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Charged massive scalar field perturbations are studied in the gravitational, electromagnetic, dilaton, and
axion fields of rotating linear dilaton black holes. In this geometry, we separate the covariant Klein-Gordon
equation into radial and angular parts and obtain the exact solutions of both the equations in terms of the
confluent Heun functions. Using the radial solution, we study the problems of resonant frequencies,
entropy/area quantization, and greybody factor. We also analyze the behavior of the wave solutions near the
event horizon of the rotating linear dilaton black hole and derive its Hawking temperature via the Damour-
Ruffini-Sannan method.
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I. INTRODUCTION

Analytical solutions to a wave equation in a black hole
background (in particular, for a stationary black hole) are of
remarkable importance in theoretical and mathematical
physics. Obtaining an exact solution to the wave equation
is widely applicable in black hole physics. For example,
one can study the quasinormal modes [1–4], analyze the
entropy and area quantization [5], compute the greybody
factor and absorption rate of a black hole [6–12], and study
black hole perturbation [13]. The behavior of scalar fields
in the backgrounds of black holes is studied to understand
the physics of spin-0 particles. Thus, it is important to seek
analytical solutions to the Klein-Gordon equation (KGE)
and analyze physical phenomena such as the emission of
scalar particles from black holes. Therefore, exact solutions
of the KGE in various black hole geometries have been
studied, e.g., [14–27] and references therein.
The subject of quantization of black holes was introduced

in the early 1970s byBekenstein [28,29]. He conjectured that
a black hole has an equidistant area (ABH) spectrum:
ABH n ¼ 8πnℏ, (n ¼ 0; 1; 2;…) [30–32]. To this end, he
used the Ehrenfest’s principle by considering the black hole
area as an adiabatic invariant quantity. Since those seminal
works ofBekenstein, numerous theoreticalmodels have been
proposed for quantizing the black holes; for a topical review
see [33]. Among them, the method of Maggiore [34] has
gained much attention in the literature. According to
Maggiore, a black hole can be considered as a damped
harmonic oscillator with a frequency (ω), which is identical
to the complex resonant frequencies or quasinormal modes.
For the high damping oscillations, the imaginary part of the
resonant frequencies always becomes dominant over the real
part. Based on this fact Maggiore used the transition
frequency Δω ≈ Imωn−1 − Imωn in the adiabatic invariance
formula of Kunstatter [35] and proved that the area spectrum
is exactly equal to Bekenstein’s original result [32].

Hawking [36] proved that black holes can thermally
create and emit quantum particles, known as Hawking
radiation, until they exhaust their energy and evaporate
completely. According to this theory, black holes are
therefore neither completely black nor able to last forever.
In fact, the Hawking radiation is a phenomenon in which
both the general theory of relativity and quantum theory
simultaneously play an active role. Especially, it can be
seen as the onset of the theory of quantum gravity. In the
last four decades, various methods have been proposed to
compute the Hawking radiation, e.g., [37–48]. The numer-
ous publications on this subject to date clearly show that the
Hawking radiation remains central in theoretical physics.
Moreover, in experimental physics, Steinhauer [49] has
almost succeeded in creating a laboratory-scale imitation of
a black hole that emits Hawking radiation, that is, the
particles that escape black holes because of quantum
mechanical effects. One of the most valuable contributions
to the original derivation of Hawking was made by
Damour, Ruffini [38], and Sannan [50] (DRS). They
demonstrated that to obtain the decay or emission rate, it
is necessary to build a damped part in the outgoing wave
function. Therefore, one should apply a simple analytic
continuation to the outgoing wave function (available in the
exterior region) to obtain its internal region structure. Such
an analytical extension produces a damping factor and
yields the scattering probability (i.e., emission rate) of the
scalar wave at the event horizon. Furthermore, the DRS
method only requires the existence of a future horizon and
is independent from the dynamical details of the horizon
formation process. For applications of the DRS method, the
reader may refer to [26,27,51–57]. This method is also
closely related to the near-horizon conformal property of
the black hole geometry [58,59]. Although many studies of
the DRS method have focused on the asymptotically flat
black holes, the applications of the DRS method on the
nonasymptotically flat black holes have remained very
limited [59–61]. Our present study aims to decrease this
paucity in the literature.*izzet.sakalli@emu.edu.tr
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In this study, we mainly focus on the analytical solutions
of the KGE for a charged massive scalar field in rotating
linear dilaton black holes (RLDBHs) [62]. These black
holes represent nonasymptotically flat (like the Friedmann-
Lemaître-Robertson-Walker spacetime [63], which is the
universe model that most theorists currently use) solutions
to the Einstein-Maxwel-dilaton-axion (EMDA) gravity
theory. The experiments [64–67] on dilaton and axion
fields that naturally exist in the RLDBH geometry may
vindicate the dark matter in the near future. At the present
time, the studies for the RLDBH [24,68–73] in the
literature are relatively fewer than the studies that exist
for static linear dilaton black holes [73–80]. In particular,
for the problems of absorption cross section and decay rate
for the massless and chargeless bosons emitted by a
RLDBH, the reader is referred to [71]. We show that the
obtained charged massive scalar wave function solutions
are expressed in terms of the confluent Heun functions
[81–84]. The solutions cover the region between the outer
horizon and spatial infinity. Inspired by the very recent
study of Vieira and Bezerra [57], we derive the resonant
frequencies of the RLDBH by using the analytical solution
of the radial equation and in the sequel derive the equally
spaced entropy/area spectra of this black hole. We also
study the greybody problem of the RLDBH spacetime. But
the limited linear transformation formulas of the confluent
Heun functions lead us to consider the case of chargeless
and massless scalar fields. By obtaining the greybody
factor, we reveal which waves are eligible to travel from
the horizon to the asymptotic region in the RLDBH
geometry. We then investigate the Hawking emission of
the chargeless and massless spin-0 particles by computing
the emission rate within the framework of the DRS method.
The paper is divided into the following sections. In

Sec. II, we introduce the metric of the RLDBH spacetime
and demonstrate its thermodynamic features. Section III is
devoted to the KGE for charged massive scalar fields in the
RLDBH geometry. Moreover, we separate the KGE into
angular and radial parts. In Sec. IV, the analytical solutions
of the angular and radial equations are represented in terms
of the confluent Heun functions. In Sec. V, we present the
applications of the wave solution. In this regard, the
problems of resonant frequencies, entropy/area quantiza-
tion, greybody factor, and Hawking radiation are elabo-
rately studied. Finally, we summarize our discussions in the
conclusion section. (We use geometrized units where
G ¼ c ¼ 1, so that energy and time have units of length.
The appendix lists the prominent symbols that are used
throughout the paper.)

