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Five-dimensional Lovelock gravity is investigated in the first order formalism. A new class of exact
solutions is constructed: the Bañados, Teitelboim, Zanelli black rings with and without torsion. We show
that our solution with torsion exists in a different sector of the Lovelock gravity, as compared to the
Lovelock Chern-Simons sector or the one investigated by Canfora et al. The conserved charges of the
solutions are found using Nester’s formula, and the results are confirmed by the canonical method.
We show that the theory linearized around the background with torsion possesses two additional degrees of
freedom with respect to general relativity.
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I. INTRODUCTION

The general theory of relativity introduced a revolution in
our understanding of space-time and gravity, the influence
of which on modern physics can hardly be emphasized
enough—almost all present investigations in high-energy
physics are, in certain way, related to it. On one hand, the
general theory of relativity has been very successful in
explaining experimental results, but on the other, it produced
a lot of problems for physicists to solve. The first of them is
the problem of singularities, appearing quite often in gravi-
tational solutions; there are theorems which show that
singularitiesmust appear under certain physically reasonable
assumptions [1]. This situation inspired research in the
direction of alternative theories of gravity, with an idea of
finding a singularity free theory that reproduces experimental
results equally as well as general relativity.
The second problem is quantization of tje general theory

of relativity. The inability to quantize general relativity in a
standard way, like Yang-Mills theories, motivated physi-
cists to search for alternatives, on one side for a different
quantization procedure (loop quantum gravity) and on the
other for modifications of the original theory (extra
dimensions, supersymmetry, string theory, alternative the-
ories of gravity) [2–5]. In this paper, we shall focus on an
alternative theory of gravity with one extra dimension—
Lovelock gravity in five dimensions (5D).
Lovelock gravity is one of many generalizations of

general relativity, physically appealing because of its
similarity to the former. It possesses equations of motion
which are the second order differential equations; it is ghost
free; etc. But beyond this, most of its basic properties are
not well known, and as the old saying says, “The devil is in
the details.” First, not many solutions are known, and those
constructed usually are torsionless or belong to some
special point in the parameter space [6–10]. Second,

symmetries and local degrees of freedom of the theory
are not known for the generic choice of parameters but only
for the special case of Lovelock Chern-Simons gravity [11].
In this paper, we shall introduce new solutions with(out)

torsion within Lovelock gravity in 5D by using the first
order formulation. The most interesting of them are the
Bañados, Teitelboim, Zanelli (BTZ) black rings with(out)
torsion, the properties of which can be analyzed by using
the canonical formalism. The canonical analysis is a
powerful tool for studying gauge theories, but it is not
limited solely to them. It gives a well-defined procedure for
determining symmetries of a theory, construction of the
symmetry generators, and for counting the number of local
degrees of freedom. Applying the canonical analysis to a
theory is extremely rewarding because of the already
mentioned results it gives. Note, in particular, that the
most reliable approach to conserved charges in gravity is
based on the canonical analysis [12,13]. The main aspect of
this approach consists in demanding the canonical gen-
erators to have well-defined functional derivatives. For a
given asymptotic behavior of the fields, this condition
usually requires the form of the generators to be improved
by adding suitable surface terms.
The paper is organized as follows. Section II contains a

short review of the Poincaré gauge theory of gravity and
Lovelock gravity. Section III is devoted to the new
solutions of 5D Lovelock gravity—the BTZ black rings
with(out) torsion. The conserved charges for these solu-
tions are computed by using Nester formula [14]. In
Sec. IV, we construct the canonical generator of gauge
transformations, local translations, and Lorentz rotations
and compute the canonical conserved charges for the
solutions constructed in Sec. III, confirming the results
obtained in Sec. III. In Sec. V, we investigate the canonical
structure of the theory linearized around the solution with
torsion and conclude that in this sector the theory exhibits
additional degrees of freedom.
Our conventions are given by the following rules: the

Latin indices refer to the local Lorentz frame, and the Greek
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indices refer to the coordinate frame; the first letters of both
alphabets ða; b; c;…; α; β; γ;…Þ run over 1; 2;…D − 1,
and the middle alphabet letters ði; j; k;…; μ; ν; λ;…Þ run
over 0; 1; 2;…D − 1; the signature of space-time is
η ¼ ðþ;−;…;−Þ; and the totally antisymmetric tensor
εi1i2…iD and the related tensor density εμ1μ2…μD are both
normalized so that ε01…D−1 ¼ 1. The symbol ∧ of the
exterior (wedge) product between forms is omitted for
simplicity.

