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We construct a T-axisymmetric, spacelike, spherically symmetric, constant mean curvature (CMC)
hypersurface foliation in the Kruskal extension with properties such that the mean curvature varies in each
slice and ranges from minus infinity to plus infinity. This family of hypersurfaces extends the CMC
foliation discussions by Malec and Ó Murchadha in 2009 [Phys. Rev. D 80, 024017 (2009)].
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I. INTRODUCTION

Spacelike constant mean curvature (CMC) hypersurfaces
in spacetimes are very important objects in general relativity.
They are broadly used in the analysis of Einstein constraint
equations [1,2] and in the gauge condition in the Cauchy
problem of the Einstein equations [3,4]. In addition, CMC
foliation properties have been identified as the absolute time
function in cosmological spacetimes [5].
How to define a canonical absolute time function is an

important issue in the field of relativistic cosmology. At first,
the cosmological time function was considered, which is
defined by the supremum of the lengths of all past-directed
timelike curves starting at some point. The idea of the
cosmological time function is natural, but its drawback is
poor regularity.
In 1971, York [5] suggested the CMC time function,

which is a real-value function fðxÞ defined on a spacetime
such that every level set ffðxÞ ¼ Hg is a Cauchy hyper-
surface with constant mean curvature H. In cosmological
spacetimes, by the maximum principle, if the CMC time
function exists, then it is unique. Furthermore, the CMC
time function has better regularity than the cosmological
time function. These properties indicate another viewpoint
of the absolute time function. By definition, if the CMC
time function exists, the spacetime is foliated by Cauchy
hypersurfaces with constant mean curvature, and the mean
curvature of these Cauchy hypersurfaces increases with
time. This phenomenon leads us to concern ourselves with
the CMC foliation problem in spacetimes.
Many CMC foliation results are proven for cosmological

spacetimes (spatially compact spacetimes) with constant
sectional curvature in Ref. [6] and references therein.
However, CMC foliation properties are not well understood
for spatially noncompact spacetimes such as the
Schwarzschild spacetime (specifically, the Kruskal exten-
sion), which is the simplest model of a universe containing
a star. In [7], Malec and Ó Murchadha constructed a family
of T-axisymmetric, spacelike, spherically symmetric,

constant mean curvature (TSS-CMC) hypersurfaces in
the Kruskal extension, where each slice has the same mean
curvature, and they conjectured this family foliates the
Kruskal extension. In [8], the author used the shooting
method and Lorentzian geometric analysis to prove the
existence and uniqueness of the Dirichlet problem for a
spacelike, spherically symmetric, constant mean curvature
(SS-CMC) equation with symmetric boundary data in the
Kruskal extension. As an application, the author com-
pletely proved Malec and Ó Murchadha’s TSS-CMC
foliation conjecture.
In [9], Malec and Ó Murchadha discussed different

TSS-CMC foliation properties, and they posited whether
there is a TSS-CMC foliation with varied constant mean
curvature in each slice. One result is that if the relation
between the mean curvature H and the TSS-CMC hyper-
surface parameter c is proportional, that is, c ¼ −8M3H,
then there is a family of TSS-CMChypersurfaces such thatH
ranges from minus infinity to plus infinity, but where all
hypersurfaces intersect at the bifurcation sphere (the origin in
the Kruskal extension).
In this paper, we will construct another family of TSS-

CMC hypersurfaces with varied constant mean curvature in
each slice. If H and c have a nonlinear relation, then there
exists a TSS-CMC hypersurface foliation in the Kruskal
extension. The main theorem is stated as follows.
Theorem 1: There exists a family of hypersurfaces

fΣHðcÞ;cg, c ∈ R in the Kruskal extension satisfying the
following properties:

(i) Every ΣHðcÞ;c is a T-axisymmetric, spacelike, spheri-
cally symmetric, constant mean curvature hyper-
surface.

(ii) Any two hypersurfaces in fΣHðcÞ;cg are disjoint.
(iii) Every point ðT 0; X0Þ in the Kruskal extension

belongs to ΣHðc0Þ;c0 for some c0 ∈ R.
(iv) When fΣHðcÞ;cg foliates the Kruskal extension from

the bottom to the top, the corresponding constant
mean curvature H ranges from −∞ to ∞ and the
parameter c ranges from ∞ to −∞.