II. ROTATING LINEAR DILATON BLACK
HOLE SPACETIME

The EMDA theory is described by the following
action [85],

S ¼ 1

16π

Z
d4x

ffiffiffiffiffi
jgj

p �
ℜ − e−2ϕFμνFμν − ϰFμν

~Fμν

− 2∂μϕ∂μϕ −
1

2
e4ϕ∂μχ∂μχ

�
; ð1Þ

where ϕ and χ represent the dilaton and axion fields,
respectively. The Maxwell field is governed by Fμν ¼
∂μAν − ∂νAμ in which A is an Abelian vector field (i.e.,
electromagnetic vector potential), ~Fμν is the dual of Fμν,
and ℜ denotes the Ricci scalar. The line element that is the
solution to Eq. (1) corresponds to the rotating linear dilaton
metric with mass term, M, rotation parameter, a, and
background electric charge, Q. In Boyer-Lindquist coor-
dinates, the RLDBH spacetime [62] is given by

ds2¼−fdt2þ 1

f
dr2þξ

�
dθ2þ sin2θ

�
dφ−

a
ξ
dt

�
2
�
; ð2Þ

where

f ¼ Δξ−1; ð3Þ

ξ ¼ rr0; ð4Þ
and the horizon surface equation (f ¼ 0) is obtained from
the condition

Δ ¼ ðr − rþÞðr − r−Þ; ð5Þ
in which rþ and r− represent the event and inner (Cauchy)
horizons, respectively. Those radii are given by

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ð6Þ

where M is twice the quasilocal mass (M ¼ 2MQL) [86].
The charge parameter r0 ¼

ffiffiffi
2

p
Q and the rotation param-

eter a are related with the angular momentum (J) as 2J ¼
ar0 [62]. Once the rotation ceases, the stationary metric (2)
clearly becomes static [46]. Furthermore, the dilaton and
axion fields are given by

e−2ϕ ¼ ξ

r2 þ a2cos2θ
; ð7Þ

χ ¼ −
r0a cos θ

r2 þ a2cos2θ
: ð8Þ

The electromagnetic vector potential is

A ¼ AtdtþAφdφ ¼ 1ffiffiffi
2

p ðe2ϕdtþ asin2θdφÞ; ð9Þ

and the Maxwell 2-form is derived as follows:

F¼ 1ffiffiffi
2

p
�
r2−a2cos2θ

rξ
dr∧dtþasin2θdθ∧

�
dφ−

a
ξ
dt

��
:

ð10Þ

I. SAKALLI PHYSICAL REVIEW D 94, 084040 (2016)

084040-2



A. Thermodynamics

In this section, we discuss the thermodynamic features of
the RLDBHs. First, we consider a particle near the horizon
with the following 4-velocity,

u ¼ ut
�
∂t þ

a
ξ
∂φ

�
; ð11Þ

which satisfies the normalization condition

1 ¼ uμuμ: ð12Þ
Hence, one finds (near the horizon)

ut ¼ 1ffiffiffiffiffi
gtt

p : ð13Þ

Because all the metric components are only functions of
r and θ, particle acceleration can be obtained from

aμ ¼ Γμ
αβu

αuβ ¼ −gμα∂α ln ut: ð14Þ
The definition of the surface gravity (κ) is given by [87]

κ ¼ lim
r→rþ

ffiffiffiffiffiffiffiffiffiffi
aμaμ

p
ut

: ð15Þ

After a straightforward calculation, Eq. (15) becomes

κ ¼ 1

2

df
dr

����
r¼rþ

¼ rþ − r−
2rþr0

: ð16Þ

Thus, we obtain the Hawking temperature as

TH ¼ ℏκ
2π

¼ ℏðrþ − r−Þ
4πrþr0

: ð17Þ

The angular velocity (ΩH) and the black hole area are
given by

ΩH ¼ −
gtφ
gφφ

����
r¼rþ

¼ a
rþr0

; ð18Þ

ABH ¼
Z

2π

0

dφ
Z

π

0

ffiffiffiffiffiffi
−g

p
dθ ¼ 4πrþr0: ð19Þ

It is worth noting that in the evaluation of integral (19),ffiffiffiffiffiffi−gp
is considered for the metric tensor of the RLDBH

horizon (setting dr ¼ dt ¼ 0),

gμν ¼
�
rþr0 0

0 rþr0sin2θ

�
: ð20Þ

Hence, the entropy of the black hole, SBH, is given by

SBH ¼ ABH

4ℏ
¼ πrþr0

ℏ
: ð21Þ

The quantities described by Eqs. (17), (18), and (21)
satisfy the first law of thermodynamics,

dMQL ¼ THdSBH þ ΩHdJ: ð22Þ

III. SEPARATION OF THE KGE IN
RLDBH GEOMETRY

In this section, we consider the wave equation of the
charged massive scalar particles propagating in the geom-
etry of RLDBH.
The KGE for a charged massive scalar particle is given

by (e.g., [88])