II. LOVELOCK GRAVITY

A. PGT in brief

The basic gravitational variables in poincaré gauge
theory (PGT) are the vielbein ei and the Lorentz connection
ωij ¼ −ωji (1-forms). The field strengths corresponding
to the gauge potentials ei and ωij are the torsion Ti and
the curvature Rij (2-forms): Ti ¼ dei þ ωi

m ∧ em Rij ¼
dωij þ ωi

m ∧ ωmj. Gauge symmetries of the theory are
local translations and local Lorentz rotations, parametrized
by ξμ and εij.
In local coordinates xμ, we can expand the vielbein

and the connection 1-forms as ei ¼ eiμdxμ, ωi ¼ ωi
μdxμ.

Gauge transformation laws have the form

δ0eiμ ¼ εijejμ − ð∂μξ
ρÞeiρ − ξρ∂ρeiμ ≕ δPGTeiμ;

δ0ω
ij
μ ¼ ∇με

ij − ð∂μξ
ρÞωij

ρ − ξρ∂ρω
ij
μ ≕ δPGTω

ij
μ;

ð2:1Þ

and the field strengths are given as

Ti ¼ ∇ei ≡ dei þ ωij ∧ ej ¼
1

2
Ti

μνdxμ ∧ dxν;

Rij ¼ dωij þ ωik ∧ ωk
j ¼ 1

2
Rij

μνdxμ ∧ dxν; ð2:2Þ

where ∇ ¼ dxμ∇μ is the covariant derivative.
To clarify the geometric meaning of the above structure,

we introduce the metric tensor as a specific, bilinear
combination of the vielbeins,

g ¼ ηijei ⊗ ej ¼ gμνdxμ ⊗ dxν;

gμν ¼ ηijeiμejν; ηij ¼ ðþ;−;−;−;−Þ:

Although the metric and connection are in general inde-
pendent dynamical/geometric variables, the antisymmetry
of ωij in PGT is equivalent to the so-called metricity
condition, ∇g ¼ 0. The geometry of which the connection
is restricted by the metricity condition (metric-compatible
connection) is called Riemann-Cartan geometry. Thus,
PGT has the geometric structure of Riemann-Cartan space.
The connection ωij determines the parallel transport in

the local Lorentz basis. Being a true geometric operation,
parallel transport is independent of the basis. This property

is incorporated into PGT via the so-called vielbein postu-
late, the vanishing of the total covariant derivative of eiμ,

Dμðωþ ΓÞeiν ≔ ∂μeiν þ ωij
μejν − Γρ

νμeiρ ¼ 0;

where Γρ
νμ is the affine connection and the torsion is

defined by Tρ
μν ¼ Γρ

νμ − Γρ
μν. The previous relation

implies the identity

ωijk ¼ Δijk þ Kijk; ð2:3Þ

where Δ is Riemannian (Levi-Civitá) connection and
Kijk ¼ − 1

2
ðTijk − Tkij þ TjkiÞ is the contortion. Latin

indices are changed into Greek and vice versa by means
of vielbeins (and its inverse). Namely, Xi ¼ eiμXμ and
Xμ ¼ eiμXi. For details, see Ref. [13].

B. Lovelock action and equations of motion

Lovelock gravity can also be considered in the frame-
work of PGT. Dimensionally continued Euler density Lp in
D dimensions is defined as

Lp ¼ εi1i2…iDR
i1i2…Ri2p−1i2pei2pþ1…eiD; ð2:4Þ

where p is the number of curvature tensors in Euler density.
In the previous relation, we omitted the wedge product
for simplicity. The general form of the Lovelock gravity
Lagrangian [15] in 5D is a linear combination of all
dimensionally continued Euler densities in five dimensions,

I ¼ α0
5
I0 þ

α1
3
I1 þ α2I2; ð2:5aÞ

where

I0 ¼
Z

εijklneiejekelen;

I1 ¼
Z

εijklnRijekelen;

