order for Hμνde to have three vanishing eigenvalues,

one for each timelike component of the three vectors Aμd,
and since all the terms it is built of are a priori independent
(up to symmetries), a necessary condition is that we
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demand H0νde ¼ 0; this requirement will be explicitly
checked in Sec. IVA for each test Lagrangian.
The above condition is, however, not sufficient, for it

does not exhaust all the constraints and thus does not count
the effectively propagating degrees of freedom. For in-
stance, some terms inducing no dynamics for the time
components of the vector fields may also yield no dynamics
for some other component, or even for the overall vector
field. The required analysis is tedious and must be followed
step by step [96,97].
As the final step of the above analysis, we consider the

scalar part associated with those linear combinations of test
Lagrangians verifying the Hessian condition. One must
check, which is done in Sec. IV D, that they are of two
kinds: either they have no dynamics at all, being vanishing
or given by a total derivative, or their dynamics is second
order in the equations of motion of the scalar field; i.e., they
belong to the class of generalized Galileons [100,120–124].
This will provide the most general terms that verify the
requirements we demand, formulated in terms of the non-
Abelian Faraday tensor; see Sec. IV E.
Before moving on, we mention that even though the

procedure discussed above and applied below is allegedly
tedious, it guarantees an exhaustive list of all possible terms
at each order, and, in particular, all those specific to the
non-Abelian case. Those terms might have been obtained
by some quicker method, but we prefer to be able to
produce all the theoretically acceptable terms rather than
constructing a few. In view of possible cosmological
applications, there is indeed no way to say which terms
will be relevant and which ones will not.

III. CONSTRUCTION OF THE TEST
LAGRANGIANS

As anticipated above, our method relies heavily on the
construction of a basis of test Lagrangians satisfying
the symmetry requirement, on which we later apply the
Hessian condition. This is the purpose of this section.

A. Description of the procedure

We now proceed to build the complete basis, in the sense
of linear algebra, of test Lagrangians, for a given number of
fields and their first derivatives. Since they are linearly
independent, we will then be able to write down the most
general theory at the given order as a linear combination of
these Lagrangians.
In order to construct Lagrangians, i.e., scalars, we need

to consider the Lorentz and group indices. The former
spacetime indices run from 0 to 3 and are denoted by small
Greek letters, while the latter group indices run from 1 to 3,
since we assume the adjoint three-dimensional SU(2)
representation, and are represented by small Latin letters
from the beginning of the alphabet. We first write down all
the Lorentz scalar quantities that may be formed with a

given number of fields and first derivatives, and then
consider all the SU(2) index combinations leading to
SU(2) scalars of these Lorentz scalars.
For the sake of simplicity, beginning with the Lorentz

sector, we dismiss the group indices altogether, keeping
in mind, however, that their presence might spoil some
symmetry properties: contractions between symmetric and
anti-symmetric (with respect to Lorentz indices only) tensors
will not necessarily vanish when group indices are included,
as exemplified by the starred equations in the next section.
The Lorentz scalars, once formed, will then subsequently be
assigned SU(2) indices following simple alphabetical order,
leaving as many free SU(2) indices as there are fields in the
term, to then be contracted with a relevant pure SU(2) tensor.
For instance, a term like AμAνð∂μAνÞ will be indexed as
AμaAνbð∂μAνcÞ, demanding contraction with a structure
constant ϵabc to form a Lorentz and SU(2) scalar. This
procedure can seem rather tedious, and it most definitely is,
but it ensures that we construct a complete basis.
For simplicity, we restrict our attention to those

Lagrangians containing up to six Lorentz indices con-
tracted as they should be to form a scalar.

B. Lorentz sector

An easy way to classify the Lorentz scalars that one can
form with a given number of 4-vectors consists in using the
local equivalence, at the Lie-algebraic level, between
SO(3,1) and SUð2Þ × SUð2Þ (see, e.g., Ref. [125]). One
obtains the following table [98,126]:

Number of vector fields Aμ 1 2 3 4 5 6 7 8

Number of Lorentz scalars 0 1 0 4 0 25 0 196

These scalars can be written in terms of the primitive
invariants, namely, gμν and ϵμνρσ. As shown in the table, an
odd number of vector fields is impossible, as is obvious
from the fact that one cannot form primitive Lorentz
invariants with an odd number of indices. For two fields,
the only contracting possibility is gμν, while for four free
Lorentz indices, the contractions with a term of the form
AμBνCρDσ can be performed with any member of the list

8>>><
>>>:

gμνgρσ;

gμρgνσ;

gμσgνρ;

ϵμνρσ:

ð12Þ

For the case with six free indices of the form
AμBνCρDσEδFϵ, one finds the fifteen independent pos-
sibilities of combining three metrics, i.e., gμνgρσgδϵ and the
nonequivalent permutations of indices, as well as fifteen
combinations of a metric and a Levi-Civita tensor, of which
only ten are independent, which we choose to be
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8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

gνρϵμσδϵ;

gνσϵμρδϵ;

gνδϵμρσϵ;

gνϵϵμρσδ;

gρσϵμνδϵ;

gρδϵμνσϵ;

gρϵϵμνσδ;

gσδϵμνρϵ;

gσϵϵμνρδ;

gϵδϵμνρσ:

ð13Þ

Now, one needs to take into account that when only one
vector Aμ and its gradient are plugged into these expres-
sions, some terms are identical and can thus be simplified.
The following table sums up the number of independent
terms that can be built for a given product of vectors and
gradients. Numbers in parentheses indicate those terms that
would vanish if it were not for the group index; in our
listings of all available Lagrangians below, we indicate
these contractions with a star. Given the above discussion,
we are sure that all the possible terms have been found, and
they are all linearly independent.

#AρAσ

#ð∂μAνÞ 0 1 2

1 1 (0) 3 (1) 6 (4)
2 4 (0) 13 (3) 34 (23)
3 9 (2) 52 (22)

We now discuss each case separately.

For a single derivative and no additional field, one gets
the simplest combination, namely, ð∂ · AÞ. With two addi-
tional fields, one gets

8>><
>>:

ð∂ · AÞðA · AÞ;
½ð∂μAνÞAμAν�;
½ϵμνρσð∂μAνÞAρAσ�; ð�Þ

ð14Þ

and with four additional fields, one obtains

8>>>>>>>>><
>>>>>>>>>:

ð∂ · AÞðA · AÞðA · AÞ;
½ð∂μAνÞAμAν�ðA · AÞ;
½ϵμνρσð∂μAνÞAρAσ�ðA · AÞ; ð�Þ
½ϵμνρσð∂μAαÞAνAρAσAα�; ð�Þ
½ϵμνρσð∂αAμÞAνAρAσAα�; ð�Þ
ð∂ · AÞ½ϵμνρσAμAνAρAσ�: ð�Þ

ð15Þ

With two derivatives and no additional field, one then
finds

8>>>>><
>>>>>:

ð∂ · AÞð∂ · AÞ;
½ð∂μAνÞð∂μAνÞ�;
½ð∂μAνÞð∂νAμÞ�;
½ϵμνρσð∂μAνÞð∂ρAσÞ�;

ð16Þ

whereas with two additional fields, one finds1

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð∂ · AÞð∂ · AÞðA · AÞ;
½ð∂μAνÞð∂μAνÞ�ðA · AÞ;
½ð∂μAνÞð∂νAμÞ�ðA · AÞ;
½ϵμνρσð∂μAνÞð∂ρAσÞ�ðA · AÞ;
½ð∂μAνÞAμAν�ð∂ · AÞ;
½ϵμνρσð∂μAνÞAρAσ�ð∂ · AÞ; ð�Þ
½AμAνð∂μAαÞð∂νAαÞ�;
½AμAνð∂μAαÞð∂αAνÞ�;
½AμAνð∂αAμÞð∂αAνÞ�;
½ϵμνρσAμAνð∂ρAαÞð∂σAαÞ�; ð�Þ
½ϵμνρσAμAνð∂ρAαÞð∂αAσÞ�; ð�Þ
½ϵμνρσAμAαð∂νAρÞð∂σAαÞ�;
½ϵμνρσAμAαð∂νAρÞð∂αAσÞ�:

ð18Þ

Finally, demanding three gradients of the vector field and
no vector field itself, one obtains

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð∂ · AÞð∂ · AÞð∂ · AÞ;
½ð∂μAνÞð∂μAνÞ�ð∂ · AÞ;
½ð∂μAνÞð∂νAμÞ�ð∂ · AÞ;
½ϵμνρσð∂μAνÞð∂ρAσÞ�ð∂ · AÞ;
½ð∂μAνÞð∂νAρÞð∂ρAμÞ�;
½ð∂μAνÞð∂νAρÞð∂μAρÞ�;
½ϵμνρσð∂μAαÞð∂νAαÞð∂ρAσÞ�; ð�Þ
½ϵμνρσð∂μAαÞð∂αAνÞð∂ρAσÞ�;
½ϵμνρσð∂αAμÞð∂αAνÞð∂ρAσÞ�: ð�Þ

ð19Þ

1As an example of the fact that not every reshuffling of indices
is independent, let us consider the term ϵμνρσAμAνð∂αAρÞð∂αAσÞ,
which could, in principle, have appeared in the list in Eq. (18). It
is indeed not necessary because the property

gμρϵνσδϵ ¼ gνρϵμσδϵ − gρσϵμνδϵ þ gρδϵμνσϵ − gρϵϵμνσδ ð17Þ

allows us to write it as a linear combination of the terms in
Eq. (18).
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C. Group sector

Let us now proceed with the similar procedure but now
in the group sector. Since we assumed that the vector fields
transform according to the representation of dimension 3 of
SU(2), one can safely use known results from representa-
tion theory of compact Lie groups. The table below
summarizes the different possibilities to obtain an SU(2)
singlet as a function of the number of fields belonging to
the 3 representation of SU(2) [98,126]:

Number vector fields in the 3 of SU(2) 1 2 3 4 5 6 7

Number of SU(2) singlets 0 1 1 3 6 15 36

We reproduce below the procedure explained in
Sec. III A, whereby one constructs the necessary products
of group metric coefficients δab and structure constants
ϵabc. Getting as many independent terms as predicted by the
representation theory (table above) ensures completeness of
the basis. Similar to the Lorentz invariance discussed in the
previous section, these two tensors are the only primitive
invariants of the group [98–100].
To contract with two or three free SU(2) indices, the only

possible choices are, respectively, δab and ϵabc. With four
fields, one can make use of the three combinations

8><
>:

δabδcd;

δacδbd;

δadδbc;

ð20Þ

while five fields demand the following six possibilities,
namely,

8>>>>>>>>><
>>>>>>>>>:

δabϵcde;

δacϵbde;

δadϵbce;

δbcϵade;

δbdϵace;

δcdϵabe:

ð21Þ

As in Sec. III B, one can devise other possible formu-
lations that apply, but they will always be expressible as
linear combinations of the above. For instance, relations
between the structure constants, such as

ϵab
eϵcde ¼ δacδbd − δadδbc; ð22Þ

imply that contracting a four-index term with two structure
constants is equivalent to a linear combination of the terms
given in Eq. (20).