(v) fΣHðcÞ;cg is invariant under the reflection with
respect to the X axis.*d93221007@gmail.com
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It is remarkable that, by similar argument, we can
construct many different TSS-CMC hypersurface foliations
with varied H and with X-axis symmetry, such that the
TSS-CMC foliation in the Kruskal extension is not unique.
Furthermore, we can also get TSS-CMC hypersurface
foliations with varied H but without X-axis symmetry.
By Lorentzian isometry, there are SS-CMC hypersurface
foliations with varied H but without T-axis symmetry.
The organization of this paper is as follows. In Sec. II, we

first give a brief introduction to the Schwarzschild space-
time and Kruskal extension, and then we summarize results
of the TSS-CMC hypersurfaces in the Kruskal extension in
order to construct a TSS-CMC foliation. The main theorem
is stated and proved in Sec. III. Some discussions about
TSS-CMC foliation properties are in Sec. IV.

II. PRELIMINARY

A. The Kruskal extension

In this paper, we mainly focus on the Kruskal extension,
which is the maximal analytic extended Schwarzschild
spacetime. The Schwarzschild spacetime is a four-
dimensional time-oriented Lorentzian manifold equipped
with the metric

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ 1

ð1 − 2M
r Þ

dr2 þ r2dθ2

þ r2sin2θdϕ2;

where M > 0 is a constant. The metric is not defined at
r ¼ 2M, but in fact is a coordinate singularity. That is, after
coordinates change, the metric is smooth at r ¼ 2M,

ds2 ¼ 16M2e−
r
2M

r
ð−dT2 þ dX2Þ þ r2dθ2 þ r2sin2θdϕ2;

ð1Þ

where

� ðr − 2MÞe r
2M ¼ X2 − T2

t
2M ¼ lnj XþT

X−Tj:
ð2Þ

The Kruskal extension is the union of two Schwarzschild
spacetimes equipped with the extended metric (1). Figure 1
points out the correspondences between the Kruskal
extension (left panel, T-X plane) and Schwarzschild
spacetimes (right panel, t-r plane). We refer the reader
to Wald [10] or Ref. [11] for more discussions on the
Kruskal extension.
Remark that each point in the Kruskal T-X plane or

the Schwarzschild t-r plane is topologically a sphere S2,
which is parameterized by θ and ϕ. In this article, we are
interested in the spherically symmetric hypersurfaces. It
implies that every such hypersurface is a curve in both the

T-X plane and the t-r plane. For convenience in our
notation, we will ignore parameters θ and ϕ in this paper.
We take ∂T as a future-directed timelike vector field in

the Kruskal extension, which is also shown in Fig. 1. Once
∂T is chosen, for a spacelike hypersurface Σ, we will
choose ~n as the future-directed unit normal vector of Σ in
the Kruskal extension; the mean curvatureH of Σ is defined
by H ¼ 1

3
gijh∇ei ~n; eji, where feig3i¼1 is a basis on Σ.

B. T-axisymmetric, spacelike, spherically symmetric,
constant mean curvature hypersurfaces

in the Kruskal extension

Let Σ∶ ðT ¼ FðXÞ; XÞ be a SS-CMC hypersurface in
the Kruskal extension. In [11], we computed the SS-CMC
equation

F00ðXÞ þ e−
r
2M

�
6M
r2

−
1

r

�
ð−FðXÞ þ F0ðXÞXÞð1 − ðF0ðXÞÞ2Þ

þ 12HMe−
r
4Mffiffiffi

r
p ð1 − ðF0ðXÞÞ2Þ32 ¼ 0; ð3Þ

where the spacelike condition is 1 − ðF0ðXÞÞ2 > 0, and
r ¼ rðT; XÞ ¼ rðFðXÞ; XÞ satisfies Eq. (2), namely,
ðr − 2MÞe r

2M ¼ X2 − T2 ¼ X2 − ðFðXÞÞ2.
Because Eq. (3) contains r, which is a nonlinear relation

between T ¼ FðXÞ and X, it is challenging to get results—
such as the existence, uniqueness, and behavior of the
solution—from this equation. Instead of dealing with
Eq. (3), in Refs. [8,11,12] we solved and analyzed the
SS-CMC equation in each Schwarzschild spacetime region.
Suppose that Σ∶ ðt ¼ fðrÞ; rÞ is a SS-CMC hypersurface
in the Schwarzschild spacetime; then, fðrÞ satisfies the
following SS-CMC equation:

f00 þ
��

1

h
− ðf0Þ2h

��
2h
r
þ h0

2

�
þ h0

h

�
f0

� 3H

�
1

h
− ðf0Þ2h

�3
2 ¼ 0; ð4Þ

FIG. 1. The Kruskal extension and the Schwarzschild space-
times.
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where hðrÞ ¼ 1 − 2M
r , and the spacelike condition is