I2 ¼
Z

εijklnRijRklen: ð2:5bÞ

C. Field equations

Variation of the action with respect to vielbein ei and
connection ωij yields the gravitational field equations:

εijklnðα0ejekelen þ α1Rjkelen þ α2RjkRlnÞ ¼ 0; ð2:6aÞ

εijklnðα1ekel þ 2α2RklÞTn ¼ 0: ð2:6bÞ

Let us note that in the generic case the field equations (2.6)
imply that torsion can be nonvanishing.
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For later convenience, let us present the tensor form of
the field equations,

εμνρστijkln

�
α0ejνekρelσenτ þ

1

2
α1Rjk

νρelσenτ

þ 1

4
α2Rjk

νρRln
στ

�
¼ 0; ð2:7aÞ

εμνρστijkln ðα1ekνelρ þ α2Rkl
νρÞTn

στ ¼ 0; ð2:7bÞ

where εμνρστijkln ≔ εμνρστεijkln.

D. Consequences of field equations

If we take covariant derivative of (2.6a), make use of the
Bianchi identities, and multiply (2.6b) with ej, we get the
following system:

εijklnð2α0ejekel þ α1RjkelÞTn ¼ 0;

εijklnðα1ejekel þ 2α2RjkelÞTn ¼ 0:

In the case 4α0α2 − α21 ≠ 0, the previous set of equations
reduces to the following conditions,

vi ≔ Tj
ji ¼ 0; ð2:8aÞ

Rjk
irTr

jk − 2RicjkTk
ij ¼ 0; ð2:8bÞ

where Ricjk ≔ Rjl
kl is the Ricci tensor.

Therefore, in the generic case, torsion is traceless, and
the second irreducible component of torsion ð2ÞTi vanishes.
For details on irreducible decomposition of torsion and
curvature in PGT, see Ref. [16]. Let us note that the
condition 4α0α2 − α21 ≠ 0 is violated in the case of
Lovelock Chern-Simons gravity.

E. Maximally symmetric solution

The field equation admits the existence of the maximally
symmetric Riemannian solution (maximally symmetric
Riemannian background) defined by

R̄ij ¼ −Λeiej; T̄i ¼ 0; ð2:9Þ

where Λ is the effective cosmological constant iff

α0 − α1Λþ α2Λ2 ¼ 0: ð2:10Þ

This equation can be solved for Λ:

Λ� ¼ α1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21 − 4α0α2

p
2α2

: ð2:11Þ

The solution is unique for α21 − 4α0α2 ¼ 0, which is the
case in Lovelock Chern-Simons gravity.

Let us note that in terms of Λ� equations of motion (2.6)
take an elegant form:

εijklnðRjk þ ΛþejekÞðRln þ Λ−elenÞ ¼ 0; ð2:12aÞ

εijkln

�
Rkl þ Λþ þ Λ−

2
ekel

�
Tn ¼ 0: ð2:12bÞ

In obtaining these equations, we assumed that α2 ≠ 0, and
this condition will be used in the rest of the paper, because
for α2 ¼ 0 the theory reduces to general relativity.

III. NEW CLASS OF SOLUTIONS

The search for a new class of solutions is inspired by
Canfora et al. [17], who found a solution of the type
AdS2 × S3 when the coupling constants satisfy the relation

α21 ¼ 12α0α2; ð3:1Þ

which is different from the one satisfied in Lovelock Chern-
Simons gravity. We shall now construct another class of
solutions of the “complementary” type Σ3 × Γ2, where Σ3

and Γ2 are three- and two-dimensional manifolds, deter-
mined by solving the equations of motion. We start from
the following anzatz for curvature,

Rab ¼ Aeaeb;

R3a ¼ R4a ¼ 0;

R34 ¼ Be3e4; ð3:2Þ

and torsion,

Ta ¼ pεabcebec;

T3 ¼ T4 ¼ 0: ð3:3Þ

In the anzatz, we used the notation a; b; c;… ∈ f0; 1; 2g
and εabc ≔ εabc34, and A, B, and p are some functions
restricted by the equations of motion. Note that torsion is
totally antisymmetric, and thus only the third irreducible
component ð3ÞTi is nonvanishing; see Ref. [16]. Let us now
check whether the anzatz solves the equations of motion
(2.12). From (2.12b), we obtain