1ffiffiffiffiffiffi−gp ð∂α− iqAαÞð
ffiffiffiffiffiffi
−g

p
gανð∂ν− iqAνÞΨÞ−μ2sΨ¼ 0; ð23Þ

where μs and q represent the mass and charge of the scalar
fieldΨ, respectively. Owing to the axial symmetry and time
independence of the spacetime, the scalar field can be
written as

Ψ ¼ Ψðr; tÞ ¼ RðrÞSðθÞeimφe−iωt; ð24Þ
where ω is the energy (frequency) corresponding to the flux
of particles at spatial infinity and m denotes the azimuthal
quantum number. Thus, Eq. (23) takes the following form
in the RLDBH spacetime,

1

2ξf
½q2ðr2 þ a2Þ2 −

ffiffiffi
2

p
qamða2 þ r2Þ þ 2m2a2�

þ ω

f
½ωξþ

ffiffiffi
2

p
qðr2 þ a2Þ − 2am� þ

ffiffiffi
2

p
qma

− ξμ2s þ
1

RðrÞ
d
dr

�
ξf

d
dr

RðrÞ
�
−

m2

sin2θ
−
1

2
q2a2sin2θ

þ 1

sin θSðθÞ
d
dθ

�
cos θ

d
dθ

SðθÞ
�
¼ 0; ð25Þ

and by using an eigenvalue λ one can separate Eq. (25) into
an angular equation,

d2

dθ2
SðθÞ þ cot θ

�
d
dθ

SðθÞ
�

−
�

m2

sin2θ
þ 1

2
q2a2sin2θ − λ

�
SðθÞ ¼ 0; ð26Þ

and a radial equation,

d
dr

�
ξf

�
d
dr

RðrÞ
��

þ
�

1

2ξf
−

ffiffiffi
2

p
qamða2 þ r2Þ þ 2m2a2

þ ω

f
½ξωþ

ffiffiffi
2

p
qðr2 þ a2Þ − 2am�

þ
ffiffiffi
2

p
qma − ξμ2s

	
RðrÞ ¼ 0: ð27Þ

As demonstrated in the following sections, the above
separations enable us to find the solutions of the angular
and radial equations in terms of the confluent Heun
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functions. In particular, the solution of Eq. (27) can help us
compute the standard Hawking radiation of the RLDBH.

IV. ANALYTICAL SOLUTIONS OF THE
ANGULAR AND RADIAL EQUATIONS

In this section, we discuss the exact solutions of the
angular and radial parts of the KGE.

A. Angular equation

By changing the independent variable θ to a new
variable y,

θ ¼ cos−1ð1 − 2yÞ; ð28Þ

Eq. (26) transforms into

d2

dy2
SðyÞþ 2y−1

yðy−1Þ
d
dy

SðyÞ

−
1

4

��
m

yðy−1Þ
�

2

þ 4λ

yðy−1Þþ8q2a2
�
SðyÞ¼ 0: ð29Þ

We also introduce a new function HðyÞ via

SðyÞ ¼ eτy
�

y
y − 1

�
m
HðyÞ; ð30Þ

where

τ ¼ 2aq�; ð31Þ

in which q� ¼ qffiffi
2

p . Function HðyÞ satisfies the following

equation,

d2

dy2
HðyÞ þ

�
2τ þ 2

y − 1
þ m − 1

yðy − 1Þ
�
d
dy

HðyÞ

þ ð2y − 1þmÞτ − λ

yðy − 1Þ HðyÞ ¼ 0; ð32Þ

which can be rewritten as the confluent Heun equation [84],

d2

dy2
HðyÞ þ

�
~αþ

~β þ 1

y
þ ~γ þ 1

y − 1

�
d
dy

HðyÞ

þ
�
~μ

y
þ ~ν

y − 1

�
HðyÞ ¼ 0: ð33Þ

The parameters ~α, ~β, and ~γ are given by

~α ¼ 2τ; ~β ¼ −~γ ¼ −m: ð34Þ
By setting

~η ¼ m2

2
− λ; ~δ ¼ 0; ð35Þ

the other two parameters ~μ and ~ν in Eq. (32) become

~μ ¼ 1

2
ð ~α − ~β − ~γ þ ~α ~β−~β ~γÞ − ~η ¼ τð1 −mÞ þ λ; ð36Þ

~ν¼ 1

2
ð ~αþ ~βþ ~γþ ~α ~γþ ~β ~γÞþ ~δþ ~η¼ τð1þmÞ−λ: ð37Þ

The solution of Eq. (32) is given by [89]

HðyÞ ¼ C1HeunCð ~α; ~β; ~γ; ~δ; ~η; yÞ
þ C2y−βHeunCð ~α;−~β; ~γ; ~δ; ~η; yÞ; ð38Þ

where C1 and C2 are the integral constants. Thus, the
general exact solution of the angular part (28) of the KGE
for a charged massive scalar field in the RLDBH geometry
and over the entire range 0 ≤ y < ∞ is

SðyÞ ¼ eτy
�

y
y − 1

�
m
½C1HeunCð ~α; ~β; ~γ; ~δ; ~η; yÞ

þ C2y−βHeunCð ~α;− ~β; ~γ; ~δ; ~η; yÞ�: ð39Þ

B. Radial equation

We follow the procedure described in Sec. IVA to show
that the radial equation (27) can also be transformed into
the confluent Heun equation (33). Thus, we first set

z ¼ r − rþ
r− − rþ

; ð40Þ

and using this new coordinate, Eq. (27) transforms into

d2

dz2
RðzÞ þ ð1 − 2zÞ d

dz RðzÞ
zð1 − zÞ þ

�
q�2ðrþ − r−Þ2z2

ð1 − zÞ2 −
ð2q�ωr0 þ 4q�2rþ − r0μ2sÞðrþ − r−Þz

ð1 − zÞ2

þ 6q�r0rþωþ r20ω
2 þ μ2sðr− − 2rþÞr0 þ 2ð3r2þ þ a2Þq�2 − λ

ð1 − zÞ2 −
2

ðrþ − r−Þð1 − zÞ2z
× ½2q�ð3r2þωr0 −marþ þ aðaωr0 −mr−ÞÞ þ 4q�2r3þ − r0μ2sr2þ þ ðμ2sr0r− þ 4a2q�2 − λþ 2r02ω2Þrþ
þ λr− − 2r0ωam� þ ðr2þ þ a2Þ2