1
h − ðf0Þ2h > 0. Remark that the choice of � signs in (4)
depends on different regions and different pieces of SS-
CMC hypersurfaces. Because Eq. (4) is a second-order
ordinary differential equation, the solution is solved explic-
itly, and we can completely characterize SS-CMC hyper-
surfaces in the Kruskal extension through relations (2).
Here we summarize results in Refs. [11,12] regarding the

construction of the TSS-CMC hypersurfaces. These results
will be used for further discussions in this article. In
Ref. [11], the solution of Eq. (4) in the Schwarzschild
interior, which maps to the Kruskal extension II’, is

fðr;H; c; cÞ ¼
8<
:

R
r
r0

lðx;H;cÞ
−hðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðx;H;cÞ−1

p dxþ c; if f0ðrÞ > 0

R
r
r0

lðx;H;cÞ
hðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðx;H;cÞ−1

p dxþ c; if f0ðrÞ < 0;

where r0 is a point in the domain of fðrÞ, lðr;H; cÞ ¼
1ffiffiffiffiffiffiffiffiffi
−hðrÞ

p ðHrþ c
r2Þ, and c, c are two constants of integration.

Here we require lðr;H; cÞ > 1 so that the function fðrÞ is
meaningful; it is equivalent to c > −Hr3 þ r

3
2ð2M − rÞ12,

so it is natural to define the function

~kHðrÞ ¼ −Hr3 þ r
3
2ð2M − rÞ12

to analyze the domain of the solution fðrÞ.
Now we look at the case where H ≤ 0. Given H, as

Fig. 2 shows, the function ~kHðrÞ has a maximum value CH

at r ¼ RH, where RH is determined by −3HR
3
2

Hð2M −
RHÞ12 ¼ 2RH − 3M (see Proposition 11 in [11]). Denote the
increasing part and decreasing part of the function ~kHðrÞ by
~kþHðrÞ and ~k−HðrÞ, respectively. For c ∈ ð0; CHÞ, the solution
of ~kþHðrÞ ¼ c is denoted by r ¼ ~rþH;c; then, ð0; ~rþH;c� is the
domain of the SS-CMC solution fðrÞ. Remark that r ¼
~rþH;c belongs to the domain of fðrÞ because the behavior

f0ðrÞ ∼Oðð~rþH;c − rÞ−1
2Þ implies that fð~rþH;cÞ is a finite

value. Consider the SS-CMC hypersurface that is the union
of two graphs of t ¼ fðrÞ, where one satisfies f0ðrÞ > 0
and the other satisfies f0ðrÞ < 0, and two graphs are

smoothly joined at the point ðt; rÞ ¼ ð0; ~rþH;cÞ. This SS-
CMC hypersurface is symmetric about t ¼ 0. Because
t ¼ 0 in the Schwarzschild interior is the T-axis in the
Kruskal extension II’, this hypersurface maps to a TSS-
CMC hypersurface ~Σþ

H;c in the Kruskal extension II’, and

~Σþ
H;c intersects the T axis at T ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M − ~rþH;c

q
e
~rþ
H;c
4M ,

see Fig. 2.
For c ∈ ð−8M3H;CHÞ, the solution of ~k−HðrÞ ¼ c is

denoted by r ¼ ~r−H;c; then, ½~r−H;c;∞Þ is the domain of the
SS-CMC solution fðrÞ. Remark that fðrÞ is defined as r ¼
2M in the sense of Kruskal extension, and ~r−H;c belongs to

the domain because of f0ðrÞ ∼Oððr − ~r−H;cÞ−
1
2Þ. The union

of graphs of functions t ¼ fðrÞ, which are smoothly joined
at the point ðt; rÞ ¼ ð0; ~r−H;cÞ, maps to a TSS-CMC hyper-

surface ~Σ−
H;c in the Kruskal extensions I, II, and I’.

Furthermore, ~Σ−
H;c intersects the T axis at T ¼

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M − ~r−H;c

p
e
~r−
H;c
4M .