�
Bþ Λ− þ Λþ

2

�
p ¼ 0:

Thus, one can have a vanishing torsion for p ¼ 0 or a
nonvanishing torsion for

B ¼ −
Λ− þ Λþ

2
: ð3:4Þ

From (2.12a), we obtain
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AðΛ− þ ΛþÞ þ 2Λ−Λþ ¼ 0; ð3:5Þ

4Λ−Λþ þ ðAþ BÞðΛ− þ ΛþÞ þ 2AB ¼ 0: ð3:6Þ

If Λ− þ Λþ ¼ 0, which is equivalent to α1 ¼ 0, Eq. (3.5)
implies α0 ¼ 0, whereas A remains undetermined; other-
wise, for α1 ≠ 0, we have

A ¼ −
2Λ−Λþ
Λ− þ Λþ : ð3:7Þ

Let us first analyze the case with nonvanishing torsion
and α1 ≠ 0, when A and B are both determined. By
combining Eqs. (3.4), (3.5), and (3.6) and using Vieta’s
formulas,Λ− þ Λþ ¼ α1

α2
and Λ−Λþ ¼ α0

α2
, we obtain that the

solution exists in the sector:

α21 ¼ 8α0α2: ð3:8Þ
This sector is different from the one in Ref. [17], and
the above solution is the first one in this sector. Using
Eqs. (3.4), (3.10), and (3.8), we obtain

A ¼ B
2
: ð3:9Þ

Now, we turn to the solution with vanishing torsion and
α1 ≠ 0. In this case, A is determined, and B is arbitrary,
which can be used to insure the validity of (3.6), which
takes the form

2
α0
α2

þ B

�
α1
α2

− 4
α0
α1

�
¼ 0: ð3:10Þ

We see that if α21 − 4α0α2 ¼ 0, which is the Lovelock
Chern-Simons gravity, for the validity of (3.10), one must
have α0 ¼ 0. These two conditions imply α1 ¼ 0, which is
in contradiction with our assumption; hence, the solution
does not exist in the Lovelock Chern-Simons case. If α21 −
4α0α2 ≠ 0 and α1 ≠ 0 (recall that we are not interested in
general relativity, so α2 ≠ 0 also), we can choose any value
of parameters obeying this conditions and get a solution.
So, this class of solutions exists generically i.e. for almost
any choice of parameters.
For clarity of the exposure, we devote next few sections

to the most interesting solutions which belong to the class
derived in this section.

A. BTZ black ring with torsion

For this case, the curvature takes the following form,

Rab ¼ qeaeb;

R3a ¼ R4a ¼ 0;

R34 ¼ −
1

r20
e3e4; ð3:11Þ

while the torsion is given by

Ta ¼ pεabcebec;

T3 ¼ T4 ¼ 0: ð3:12Þ

The Bianchi identity implies that p is constant, and the
Riemannian curvature reads

~Rab ¼
�
qþ p2

4

�
eaeb;

~R3a ¼ ~R4a ¼ 0;

~R34 ¼ −
1

r20
e3e4: ð3:13Þ

Therefore, we can introduce the AdS3 radius l as

1

l2
≔ qþ p2

4
:

Identity (3.9) implies the following relation:

1

l2
¼ −

1

2r20
þ p2

4
: ð3:14Þ

In the AdS3 sector, the anzatz for curvature and torsion is
solved by the AdS3 solution with torsion as well as by the
BTZ black hole [18] with torsion. In the latter, physically
more appealing case, the 5D vielbein reads

e0 ¼ Ndt; e1 ¼ N−1dr; e2 ¼ rðdφþ NφdtÞ;
e3 ¼ r0dθ; e4 ¼ r0 sin θdχ; ð3:15aÞ

where

N2 ¼ −2mþ r2

l2
þ j2

r2
; Nφ ¼ j

r2
;

where m and j are (dimensionless) parameters. The Cartan
connection is given by

ωab ¼ ~ωab − εabc
p
2
ec;

~ω01 ¼ −
r
l2

dt −
j
r
dφ;

~ω12 ¼ Ndφ;

~ω20 ¼ N−1 j
r2

dr;

ω34 ¼ ~ω34 ¼ −cos θdχ; ð3:15bÞ

where ~ωij is the Riemannian connection. Let us note that
the coordinate ranges are