ðrþ − r−Þ2z2ð1 − zÞ2
�
q� −

ðma − ωr0rþÞ
r2þ þ a2

�
2
	
RðzÞ ¼ 0: ð41Þ

Moreover, when we apply a particular s-homotopic transformation [27] to the dependent variable RðzÞ → UðzÞ, where
RðzÞ ¼ eβ1zzβ2ð1 − zÞβ3UðzÞ; ð42Þ
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and coefficients β1, β2, and β3 are given by

β1 ¼ iq�ðrþ − r−Þ; ð43Þ

β2 ¼
i½ωrþr0 −maþ q�ðr2þ þ a2Þ�

rþ − r−
; ð44Þ

β3 ¼
i½ωr−r0 −maþ q�ðr2− þ a2Þ�

rþ − r−
: ð45Þ

Function UðzÞ satisfies the confluent Heun equation (33)
with the following parameters:

~α ¼ 2β1; ~β ¼ 2β2; ~γ ¼ 2β3; ð46Þ

~δ ¼ ðrþ − r−Þ½r0μ2s − 2q�2ðrþ þ r−Þ − 2q�ωr0�; ð47Þ

~η ¼ 1

ðrþ − r−Þ2
½2q�2ðr4þ − 2r3þr− − a4 − 2a2rþr−Þ

þ 2q�ðmaðr2þ þ r2− þ 2a2Þ
−ωr0ðr−a2 þ 3r−r2þ − r3þ þ a2rþÞÞ
− 2ðma − ωr0rþÞðma − ωr0r−Þ�−λ − r0μ2srþ: ð48Þ

We recall that

~μ ¼ 1

2
ð ~α − ~β − ~γ þ ~α ~β−~β ~γÞ − ~η; ð49Þ

~ν ¼ 1

2
ð ~αþ ~β þ ~γ þ ~α ~γþ~β ~γÞ þ ~δþ ~η: ð50Þ

Thus, using solution (38) of the confluent Heun equa-
tion, the general solution of Eq. (40) in the exterior region
of the event horizon (0 ≤ z < ∞) is given by

RðzÞ ¼ eβ1zð1 − zÞβ3 ½C1zβ2HeunCð ~α; ~β; ~γ; ~δ; ~η; zÞ
þ C2z−β2HeunCð ~α;− ~β; ~γ; ~δ; ~η; zÞ�; ð51Þ

where C1 and C2 are constants.
Around the regular singular point u ¼ 0, the confluent

Heun function [82–84] behaves as

HeunCð ~α; ~β; ~γ; ~δ; ~η;uÞ

¼ 1þu
ð~βð~γ− ~αþ1Þþ2~η− ~αþ ~γÞ

2ð1þ ~βÞ þ u2

8ð1þ ~βÞð2þ ~βÞ
× ð ~β2ð ~α− ~γÞ2−4~η ~βð ~α− ~γÞþ2~α ~βð2~α− ~β−3~γÞ
þ4~β ~γ ð~βþ ~γÞþ3ð ~α2þ ~β2Þþ4~ηð~η−2ð ~α− ~β− ~γ−1ÞÞ
−4~αð~βþ ~γÞþ4~β ~δþ~γð10~βþ3~γ2Þþ4ð~βþ ~δþ ~γÞÞþ �� � ;

ð52Þ
which is an auxiliary mathematical expression in the
analysis of the Hawking radiation.

V. APPLICATIONS OF THE WAVE SOLUTION

In this section, we first study the resonant frequencies of
the charged and massive scalar waves propagating in the
RLDBH geometry by using the solution (51). Next, the
obtained resonant frequencies are applied in the rotational
adiabatic invariant quantity [69,90,91] to derive the quan-
tum entropy/area spectra of the RLDBH. This problem is
nothing but the extension of [69] in which the massless and
chargeless scalar waves were considered. Then, we obtain
the reflection coefficient and greybody factor for particular
scalar waves. Finally, we apply the DRS method to
compute the Hawking radiation of the RLDBH.

A. Resonant frequencies and spectroscopy of RLDBH

In this subsection, we follow the recently developed
technique of [57] for computing the resonant frequencies
for charged massive scalar waves propagating in the
RLDBH background. By using those frequencies, we show
how one can derive the equally spaced entropy/area spectra
of the RLDBH.
Resonant frequencies are the proper modes at which a

black hole freely oscillates when excited by a perturbation.
In fact, the resonant frequencies are called quasinormal
modes, in contrast to the normal modes of Newtonian
gravity, because they are damped by the emission of
gravitational waves; as a consequence, the corresponding
eigenfrequencies are complex [92]. The imaginary compo-
nent of the frequency tells us how quickly the oscillation
will die away. So if one sets a black hole to vibrating, it
radiates the energy away in gravitational waves. Both
rotating and static black hole solutions have not just one
resonant frequency but a whole series of resonant frequen-
cies (see for example [93] and references therein). The
resonant frequencies are associated with the radial solution
(51) for the certain boundary conditions. The solution
should be finite on the horizon and well behaved at
asymptotic infinity. The latter remark requires that RðzÞ
must have a polynomial form, which is possible with the
~δn-condition [57,84],