D. Final test Lagrangians

Gathering the results and applying the procedure of
Sec. III A, we are now in a position to write down our test
Lagrangians, scalars under both Lorentz and SU(2) trans-
formations. Some of these terms simplify through con-
tractions, e.g., ϵabcðAa · AbÞð∂ · AcÞ ¼ 0, and we are left
with fewer terms than the naive multiplication of all singlet
possibilities of each sector would have otherwise sug-
gested. This is fortunate because the number of terms to be
considered a priori is quickly increasing with the number
of fields involved, as shown in the table below:

#Aρb

#∂μAνa 0 2 4

1 0 3 36
2 4 42 510
3 9 312

After simplifications, we find two terms (instead of three
according to the table) containing a single derivative term
and two additional vector fields,

�
L1 ¼ ϵabc½ð∂μAaνÞAb

μAc
ν�;

L2 ¼ ϵabc½ϵμνρσð∂μAaνÞAbρAcσ�; ð23Þ

and eight with four such fields, namely,

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

L1 ¼ ϵabc½ð∂μAdνÞAa
μAb

ν �ðAc · AdÞ;
L2 ¼ ϵabc½ð∂μAaνÞAd

μAb
ν �ðAc · AdÞ;

L3 ¼ ϵabc½ð∂μAaνÞAb
μAd

ν �ðAc · AdÞ;
L4 ¼ ϵabc½ϵμνρσð∂μAdνÞAaρAbσ�ðAc · AdÞ;
L5 ¼ ϵabc½ϵμνρσð∂μAaνÞAdρAbσ�ðAc · AdÞ;
L6 ¼ ϵabc½ϵμνρσð∂μAdαÞAν

dA
aρAbσAc

α�;
L7 ¼ ϵabc½ϵμνρσð∂αAdμÞAν

dA
aρAbσAc

α�;
L8 ¼ ϵabc½ϵμνρσð∂ · AdÞAdμAaνAbρAcσ�:

ð24Þ

Note that one cannot build a single derivative term without
an additional field, as it would otherwise belong to the 3
representation of SU(2).
For two first-order vector field derivatives without addi-

tional fields, one gets

8>>><
>>>:

L1 ¼ ð∂ · AaÞð∂ · AaÞ;
L2 ¼ ½ð∂μAν

aÞð∂μAa
νÞ�;

L3 ¼ ½ð∂μAν
aÞð∂νAa

μÞ�;
L4 ¼ ½ϵμνρσð∂μAaνÞð∂ρAσ

aÞ�;

ð25Þ

whereas with two additional vector fields, one gets
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

L1 ¼ ð∂ · AaÞð∂ · AaÞðAb · AbÞ;
L2 ¼ ð∂ · AaÞð∂ · AbÞðAa · AbÞ;
L3 ¼ ½ð∂μAν

aÞð∂μAa
νÞ�ðAb · AbÞ;

L4 ¼ ½ð∂μAν
aÞð∂μAb

νÞ�ðAa · AbÞ;
L5 ¼ ½ð∂μAν

aÞð∂νAa
μÞ�ðAb · AbÞ;

L6 ¼ ½ð∂μAν
aÞð∂νAb

μÞ�ðAa · AbÞ;
L7 ¼ ½ϵμνρσð∂μAaνÞð∂ρAσ

aÞ�ðAb · AbÞ;
L8 ¼ ½ϵμνρσð∂μAaνÞð∂ρAσ

bÞ�ðAa · AbÞ;
L9 ¼ ½ð∂μAν

aÞAa
μAb

ν �ð∂ · AbÞ;
L10 ¼ ½ð∂μAν

aÞAb
μAa

ν �ð∂ · AbÞ;
L11 ¼ ½ð∂μAν

aÞAb
μAbν�ð∂ · AaÞ;

L12 ¼ ½ϵμνρσð∂μAaνÞAρ
aAσ

b�ð∂ · AbÞ;
L13 ¼ ½Aa

μAaνð∂μAα
bÞð∂νAb

αÞ�;
L14 ¼ ½Aa

μAb
νð∂μAα

aÞð∂νAbαÞ�;
L15 ¼ ½Aa

μAaνð∂μAbαÞð∂αAν
bÞ�;

L16 ¼ ½Aa
μAb

νð∂μAα
aÞð∂αAν

bÞ�;
L17 ¼ ½Aa

μAb
νð∂μAα

bÞð∂αAν
aÞ�;

L18 ¼ ½ϵμνρσAaμAbνð∂ρAα
aÞð∂σAbαÞ�;

L19 ¼ ½ϵμνρσAaμAbνð∂ρAα
aÞð∂αAσ

bÞ�;
L20 ¼ ½ϵμνρσAaμAbνð∂αAρ

aÞð∂αAσ
bÞ�;

L21 ¼ ½ϵμνρσAaμAα
að∂νAρ

bÞð∂σAb
αÞ�;

L22 ¼ ½ϵμνρσAaμAα
bð∂νAρ

aÞð∂σAb
αÞ�;

L23 ¼ ½ϵμνρσAμ
aAα

bð∂νAbρÞð∂σAa
αÞ�;

L24 ¼ ½ϵμνρσAaμAα
að∂νAbρÞð∂αAσ

bÞ�;
L25 ¼ ½ϵμνρσAaμAα

bð∂νAρ
aÞð∂αAbσÞ�;

L26 ¼ ½ϵμνρσAμ
aAα

bð∂νAbρÞð∂αAaσÞ�;
L27 ¼ ½Aa

μAb
νð∂μAα

bÞð∂νAaαÞ�;
L28 ¼ ½Aa

μAb
νð∂αAμ

bÞð∂αAν
aÞ�:

ð26Þ

Finally, with three derivatives, one finds
8>>>>>><
>>>>>>:

L1 ¼ ϵabc½ð∂μAa
νÞð∂νAb

ρÞð∂ρAc
μÞ�;

L2 ¼ ϵabc½ð∂μAa
νÞð∂νAb

ρÞð∂μAcρÞ�;
L3 ¼ ϵabc½ϵμνρσð∂μAaαÞð∂νAb

αÞð∂ρAcσÞ�;
L4 ¼ ϵabc½ϵμνρσð∂μAaαÞð∂αAbνÞð∂ρAcσÞ�;
L5 ¼ ϵabc½ϵμνρσð∂αAaμÞð∂αAbνÞð∂ρAcσÞ�;

ð27Þ

completing our list of test Lagrangians.

IV. CONSTRUCTION OF THE HEALTHY TERMS

A. Hessian condition

Let us now apply the Hessian condition, as discussed in
Sec. II D. The first step is to calculate the Hessians

associated with the various test Lagrangians, defined by
Eq. (11). One sees that only those terms containing at least
two first-order derivatives of the vector field yield a
nonvanishing value. In practice, one gets8>>>><

>>>>:

Hμνde
1 ¼ 2g0μg0νgde;

Hμνde
2 ¼ −2gμνgde;

Hμνde
3 ¼ 2g0μg0νgde;

Hμνde
4 ¼ 0;

ð28Þ

for the terms with two first-order derivatives and no
additional fields, and8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Hμνde
1 ¼ 2g0μg0νgdeðAb · AbÞ;

Hμνde
2 ¼ 2g0μg0νðAd · AeÞ;

Hμνde
3 ¼ −2gμνgdeðAb · AbÞ;

Hμνde
4 ¼ −2gμνðAd · AeÞ;

Hμνde
5 ¼ 2g0μg0νgdeðAb · AbÞ;

Hμνde
6 ¼ 2g0μg0νðAd · AeÞ;

Hμνde
7 ¼ 0;

Hμνde
8 ¼ 0;

Hμνde
9 ¼ A0dAμeg0ν þ A0eAνdg0μ;

Hμνde
10 ¼ A0eAμdg0ν þ A0dAνeg0μ;

Hμνde
11 ¼ A0bAμ

bg
0νgde þ A0bAν

bg
0μgde;

Hμνde
12 ¼ ϵ0μρσAρdAσeg0ν þ ϵ0νρσAρeAσdg0μ;

Hμνde
13 ¼ 2A0bA0

bg
μνgde;

Hμνde
14 ¼ 2A0dA0egμν;

Hμνde
15 ¼ A0bAν

bg
μ0gde þ A0bAμ

bg
ν0gde;

Hμνde
16 ¼ A0dAνegμ0 þ A0eAμdgν0;

Hμνde
17 ¼ A0eAνdgμ0 þ A0dAμegν0;

Hμνde
18 ¼ 0;

Hμνde
19 ¼ ϵρσ

0νAρdAσegμ0 þ ϵρσ
0μAρeAσdgν0;

Hμνde
20 ¼ −2ϵρσμνAρdAσe;

Hμνde
21 ¼ 0;

Hμνde
22 ¼ 0;

Hμνde
23 ¼ 0;

Hμνde
24 ¼ 0;

Hμνde
25 ¼ ϵρ

0μνAρdA0e þ ϵρ
0νμAρeA0d;

Hμνde
26 ¼ ϵρ

0μνAρeA0d þ ϵρ
0νμAρdA0e;

Hμνde
27 ¼ 2A0dA0egμν;

Hμνde
28 ¼ −2AνdAμe;

ð29Þ
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for those with two first-order derivatives and two additional vector fields.
For the terms with three first-order derivatives, we have

8>>>>>>>><
>>>>>>>>:

Hμνde
1 ¼ 3ϵdecðg0μ∂νAc0 − g0ν∂μAc0Þ;

Hμνde
2 ¼ ϵdecðg0μ∂0Acν − g0ν∂0AcμÞ þ ϵdecð∂μAcν − ∂νAcμÞ;

Hμνde
3 ¼ 0;

Hμνde
4 ¼ ϵdecðϵ0νρσg0μ∂ρAc

σ − ϵ0μρσg0ν∂ρAc
σÞ þ 2ϵdecϵ

ρμ0ν∂ρAc0;

Hμνde
5 ¼ −2ϵdecϵμνρσ∂ρAc

σ þ 4ϵdecϵ
ρμ0ν∂0Ac

ρ:

ð30Þ

With these partial Hessians, we now construct a basis of
terms fulfilling the condition discussed above, i.e., such
thatH0μde ¼ 0 for all values of μ, d and e; see Sec. II D. To
reach this goal, using notations already introduced in
Ref. [68], we produce a Lagrangian by means of a linear
combination of our test ones, namely,

Ltest ¼
X
i

xiLi; ð31Þ

for a yet-unknown set of constant parameters xi. The
Hessian is then calculated for this Lagrangian, leading to
algebraic equations for the xi whose roots provide the
required actions. It turns out to be easier to separately
compute the cases μ ¼ 0 and μ ¼ i, as well as d ¼ e
and d ≠ e.
Let us begin with the case d ¼ e. Test Lagrangians with

two derivatives and no additional fields have only one
Hessian component not identically vanishing, namely,

H00dd ¼ 4ðx1 þ x2 þ x3Þ; ð32Þ

while for two additional vector fields, there are four
independent Hessian conditions, given by

H00dd ¼ 4ðx1þx3þx5ÞðAb ·AbÞþ2ðx2þx4þx6ÞðAd ·AdÞ
−2ðx9þx10þx14þx16þx17þx27þx28ÞðA0dA0dÞ
−4ðx11þx13þx15ÞðA0bA0

bÞ; ð33Þ

H0idd ¼ −ðx9 þ x10 þ x16 þ x17 þ 2x28ÞðA0dAidÞ
− 2ðx11 þ x15ÞðA0bAi

bÞ
− ðx12 þ x19 þ 2x20Þðϵρσ0iAρdAσdÞ: ð34Þ

On the other hand, the case d ≠ e implies

H00de ¼ 2ðx2 þ x4 þ x6ÞðAd · AeÞ
− 2ðx9 þ x10 þ x14 þ x16

þ x17 þ x27 þ x28ÞðA0dA0eÞ; ð35Þ

H0ide ¼ −ðx9 þ x17 þ 2x28ÞðA0eAidÞ
− ðx10 þ x16ÞðA0dAieÞ
− ð−x12 þ x19 þ 2x20Þðϵ0iρσAρdAσeÞ: ð36Þ