−∞ < t < þ∞; 0 ≤ r < þ∞; 0 ≤ φ ≤ 2π;

0 ≤ θ ≤ π; 0 ≤ χ ≤ 2π:
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1. Killing vectors

The maximal number of Killing vectors of the solution
with field strengths (3.11), (3.12), and (3.13) is 9 ¼ 6þ 3,
since the AdS3 solution with(out) torsion has six Killing
vectors; see Ref. [19]. The solution (3.15) has five
Killing vectors, since the BTZ solution possesses two
Killing vectors. They are given by

ξð1Þ ¼ l
∂
∂t ; ξð2Þ ¼ ∂

∂φ ; ξð3Þ ¼ ∂
∂χ ;

ξð4Þ ¼ sin χ
∂
∂θ þ cot θ cos χ

∂
∂χ ;

ξð5Þ ¼ cos χ
∂
∂θ − cot θ sin χ

∂
∂χ : ð3:16Þ

B. Riemannian BTZ ring

For this case, the curvature (Riemannian) takes the
following form,

Rab ¼ 1

l2
eaeb;

R3a ¼ R4a ¼ 0;

R34 ¼ −
1

r20
e3e4; ð3:17Þ

while the torsion equals zero, Ti ¼ 0.
Let us note that since torsion is zero there are no further

constraints on B, so we can chose B ¼ − 1
r2
0

. In terms of the
action constants, we get

1

l2
¼ −

2α0
α1

;
1

r20
¼ 2α0α1

α21 − 4α0α2
: ð3:18Þ

The solution exists provided that α0α1 < 0 and α21−
4α0α2 < 0. Let us note this solution does not solve
equations of motion in Lovelock Chern-Simons gravity.
The vielbein fields and connection take the same form as

in (3.15) with p ¼ 0, while Killing vectors are identical and
given by (3.16).

C. Conserved charges

In order to compute conserved charges, we shall make
use of Nester formula. Let us denote the difference between
any variable X and its reference value X̄ byΔX ¼ X − X̄. In
5D, the boundary term B is a 3-form. With a suitable set of
boundary conditions for the fields, the proper boundary
term reads [14]

B ¼ ðξ⌋biÞΔτi þ Δbiðξ⌋τ̄iÞ þ
1

2
ðξ⌋ωi

jÞΔρij

þ 1

2
Δωi

jðξ⌋ρ̄ijÞ; ð3:19Þ

where ξ is an asymptotically Killing vector, while τi and ρij
are covariant momenta corresponding to torsion and
curvature, respectively. The covariant momenta for the
Lovelock action (2.5) are given by

τi ≔
∂L
∂Ti ¼ 0; ð3:20Þ

ρij ≔
∂L
∂Rij ¼ 2εijkln

�
α1
3
ekel þ 2α2Rkl

�
en: ð3:21Þ

Consequently, we obtain

ρab ¼ 4εabc

�
α1 −

2α2
r20

�
ece3e4;

ρa3 ¼ 2εabcðα1 þ 2α2qÞebece4 ¼ α1εabcebece4;

ρa4 ¼ 2εabcðα1 þ 2α2qÞebece3 ¼ α1εabcebece3;

ρ34 ¼ 2εabc

�
α1
3
þ 2α2q

�
eaebec ¼ −

α1
3
eaebec: ð3:22Þ

In our calculations of the boundary integrals, we use the
coordinates xμ ¼ ðt; r;φ; θ; χÞ. The background configu-
ration is the one defined by zero values of parameters
m ¼ 0 and j ¼ 0 of the solution (3.15). For the solutions
with Killing vectors ∂t and ∂φ, the conserved charges are
the energy and angular momentum, respectively,

E ¼
Z
∂Σ

Bð∂tÞ ¼
Z
∂Σ

eitΔτi þ Δeiτ̄it þ
1

2
ωij

tΔρij

þ 1

2
Δωijρ̄ijt; ð3:23aÞ

J ¼
Z
∂Σ

Bð∂φÞ ¼
Z
∂Σ

eiφΔτi þ Δeiτ̄iφ þ
1

2
ωij

φΔρi

þ 1

2
Δωijρ̄ijφ; ð3:23bÞ

where ∂Σ is a boundary S1 × S2, located at infinity,
described by coordinates φ, θ, χ.
Thus, conserved charges for the black ring with torsion

and the Riemannian black ring are given by

E ¼ 8π2r20

�
α1 −

2α2
r20

�
m; J ¼ 8π2r20

�
α1 −

2α2
r20

�
j:

ð3:24Þ

Let us note that the solution with torsion exists in the sector
α21 ¼ 8α0α2, where both conserved charges vanish.