1þ
~β þ ~γ

2
þ

~δ

~α
¼ −n; n ¼ 0; 1; 2;…: ð53Þ

By using the Frobenius method and putting the power
series expansion into the confluent Heun’s differential
equation (33), the three-term recursive relation of coeffi-
cients starts to appear. To obtain the Heun polynomials, one
should impose the condition of Cnþ2 ¼ 0, where Cn is one
of the elements of the three-term recurrence relation [84]. In
fact, Cnþ2 ¼ 0 is equivalent to the ~δn-condition (for the
technical details, we refer the interested reader to [94] and
the references therein). In particular, Fiziev [95] showed
that the confluent Heun’s polynomials obtained from the
~δn-condition (53) admit the most general class of solutions
to the Teukolsky master equation, which is correspondent
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with the Teukolsky-Starobinsky identities (TSIs) [6,7,96].
Please be reminded that TSIs are the key element of the
theory of perturbations to a gravitational field (including
the subject of quasinormal modes [97]) of rotating rela-
tivistic objects. Detailed studies on the TSIs can be seen in
the seminal works of Chandrasekhar [13,98].
From Eq. (53), we get

1þ i
½4ðr2þþa2Þq�2þ4q�ðωr0rþ−maÞ−μ2sr0ðrþ− r−Þ�

2q�ðrþ− r−Þ
¼−n: ð54Þ

Similar to the very recent work of Ref. [57], one can find an
analytic expression for the resonant frequencies ωn from
Eq. (54) as follows,

ωn ¼ mΩH þ qΦe þ 2κr0
μ2s
q�

þ iðnþ 1Þκ; ð55Þ

where

Φe ¼ −
r2þ þ a2ffiffiffi
2

p
rþr0

;

¼ −Atjr¼rþ;θ¼ð0;πÞ; ð56Þ
which is the electric potential of the RLDBH measured at
the north/south poles of the 2-sphere with radius rþ [99].
From Eq. (55), one can get the transition frequency
between two highly damped (n → ∞) neighboring states
as follows:

Δω ≈ Imωn−1 − Imωn; ðn → ∞Þ

¼ κ ¼ 2πTH

ℏ
: ð57Þ

For a black hole system with total energy E, the natural
adiabatic invariant quantity Iadb is given by [69,90,91]

Iadb ¼
Z

dE
Δω

≡
Z

THdSBH
Δω

: ð58Þ

For large quantum numbers (n → ∞), the Bohr-
Sommerfeld quantization condition [100] applies and
Iadb acts as a quantized quantity (Iadb ≃ nℏ) [35].
Inserting the transition frequency (57) into Eq. (58), one
finds

Iadb ¼
ℏSBH
2π

¼ nℏ: ð59Þ

From above, we read the entropy spectrum as

SBH n ¼ 2πn: ð60Þ
Since SBH ¼ ABH

4ℏ , the area spectrum is then obtained as

ABH n ¼ 8πnℏ; ð61Þ
and the minimum change in the area becomes

ΔAmin
BH ¼ 8πℏ: ð62Þ

As can be seen from Eqs. (60) and (61), both entropy and
area spectra are equally spaced and independent of the
black hole parameters. Besides, Eq. (62) shows that the
RLDBH horizon is made by patches of equal area 8πℏ.
Namely, the results obtained are fully in agreement with the
Bekenstein conjecture [32] and with Ref. [69].

B. Greybody factor and Hawking radiation

The greybody factor accounts for the fact that waves
need to travel from the horizon to spatial infinity in the
curved geometry [99]. Analytical greybody factor compu-
tations require us to know the behavior of the general radial
solution (51) near spatial infinity r → ∞ or z → ∞. To this
end, there is a need for a transformation similar to the
following:

HeunCð ~α; ~β; ~γ; ~δ; ~η; zÞ → gamma functions

× HeunC

�
~a; ~b; ~c; ~d; ~e;

1

z

�
: ð63Þ

The parameters ~a, ~b, ~c, ~d, ~e and the gamma functions
introduced in the above equation should be related with ~α,
~β, ~γ, ~δ, ~η according to the transformation rules of the special
functions [101]. The key point here is the normalization
condition [82]: HeunCð ~a; ~b; ~c; ~d; ~e;1z¼0Þ¼1 while z → ∞.
Thus, the asymptotic solution of the transformed [via
Eq. (63)] radial equation (51) would describe the pure
asymptotic ingoing and outgoing waves [like the wave
solution illustrated in Eq. (75)], which allow us to evaluate
original flux coming from infinity and compare it to the
flux at the black hole horizon. Then, the calculation of
the greybody factor would be possible for the RLDBH.
But unfortunately such a transformation (63) currently does
not exist in the literature. In fact, unlike many classical
hypergeometric transformations [102], the confluent
Heun functions have very limited transformations [103].
Nevertheless, we are not completely helpless. The follow-
ing transformation [89] enables us to transform the con-
fluent Heun functions to the hypergeometric functions.

HeunCð ~α; ~β; ~γ; ~δ; ~η;zÞ¼ ð1−zÞ−ΞF
�
Ξ;Ξ− ~γ;1þ ~β;

z
z−1

�
;

ð ~α¼ 0; ~βþ1≠ 0; ~δ¼ 0;z≠ 1Þ; ð64Þ
where

Ξ ¼ 1þ ~β þ ~γ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β2 þ ~γ2 þ 1 − 4~η

q
2

: ð65Þ

However, the conditions of ~α ¼ 0 and ~δ ¼ 0 for non-
extremal (rþ ≠ r−) RLDBH are simultaneously satisfied if
and only if the chargeless (q ¼ 0 → β1 ¼ 0) and massless
(μs ¼ 0) scalar fields are taken into account [see Eqs. (43),

I. SAKALLI PHYSICAL REVIEW D 94, 084040 (2016)

084040-6



(46), and (47)]. In this case, the general radial solution (51)
reduces to the following form,

RðzÞ ¼ C1zβ2ð1 − zÞβ3−ΞF
�
Ξ;Ξ−~γ; 1þ ~β;

z
z − 1

�

þ C2z−β2ð1 − zÞβ3−Ξ̂F
�
Ξ̂; Ξ̂ − ~γ; 1 − ~β;

z
z − 1

�
;