Making these four terms vanish can be done, without loss
of generality (since all linear combinations of the resulting
terms are all also acceptable):

x3 ¼ −x1 − x5;

x4 ¼ −x2 − x6;

x12 ¼ 0;

x13 ¼ 0;

x14 ¼ −x27 þ x28;

x15 ¼ −x11;

x16 ¼ −x10;

x17 ¼ −x9 − 2x28;

x19 ¼ −2x20: ð37Þ
With three derivatives, one finds thatH00dd,H00de (d ≠ e)

and H0idd identically vanish, whereas for d ≠ e, we have

H0ide ¼ ϵc
de½ð−3x1 − x2Þ∂iA0c − ðx4 þ 2x5Þϵ0iρσ∂ρAc

σ�;
ð38Þ

thus leading to the conditions

x2 ¼ −3x1;

x4 ¼ −2x5: ð39Þ

B. Simplification of the Lagrangian

For one gradient and two vector fields, we can define the
current

Jμ ¼ ϵabcϵ
μνρσAa

νAb
ρAc

σ; ð40Þ
showing that L2 is a total derivative, namely,

∂μJμ ¼ 3L2: ð41Þ
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A similar technique applies for one derivative term and
four additional vector fields: in this case, one forms the
following two currents,

Jμ1 ¼ ϵμνρσAνaAρbAσcAαdAαdϵabc;

Jα2 ¼ ϵμνρσAμaAνbAρcAσdAα
dϵabc; ð42Þ

yielding

∂μJ
μ
1 ¼ 3ðL3 − 2L5 þ 2L6Þ;

∂αJα2 ¼ −L8: ð43Þ
Finally, some terms involving two first-order derivatives
can be described by

Jμ1 ¼ δμ1μ2ν1ν2A
ν1a∂μ2A

ν2
a ; ð44Þ

Jμϵ ¼ ϵμνρσAa
νð∂ρAσaÞ; ð45Þ

where we have used the definition δμ1μ2ν1ν2 ≡ δμ1ν1δ
μ2
ν2 − δμ1ν2δ

μ2
ν1

stemming from Eq. (A2), leading to

∂μ1J
μ1 ¼ L1 − L3; ð46Þ

∂μJ
μ
ϵ ¼ L4: ð47Þ

Terms containing two derivatives and two fields
are slightly more involved. We first make use of the
identity [127,70]

Aμα ~Bνα þ Bμα ~Aνα ¼
1

2
ðBαβ ~AαβÞδμν ; ð48Þ

valid for all antisymmetric tensors A and B. This provides
the relations

ðGμαa ~Gb
ναþGμαb ~Gνα

aÞAμaAν
b¼

1

2
ðGαβa ~Gb

αβÞðAa ·AbÞ ð49Þ

and

Gμαa ~GναaAb
μAν

b ¼
1

4
ðGαβa ~GαβaÞðAb · AbÞ; ð50Þ

where Gμαa is the Abelian form of the Faraday tensor as
defined below in Eq. (59). From these, one then derives the
following two identities relating the Lagrangians in Eq. (26):

L25 þ L26 − L22 − L23 ¼ L8 ð51Þ

and

2ðL24 − L21Þ ¼ L7: ð52Þ

It is also possible to find total derivatives to reduce the
number of independent terms. First, one can use the fact
that ~G is divergence-free, introducing the currents

JμG;1 ¼ ~Gμν
a Aa

νðAb · AbÞ;
JμG;2 ¼ ~Gμν

a AνbðAa · AbÞ; ð53Þ

providing

∂μJ
μ
G;1 ¼ L7 − 2L22;

∂μJ
μ
G;2 ¼ L8 − L21 − L23: ð54Þ

One can subsequently use the antisymmetric forms written
from δμ1μ2ν1ν2 :

Jμδ;1 ¼ δμ1μ2ν1ν2A
λ
bA

b
λA

ν1
a ∂μ2A

ν2a;

Jμδ;2 ¼ δμ1μ2ν1ν2A
λ
aAb

λA
ν1a∂μ2A

ν2
b ;

Jμδ;3 ¼ δμ1μ2ν1ν2A
λaAν1

a A
ν2
b ∂μ2A

b
λ ; ð55Þ

resulting in

∂μJ
μ
δ;1 ¼ L1 − L5 þ 2L10 − 2L16;

∂μJ
μ
δ;2 ¼ L2 − L6 þ L9 þ L11 − L15 − L17;

∂μJ
μ
δ;3 ¼ L14 þ L9 þ L15 − L27 − L17 − L11: ð56Þ

Finally, we can write

Jμϵ;1 ¼ ϵμνρσAνaAρbAα
a∂σAαb; ð57Þ

implying

∂μJ
μ
ϵ;1 ¼ L18 þ L23 − L21: ð58Þ

All the above conditions are linearly independent. They
allow us to write Lagrangians L9, L10 − L16, L11 − L15,
L18, L21, L22, L24, and L25 as functions of the other
Lagrangians. Note, however, that one can always add these
to other terms of the final basis for simplification purposes.
Lastly, the current Jμ ¼ ϵμνρσ∂νAαa∂ρAb

αAσcϵabc permits
us to simplify one of the terms containing three first-order
derivatives by making use of ∂μJμ ¼ L3.

C. A new basis

One can now rewrite our basis of Lagrangians satisfying
the Hessian condition, taking into account the extra
relations stemming from the total derivatives and the
identity of Ref. [127]. We group our terms to produce a
new and more convenient basis, and for that purpose, we
use the Abelian form of the Faraday tensor, namely,

Ga
μν ¼ ∂μAa

ν − ∂νAa
μ; ð59Þ

as well as its Hodge dual ~Ga
μν ¼ 1

2
ϵμνρσGρσa, also defined in

the usual way. Using the Abelian form of the Faraday
tensor to describe a non-Abelian vector field theory may
seem a bit unusual, but it considerably simplifies our
forthcoming considerations since this term naturally
appears from the first-order derivatives of the vector field
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and cancels in the scalar sector. We later move on to a
formulation using the actual non-Abelian Faraday tensor, as
is given by Eq. (2). We also make use of the symmetric
counterpart of the Abelian Faraday tensor, namely,

Saμν ¼ ∂μAa
ν þ ∂νAa

μ: ð60Þ

For one first-order derivative of the vector field and two
additional vector fields, we obtain

~L1 ¼ 2L1 ¼ ϵabc½GμνaAb
μAc

ν�; ð61Þ

and with four additional vector fields, we obtain

8>>>>>>>>>>><
>>>>>>>>>>>:

~L1¼ 2L1¼ ϵabc½GμνdAa
μAb

ν �ðAc ·AdÞ;
~L2¼L2þL3¼ ϵabc½SμνaAb

μAd
ν �ðAc ·AdÞ;

~L3¼L3−L2 ¼ ϵabc½GμνaAb
μAd

ν �ðAc ·AdÞ;
~L4¼L4 ¼ ϵabc½ ~GμνdAa

μAb
ν �ðAc ·AdÞ;

~L5¼L5 ¼ ϵabc½ ~GμνaAd
μAb

ν �ðAc ·AdÞ;
~L6¼L6−L7 ¼ ϵabc½ϵμνρσGμαdAν

dA
aρAbσAc

α�:

ð62Þ

Terms with two first-order derivatives and no additional
fields can be written as

L1 ¼ 2ðL2 − L3Þ ¼ Gμν
a Ga

μν; ð63Þ

and with two additional fields, they are given by

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

~L1¼L1−L5¼ δμ1μ2ν1ν2A
λ
bA

b
λð∂μ1A

ν1
a Þð∂μ2A

ν2aÞ;
~L2¼ 2ðL3−L5Þ¼Gμν

a Ga
μνðAb ·AbÞ;

~L3¼L2−L6¼ δμ1μ2ν1ν2A
λ
aAλbð∂μ1A

ν1aÞð∂μ2A
ν2bÞ;

~L4¼ 2ðL4−L6Þ¼Gμν
a GμνbðAa ·AbÞ;

~L5¼ 2L7¼ ~Ga
μνG

μν
a ðAb ·AbÞ;

~L6¼ 2L8¼ ~GμνaG
μν
b ðAa ·AbÞ;

~L7¼L18þL20−2L19¼ ½ϵμνρσAaμAbνGρα
a Gσ

αb�;
~L8¼L26þL23¼ ~Gb

μσA
μ
aAαbSασa;

~L9¼L26−L23¼ ~Gb
μσA

μ
aAαbGασa;

~L10¼L14−L27¼ δμ1μ2ν1ν2A
a
μ1A

b
μ2ð∂μ1Aα

aÞð∂μ2AαbÞ;
~L11¼L27þL28−2L17¼Aa

μAb
νG

μ
αbG

να
a :

ð64Þ

As anticipated, we obtain 11 independent terms, which
correspond to 28 terms to begin with, with 8 constraints and
9 Hessian conditions.

Finally, the three-gradient case yields

8<
:

~L1 ¼ 2ðL1 − 3L2Þ ¼ ϵabcGμ
ν
aGν

ρ
bGρ

μ
c;

~L2 ¼ 2L4 − L3 − L5 ¼ ϵabcGμαaGα
νb ~Gμν

c:
ð65Þ

D. Scalar contribution

Let us now consider the scalar part of the previously
developed Lagrangian, as explained in Sec. II D, making
the substitution Aa

μ → ∂μπ
a and writing only those terms

that do not identically vanish, using the results of
Appendix A, where the useful Galileon Lagrangians are
provided (Appendix A 2), as well as the linear combina-
tions leading to second-order equations (Appendix A 4).
With one derivative and four vector fields, the only

remaining term of the scalar sector out of the original
three is

~L2 ¼ ϵabcSμνaAb
μAd

νðAc · AdÞ; ð66Þ

which does not yield second-order equations in the sca-
lar limit.
Lagrangians involving two derivatives of the vector

fields provide

8>>><
>>>:

~L1 ¼ δμ1μ2ν1ν2A
λ
bA

b
λð∂μ1A

ν1
a Þð∂μ2A

ν2aÞ;
~L3 ¼ δμ1μ2ν1ν2A

λ
aAλbð∂μ1A

ν1aÞð∂μ2A
ν2bÞ;

~L10 ¼ δμ1μ2ν1ν2A
a
μ1A

b
μ2ð∂μ1Aα

aÞð∂μ2AαbÞ;
ð67Þ

leading to the corresponding scalar terms

8>><
>>:

~L1jπ ¼ LGal;3
4;I ;

~L3jπ ¼ LGal;3
4;II ;

~L10jπ ¼ LGal;2
4;II − LGal;2

4;III :

ð68Þ

One can derive two linear combinations having second-
order equations, namely,

~L1jπ þ 2 ~L3jπ ¼ LGal;3
4;I þ 2LGal;3

4;II ð69Þ

[see Eq. (A33)] and

~L10jπ þ ~L3jπ ¼ LGal;2
4;II −

1

2
ð2LGal;2

4;III þ LGal;3
4;I Þ

þ 1

2
ðLGal;3

4;I þ 2LGal;3
4;II Þ; ð70Þ

yielding second-order equations, as each of the three terms
on the right-hand side of Eq. (70) does so, as shown in
Appendix A [see Eqs. (A21), (A31) and (A33)].
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E. Final flat spacetime model