IV. CANONICAL GAUGE GENERATOR

As an important step in our examination of the asymp-
totic structure of space-time, we are going to construct the
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canonical gauge generator, which is our basic tool for
studying asymptotic symmetries and conserved charges of
5D Lovelock gravity.

A. Hamiltonian and constraints

The best way to understand the dynamical content of
gauge symmetries is to explore the canonical generator,
which acts on the basic dynamical variables via the Poisson
bracket (PB) operation. To begin the canonical analysis, we
rewrite the action (2.5) as

I ¼
Z

d5xL

L ¼ εμνρστijkln

Z
M

d5x

�
α0
5
eiμejνekρelσ þ

α1
6
Rij

μνekρelσ

þ α2
4
Rij

μνRkl
ρσ

�
enτ: ð4:1Þ

1. Primary constraints and canonical Hamiltonian

The basic Lagrangian variables ðeiμ;ωij
μÞ and the

corresponding canonical momenta ðπiμ; πijμÞ are related
to each other through the set of primary constraints:

ϕi
0 ≔ πi

0 ≈ 0; ϕij
0 ≔ πij

0 ≈ 0;

ϕi
α ≔ πi

α ≈ 0;

ϕij
α ≔ πij

α − 2ε0αβγδijkln

�
α1
3
ekβelγ þ α2Rkl

βγ

�
enδ ≈ 0:

ð4:2Þ

The algebra of primary constraints is displayed in the
Appendix.
The canonical Hamiltonian is defined by

Hc ¼ πi
μ _eiμ þ

1

2
πij

μ _ωij
μ − L:

Since the Lagrangian is linear in velocities, the canonical
Hamiltonian in the formula given above reduces to
Hc ¼ −Lð_eiμ ¼ 0; _ωij

μ ¼ 0Þ. It is linear in unphysical
variables:

Hc ¼ ei0Hi þ
1

2
ωij

0Hij þ ∂αDα;

Hi ¼ −ε0αβγδijkln

�
α0ejαekβelγenδ þ

1

2
α1Rjk

αβelγenδ

þ 1

4
α2Rjk

αβRln
γδ

�
;

Hij ¼ −ε0αβγδijkln ðα1ekαelβ þ α2Rkl
αβÞTn

γδ;

Dα ¼ ε0αβγδijkln ω
ij
0ðα1ekβelγ þ α2Rkl

βγÞenδ: ð4:3Þ

2. Secondary constraints

Going over to the total Hamiltonian,

HT ¼ Hc þ uiμϕi
μ þ 1

2
uijμϕij

μ; ð4:4Þ

we find that the consistency conditions of the primary
constraints πi0 and π0ij yield the secondary constraints:

Hi ≈ 0; Hij ≈ 0: ð4:5Þ

Let us note that these constraints reduce to the μ ¼ 0
components of the Lagrangian field equations (2.7).
The consistency of the remaining primary constraints ϕi

α

and ϕij
α leads to the relations for multipliers uiβ and uijβ,

ε0αβγδijkln ½Rjk
0βðα1elγenδ þ α2Rln

γδÞ
þ ðα1Rjk

βγ þ 4α0ejβekγÞel0enδ� ¼ 0;

ε0αβγδijkln ½Tk
0βðα1elγenδ þ α2Rln

γδÞ
þ α2Rkl

0βTn
γδ þ α1ek0elβTn

γδ� ¼ 0; ð4:6Þ

where Ti
0α¼Ti

0αð_eiα→uiαÞ and Rij
0α¼Rij

0αð _ωij
α→uijαÞ.

Using the Hamiltonian equations of motion _eiα ¼ uiβ and
_ωij

α ¼ uijα, these relations reduce to the μ ¼ α compo-
nents of the Lagrangian field equations (2.7).