ð66Þ
where

Ξ̂ ¼ Ξð ~β → − ~βÞ: ð67Þ
If one changes the independent variable z to a new

variable u via the following transformation,

u ¼ z
z − 1

¼ r − rþ
r − r−

;→ z ¼ u
u − 1

; ð68Þ

Eq. (66) recasts in

RðuÞ ¼ C1uα̂ð1 − uÞβ̂Fðâ; b̂; ĉ; uÞ
þ C2u−α̂ð1 − uÞβ̂Fðâ − ĉþ 1; b̂ − ĉþ 1; 2 − ĉ; uÞ;

ð69Þ
where

α̂ ¼ −i
ωr0rþ −ma
rþ − r−

;

β̂ ¼ 1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 1

4
− ω2r20

r
; ð70Þ

and

â ¼ β̂ − iωr0;

b̂ ¼ β̂ − i
ωr0ðrþ þ r−Þ − 2ma

rþ − r−
;

ĉ ¼ 1 −
2iðωr0rþ −maÞ

rþ − r−
: ð71Þ

Meanwhile, in the absence of charge and mass the
angular equation (29) admits a normalizable solution when
it is expressed in terms of the spheroidal harmonics [102]
with eigenvalues λ ¼ −lðlþ 1Þ in which l denotes the
orbital quantum number. In fact, radial solution (69) was
thoroughly studied by Li [24] several years ago. From now
on, we review the computations of [24] to obtain the
greybody factor of the RLDBH.
To study the absorption features of black holes, one

should consider two boundary conditions: pure ingoing
modes near the horizon and both ingoing and outgoing
modes at spatial infinity. Following [24], one can infer from
the ingoing boundary condition of the horizon (no outgoing
wave survives at the horizon) that the coefficient C2 in
Eq. (69) must vanish. Thus, considering one of the hyper-
geometric transformations [see Eq. (15.3.6) of [102]] we
can obtain the asymptotic behavior of the radial solution as

RðrÞ ¼ C1

��
r

rþ − r−

�
−β̂ Γðĉ − â − b̂ÞΓðĉÞ

Γðĉ − b̂ÞΓðĉ − âÞ

þ
�

r
rþ − r−

�
β̂−1 Γðâþ b̂ − ĉÞΓðĉÞ

ΓðâÞΓðb̂Þ

�
: ð72Þ

On the other hand, the radial equation (27) with μs ¼
q ¼ 0 near spatial infinity of the RLDBH is reduced to the
following simple second order differential equation:

r2
d2R
dr2

þ 2r
dR
dr

þ ½ω2r20 − lðlþ 1Þ�R ¼ 0: ð73Þ

The solution of the above equation is given by

RðrÞ ¼ D1r−β̂ þD2rβ̂−1: ð74Þ
When ωr0 > lþ 1=2 (high-energy mode), Eq. (74) can
also be expressed as a complex solution,

RðrÞ ¼ 1ffiffiffi
r

p ðD1eiσ ln r þD2e−iσ ln rÞ; ð75Þ

where

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2r20 − ðlþ 1=2Þ2

q
: ð76Þ

It is obvious from Eq. (75) that the first term represents
the outgoing wave while the second term stands for the
ingoing wave. Comparing the asymptotic solutions (72)
and (74), one can get the following relationships between
the coefficients:

D1 ¼ C1ðrþ − r−Þβ̂
Γðĉ − â − b̂ÞΓðĉÞ
Γðĉ − b̂ÞΓðĉ − âÞ ;

D2 ¼ C1ðrþ − r−Þ1−β̂
Γðâþ b̂ − ĉÞΓðĉÞ

ΓðâÞΓðb̂Þ : ð77Þ

The conserved flux is given by

F ¼ −
i
2

ffiffiffiffiffiffi
−g

p
grrðR�∂rR − R∂rR�Þ: ð78Þ

After substituting the asymptotic solution (75) of the high-
energy modes into Eq. (78), we get the asymptotic flux as
follows:

F asy ¼ σ

2
ðjD1j2 − jD2j2Þ: ð79Þ

Thus, one can remark that 1
2
σjD1j2 and 1

2
σjD2j2 terms

denote the outgoing and ingoing fluxes, respectively.
Hence, we can compute the reflection coefficient for the
high-energy modes as

R ¼ jD1j2
jD2j2

¼
����Γ½

1
2
− iðσ þ kÞ�Γ½1

2
− iðkþ ωr0Þ�

Γ½1
2
þ iðσ − kÞ�Γ½1

2
þ iðk − ωr0Þ�

����
2

;

¼ cosh πðσ − kÞ cosh πðσ − ωr0Þ
cosh πðσ þ kÞ cosh πðσ þ ωr0Þ

; ð80Þ

ANALYTICAL SOLUTIONS IN ROTATING LINEAR … PHYSICAL REVIEW D 94, 084040 (2016)

084040-7



where

k ¼ ðrþ þ r−Þωr0 − 2ma
2κrþr0

: ð81Þ

It is worth noting that cosh forms of the gamma functions
seen in Eq. (80) come from the Euler’s reflection formulas
of the gamma function [102]. The greybody factor or the
absorption probability is given by

γGB ¼ 1 −R: ð82Þ
One can check that when we increase the frequency of

the waves from the starting value lþ1=2
r0

, the greybody factor
γGB rapidly goes to 1: limωð>lþ1=2

r0
Þ→∞γGB → 1 (see also

Fig. 1 depicted in [24]). The particle flux [104], in general,
obeys FpðωÞ ∝ γGB

eω=T−1, where T denotes the temperature.
The interpretation of this expression is that Hawking
radiation is produced with a thermal spectrum at the
horizon and then the spacetime curvature between the
horizon and infinity can scatter some of the radiation back
down the black hole. Thus, the observer at spatial infinity
could detect a nonthermal radiation. On the other hand,
when γGB → 1, the spectrum of Hawking radiation
observed by an asymptotic observer is pure thermal (black-
body radiation). Namely, the highly energetic thermal
waves can overpass the gravitational barrier located at
the outside of the RLDBH and travel from the horizon to
the asymptotic region. As a final remark, it should be kept
in mind that the identification of the ingoing and outgoing
fluxes at spatial infinity is governed by the parameter β̂.
According to Eq. (70), β̂ is real for the low-energy modes
ω < r0

2
and complex for the high-energy modes ω > lþ1=2

r0
.