The dotted curve between ~Σþ
H;c and ~Σ−

H;c in Fig. 2 is the
TSS-CMC hypersurface ~ΣH;CH

, which corresponds to the

point with maximum value of ~kHðrÞ. The hypersurface
~ΣH;CH

is a hyperbola X2 − T2 ¼ ðRH − 2MÞeRH2M with T < 0

in the Kruskal extension II’, and it is a cylindrical
hypersurface r ¼ RH in the Schwarzschild interior.
From the above discussion, we establish a one-to-one

correspondence from each point on the graph of ~kHðrÞ to a
TSS-CMC hypersurface ~ΣH;c.

C. The construction of TSS-CMC foliation
with varied H

In order to construct a TSS-CMC hypersurface foliation
with varied H in each slice, we will view H as a variable
and thus consider the two-variable function

~kðH; rÞ ¼ −Hr3 þ r
3
2ð2M − rÞ12;

where r ∈ ½0; 2M� and H ≤ 0. Here we only consider
H ≤ 0 because we will use the symmetry property to get
the H ≥ 0 part. First, we introduce the following
proposition.
Proposition 1: There exists a function yðrÞ defined on

ð0; 2M� satisfying the following properties:

8>>><
>>>:

dy
dr ≠

3y
r þ r

1
2ð−3MþrÞ
ð2M−rÞ12

dy
dr < 0 for all r ∈ ð0; 2MÞ
yð2MÞ ¼ 0 and lim

r→0þ
yðrÞ ¼ ∞:

ð5Þ

Before proving Proposition 1, we briefly explain why we
need the function yðrÞ; more discussions about yðrÞ and
TSS-CMC foliation are in Sec. IV. The first property of (5)

FIG. 2. Each point on the graph of ~kHðrÞ determines a TSS-
CMC hypersurface and its T intercept in the Kruskal extension.
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means that the graph of yðrÞ intersects the graph of ~kðH; rÞ
with fixed H once, and this will be used to show the
constructed TSS-CMC hypersurfaces are disjoint and have
different mean curvatures. The property dy

dr < 0 implies that
the mean curvature is monotonic along the TSS-CMC
foliation. The property yð2MÞ ¼ 0 shows that the hyper-
surface passing through the bifurcation point (the origin
in the Kruskal extension) is maximal. The property
limr→0þyðrÞ ¼ ∞ shows the mean curvature will range
to all real numbers.
Proof of Proposition 1.—First, we compute

∂ ~k
∂r ðH; rÞ ¼ −3Hr2 þ r

1
2ð3M − 2rÞ
ð2M − rÞ12 ¼ 3y

r
þ r

1
2ð−3M þ rÞ
ð2M − rÞ12 :

Here we replaceHwith y and r by the relation y ¼ −Hr3 þ
r
3
2ð2M − rÞ12 in the last equality. To find the function yðrÞ, it
suffices to find a function qðrÞ > 0 such that

(
dy
dr −

3y
r ¼ r

1
2ð−3MþrÞ
ð2M−rÞ12

− qðrÞ
yð2MÞ ¼ 0:

ð6Þ

When multiplying the integrating factor e
R

−3
rdr ¼ r−3 on

both sides of the differential equation (6), it becomes

d
dr

ðr−3yðrÞÞ ¼ −3M þ r

r
5
2ð2M − rÞ12 −

qðrÞ
r3

:

After integration, the function yðrÞ is solved,

yðrÞ ¼ r
3
2ð2M − rÞ12 þ r3

Z
2M

r

qðxÞ
x3

dx:

Next, we calculate

y0ðrÞ ¼ r
1
2ð3M − 2rÞ
ð2M − rÞ12 þ 3r2

Z
2M

r

qðxÞ
x3

dx − qðrÞ:

Consider the function qðrÞ, which is of the form
qðrÞ ¼ Cr−p, where C and p are positive numbers to be
determined. Then,

y0ðrÞ ¼ r
1
2ð3M − 2rÞ
ð2M − rÞ12 − C

�
3

ðpþ 2Þð2MÞpþ2
þ ðp − 1Þ
ðpþ 2Þrp

�
:

Because the function gðrÞ ¼ r
1
2ð3M−2rÞ
ð2M−rÞ12

has a globalmaximum

value gðr�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

ffiffiffi
3

p
− 9

p
M at r� ¼ ð3− ffiffi

3
p ÞM
2

, we can choose
anyvaluep > 1 and thenchoose the constantC large enough
such that y0ðrÞ < 0 for all r ∈ ð0; 2MÞ.
Finally, we check the limit behavior,

lim
r→0þ

yðrÞ ¼ lim
r→0þ

�
r
3
2ð2M − rÞ12 þ r3

Z
2M

r

C
xpþ3

dx

�

¼ Cðpþ 2Þ lim
r→0þ

�
1

rp−1
−

r3

ð2MÞpþ2

�
¼ ∞:

▪
In the following paragraphs, we will use the notation

~kHðrÞ if we consider the function ~kðH; rÞ with fixed H.
From Proposition 1, we find a strictly decreasing function
yðrÞ such that the equation yðrÞ ¼ ~kHðrÞ has a unique
solution for everyH ≤ 0. Figure 3(a) illustrates the curve γ,
which is the graph of yðrÞ, and we set the curve γðcÞ with
parameter c by c ¼ yðrÞ. Because yðrÞ is strictly decreas-
ing, we have r ¼ y−1ðcÞ, and the mean curvature can be
expressed as HðcÞ by the relation c ¼ −Hr3þ
r
3
2ð2M − rÞ12. Thus, there is an one-to-one correspondence
from each point on γðcÞ to a TSS-CMC hypersurface
ΣHðcÞ;c, where ΣHðcÞ;c intersects the T axis at T ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M − y−1ðcÞ

p
e
y−1ðcÞ
4M , as Fig. 3(c) shows.

In Fig. 3(a), we trace another curve α. The curve α

consists of all points ðt; rÞ satisfying t ¼ maxr∈½0;2M� ~kHðrÞ
for every H ≤ 0. It is easy to see that the curve α is a graph
of an increasing function such that the curves γ and α
intersect once; we denote the intersection point by ðC;RÞ.

(a) (b) (c)

FIG. 3. The curve γðcÞ is the graph of a decreasing function and each point on γðcÞ corresponds to a TSS-CMC hypersurface ΣHðcÞ;c in
the Kruskal extension. (a) For H ≤ 0, the curve γðcÞ is a graph of a function yðrÞ which satisfies all properties in Proposition 1. (b) For
H ≥ 0, the curve γð−cÞ is a graph of a function yðrÞ which satisfies all properties in Proposition 1. (c) TSS-CMC hypersurfaces are
shown in the Kruskal extension.
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The point ðC;RÞ corresponds to the hyperbola X2 − T2 ¼
ðR − 2MÞe R

2M with T < 0, which is the dotted curve in
Fig. 3(c).
When c ¼ 0, we get r ¼ 2M andH ¼ 0. The TSS-CMC

hypersurface ΣHð0Þ;0 is a maximal hypersurface passing
through ðT; XÞ ¼ ð0; 0Þ such that ΣHð0Þ;0 is T ≡ 0, or
X axis. So far, we have constructed the TSS-CMC foliation
in the region T ≤ 0.
Next, we consider another two-variable function

kðH; rÞ ¼ −Hr3 − r
3
2ð2M − rÞ12;

where r ∈ ½0; 2M� and H ≥ 0. The function kðH; rÞ comes
from the inequality lðr;H; cÞ ¼ 1ffiffiffiffiffiffiffiffiffi

−hðrÞ
p ð−Hr − c

r2Þ > 1,

and it will determine the domain of a SS-CMC solution
in the Schwarzschild interior that maps to the Kruskal
extension II. In fact, the functions kðH; rÞ for H ≥ 0 and
~kðH; rÞ forH ≤ 0 are symmetric about the r axis. Thus, for
the construction of TSS-CMC hypersurfaces in the T ≥ 0
part of the Kruskal extension, in Fig. 3(b), we choose the
curve γð−cÞ by the reflection of the curve γðcÞwith respect
to the r axis. Each point on γð−cÞ will correspond on a
one-to-one manner to a TSS-CMC hypersurface ΣHð−cÞ;−c
in the Kruskal extension, and ΣHð−cÞ;−c intersects the T axis

at T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M − ð−yÞ−1ð−cÞ

p
e
ð−yÞ−1ð−cÞ

4M , as Fig. 3(c) shows.
Furthermore, hypersurfaces ΣHð−cÞ;−c and ΣHðcÞ;c are sym-
metric about the X axis.
From the above discussion, we collect TSS-CMC hyper-

surfaces from γðcÞ with c ≥ 0 and from γð−cÞ with c ≥ 0,
and we use the notation fΣHðcÞ;cg; c ∈ R. Remark that
when the parameter c ranges from ∞ to −∞, the mean
curvature H ranges from −∞ to∞. In next section, we will
show that fΣHðcÞ;cg; c ∈ R, forms a TSS-CMC foliation in
the Kruskal extension.