3. Further consistency procedure

Some of the relations (4.6) can be solved in terms of the
multipliers uiα and uijα, while the others may lead to
ternary constraints, the consistency of which has to be
examined as well. However, this procedure is extremely
sensitive to the particular sector of the theory as we shall
illustrate in the next section (for the pure Lovelock theory,
see Ref. [20]). The final form of the total Hamiltonian is
given by

HT ¼ H̄T þ ui0πi0 þ
1

2
uij0πij0 þ ðu · ϕÞ;

H̄T ¼ ei0H̄i þ
1

2
ωij

0H̄ij þ ∂αD̄α;

H̄i ¼ Hi þ ðū · ϕÞ;
H̄ij ¼ Hij þ ðū · ϕÞ;
D̄α ¼ Dα þ ðū · ϕÞ; ð4:7Þ

where by ðu · ϕÞ we denoted terms stemming form the
undetermined multipliers and belonging to the set
ðuiβ; uijβÞ, and by ðū · ϕÞ we denoted terms stemming
form the determined multipliers belonging to the same set.
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B. Canonical generator and charges

The sure symmetries of the theory are local translations
and local Lorentz rotations. The general form of the
canonical generator of the local Poincaré transformations
constructed by the Castellani procedure [21] is given by

G ¼ −G1 −G2;

G1 ¼ _ξρ
�
eiρπi0 þ

1

2
ωij

ρπ
0
ij

�

þ ξρ
�
eiρH̄i þ

1

2
ωij

ρH̄ij þ CPFC

�
;

G2 ¼
1

2
_εijπij

0 þ 1

2
εijðH̄ij þ CPFCÞ;

where CPFC are terms proportional to sure primary first
class constraints ðπi0; πij0Þ.
The canonical generator acts on dynamical variables via

the PB operation, and hence, it should have well-defined
functional derivatives. In order to ensure this property, we
have to improve the form of G by adding a suitable surface
term Γ, such that ~G ¼ Gþ Γ is a well-defined canonical
generator. In this process, the asymptotic conditions play a
crucial role; see for instance Refs. [22,23]. Though we did
not construct the exact form of the canonical generator, it
still allows us to compute canonical charges for the
solutions found in Sec. III. Namely, if we adopt the general
principle that the quantities that vanish on shell have an
arbitrary fast asymptotic decrease, we obtain that the on-
shell variation of the generator takes the following form,

δGðξt ¼ l; ξφ ¼ 1Þ ≈ δΓ ¼ −lδEc − δJc; ð4:8Þ

where

Ec ¼ 8π2r20

�
α1 −

2α2
r20

�
m; Jc ¼ 8π2r20

�
α1 −

2α2
r20

�
j

ð4:9Þ

are the canonical conserved charges, which are identical to
the expressions (3.24), obtained from the Nester formula.

V. LINEARIZED THEORY

The canonical structure of the full nonlinear theory
crucially depends on the relations (4.6), as we already
mentioned in the previous section. In order to get a deeper
insight into the structure of the Lovelock gravity in the
sector α21 ¼ 8α0α2, we shall consider the theory linearized
around the BTZ black ring with torsion (3.15). The
linearization is based on the expansion of the basic
dynamical variables ðeiμ;ωij

μÞ and the related conjugate
momenta ðπiμ; πijμÞ denoted shortly by QA,

QA ¼ Q̄A þ ~QA; ð5:1Þ

where Q̄A refers to the background [solution (3.15) with
m ¼ j ¼ 0 and p ≠ 0], while ~QA denotes small excitations.
From the linearized form of the 60 relations (4.6), we

conclude that out of 60 ¼ 5 × 4þ 10 × 4 multipliers
ð ~uiα; ~uijαÞ 46 are determined, while among 14 remaining
relations, there are 12 new constraints (since two pairs of
them are identical), the explicit form of which is given by