Let us regroup the results of the above sections to
produce the final theory in flat spacetime with the
Minkowskian metric. We first gather most of the new
terms induced by the nonlinear contributions into an
arbitrary function fðAa

μ; Ga
μν; ~G

a
μνÞ. Indeed, this is possible

because they not only appear in the systematic procedure
we have exposed, but they also satisfy all our conditions;
this is equivalent to the general proof discussed in Ref. [70],
where the typical term is built out of Levi-Civita tensors,
necessarily inducing terms proportional to ϵ00… in the
Hessian, and hence vanishing contributions.
Up to now, we have used the Abelian form of the

Faraday tensor to express the relevant Lagrangians,
although there can be situations in which working with
the non-Abelian counterpart in Eq. (2) can be more

convenient, in particular, in view of the fact that this is
the relevant tensor that appears naturally when one extends
the theory to its gauged version. This is quite simple since
the arbitrary function fðAa

μ; Ga
μν; ~G

a
μνÞ can be equivalently

written as a new function ~fðAa
μ; Fa

μν; ~F
a
μνÞ using Eq. (2). It is

worth noting that such a change of variable implies no other
terms than those already included in the original function.
Gathering the above considerations into a compact form,

we obtain a first generic term, reminiscent of the Abelian
case, namely,

L2 ¼ fðAa
μ; Ga

μν; ~G
a
μνÞ ¼ ~fðAa

μ; Fa
μν; ~F

a
μνÞ: ð71Þ

In addition to this term, all the remaining previously
derived terms involving contractions with up to six Lorentz
indices are

8>>><
>>>:

L̂1 ¼ δμ1μ2ν1ν2A
λ
bA

b
λð∂μ1A

ν1
a Þð∂μ2A

ν2aÞ þ 2δμ1μ2ν1ν2A
λ
aAλbð∂μ1A

ν1aÞð∂μ2A
ν2bÞ;

L̂2 ¼ δμ1μ2ν1ν2A
λ
aAλbð∂μ1A

ν1aÞð∂μ2A
ν2bÞ þ δμ1μ2ν1ν2A

a
μ1A

b
μ2ð∂μ1Aα

aÞð∂μ2AαbÞ;
L̂3 ¼ ~Gb

μσA
μ
aAαbSασa;

ð72Þ

the first two actually being equivalent in the pure scalar
sector since they lead to the same equations of motion, i.e.,
those stemming from the Galileon Lagrangian containing
four scalar fields in the 3 representation of SU(2). Note that
there is no term containing only one gradient.
With this general basis, which we expand upon in the

final discussion section, we can now turn to the covarian-
tization required to apply this category of theories to
cosmologically relevant situations.

V. COVARIANTIZATION

A. Procedure

Below we follow a procedure similar to that proposed
for the Galileon case [18,19,117], the generalized Proca
model [51,66,68,118], and the multi-Galileon situation
[120,123,124]. The principle is simple: one first transforms
all partial derivatives into covariant ones and then checks
that only those terms leading to at most second-order
equations of motion are kept.
The pure vector part now containsA and∇A terms, which

translate into A, ∂A, g and ∂g terms. None of these terms
could lead to any derivative of order higher than two in the
equations of motion. On the other hand, the Faraday tensor
terms do not yield metric derivatives since partial derivatives
can be replaced by covariant ones by virtue of the anti-
symmetry of these terms. We also leave these terms aside.
As for the scalar part, derivatives of order three or more

could appear for the curvature. To fix this potential
problem, we write the equations of motion in terms of
covariant derivatives and commute them in order to

generate the curvature tensor, which contains only second-
order derivatives of the metric: the problem is with the
derivatives of the curvature terms. As these particular
contributions stem from terms implying at least fourth-
order derivatives of the scalar field, it is easy to identify
them and to write down the required counterterms.
In practice, this does not show that the resulting equations

of motion of the metric do not involve higher-order deriv-
atives of the scalar field. We merely apply the results of
Ref. [118],where itwas shown that if the equations ofmotion
for the scalar field are safe, then so are those for the metric.
This result translates directly to our case.
For many of the terms discussed below, it turns out to be

easier to write the Lagrangian as a function of the vector
field rather than of its scalar part, even though we are
ultimately interested in the latter. Indeed, the scalar Euler-
Lagrange equation

0 ¼ ∂L
∂πd −∇ν

∂L
∂ð∇νπdÞ

þ∇ν∇μ
∂L

∂ð∇μ∇νπdÞ
ð73Þ

can be written as

0 ¼ −∇ν
∂L

∂ð∇νπdÞ
þ∇ν∇μ

∂L
∂ð∇μ∇νπdÞ

¼ −∇ν

� ∂L
∂Aνd

−∇μ
∂L

∂ð∇μAνdÞ
�

ð74Þ

since the action is assumed to be local in Aμ and therefore
cannot contain terms involving nonderivative functions of
the scalar field π.
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In the following sections, we write those terms contain-
ing only the curvature and its derivative, or only its
derivative, by the respective notation F jR or F j∇R, where
F is the term whose restriction is being considered. We
concentrate on terms which are nonvanishing in the scalar
sector only.

B. Terms in LGal

The Lagrangians we consider give, in the scalar sector,

� L̂1jπ ¼ LGal;3
4;I þ 2LGal;3

4;II ;

L̂2jπ ¼ LGal;3
4;II þ LGal;2

4;II − LGal;2
4;III ;

ð75Þ

where we use the Galileon Lagrangians of Appendix A. In
the following, working in the vector sector, we substitute
∂μπ

a → Aa
μ. Equation (75) implies that only three inde-

pendent counterterms are needed, i.e., those associated with
LGal;3
4;I , LGal;3

4;II and ðLGal;2
4;II − LGal;2

4;III Þ. We now proceed to find
these counterterms.
First, we have

�
∇ν∇μ

� ∂LGal;3
4;I

∂ð∇μAνdÞ
������

R

¼ −2Aλ
bA

b
λRμν∇νAμd − 2Aλ

bA
b
λA

μd∇νRμν: ð76Þ

Introducing

LGal;3
4;I;CT ¼ 1

4
Aλ
bA

b
λA

μ
aAa

μR; ð77Þ

we find that

�
∇ν

�∂LGal;3
4;I;CT

∂ðAνdÞ
������∇R ¼ Aλ

bA
b
λA

μd∇νðgμνRÞ; ð78Þ

which finally implies the equation of motion (EOM)

EOMπðLGal;3
4;I þ LGal;3

4;I;CTÞj∇R
¼ −2Aλ

bA
b
λA

μα∇ν

�
Rμν −

1

2
gμνR

�
¼ 0; ð79Þ

vanishing by virtue of the properties of the Einstein tensor.
Similarly, for LGal;3

4;II , we have

�
∇ν∇μ

� ∂LGal;3
4;II

∂ð∇μAνdÞ
������

R

¼ −2Aλ
bA

d
λRμν∇νAμb − 2Aλ

bA
d
λA

μb∇νRμν: ð80Þ

Introducing

LGal;3
4;II;CT ¼ 1

4
Aλ
bAλaAμbAa

μR; ð81Þ

which verifies

�
∇ν

�∂LGal;3
4;II;CT

∂ðAνdÞ
������∇R ¼ Aλ

bA
d
λA

μb∇νðgμνRÞ; ð82Þ

we obtain

EOMπðLGal;3
4;II þ LGal;3

4;II;CTÞj∇R
¼ −2Aλ

bA
d
λA

μb∇ν

�
Rμν −

1

2
gμνR

�
¼ 0: ð83Þ

Finally, using the previous notation

~L10 ¼ LGal;2
4;II − LGal;2

4;III ; ð84Þ
we have

�
∇ν∇μ

� ∂ ~L10

∂ð∇μAνdÞ
������

R

¼ −2AμdAλbRν
ρλμ∇νA

ρ
b − 2AμdAλbAρ

b∇νRν
ρλμ: ð85Þ

We introduce the counterterm

L10;CT ¼ −
1

2
AμaAνbAρ

aAσ
bRμνρσ; ð86Þ

giving

∇ρ

�∂L10;CT

∂ðAρdÞ
�����∇R ¼ −2AμaAλaAρd∇νRλ

ρμν

¼ 2AμdAλbAρ
b∇νRν

ρλμ; ð87Þ
which, as expected, results in

EOMπð ~L10 þ L10;CTÞj∇R ¼ 0: ð88Þ
Then, to obtain the covariantized form of the action, it is

sufficient to add the counterterms obtained in this part to
the action given previously in flat spacetime. The result is
summarized in Sec. VI.

C. Coupling with curvature

Once the derivatives have been covariantized, one must
also include possible direct coupling terms between the
vector field and the curvature tensors,whichwedobelow in a
way entirely similar to that of Ref. [68]. First, we demand
contractions with tensors whose divergences vanish on all
indices (to ensure that integration by parts provides no higher
order contributions in the equations of motion) [117,118]:
this means the Einstein tensor as well as

Lμνρσ ¼ 2Rμνρσ þ 2ðRμσgρν þ Rρνgμσ − Rμρgνσ − RνσgμρÞ
þ Rðgμρgνσ − gμσgρνÞ; ð89Þ

whose symmetries are those of the Riemann tensor, to which
it is dual in the sense that it can be written as
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Lαβγδ ¼ −
1

2
ϵαβμνϵγδρσRμνρσ: ð90Þ

Even limiting ourselves to the same number of fields as
in the flat spacetime situation, many terms are a priori
possible. To begin with, all contractions involving a single
vector field are impossible. With two such fields, the
reasoning is exactly equivalent to the Abelian case, which
means the Lagrangians

Lcurv
1 ¼ GμνAμaAν

a ð91Þ
and

Lcurv
2 ¼ LμνρσGμνaGρσ

a ð92Þ
are acceptable.
Terms in which at least one of the Abelian-like Faraday

tensors is replaced by its Hodge dual can always be rewritten
as a contraction between the Riemann tensor and two
Abelian-like Faraday tensors,which cannot give second-order
equations of motion [118]. One could envisage a contraction
with a term like GμρaGνσ

a , but which is proportional to Lcurv
2 :

to show this, one needs to use the following identity,

ϵαβγδϵρσμν − ϵαρσμϵβγδν þ ϵαγδνϵβρσμ þ ϵαβδνϵργσμ

− ϵαβγνϵρδσμ ¼ 0; ð93Þ
and the first Bianchi identity.
With three fields, one can obtain a new nonvanishing

term, in contrast to the Abelian case. This is mostly due to
the fact that it is possible to have an antisymmetry in the
exchange of two underived vector fields. We get

Lcurv
3 ¼ LμνρσϵabcGμνaAρbAσc; ð94Þ

which is shown to be proportional to LμνρσϵabcGμρaAνbAσc,
by making use of the previous identity on the Levi-Civita
tensor.
Four fields provide, again in contrast to the Abelian

situation, the extra contribution

Lcurv
4 ¼ LμνρσAμaAνbAρ

aAσ
b: ð95Þ

It is worth noticing at this point that it is possible to go from
the expression ofLcurv

2 andLcurv
3 usingGa

μν (theAbelian form
of theFaraday tensor) to that usingFa

μν (thenon-Abelian one),

both of which are equal in an Abelian theory: it is sufficient
for this purpose to include the termsLcurv

3 andLcurv
4 only (they

are generated by the transformation from Ga
μν to Fa

μν).