III. THE EXISTENCE OF TSS-CMC FOLIATION

Now we are ready to prove the family fΣHðcÞ;cg; c ∈ R,
which we constructed in Sec. II C, foliates the Kruskal
extension.
Theorem 2: There exists a family of hypersurfaces

fΣHðcÞ;cg, c ∈ R, in the Kruskal extension satisfying the
following properties:

(i) Every ΣHðcÞ;c is a T-axisymmetric, spacelike, spheri-
cally symmetric, constant mean curvature hyper-
surface.

(ii) Any two hypersurfaces in fΣHðcÞ;cg are disjoint.
(iii) Every point ðT 0; X0Þ in the Kruskal extension be-

longs to ΣHðc0Þ;c0 for some c0 ∈ R.
(iv) When fΣHðcÞ;cg foliates the Kruskal extension from

the bottom to the top, the corresponding constant
mean curvature H ranges from −∞ to ∞ and the
parameter c ranges from ∞ to −∞.

(v) fΣHðcÞ;cg is invariant under the reflection with
respect to the X axis.

From the construction in Sec. II C, because fΣHðcÞ;cg
consists of TSS-CMC hypersurfaces, property (i) is true. In
addition, the parameter c ranges for all R, which implies
that H ranges for all R as well, so property (iv) holds.
Because we collect fΣHðcÞ;cg for c ≥ 0 first and then use the
X-axis reflection to get fΣHðcÞ;cg for c ≤ 0, we state the
symmetric property in (v). Next, we will prove properties
(ii) and (iii), and it suffices to prove the T ≤ 0 part because
of the symmetry property (v).
Proof of property (ii).—Here we provide a proof of

property (ii) for the case when TSS-CMC hypersurfaces lie
between T ¼ 0 and the hyperbola X2 − T2 ¼ ðR − 2MÞe R

2M

with T < 0; the property is similarly proved if the TSS-
CMC hypersurfaces lie below the hyperbola. Given any
two TSS-CMC hypersurfaces ΣHðc1Þ;c1 and ΣHðc2Þ;c2 with
c1 < c2, we compare these two hypersurfaces with ΣH;c,
which is a TSS-CMC hypersurface with mean curvature
H ¼ Hðc1Þ and which has the same T intercept as ΣHðc2Þ;c2 ,
see Fig. 4(a). Because H ¼ Hðc1Þ, two points in the t-r
plane corresponding to ΣH;c and ΣHðc1Þ;c1 lie on the same

function ~kHðc1ÞðrÞ. Because ΣH;c and ΣHðc2Þ;c2 have the
same T intercept, two points in the t-r plane corresponding
to ΣH;c and ΣHðc2Þ;c2 have the same r value.
Because c1 < c2, we have Hðc2Þ < Hðc1Þ ¼ H, which

implies T values of ΣHðc2Þ;c2∶ ðTHðc2Þ;c2ðXÞ; XÞ and
ΣH;c∶ ðTH;cðXÞ; XÞ in the Kruskal extension satisfy

THðc2Þ;c2ðXÞ < TH;cðXÞ for all X ≠ 0: ð7Þ

The inequality (7) holds because of ∂f0
∂H > 0 for all X ≥ 0 in

the Schwarzschild spacetime. Furthermore, in Ref. [8], we
proved that for every fixed H ∈ R, the curve formed by the
union of the graphs of ~kHðrÞ and kHðrÞ corresponds to a
TSS-CMC hypersurface family fΣHg, and fΣHg foliates
the Kruskal extension. Because both ΣH;c∶ ðTH;cðXÞ; XÞ
and ΣHðc1Þ;c1∶ ðTHðc1Þ;c1ðXÞ; XÞ belong to fΣHg, and their T
intercepts satisfy TH;cð0Þ<THðc1Þ;c1ð0Þ, we have TH;cðXÞ<
THðc1Þ;c1ðXÞ. Therefore, THðc2Þ;c2ðXÞ < THðc1Þ;c1ðXÞ for all

(a) (b)