α1 ~R
24

rχ þ α1 sin θ ~R
23

rθ þ 4α0r0 sin θ ~e2r ≈ 0; ð5:2aÞ

α1 ~R
14

φχ þ α1 sin θ ~R
13

φθ þ 4α0r0 sin θ ~e2r ≈ 0; ð5:2bÞ

r2

l
ðα1 ~R14

rχ þα1 sinθ ~R
13

rθþ2α0r0 sinθ ~e1rÞ
−α1 ~R

24
φχ −α1 sinθ ~R

23
φθ−2α0r0 sinθ ~e2φ ≈ 0 ð5:2cÞ

and

~T4
rχ þ sin θ ~T3

rθ ≈ 0; ð5:3aÞ

pðα1r0ð~e4χ þ sin θ ~e3θÞ þ 2α2 ~R
34

θχÞ ≈ 0; ð5:3bÞ

~T4
φχ þ sin θ ~T3

φθ ≈ 0; ð5:3cÞ

α1
r
l
r0 sin θ ~T

2
rθ − 2pðα1r0 sin θ ~e0θ þ 2α2 ~R

04
θχÞ ≈ 0;

ð5:3dÞ

α1
r
l
r0 ~T

2
rχ − 2pðα1r0 sin θ ~e0χ − 2α2 ~R

03
θχÞ ≈ 0; ð5:3eÞ

α1r0 ~T
1
φχ þ 2prðα1r0 ~e0χ − 2α2 ~R

03
θχÞ ≈ 0; ð5:3fÞ

~R03
rχ ≈ 0; ð5:3gÞ

~R02
θχ ≈ 0; ð5:3hÞ

~R01
θχ ≈ 0: ð5:3iÞ

Let us denote 12 constraints (5.2a) and (5.3a) by ~ψA. The
consistency conditions of ~ψA leads to the determination of
12 additional multipliers, thus finishing the consistency
procedure. Thus, out of 60 multipliers ð ~uiα; ~uijαÞ, 58 are
determined, while 2 remain undetermined. By using the PB
algebra from the Appendix, we find

f ~ϕ12
r; ~ϕi

αg ≈ 0; f ~ϕ12
r; ~ϕij

αg ≈ 0;

f ~ϕ12
r; ~ψAg ≈ 0;

f ~ϕ12
φ; ~ϕi

αg ≈ 0; f ~ϕ12
φ; ~ϕij

αg ≈ 0;

f ~ϕ12
φ; ~ψAg ≈ 0:
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The undetermined multipliers correspond to the constraints
~ϕ12

r and ~ϕ12
φ which are first class (FC). The final classi-

fication of constraints is given in Table I. In total, there are
N1 ¼ 32 FC constraints and N2 ¼ 70 second class (SC)
constraints. The number of propagating degrees of freedom
in phase space is

N� ¼ 2N − 2N1 − N2 ¼ 150 − 64 − 70 ¼ 14:

In the configuration space, there are seven degrees of
freedom: five of them correspond to general relativity in
D ¼ 5, and two are additional degrees of freedom. The
presence of two primary FC constraints ~ϕ12

r, ~ϕ12
φ implies

that there is an additional gauge symmetry in the theory, as a
consequence of the fact that variables ~ω12

r and ~ω12
φ do not

appear in the linearized equations of motion.

VI. CONCLUSION

In this paper, we found a new class of solutions of
Lovelock gravity in 5D, in the first order formalism. The
most interesting solutions are the BTZ black rings with(out)
torsion. It is shown that the solution with torsion exists

provided that the parameters of the theory satisfy the
relation α21 ¼ 8α0α2. This sector of the parameter space
is different from the one of Lovelock Chern-Simons
gravity, as well as from the sector investigated by
Canfora et al. [17]. Restricting our attention to the basic
properties of the solutions, we calculated the values of
conserved charges by using Nester’s formula and the
canonical method. The canonical structure of the theory
linearized around the background with torsion shows that
there are two additional degrees of freedom, compared to
general relativity.
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APPENDIX: ALGEBRA OF CONSTRAINTS

The structureof thePBalgebraof constraints is an important
ingredient in the analysis of the Hamiltonian consistency
conditions. Starting from the fundamental PB feiμ; πjνg ¼
δijδ

ν
μδðx − x0Þ and fωij

μ; πklνg ¼ 2δ½ikδ
j�
l δ

ν
μδðx − x0Þ, we

find PB between primary constraints:

fϕi
α;ϕjk

βg ¼ −2ε0αβγδijkln ðα1elγenδ þ α2Rln
γδÞδ;

fϕij
α;ϕβ

klg ¼ −8α2ε
0αβγδ
ijkln T

n
γδδ: ðA1Þ
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