VI. FINAL MODEL, DISCUSSION

Let us summarize the results obtained for the generalized
SU(2) Proca theory. First, we showed that any function of the
vector field, Faraday tensor, and its Hodge dual (either in
their Abelian or non-Abelian formulation) was possible, i.e.,

L2 ¼ fðAa
μ; Ga

μν; ~G
a
μνÞ ¼ ~fðAa

μ; Fa
μν; ~F

a
μνÞ: ð96Þ

Such a general L2 term involving only gauge-invariant
quantities for the derivatives is also present in the Abelian
case; we will not discuss it any further since it appears
similarly (and for the same reasons) in both the Abelian and
non-Abelian theories.
Before presenting the other terms contained in the non-

Abelian action, let us pursue the summary of what was found
for its Abelian counterpart, as worked out in Refs. [66,68–
70]; as usual, we denote Lnþ2 the Lagrangians containing
n ≥ 1 first-order derivatives of the vector field. First, the
relation between the more general scalar and vector theories,
i.e., the Galileon and generalized Proca models, provide, in
this case, a deeper understanding through the use of the
Stückelberg trick to go from one sector to another (i.e.,
switching between ∂μπ andAμ). In the scalarGalileon theory,
only one term exists in the Lagrangians L3 to L5, each of
which generates a contribution to the vector sector by the
Stückelberg trick, i.e., those with a prefactor fiðXÞ in the
conclusion of Ref. [70]. An additional freedom stems from
the fact that a given scalar Lagrangian can give different
vector Lagrangians when permuting the second-order deriv-
atives before introducing the vector field: although
∂μ∂νπ ¼ ∂ν∂μπ, this symmetry is absent in the pure vector
case since ∂μAν ≠ ∂νAμ. This property led to one additional
contribution to the vector sector of each L4 to L6. These
contributions appear with the prefactor giðXÞ in Ref. [70];
they vanish in the pure scalar sector.
Coming back to the non-Abelian situation, and in

addition to L2, we derived those relevant Lagrangians
implying up to six contracted Lorentz indices and being
nontrivial in flat spacetime. Contrary to the Abelian case,
we found no such Lagrangian for n ¼ 1. For n ¼ 2, there
are three possible terms; i.e., L4 contains

8>>>>>>>><
>>>>>>>>:

L1
4 ¼ δμ1μ2ν1ν2A

λ
bA

b
λð∇μ1A

ν1
a Þð∇μ2A

ν2aÞ þ 1
4
Aλ
bA

b
λA

μ
aAa

μR

þ 2δμ1μ2ν1ν2A
λ
aAλbð∇μ1A

ν1aÞð∇μ2A
ν2bÞ þ 1

2
Aλ
bAλaAμbAa

μR;

L2
4 ¼ δμ1μ2ν1ν2A

λ
aAλbð∇μ1A

ν1aÞð∇μ2A
ν2bÞ þ 1

4
Aλ
bAλaAμbAa

μR

þ δμ1μ2ν1ν2A
a
μ1A

b
μ2ð∇ν1Aα

aÞð∇ν2AαbÞ − 1
2
AμaAνbAρ

aAσ
bRμνρσ;

L3
4 ¼ ~Gb

μσA
μ
aAαbSασa;

ð97Þ
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the first two terms giving, once developed, the following forms:

8>>>>><
>>>>>:

L1
4 ¼ ðAb · AbÞ½ð∇ · AaÞð∇ · AaÞ − ð∇μAν

aÞð∇μAa
νÞ þ 1

4
Aa · AaR�

þ 2ðAa · AbÞ½ð∇ · AaÞð∇ · AbÞ − ð∇μAνaÞð∇μAb
νÞ þ 1

2
Aa · AbR�;

L2
4 ¼ ðAa · AbÞ½ð∇ · AaÞð∇ · AbÞ − ð∇μAνaÞð∇μAb

νÞ þ 1
4
Aa · AbR�

þ ðAμaAνbÞ½ð∇μAα
aÞð∇νAαbÞ − ð∇νAα

aÞð∇μAαbÞ − 1
2
Aρ
bA

σbRμνρσ�;

ð98Þ

which are more easily compared with the equivalent results
for the Abelian case. Finally, we also found four extra
possibilities for the Lagrangians, implying a coupling with
the curvature

Lcurv
1 ¼ GμνAμaAν

a;

Lcurv
2 ¼ LμνρσF

μν
a Fa

μν;

Lcurv
3 ¼ LμνρσϵabcFμνaAρbAσc;

Lcurv
4 ¼ LμνρσAμaAνbAρ

aAσ
b; ð99Þ

thereby completing the full action at that order.
Let us first consider the actions whose equations of

motion involve only second-order derivatives for the scalar
(not first-order ones), which is equivalent to having only
two vector fields together with the relevant gradients in the
action. The multi-Galileon SU(2) model in the adjoint
representation has been considered in [100], where it was
shown that building a Lagrangian is only possible at the
order of L4 (not to mention the order L2 already discussed
above). The equivalent formulations of this Lagrangian
are detailed in Appendix A. Following the previous
considerations, no Lagrangian in the vector sector should
appear at the order of L3 since there is no such associated
Lagrangian for the multi-Galileon at that order; we
explicitly confirmed this expectation. In addition, two
Lagrangians should appear at the order of L4, one asso-
ciated with the multi-Galileon dynamics and one associated
with the commutation of second-order derivatives of the
scalar field. In fact, three Lagrangians have been found, two
of them giving the multi-Galileon dynamics in the scalar
sector. We then interpret these two previous terms as
contributions which are equivalent in the scalar case but
not in the vector case. The fact that there are two non-
vanishing Lagrangians in the scalar sector is also due to a
commutation of the second-order derivatives of the scalar
fields but in a current term, which implies that it is not
possible to describe this commutation with a Lagrangian
vanishing in the pure scalar sector. This additional term is
specific to the non-Abelian case: the term in
δμ1μ2ν1ν2A

a
μ1A

b
μ2ð∇ν1Aα

aÞð∇ν2AαbÞ vanishes in the Abelian
case, while L1

4 and L2
4 both reduce to LAbelian

4 ¼
δμ1μ2ν1ν2A

λAλð∇μ1A
ν1Þð∇μ2A

ν2Þ.
To go further, let us first consider terms implying more

derivatives, i.e., having n ≥ 3. At the order of L5, and since

there is no possible dynamics for the SU(2) adjoint multi-
Galileon, we expect that no term having a nonvanishing
pure scalar contribution is possible. This suggests that the
only possible term is

L5 ¼ ϵabcðAa · AdÞ ~Gαμ
d
~Gβb

μScαβ; ð100Þ

with the other SU(2) index contractions giving a vanishing
result. At the order of L6, the only possibility seems to be
the independent possible contractions of SU(2) indices on
LAbelian
6 ¼ ðA · AÞ ~Gαβ ~GμνSαμSβν, since there is no possibil-

ity of having a term that does not vanish in the pure scalar
sector. However, one should verify that there is no other
term vanishing in the pure scalar sector, not included in L2,
and whose dynamics is not described by the previous ones.
This kind of terms would be specific to a non-Abelian
theory, as is the second term of L2

4, and they would vanish
for a vector field in a trivial group representation.
Concerning the Lagrangians with more than two vector

fields, together with the relevant gradients, one has to pay
attention to the fact that fully factorizing an fðAa

μÞ as in the
Abelian case is not guaranteed to lead to a valid procedure,
although factorizing such an arbitrary function in front of
any valid contribution also leads to another valid contri-
bution. In addition, one could think that if there is no valid
Lagrangian with only a few nongradient vector fields at a
given derivative order, it is fairly probable that there is also
no such valid Lagrangian at all at this order. For instance,
we showed explicitly that terms at the order of L3 are not
possible with up to four vector fields, and this questions the
possibility of having such a term even with a higher number
of vector fields. An interesting point is that if a Lagrangian
is allowed which does not vanish in the pure scalar sector, it
corresponds to a possible term in the multi-Galileon action,
which shows that both theories are closely related.
To conclude, this discussion showed that even if the full

action of the model has not been obtained yet, discussing
the low order terms permits us to identify and understand
the whole Lagrangian structure. The above discussion is
not specific to the SU(2) case and therefore can be extended
to other group representations. For a theory with a vector
field transforming under any representation of any group, a
systematic study of all possible terms in the action should
be performed in parallel with the corresponding multi-
Galileon theory.
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APPENDIX A: SU(2) GALILEON LAGRANGIAN
EQUIVALENT FORMULATIONS

1. Introduction

The purpose of this appendix is to write explicitly all the
Lagrangians describing the multi-Galileon dynamics in
the three-dimensional representation of SU(2), focusing
on the Lagrangians containing only four Galileon fields,
i.e., those which are useful in this article. A Lagrangian
describing this dynamics is given in Ref. [123], namely,

Lπ
m ¼ αi1…imδμ2…μm

½ν2…νm�πi1∂μ2∂ν2πi2…∂μm∂νmπim ; ðA1Þ

with m running from 1 to 5, and with the notation

1

ðD − nÞ! ϵ
i1…inσ1…σD−nϵj1…jnσ1…σD−n

¼ n!δj1…jn
½i1…in� ¼ δj1…jn

i1…in
¼ δj1i1…δjnin � � � � ; ðA2Þ

for n running from 1 to 4 (in a four-dimensional spacetime).
Other equivalent formulations are possible, which is the
purpose of this appendix.
This investigation is necessary for two reasons. First, the

formulation given in Eq. (A1) cannot be obtained from a
vector Lagrangian using the switch Aa

μ → ∂μπ
a since a

scalar field without derivatives is present. Second, if
different Lagrangians are equivalent in the scalar sector,
they could give Lagrangians that are not equivalent in the
vector sector. We thus expect that different Lagrangians
valid in the vector sector become different but equivalent
formulations of the multi-Galileon dynamics when con-
sidering the pure scalar part of the action.
For this purpose, we use the results of Ref. [16], which

describe equivalent formulations of the Galileon theory in
the Abelian case, introducing a Lagrangian similar to that in
Eq. (A1), together with the following Lagrangians:

LGal;1
m ¼ δμ1…μm−1

½ν1…νm−1�∂μ1π∂ν1π∂μ2∂ν2π…∂μm−1
∂νm−1π; ðA3Þ

LGal;2
m ¼ δμ1…μm−2

½ν1…νm−2�∂μ1π∂λπ∂ν1∂λπ…∂μm−2
∂νm−2π; ðA4Þ

LGal;3
m ¼ δμ1…μm−2

½ν1…νm−2�∂λπ∂λπ∂μ1∂ν1π…∂μm−2
∂νm−2π; ðA5Þ

for m ≥ 2, the case m ¼ 1 giving L ¼ π. These
Lagrangians all give second-order equations of motion.