We have shown above that high-energy modes render
possible the calculation of the greybody factor. However,
in the case of the low-energy modes (ω < r0

2
) the identi-

fication of the fluxes becomes a very hard task. This is in
fact due to the nonasymptotically flat structure of the
RLDBH. This issue was also discussed in detail in [24].
Now, we want to employ the DRS method to investigate

the Hawking radiation of the RLDBH. Since we now know
that the chargeless and massless scalar (thermal) waves
with ω > lþ1=2

r0
and γGB → 1 can smoothly reach the

observer at spatial infinity, the radial solution (51) with
q ¼ μs ¼ 0 can be used for the application of the DRS
method. From Eq. (52), we can see that Eq. (51) near the
exterior event horizon (r → rþ, z → 0) behaves as

RðzÞ ∼ C1zβ
0
2 þ C2z−β

0
2 ; ð83Þ

where β02 ¼ β2jq¼μs¼0. Thus, the near-horizon wave sol-
ution can be approximated to

Ψ ∼ e−iωtz�β0
2 : ð84Þ

Taking cognizance of Eqs. (16), (18), and (44), the
parameter β02 reads

β02 ¼
i
2κ

½ω −mΩH�: ð85Þ

Moreover, if we set

ϖ ¼ ω −mΩH; ð86Þ
Eq. (85) can be rewritten as

β02 ¼ i
ϖ

2κ
: ð87Þ

Performing Taylor series expansion, we find the structure
of the metric function f around the event horizon to be

fEH ≃ df
dr

����
r¼rþ

ðr − rþÞ þOðr − rþÞ2;

≃ 2κðrþ − r−Þx; ð88Þ
where x ¼ −z ¼ r−rþ

rþ−r−
. Thus, we can express the tortoise

coordinate (r�) [13] near the horizon as

r� ≃
Z

dr
fEH

¼
Z

dx
2κx

¼ 1

2κ
ln x ≈

1

2κ
ln ðr − rþÞ; ð89Þ

which corresponds to

r − rþ ≃ e2κr� : ð90Þ
Therefore, the ingoing and outgoing wave solutions on

the black hole event horizon surface become

Ψin ¼ e−iωte−iϖr� ; ð91Þ

Ψoutðr > rþÞ ¼ e−iωteiϖr� ; ð92Þ
respectively. To reveal the features of the waves near the
event horizon, we first define

~r ¼ ϖ

ω
r�; ð93Þ

and then introduce the Eddington-Finkelstein coordinate,

v ¼ tþ ~r: ð94Þ
Hence, the ingoing and outgoing wave solutions become

Ψin ¼ e−iωðtþ~rÞ ¼ e−iωv; ð95Þ

Ψoutðr > rþÞ ¼ e−iωðt−~rÞ ¼ e−iωve2iϖr� ;

¼ e−iωvðr − rþÞiϖκ : ð96Þ
One can easily observe that the Ψoutðr > rþÞ solution is

not analytical at the event horizon and the analytic
continuation produces a damping factor, which makes it
possible to attain an expression for the decay rate γdy [105].
To clarify the latter remark, we use the DRS method by
rotating −π through the lower-half complex r plane,

ðr − rþÞ → jr − rþje−iπ ¼ ðrþ − rÞe−iπ: ð97Þ

I. SAKALLI PHYSICAL REVIEW D 94, 084040 (2016)

084040-8



Thus, the outgoing wave solution in the internal region
(r < rþ) yields

Ψoutðr < rþÞ ¼ e−iωvðrþ − rÞiϖκ eπϖκ : ð98Þ
Therefore, Eqs. (96) and (98) represent the analytically

continuous outgoing wave propagating around the
RLDBH’s event horizon. Thus, the emission rate or the
relative scattering probability [27] of the scalar wave at
the surface of the event horizon surface becomes

γdy ¼
����Ψoutðr > rþÞ
Ψoutðr < rþÞ

����
2

¼ e−2π
ϖ
κ : ð99Þ

Following the other DRS applications like [51–57], the
Hawking radiation spectrum of the scalar particles emitted
from a black hole is obtained via the normalization
condition as follows,

jNðϖÞj2 ¼ γdy
1 − γdy

¼ 1

e2π
ϖ
κ − 1

; ð100Þ

where NðϖÞ is the normalization constant. Equation (100)
suggests that the emission of scalar particles has a
thermal character analogous to the well-known blackbody
spectrum with temperature TH ¼ κ

2π, which fully agrees
with Eq. (17).
It is also worth noting that since the rotating dilaton black

hole contains an ergosphere outside the horizon, it might
have a super-radiant instability. In asymptotically flat
spacetimes, such as Kerr black holes, the super-radiance
shows itself as an (quantum) emission of certain modes
ejaculating the angular momentum of the black hole to
spatial infinity. On the other hand, when the considered
spacetime has a nonasymptotically flat geometry, the
asymptotic behavior of the modes should be carefully
analyzed. As it was shown in [62,71], the super-radiant
modes of the RLDBH do not propagate to spatial infinity.
Instead, they are confined in a region outside the event
horizon of the RLDBH. So we have an exponential growth
for the super-radiant modes. However, this gives rise to the
classical instability of the RLDBH solution. Besides,
jNðϖÞj2 would diverge. Therefore, in addition to the
condition of ω > lþ1=2

r0
, the energies/frequencies of the

chargeless and massless scalar fields performing
the Hawking emission should also be higher than the
threshold [106] frequency (mΩH) of the super-radiance:
ω > mΩH.