FIG. 4. ΣHðc1Þ;c1 and ΣHðc2Þ;c2 are disjoint by comparing with
ΣH;c.
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X, and, hence, ΣHðc1Þ;c1 and ΣHðc2Þ;c2 are disjoint; see
Fig. 4(b). ▪
Proof of property (iii).—Recall that in Theorems 3 and 7

of [8], we proved the existence and uniqueness of the
Dirichlet problem for the TSS-CMC equation with sym-
metric boundary data. In other words, for any fixed H ∈ R
and given ðT 0; X0Þ in the Kruskal extension, there exists a
unique TSS-CMC hypersurface, denoted by ΣH;cðHÞ, pass-
ing through ðT 0; X0Þ and ðT 0;−X0Þ.
Here we prove the case when ðT 0; X0Þ lies between T ¼ 0

and the hyperbola X2 − T2 ¼ ðR − 2MÞe R
2M with T < 0; it is

similarly proved if ðT 0; X0Þ lies in other regions, see Fig. 5.
When H ¼ 0, there exists a unique value cð0Þ such that
ðT 0; X0Þ ∈ ΣH¼0;cð0Þ. For everyH ≤ 0, we can find a point on

the graph of ~k−HðrÞ corresponding to a TSS-CMC hypersur-
face ΣH;cðHÞ passing through ðT 0; X0Þ. Set βðcÞ be all such
points. We know that βðcÞ is a continuous curve because
Theorem 6 in [8] shows these solutions are continuously
varied with the mean curvature. When H → −∞, we have
~k−HðrÞ → ∞, so the t value of βðcÞ tends to infinity and r
value of βðcÞ tends to 2M. By the intermediate value
theorem, two curves γðcÞ and βðcÞ must intersect at some
point c0, and, hence, ðT 0; X0Þ ∈ ΣHðc0Þ;c0 . ▪

IV. DISCUSSION

We consider a family of TSS-CMC hypersurfaces in the
Kruskal extension. The mean curvature is constant on each
slice but changes from slice to slice. We first construct this
TSS-CMC hypersurface family with one more symmetry,
which we call the X-axis symmetry. That is, after getting
TSS-CMC hypersurfaces in the region T ≤ 0, we use the
reflection with respect to the X axis to derive TSS-CMC
hypersurfaces in the region T ≥ 0. Based on the result of
TSS-CMC hypersurface foliation with fixed mean curva-
ture in [8], we prove these TSS-CMC hypersurfaces foliate
the Kruskal extension.
Two functions ~kðH; rÞ and kðH; rÞ play important roles

in this foliation argument. Each point on the graphs of
~kðH; rÞ and kðH; rÞwill correspond in a one-to-one manner
to a TSS-CMC hypersurface ΣH;c, where H, r, c satisfy

relations c ¼ −Hr3 þ r
3
2ð2M − rÞ12 or c ¼ −Hr3 −

r
3
2ð2M − rÞ12, respectively. The argument in Sec. II C
indicates that if we find a curve γðcÞ that intersects every
~kHðrÞ and kHðrÞ exactly once, and γðcÞ is the union of two
monotonic functions, then we can prove the TSS-CMC
foliation property.
In Proposition 1, Eq. (5), there are three conditions the

curve γðcÞ should be satisfied. The first condition dy
dr ≠

3y
r þ r

1
2ð−3MþrÞ
ð2M−rÞ12

implies that the curve γðcÞ intersects every

~kHðrÞ exactly once. The second condition dy
dr < 0 for all

r ∈ ð0; 2MÞ indicates that c is decreasing and H is
increasing along TSS-CMC hypersurfaces. The condition
limr→0þyðrÞ ¼ ∞ coupled with symmetry limr→0þ −
yðrÞ ¼ −∞ states that mean curvatures of TSS-CMC
hypersurfaces range from −∞ to ∞. The condition
yð2MÞ ¼ 0 will impose that the TSS-CMC hypersurface
passing through the bifurcation sphere ðT; XÞ ¼ ð0; 0Þ be
the maximal hypersurface, which is T ≡ 0. In this case, we
can use the X-axis symmetry to get the whole TSS-CMC
family fΣH;cg.
Our first remark is that the existence of γðcÞ is not

unique. This is because dy
dr ≠

3y
r þ r

1
2ð−3MþrÞ
ð2M−rÞ12

is an open

condition. Therefore, we can find many different
TSS-CMC foliations.
Our second remark is that the condition yð2MÞ ¼ 0 is