2. Lagrangians

We first write all possible Lagrangians appearing when
we add the group indices to the previous Lagrangians,
restricting ourselves to the case m ¼ 4. They are more
numerous than in the multi-Galileon case since we have an
additional freedom when choosing the group index
contractions.
The only possible Lagrangian associated with the for-

mulation of Ref. [123] is

LPSZ
4 ¼ δμ1…μ3

ν1…ν3 πa∂μ1∂ν1πa∂μ2∂ν2πb∂μ3∂ν3πb: ðA6Þ

The Lagrangians appearing in Ref. [16], given in
Eqs. (A3)–(A5), can be endowed with SU(2) indices in
several ways, namely, two possibilities for LGal;1

4 :

LGal;1
4;I ¼ δμ1…μ3

ν1…ν3 ∂μ1πa∂ν1πa∂μ2∂ν2πb∂μ3∂ν3πb ðA7Þ

and

LGal;1
4;II ¼ δμ1…μ3

ν1…ν3 ∂μ1πa∂ν1πb∂μ2∂ν2πa∂μ3∂ν3πb; ðA8Þ

three possibilities for LGal;2
4 :

LGal;2
4;I ¼ δμ1μ2ν1ν2 ∂μ1πa∂λπ

a∂λ∂ν1πb∂μ2∂ν2πb; ðA9Þ

LGal;2
4;II ¼ δμ1μ2ν1ν2 ∂μ1πa∂λπb∂λ∂ν1πa∂μ2∂ν2πb; ðA10Þ

and

LGal;2
4;III ¼ δμ1μ2ν1ν2 ∂μ1πa∂λπb∂λ∂ν1πb∂μ2∂ν2πa; ðA11Þ

and finally two possibilities for LGal;3
4 :

LGal;3
4;I ¼ ∂λπa∂λπaδμ1μ2ν1ν2 ∂μ1∂ν1πb∂μ2∂ν2πb ðA12Þ

and

LGal;3
4;II ¼ ∂λπa∂λπbδ

μ1μ2
ν1ν2 ∂μ1∂ν1πa∂μ2∂ν2πb: ðA13Þ

Looking for the Lagrangians implying second-order
equations of motion, one can quickly verify that LPSZ

4 ,
LGal;1
4;I and LGal;1

4;II have this property due to the symmetry
properties of δμ1…μ3

ν1…ν3 . However, the other Lagrangians do not
give a priori second-order equations of motion.2 We then
investigate, in the following, the relations among the
different Lagrangians.

2The automatic cancellation between third-order derivatives
discussed in Ref. [16] is not valid anymore since this cancellation
can be spoiled by the group indices.
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3. Relations among the Lagrangians

a. Between PSZ and Gal,1

We first relate LPSZ
4 and the Lagrangians LGal;1

4 by means
of conserved currents. Indeed,

Jμ10;I ¼ JPSZ-Gal;μ14;I ¼ δμ1…μ3
ν1…ν3 πa∂ν1πa∂μ2∂ν2πb∂μ3∂ν3πb

ðA14Þ

gives

∂μ1J
μ1
0;I ¼ ∂μ1J

PSZ-Gal;μ1
4;I ¼ LPSZ

4 þ LGal;1
4;I ; ðA15Þ

and

Jμ10;II ¼ JPSZ-Gal;μ14;II ¼ δμ1…μ3
ν1…ν3 πa∂ν1πb∂μ2∂ν2πa∂μ3∂ν3πb

ðA16Þ

gives

∂μ1J
μ1
0;II ¼ ∂μ1J

PSZ-Gal;μ1
4;II ¼ LPSZ

4 þ LGal;1
4;II : ðA17Þ

It is also possible to make a direct correspondence
between LGal;1

4;I and LGal;1
4;II with the current

Jμ20;I→II ¼ JGal;1;μ24;I→II ¼ δμ1…μ3
ν1…ν3 ∂μ1πa∂ν1πa∂ν2πb∂μ3∂ν3πb;

ðA18Þ

yielding

∂μ2J
μ2
0;I→II ¼ ∂μ2J

Gal;1;μ2
4;I→II ¼ LGal;1

4;I − LGal;1
4;II : ðA19Þ

b. Between Gal,2 and Gal,3

Introducing

Jμ11 ¼ JGal;2–3;μ14;I ¼ ∂λπa∂λπaδμ1μ2ν1ν2 ∂ν1πb∂μ2∂ν2πb; ðA20Þ

we get

∂μ1J
μ1
1 ¼ ∂μ1J

Gal;2–3;μ1
4;I ¼ 2LGal;2

4;III þ LGal;3
4;I : ðA21Þ

In a similar way, from

Jμ12 ¼ JGal;2–3;μ14;II ¼ ∂λπa∂λπbδ
μ1μ2
ν1ν2 ∂ν1πa∂μ2∂ν2πb; ðA22Þ

we obtain

∂μ1J
μ1
2 ¼ ∂μ1J

Gal;2–3;μ1
4;II ¼ LGal;2

4;I þ LGal;2
4;II þ LGal;3

4;II : ðA23Þ

c. Between Gal,1, Gal,2 and Gal,3 through
Kronecker properties

We use the following identity given in Ref. [16]:

δμ1…μn
ν1…νn ¼ δμ1ν1δ

μ2…μn
ν2…νn þ

Xn
i¼2

ð−1Þi−1δμ1νi δμ2…μn
ν1ν2…νi−1νiþ1…νn ;

ðA24Þ

which gives, for n ¼ 3,

δμ1…μ3
ν1…ν3 ¼ δμ1ν1δ

μ2μ3
ν2ν3 − δμ1ν2δ

μ2μ3
ν1ν3 þ δμ1ν3δ

μ2μ3
ν1ν2 : ðA25Þ

It is then possible to obtain two additional relations among
the different Lagrangians. Indeed, applying this identity to
LGal;1
4;I and LGal;1

4;II , we get

LGal;1
4;I ¼ −2LGal;2

4;I þ LGal;3
4;I ðA26Þ

and

LGal;1
4;II ¼ −LGal;2

4;II − LGal;2
4;III þ LGal;3

4;II : ðA27Þ

4. Lagrangians with second-order equations of motion

Using the results of the previous subsections, we can
summarize the Lagrangians that give second-order equa-
tions of motion:

LPSZ
4 ; ðA28Þ

LGal;1
4;I ¼ −2LGal;2

4;I þ LGal;3
4;I ¼ −LPSZ

4 − ∂μJ
μ
0;I; ðA29Þ

LGal;1
4;II ¼ −LGal;2

4;II − LGal;2
4;III þ LGal;3

4;II ¼ −LPSZ
4 − ∂μJ

μ
0;II;

ðA30Þ

LGal;2
4;II ¼ 1

4
LGal;1
4;I −

1

2
LGal;1
4;II −

1

4
∂μJ

μ
1 þ

1

2
∂μJ

μ
2; ðA31Þ

LGal;2
4;I þ LGal;2

4;III ¼ −
1

2
LGal;1
4;I þ 1

2
∂μJ

μ
1; ðA32Þ

and

LGal;3
4;I þ 2LGal;3

4;II ¼ 1

2
LGal;1
4;I þ LGal;1

4;II þ 1

2
∂μJ

μ
1 þ ∂μJ

μ
2:

ðA33Þ

GENERALIZED SU(2) PROCA THEORY PHYSICAL REVIEW D 94, 084041 (2016)

084041-17



[1] F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl, and M.
Shaposhnikov, J. High Energy Phys. 10 (2012) 140.

[2] F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659,
703 (2008).

[3] A. Mazumdar and J. Rocher, Phys. Rep. 497, 85 (2011).
[4] D. H. Lyth and A. Riotto, Phys. Rep. 314, 1 (1999).
[5] M. P. Hertzberg and F. Wilczek, arXiv:1407.6010.
[6] S. Ferrara, R. Kallosh, A. Linde, and M. Porrati, Phys. Rev.

D 88, 085038 (2013).
[7] K. A. Olive, Phys. Rep. 190, 307 (1990).
[8] D. Baumann and L. McAllister, Inflation and

String Theory (Cambridge University Press, Cambridge,
England, 2015).

[9] A. Ashtekar and D. Sloan, Phys. Lett. B 694, 108 (2010).
[10] A. Barrau, Proc. Sci., ICHEP2010 (2010) 461.
[11] M. Ostrogradski, Mem. Ac. St. Petersbourg VI, 385

(1850).
[12] G.W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
[13] R. P. Woodard, Lect. Notes Phys. 720, 403 (2007).
[14] R. P. Woodard, Scholarpedia 10, 32243 (2015).
[15] A. Nicolis, R. Rattazzi, and E. Trincherini, Phys. Rev. D

79, 064036 (2009).
[16] C. Deffayet, X. Gao, D. Steer, and G. Zahariade, Phys.

Rev. D 84, 064039 (2011).
[17] C. Deffayet and D. A. Steer, Classical Quantum Gravity

30, 214006 (2013).
[18] C. Deffayet, G. Esposito-Farese, and A. Vikman, Phys.

Rev. D 79, 084003 (2009).
[19] C. Deffayet, S. Deser, and G. Esposito-Farese, Phys. Rev.

D 80, 064015 (2009).
[20] T. Kobayashi, M. Yamaguchi, and J. Yokoyama, Prog.

Theor. Phys. 126, 511 (2011).
[21] T. Kobayashi, N. Tanahashi, and M. Yamaguchi, Phys.

Rev. D 88, 083504 (2013).
[22] P. Creminelli, A. Nicolis, and E. Trincherini, J. Cosmol.

Astropart. Phys. 11 (2010) 021.
[23] T. Kobayashi, M. Yamaguchi, and J. Yokoyama, Phys.

Rev. Lett. 105, 231302 (2010).
[24] S. Mizuno and K. Koyama, Phys. Rev. D 82, 103518

(2010).
[25] C. Burrage, C. de Rham, D. Seery, and A. J. Tolley, J.

Cosmol. Astropart. Phys. 01 (2011) 014.
[26] P. Creminelli, G. D’Amico, M. Musso, J. Norena, and E.

Trincherini, J. Cosmol. Astropart. Phys. 02 (2011) 006.
[27] K. Kamada, T. Kobayashi, M. Yamaguchi, and J.

Yokoyama, Phys. Rev. D 83, 083515 (2011).
[28] M. Libanov, S. Mironov, and V. Rubakov, J. Cosmol.

Astropart. Phys. 08 (2016) 037.
[29] S. Banerjee and E. N. Saridakis, arXiv:1604.06932.
[30] S. Hirano, T. Kobayashi, and S. Yokoyama, arXiv:

1604.00141.
[31] R. Brandenberger and P. Peter, arXiv:1603.05834.
[32] S. Nishi and T. Kobayashi, J. Cosmol. Astropart. Phys. 04

(2016) 018.
[33] N. Chow and J. Khoury, Phys. Rev. D 80, 024037 (2009).
[34] F. P. Silva and K. Koyama, Phys. Rev. D 80, 121301

(2009).
[35] T. Kobayashi, Phys. Rev. D 81, 103533 (2010).
[36] R. Gannouji and M. Sami, Phys. Rev. D 82, 024011

(2010).

[37] S. Tsujikawa, Lect. Notes Phys. 800, 99 (2010).
[38] A. De Felice and S. Tsujikawa, Phys. Rev. Lett. 105,

111301 (2010).
[39] A. Ali, R. Gannouji, and M. Sami, Phys. Rev. D 82,

103015 (2010).
[40] A. Padilla, P. M. Saffin, and S.-Y. Zhou, J. High Energy

Phys. 01 (2011) 099.
[41] A. De Felice and S. Tsujikawa, Phys. Rev. D 84, 124029

(2011).
[42] D. F. Mota, M. Sandstad, and T. Zlosnik, J. High Energy

Phys. 12 (2010) 051.
[43] S. Nesseris, A. De Felice, and S. Tsujikawa, Phys. Rev. D

82, 124054 (2010).
[44] G. Gabadadze and S. Yu, arXiv:1608.01060.
[45] J. Neveu, V. Ruhlmann-Kleider, P. Astier, M. Besancon, J.

Guy, A. Möller, and E. Babichev, arXiv:1605.02627.
[46] V. Salvatelli, F. Piazza, and C. Marinoni, J. Cosmol.

Astropart. Phys. 09 (2016) 027.
[47] M. Shahalam, S. K. J. Pacif, and R. Myrzakulov, Eur. Phys.