VI. CONCLUSION

We have presented complete analytical solutions to the
covariant KGE for a charged massive scalar field in the
RLDBH spacetime. Both the angular and radial exact
solutions are demonstrated in terms of the confluent
Heun functions [81–84], and they cover the whole range
of the observable space 0 ≤ z < ∞.

In particular, the radial solution has enabled us to
analyze the resonant frequencies of the RLDBH with
the help of the ~δn-condition [57,84,95]. We have used the
resonant frequencies to study the spectroscopy of the
RLDBH. Both entropy and area spectra are found to be
equally spaced and independent of the RLDBH param-
eters. Therefore, our results support the conjecture of
Bekenstein [32]. We then studied the greybody factor
problem of the RLDBH in order to explore which waves
can propagate from the horizon to the spatial infinity.
While doing this computation, the lack of the inverse
transformation of the confluent Heun functions that is
essential to find the exact asymptotic form of the radial
solution forced us to consider the case of chargeless and
massless scalar fields, which was previously considered in
[24,69–71]. Using a particular transformation between the
confluent Heun and hypergeometric functions, we have
expressed the radial solution in terms of the hypergeo-
metric functions that possess a broad spectrum of linear
transformation features [102]. We then obtained the
ingoing and outgoing fluxes at spatial infinity for the
high-energy modes (ω > lþ1=2

r0
) that admit the identifica-

tion of the fluxes, asymptotically. On the other hand, the
low-energy modes (ω < r0

2
) did not let us make the

distinction between the ingoing and outgoing fluxes at
spatial infinity; we simply ignored that case. Afterwards,
we performed an analytical computation of the greybody
factor. From the limit of limωð>lþ1=2

r0
Þ→∞γGB → 1, we have

deduced that the high-energetic thermal waves can pass
over the gravitational barriers and move from the horizon
to the observer located at the asymptotic region. For those
high-energy modes, we have considered the DRS method,
which is a powerful mathematical tool of the analytic
continuation for identifying the Hawking temperature of
the considered black hole. To this end, we have used the
series expansion of the confluent Heun function [see
Eq. (52)] and obtained the outgoing wave solution in the
exterior and interior regions of the event horizon. Finally,
the Hawking radiation spectrum of the scalar particles
emitted from the RLDBH was derived, and Hawking
temperature (17) of the RLDBH was successfully
obtained.
The results of the study are promising and motivate

further work in this direction. In particular, the results can
be extended to other particles with nonzero spin and to the
black holes of higher dimensions.
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APPENDIX: LIST OF SYMBOLS

For reference, the following is a list of symbols that are used often throughout the text.

M, MQL Mass parameter of the RLDBH spacetime and quasilocal mass (MQL ¼ M=2).
A; ϕ, χ, Electromagnetic vector potential; Dilaton and axion fields.
Q, r0 Background electric charge and charge parameter (r0 ¼

ffiffiffi
2

p
Q).

J, a, ΩH Angular momentum, rotation parameter, a ¼ 2J=r0 ∈ ½0;M�, and angular velocity (ΩH ¼ a
rþr0

).
rþ, r− Outer horizon and inner horizon.
κ, TH Surface gravity and Hawking temperature (TH ¼ ℏκ

2π).
ABH, SBH Black hole area and entropy.
Ψ; μs, q Scalar field (wave function); Mass parameter and charge parameter of the scalar field.
ω Frequency. The time dependence of any field is ∼e−iωt.
n Overtone numbers of the eigenfrequencies. It starts from a fundamental mode with n ¼ 0.
ωn, Δω Resonant (quasinormal mode) frequency and transition frequency: Δω ≈ Imωn−1 − Imωn.
m, λ Azimuthal number with respect to the axis of rotation and eigenvalue.
Φe, Iadb Electric potential of the RLDBH and adiabatic invariant quantity.
~α, ~β, ~γ, ~δ, ~η Parameters of the confluent Heun’s function (HeunC).
y, z Independent variables of the confluent Heun’s function: y ¼ 1−cosðθÞ

2
and z ¼ r−rþ

r−−rþ
.

~μ, ~ν ~μ ¼ 1
2
ð ~α − ~β − ~γ þ ~α ~β− ~β ~γÞ − ~η and ~ν ¼ 1

2
ð ~αþ ~β þ ~γ þ ~α ~γþ~β ~γÞ þ ~δþ ~η.

â, b̂, ĉ Parameters of the hypergeometric function.
u Independent variables of the hypergeometric function: u ¼ z

z−1 ¼ r−rþ
r−r−

.
R, γGB Reflection coefficient and greybody factor (γGB ¼ 1 − R).
r�, ϖ Tortoise coordinate and wave frequency detected by the observer rotating with

the horizon: ϖ ¼ ω −mΩH .
γdy, NðϖÞ Emission rate and normalization constant.
l Integer angular number, related to the eigenvalue λ ¼ −lðlþ 1Þ.
Ψin, Ψout Ingoing and outgoing wave solutions around the event horizon.
F , F asy, Fp Conserved flux, asymptotic flux, and particle flux.
C1, C2, D1, D2 Integral constants of the wave solutions.
q�, τ, β02, ~r q� ¼ qffiffi

2
p , τ ¼ 2aq�, β02 ¼ i ϖ

2κ, and ~r ¼ ϖ
ω r�.

Ξ, Ξ̂ Ξ ¼ 1þ ~βþ~γþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β2þ~γ2þ1−4~η

p
2

and Ξ̂ ¼ Ξð ~β → − ~βÞ.
σ, k σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2r20 − ðlþ 1=2Þ2

p
and k ¼ ðrþþr−Þωr0−2ma

2κrþr0
.

~δn-condition 1þ ~βþ~γ
2

þ ~δ
~α ¼ −n.
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