more flexible. In fact, we can consider a more general
setting to solve the function yðrÞ in Proposition 1 by
satisfying (5) but replacing the condition yð2MÞ ¼ 0 with
yð2MÞ ¼ A, where A ∈ R. There still exists a function in
the general setting, which we denote by yAðrÞ. Let the curve
γAðcÞ be the graph of yAðrÞ with parameter c ¼ yAðrÞ.
Thus, we have derived TSS-CMC hypersurfaces below
ΣHðAÞ;A. How do we get TSS-CMC hypersurfaces above
ΣHðAÞ;A? Recall that these TSS-CMC hypersurfaces are
determined by the function kðH; rÞ. Notice that kðH; rÞ ¼
−~kð−H; rÞ, so we consider the curve γ−AðcÞ þ 2A, which is
the curve by moving γ−AðcÞ along the t direction by 2A.
Then, γAðcÞ and γ−AðcÞ þ 2A are joined at r ¼ 2M and
γAðcÞ∪ðγ−AðcÞ þ 2AÞ intersects every ~kHðrÞ and kHðrÞ
exactly once. Hence, the corresponding TSS-CMC hyper-
surface family fΣHðcÞ;cg; c ∈ R foliates the Kruskal exten-
sion, but it is not X axisymmetric.
Next, every TSS-CMC foliation can be changed to be a

SS-CMC foliation, without the T-axisymmetric property, by
the Lorentzian isometry. All of the foliations have the
property that mean curvatures range from −∞ to ∞.
This phenomenon is more close to the definition of the
CMC time function. However, only TSS-CMC hypersurfa-
ces across the Kruskal regions I and I’ are Cauchy
hypersurfaces.
Finally, our TSS-CMC foliation construction extends the

results and discussions in Malec and Ó Murchadha’s paper

FIG. 5. Proof of the family fΣHðcÞ;cg covering the Kruskal
extension.
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[9]. They considered TSS-CMC foliations where the mean
curvature H and the TSS-CMC hypersurface parameter c
are proportional, that is, c ¼ −8M3H; then, there is a
family of TSS-CMC hypersurfaces such thatH ranges from
minus infinity to plus infinity, but all hypersurfaces
intersect at the origin in the Kruskal extension. In order
to break the phenomenon of intersection, we consider the
TSS-CMC hypersurface family with a nonlinear relation
between c and H, and where both variables range for all
real numbers. This consideration will fulfill the TSS-CMC

foliation with varied mean curvature in each slice in the
Kruskal extension.
In Ref. [9], they computed the formula of the lapse

function of the CMC foliation [Eq. (8) in [9]] from the
Einstein equation. Remark that the relations between
notations c, H in this paper and C, K in paper [9] are
H ¼ K

3
and c ¼ −C. If we set a new parameter t such that

c ¼ cðtÞ and H ¼ HðtÞ and require the lapse function
Nðr; tÞ → 1 when r → ∞, then _c ¼ c0ðtÞ and _H ¼ H0ðtÞ
will satisfy _cX þ _HY ¼ 1, which is Eq. (34) in [9], where

X ¼ Xðc;H; rÞ ¼ −
Z

∞

r

6H2x2 þ 12c2

kðxÞð2M þ 2H2x3 − 2Hc − 4c2

x3 Þ2
dx;

Y ¼ Yðc;H; rÞ ¼ −
Z

∞

r

x2ð6M − 6Hc − 24c2

x3 Þ
kðxÞð2M þ 2H2x3 − 2Hc − 4c2

x3 Þ2
dx;

k2ðrÞ ¼ 1 −
2M
r

þ
�
Hrþ c

r2

�
2

:

In Theorem 2, once we get a TSS-CMC foliation fΣHðcÞ;cg in the Kruskal extension, we can reparameterize the family by
fΣHðtÞ;cðtÞg ¼ fΣHðcðtÞÞ;cðtÞg such that the corresponding lapse function Nðr; tÞ → 1 as r → ∞ in parameter t; that is,

_cX þ _HY ¼ 1. This is because H ¼ HðcÞ, _H ¼ dH
dc _c and dH

dc is given; then, _cX þ _HY ¼ 1 implies _c will satisfy _c ¼ 1
XþdH

dcY
,

which is solvable due to the existence of the first-order differential equation.
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