J. C 76, 410 (2016).
[48] M. Minamitsuji, Gen. Relativ. Gravit. 48, 26 (2016).
[49] E. N. Saridakis and M. Tsoukalas, Phys. Rev. D 93,

124032 (2016).
[50] M. Biswas and U. Debnath, Commun. Theor. Phys. 65,

121 (2016).
[51] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, Phys.

Rev. Lett. 114, 211101 (2015).
[52] D. Langlois and K. Noui, J. Cosmol. Astropart. Phys. 02

(2016) 034.
[53] D. Langlois and K. Noui, J. Cosmol. Astropart. Phys. 07

(2016) 016.
[54] H. Motohashi, K. Noui, T. Suyama, M. Yamaguchi, and D.

Langlois, J. Cosmol. Astropart. Phys. 07 (2016) 033.
[55] M. Crisostomi, K. Koyama, and G. Tasinato, J. Cosmol.

Astropart. Phys. 04 (2016) 044.
[56] T. Harko, F. S. N. Lobo, E. N. Saridakis, and M. Tsoukalas,

arXiv:1609.01503.
[57] E. Babichev, C. Charmousis, and A. Lehébel, Classical

Quantum Gravity 33, 154002 (2016).
[58] J. Sakstein, H. Wilcox, D. Bacon, K. Koyama, and R. C.

Nichol, J. Cosmol. Astropart. Phys. 07 (2016) 019.
[59] T. Kobayashi, Phys. Rev. D 94, 043511 (2016).
[60] M. Lagos, T. Baker, P. G. Ferreira, and J. Noller, J.

Cosmol. Astropart. Phys. 08 (2016) 007.
[61] N. Frusciante, G. Papadomanolakis, and A. Silvestri, J.

Cosmol. Astropart. Phys. 07 (2016) 018.
[62] T. Qiu, Phys. Rev. D 93, 123515 (2016).
[63] Y. Akita and T. Kobayashi, Phys. Rev. D 93, 043519

(2016).
[64] G. W. Horndeski, J. Math. Phys. (N.Y.) 17, 1980

(1976).
[65] C. Deffayet, A. E. Gümrükccüoğlu, S. Mukohyama, and Y.

Wang, J. High Energy Phys. 04 (2014) 082.
[66] L. Heisenberg, J. Cosmol. Astropart. Phys. 05 (2014)

015.
[67] G. Tasinato, J. High Energy Phys. 04 (2014) 067.
[68] E. Allys, P. Peter, and Y. Rodríguez, J. Cosmol. Astropart.

Phys. 02 (2016) 004.
[69] J. Beltrán Jimenez and L. Heisenberg, Phys. Lett. B 757,

405 (2016).

ALLYS, PETER, and RODRÍGUEZ PHYSICAL REVIEW D 94, 084041 (2016)

084041-18

http://dx.doi.org/10.1007/JHEP10(2012)140
http://dx.doi.org/10.1016/j.physletb.2007.11.072
http://dx.doi.org/10.1016/j.physletb.2007.11.072
http://dx.doi.org/10.1016/j.physrep.2010.08.001
http://dx.doi.org/10.1016/S0370-1573(98)00128-8
http://arXiv.org/abs/1407.6010
http://dx.doi.org/10.1103/PhysRevD.88.085038
http://dx.doi.org/10.1103/PhysRevD.88.085038
http://dx.doi.org/10.1016/0370-1573(90)90144-Q
http://dx.doi.org/10.1016/j.physletb.2010.09.058
http://dx.doi.org/10.1007/BF01807638
http://dx.doi.org/10.1007/978-3-540-71013-4
http://dx.doi.org/10.4249/scholarpedia.32243
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://dx.doi.org/10.1103/PhysRevD.84.064039
http://dx.doi.org/10.1103/PhysRevD.84.064039
http://dx.doi.org/10.1088/0264-9381/30/21/214006
http://dx.doi.org/10.1088/0264-9381/30/21/214006
http://dx.doi.org/10.1103/PhysRevD.79.084003
http://dx.doi.org/10.1103/PhysRevD.79.084003
http://dx.doi.org/10.1103/PhysRevD.80.064015
http://dx.doi.org/10.1103/PhysRevD.80.064015
http://dx.doi.org/10.1143/PTP.126.511
http://dx.doi.org/10.1143/PTP.126.511
http://dx.doi.org/10.1103/PhysRevD.88.083504
http://dx.doi.org/10.1103/PhysRevD.88.083504
http://dx.doi.org/10.1088/1475-7516/2010/11/021
http://dx.doi.org/10.1088/1475-7516/2010/11/021
http://dx.doi.org/10.1103/PhysRevLett.105.231302
http://dx.doi.org/10.1103/PhysRevLett.105.231302
http://dx.doi.org/10.1103/PhysRevD.82.103518
http://dx.doi.org/10.1103/PhysRevD.82.103518
http://dx.doi.org/10.1088/1475-7516/2011/01/014
http://dx.doi.org/10.1088/1475-7516/2011/01/014
http://dx.doi.org/10.1088/1475-7516/2011/02/006
http://dx.doi.org/10.1103/PhysRevD.83.083515
http://dx.doi.org/10.1088/1475-7516/2016/08/037
http://dx.doi.org/10.1088/1475-7516/2016/08/037
http://arXiv.org/abs/1604.06932
http://arXiv.org/abs/1604.00141
http://arXiv.org/abs/1604.00141
http://arXiv.org/abs/1603.05834
http://dx.doi.org/10.1088/1475-7516/2016/04/018
http://dx.doi.org/10.1088/1475-7516/2016/04/018
http://dx.doi.org/10.1103/PhysRevD.80.024037
http://dx.doi.org/10.1103/PhysRevD.80.121301
http://dx.doi.org/10.1103/PhysRevD.80.121301
http://dx.doi.org/10.1103/PhysRevD.81.103533
http://dx.doi.org/10.1103/PhysRevD.82.024011
http://dx.doi.org/10.1103/PhysRevD.82.024011
http://dx.doi.org/10.1007/978-3-642-10598-2
http://dx.doi.org/10.1103/PhysRevLett.105.111301
http://dx.doi.org/10.1103/PhysRevLett.105.111301
http://dx.doi.org/10.1103/PhysRevD.82.103015
http://dx.doi.org/10.1103/PhysRevD.82.103015
http://dx.doi.org/10.1007/JHEP01(2011)099
http://dx.doi.org/10.1007/JHEP01(2011)099
http://dx.doi.org/10.1103/PhysRevD.84.124029
http://dx.doi.org/10.1103/PhysRevD.84.124029
http://dx.doi.org/10.1007/JHEP12(2010)051
http://dx.doi.org/10.1007/JHEP12(2010)051
http://dx.doi.org/10.1103/PhysRevD.82.124054
http://dx.doi.org/10.1103/PhysRevD.82.124054
http://arXiv.org/abs/1608.01060
http://arXiv.org/abs/1605.02627
http://dx.doi.org/10.1088/1475-7516/2016/09/027
http://dx.doi.org/10.1088/1475-7516/2016/09/027
http://dx.doi.org/10.1140/epjc/s10052-016-4254-y
http://dx.doi.org/10.1140/epjc/s10052-016-4254-y
http://dx.doi.org/10.1007/s10714-016-2025-6
http://dx.doi.org/10.1103/PhysRevD.93.124032
http://dx.doi.org/10.1103/PhysRevD.93.124032
http://dx.doi.org/10.1088/0253-6102/65/1/121
http://dx.doi.org/10.1088/0253-6102/65/1/121
http://dx.doi.org/10.1103/PhysRevLett.114.211101
http://dx.doi.org/10.1103/PhysRevLett.114.211101
http://dx.doi.org/10.1088/1475-7516/2016/02/034
http://dx.doi.org/10.1088/1475-7516/2016/02/034
http://dx.doi.org/10.1088/1475-7516/2016/07/016
http://dx.doi.org/10.1088/1475-7516/2016/07/016
http://dx.doi.org/10.1088/1475-7516/2016/07/033
http://dx.doi.org/10.1088/1475-7516/2016/04/044
http://dx.doi.org/10.1088/1475-7516/2016/04/044
http://arXiv.org/abs/1609.01503
http://dx.doi.org/10.1088/0264-9381/33/15/154002
http://dx.doi.org/10.1088/0264-9381/33/15/154002
http://dx.doi.org/10.1088/1475-7516/2016/07/019
http://dx.doi.org/10.1103/PhysRevD.94.043511
http://dx.doi.org/10.1088/1475-7516/2016/08/007
http://dx.doi.org/10.1088/1475-7516/2016/08/007
http://dx.doi.org/10.1088/1475-7516/2016/07/018
http://dx.doi.org/10.1088/1475-7516/2016/07/018
http://dx.doi.org/10.1103/PhysRevD.93.123515
http://dx.doi.org/10.1103/PhysRevD.93.043519
http://dx.doi.org/10.1103/PhysRevD.93.043519
http://dx.doi.org/10.1063/1.522837
http://dx.doi.org/10.1063/1.522837
http://dx.doi.org/10.1007/JHEP04(2014)082
http://dx.doi.org/10.1088/1475-7516/2014/05/015
http://dx.doi.org/10.1088/1475-7516/2014/05/015
http://dx.doi.org/10.1007/JHEP04(2014)067
http://dx.doi.org/10.1088/1475-7516/2016/02/004
http://dx.doi.org/10.1088/1475-7516/2016/02/004
http://dx.doi.org/10.1016/j.physletb.2016.04.017
http://dx.doi.org/10.1016/j.physletb.2016.04.017


[70] E. Allys, J. P. Beltrán Almeida, P. Peter, and Y. Rodríguez,
J. Cosmol. Astropart. Phys. 09 (2016) 026.

[71] L. Heisenberg, R. Kase, and S. Tsujikawa, Phys. Lett. B
760, 617 (2016).

[72] R. Kimura, A. Naruko, and D. Yoshida, arXiv:1608.07066.
[73] G. Tasinato, Classical Quantum Gravity 31, 225004

(2014).
[74] M. Hull, K. Koyama, and G. Tasinato, J. High Energy

Phys. 03 (2015) 154.
[75] A. De Felice, L. Heisenberg, R. Kase, S. Tsujikawa, Y.-l.

Zhang, and G.-B. Zhao, Phys. Rev. D 93, 104016 (2016).
[76] A. De Felice, L. Heisenberg, R. Kase, S. Mukohyama, S.

Tsujikawa, and Y.-l. Zhang, J. Cosmol. Astropart. Phys. 06
(2016) 048.

[77] A. De Felice, L. Heisenberg, R. Kase, S. Mukohyama, S.
Tsujikawa, andY.-l. Zhang, Phys. Rev.D 94, 044024 (2016).

[78] L. Heisenberg, R. Kase, and S. Tsujikawa, arXiv:
1607.03175.

[79] M.-a. Watanabe, S. Kanno, and J. Soda, Phys. Rev. Lett.
102, 191302 (2009).

[80] K. Dimopoulos, Phys. Rev. D 74, 083502 (2006).
[81] K. Dimopoulos, M. Karciauskas, and J. M. Wagstaff, Phys.

Rev. D 81, 023522 (2010).
[82] A. Golovnev, V. Mukhanov, and V. Vanchurin, J. Cosmol.

Astropart. Phys. 06 (2008) 009.
[83] C. Armendariz-Picon, J. Cosmol. Astropart. Phys. 07

(2004) 007.
[84] Y. Rodriguez, L. G. Gomez, and C. M. Nieto, in Proceed-

ings 2nd Argentinian-Brazilian Meeting on Gravitation,
Relativistic Astrophysics and Cosmology (GRACo II):
Buenos Aires, Argentina, 2014, edited by G. S. Vila, F.
L. Vieyro, and J. C. Fabris (2015), pp. 250.

[85] A. Maleknejad and M.M. Sheikh-Jabbari, Phys. Lett. B
723, 224 (2013).

[86] A. Maleknejad and M.M. Sheikh-Jabbari, Phys. Rev. D
84, 043515 (2011).

[87] P. Adshead and M. Wyman, Phys. Rev. Lett. 108, 261302
(2012).

[88] A. Maleknejad, M.M. Sheikh-Jabbari, and J. Soda, J.
Cosmol. Astropart. Phys. 01 (2012) 016.

[89] R. Namba, E. Dimastrogiovanni, and M. Peloso, J.
Cosmol. Astropart. Phys. 11 (2013) 045.

[90] P. Adshead, E. Martinec, and M. Wyman, J. High Energy
Phys. 09 (2013) 087.

[91] D. G. Boulware, Ann. Phys. (N.Y.) 56, 140 (1970).
[92] K.-i. Shizuya, Nucl. Phys. B94, 260 (1975).
[93] C. Grosse-Knetter, Phys. Rev. D 48, 2854 (1993).
[94] N. Banerjee, R. Banerjee, and S. Ghosh, Ann. Phys. (N.Y.)

241, 237 (1995).
[95] J.-C. Su, Nuovo Cim. B 117, 203 (2002).
[96] P. Senjanovic, Ann. Phys. (N.Y.) 100, 227 (1976); 209, 248

(E) (1991).
[97] R. Banerjee and J. Barcelos-Neto, Nucl. Phys. B499, 453

(1997).
[98] R. Slansky, Phys. Rep. 79, 1 (1981).

[99] J. Fuchs and C. Schweigert, Symmetries, Lie Algebras and
Representations: A Graduate Course for Physicists
(Cambridge University Press, Cambridge, England, 2003).

[100] A. Padilla, P. M. Saffin, and S.-Y. Zhou, Phys. Rev. D 83,
045009 (2011).

[101] M. L. Metha, J. M. Normand, and V. Gupta, Commun.
Math. Phys. 90, 69 (1983).

[102] K.-i. Maeda and K. Yamamoto, Phys. Rev. D 87, 023528
(2013).

[103] P. Adshead and M. Wyman, Phys. Rev. D 86, 043530
(2012).

[104] C. M. Nieto and Y. Rodriguez, Mod. Phys. Lett. A 31,
1640005 (2016).

[105] E. Davydov and D. Galtsov, Phys. Lett. B 753, 622
(2016).

[106] S. Alexander, D. Jyoti, A. Kosowsky, and A. Marciano, J.
Cosmol. Astropart. Phys. 05 (2015) 005.

[107] M. Sharif and R. Saleem, Astropart. Phys. 62, 100 (2015).
[108] F. Darabi and A. Parsiya, Mod. Phys. Lett. A 29, 1450161

(2014).
[109] A. Maleknejad and E. Erfani, J. Cosmol. Astropart. Phys.

03 (2014) 016.
[110] K.-i. Maeda and K. Yamamoto, J. Cosmol. Astropart.

Phys. 12 (2013) 018.
[111] M. R. Setare and V. Kamali, Gen. Relativ. Gravit. 46, 1642

(2014).
[112] A. Maleknejad, M. M. Sheikh-Jabbari, and J. Soda, Phys.

Rep. 528, 161 (2013).
[113] J. A. R. Cembranos, A. L. Maroto, and S. J. N. Jareño,

Phys. Rev. D 87, 043523 (2013).
[114] E. Dimastrogiovanni and M. Peloso, Phys. Rev. D 87,

103501 (2013).
[115] A. Ghalee, Phys. Lett. B 717, 307 (2012).
[116] W. Li, arXiv:1508.03247.
[117] C. de Rham and L. Heisenberg, Phys. Rev. D 84, 043503

(2011).
[118] J. Beltrán Jiménez, R. Durrer, L. Heisenberg, and M.

Thorsrud, J. Cosmol. Astropart. Phys. 10 (2013) 064.
[119] M. Hull, K. Koyama, and G. Tasinato, Phys. Rev. D 93,

064012 (2016).
[120] C. Deffayet, S. Deser, and G. Esposito-Farese, Phys. Rev.

D 82, 061501 (2010).
[121] A. Padilla, P. M. Saffin, and S.-Y. Zhou, J. High Energy

Phys. 12 (2010) 031.
[122] K. Hinterbichler, M. Trodden, and D. Wesley, Phys. Rev. D

82, 124018 (2010).
[123] A. Padilla and V. Sivanesan, J. High Energy Phys. 04

(2013) 032.
[124] V. Sivanesan, Phys. Rev. D 90, 104006 (2014).
[125] P. Ramond, Group Theory: A Physicist’s Survey

(Cambridge University Press, Cambridge, England, 2010).
[126] R. Feger and T.W. Kephart, Comput. Phys. Commun. 192,

166 (2015).
[127] P. Fleury, J. P. B. Almeida, C. Pitrou, and J.-P. Uzan, J.

Cosmol. Astropart. Phys. 11 (2014) 043.

GENERALIZED SU(2) PROCA THEORY PHYSICAL REVIEW D 94, 084041 (2016)

084041-19

http://dx.doi.org/10.1088/1475-7516/2016/09/026
http://dx.doi.org/10.1016/j.physletb.2016.07.052
http://dx.doi.org/10.1016/j.physletb.2016.07.052
http://arXiv.org/abs/1608.07066
http://dx.doi.org/10.1088/0264-9381/31/22/225004
http://dx.doi.org/10.1088/0264-9381/31/22/225004
http://dx.doi.org/10.1007/JHEP03(2015)154
http://dx.doi.org/10.1007/JHEP03(2015)154
http://dx.doi.org/10.1103/PhysRevD.93.104016
http://dx.doi.org/10.1088/1475-7516/2016/06/048
http://dx.doi.org/10.1088/1475-7516/2016/06/048
http://dx.doi.org/10.1103/PhysRevD.94.044024
http://arXiv.org/abs/1607.03175
http://arXiv.org/abs/1607.03175
http://dx.doi.org/10.1103/PhysRevLett.102.191302
http://dx.doi.org/10.1103/PhysRevLett.102.191302
http://dx.doi.org/10.1103/PhysRevD.74.083502
http://dx.doi.org/10.1103/PhysRevD.81.023522
http://dx.doi.org/10.1103/PhysRevD.81.023522
http://dx.doi.org/10.1088/1475-7516/2008/06/009
http://dx.doi.org/10.1088/1475-7516/2008/06/009
http://dx.doi.org/10.1088/1475-7516/2004/07/007
http://dx.doi.org/10.1088/1475-7516/2004/07/007
http://dx.doi.org/10.1016/j.physletb.2013.05.001
http://dx.doi.org/10.1016/j.physletb.2013.05.001
http://dx.doi.org/10.1103/PhysRevD.84.043515
http://dx.doi.org/10.1103/PhysRevD.84.043515
http://dx.doi.org/10.1103/PhysRevLett.108.261302
http://dx.doi.org/10.1103/PhysRevLett.108.261302
http://dx.doi.org/10.1088/1475-7516/2012/01/016
http://dx.doi.org/10.1088/1475-7516/2012/01/016
http://dx.doi.org/10.1088/1475-7516/2013/11/045
http://dx.doi.org/10.1088/1475-7516/2013/11/045
http://dx.doi.org/10.1007/JHEP09(2013)087
http://dx.doi.org/10.1007/JHEP09(2013)087
http://dx.doi.org/10.1016/0003-4916(70)90008-4
http://dx.doi.org/10.1016/0550-3213(75)90492-7
http://dx.doi.org/10.1103/PhysRevD.48.2854
http://dx.doi.org/10.1006/aphy.1995.1062
http://dx.doi.org/10.1006/aphy.1995.1062
http://dx.doi.org/10.1016/0003-4916(76)90062-2
http://dx.doi.org/10.1016/0003-4916(91)90362-C
http://dx.doi.org/10.1016/0003-4916(91)90362-C
http://dx.doi.org/10.1016/S0550-3213(97)00296-4
http://dx.doi.org/10.1016/S0550-3213(97)00296-4
http://dx.doi.org/10.1016/0370-1573(81)90092-2
http://dx.doi.org/10.1103/PhysRevD.83.045009
http://dx.doi.org/10.1103/PhysRevD.83.045009
http://dx.doi.org/10.1007/BF01209387
http://dx.doi.org/10.1007/BF01209387
http://dx.doi.org/10.1103/PhysRevD.87.023528
http://dx.doi.org/10.1103/PhysRevD.87.023528
http://dx.doi.org/10.1103/PhysRevD.86.043530
http://dx.doi.org/10.1103/PhysRevD.86.043530
http://dx.doi.org/10.1142/S0217732316400058
http://dx.doi.org/10.1142/S0217732316400058
http://dx.doi.org/10.1016/j.physletb.2015.12.070
http://dx.doi.org/10.1016/j.physletb.2015.12.070
http://dx.doi.org/10.1088/1475-7516/2015/05/005
http://dx.doi.org/10.1088/1475-7516/2015/05/005
http://dx.doi.org/10.1016/j.astropartphys.2014.06.011
http://dx.doi.org/10.1142/S0217732314501612
http://dx.doi.org/10.1142/S0217732314501612
http://dx.doi.org/10.1088/1475-7516/2014/03/016
http://dx.doi.org/10.1088/1475-7516/2014/03/016
http://dx.doi.org/10.1088/1475-7516/2013/12/018
http://dx.doi.org/10.1088/1475-7516/2013/12/018
http://dx.doi.org/10.1007/s10714-013-1642-6
http://dx.doi.org/10.1007/s10714-013-1642-6
http://dx.doi.org/10.1016/j.physrep.2013.03.003
http://dx.doi.org/10.1016/j.physrep.2013.03.003
http://dx.doi.org/10.1103/PhysRevD.87.043523
http://dx.doi.org/10.1103/PhysRevD.87.103501
http://dx.doi.org/10.1103/PhysRevD.87.103501
http://dx.doi.org/10.1016/j.physletb.2012.09.059
http://arXiv.org/abs/1508.03247
http://dx.doi.org/10.1103/PhysRevD.84.043503
http://dx.doi.org/10.1103/PhysRevD.84.043503
http://dx.doi.org/10.1088/1475-7516/2013/10/064
http://dx.doi.org/10.1103/PhysRevD.93.064012
http://dx.doi.org/10.1103/PhysRevD.93.064012
http://dx.doi.org/10.1103/PhysRevD.82.061501
http://dx.doi.org/10.1103/PhysRevD.82.061501
http://dx.doi.org/10.1007/JHEP12(2010)031
http://dx.doi.org/10.1007/JHEP12(2010)031
http://dx.doi.org/10.1103/PhysRevD.82.124018
http://dx.doi.org/10.1103/PhysRevD.82.124018
http://dx.doi.org/10.1007/JHEP04(2013)032
http://dx.doi.org/10.1007/JHEP04(2013)032
http://dx.doi.org/10.1103/PhysRevD.90.104006
http://dx.doi.org/10.1016/j.cpc.2014.12.023
http://dx.doi.org/10.1016/j.cpc.2014.12.023
http://dx.doi.org/10.1088/1475-7516/2014/11/043
http://dx.doi.org/10.1088/1475-7516/2014/11/043

