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General relativity extensions based on renormalization group effects are motivated by a known physical
principle and constitute a class of extended gravity theories that have some unexplored unique aspects.
In this work we develop in detail the Newtonian and post-Newtonian limits of a realization called
renormalization group extended general relativity (RGGR). Special attention is given to the external
potential effect, which constitutes a type of screening mechanism typical of RGGR. In the Solar System,
RGGR depends on a single dimensionless parameter ν̄⊙, and this parameter is such that for ν̄⊙ ¼ 0 one
fully recovers GR in the Solar System. Previously this parameter was constrained to be jν̄⊙j ≲ 10−21,
without considering the external potential effect. Here we show that under a certain approximation RGGR
can be cast in a form compatible with the parametrized post-Newtonian (PPN) formalism, and we use both
the PPN formalism and the Laplace-Runge-Lenz technique to put new bounds on ν̄⊙, either considering
or not the external potential effect. With the external potential effect the new bound reads jν̄⊙j ≲ 10−16.
We discuss the possible consequences of this bound on the dark matter abundance in galaxies.
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I. INTRODUCTION

There are diverse motivations for extending gravity
beyond general relativity (e.g., Refs. [1–3]), including
quantum gravity, the avoidance of singularities, under-
standing inflation, theoretical and observational improve-
ments on dark matter, alleviating coincidence issues related
to dark energy, and others. Nonetheless, these extensions
must be capable of explaining the success of general
relativity (GR) in the Solar System. This apparently simple
test of gravity is, for many cases, a hard test.
Among the possible extensions of GR that have

consequences at astrophysical or cosmological scales,
we consider here extensions that are based on the renorm-
alization group (RG) framework applied to gravity [4–21].
In this context, either from quantum field theory (QFT) in
curved spacetime [7,22], or in certain quantum-gravity
theories, like the asymptotic safety program [17,23,24],
the GR constants G and Λ necessarily run in the ultraviolet
limit. Moreover, in the low-energy limit, the β functions
of G and Λ need not be zero, since the Appelquist-
Carazzone decoupling [25] does not hold in this context
(contrary to the coupling constants associated to the

high-derivative terms that appear in QFT in curved
spacetime [26]). Therefore, large-scale variations of these
“constants” can be a sign of these RG effects, which may as
well provide leads to the underlying quantum-gravity
theory [15]. Here we will focus on the realization that
was named renormalization group extended general rela-
tivity (RGGR) [27,28].
Besides being motivated from known physical effects,

these gravity extensions based on the RG represent a new
route to GR extensions on their own. They share
similarities with scalar-tensor gravity in the sense that
they depend on a metric and additional quantities that
transform as scalars, like G, Λ or the RG scale μ. These
similarities at large scales were particularly explored in
Refs. [29–31].1 As detailed in Ref. [28], which follows
and extends the approaches of Refs. [29,33], they may
also include features that are either unnatural or clearly
outside the usual scalar-tensor approaches: i) natural and
simple potentials from the RG perspective are rather
complex from the scalar-tensor perspective, ii) potentials
within the RG perspective need not be universal, as they
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1There are others approaches that can be promptly spotted as
not similar to scalar-tensor theories, in particular those whose RG
effects are not implemented at the action level (e.g., Ref. [21]), or
those that use additional dynamical tensors (e.g., Ref. [32]), but
these are not in the focus of this work.

PHYSICAL REVIEW D 94, 084036 (2016)

2470-0010=2016=94(8)=084036(13) 084036-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.084036
http://dx.doi.org/10.1103/PhysRevD.94.084036
http://dx.doi.org/10.1103/PhysRevD.94.084036
http://dx.doi.org/10.1103/PhysRevD.94.084036


can be derived for each system and can be different from
system to system, and iii) the identification of the
physical meaning of the RG scale μ is an important
step from the RG perspective, and this identification leads
to the imposition of a constraint between μ and the matter
fields. In conclusion, although there are similarities, there
are important differences. Also, these differences can lead
to new forms of screening mechanisms [34–37], and this
is one of the main points of this work, namely to show
that RGGR has a type of screening mechanism that
depends on the external Newtonian potential of a system
(in general it depends on the scalar UαUβhαβ, which will
be explained latter).
There are some procedures for testing gravity beyond

Newtonian gravity, and the most general and cited one is
the parametrized post-Newtonian (PPN) formalism (e.g.,
Refs. [38–49]). Here we consider both a version of the PPN
formalism and the Laplace-Runge-Lenz (LRL) vector
technique (e.g., Refs. [50–52]).
Solar System tests of RGGR were evaluated in

Refs. [53,54], where bounds on the dimensionless
parameter ν̄⊙ ≡ α⊙ν were found to be respectively jν̄⊙j ≲
10−17 and jν̄⊙j≲ 10−21. In Ref. [27] it was argued that if
the effective constant ν̄ approximately runs linearly with
the system mass, then the galaxy results could be
explained and also the first bound [53] would be
satisfied. If RGGR has significant impact on dark matter
then ν̄ should be about ∼10−9–10−7 in galaxies [55,56].
Since the baryonic mass of the studied galaxies ranged
from 108M⊙ to 1011M⊙, the first bound is compatible
with the linear behavior, while the second one is not (this
was also discussed in Ref. [54]). The precise mechanism
for the running of ν̄ was unclear.
The previous works on Solar System constraints [53,54]

have not considered the external potential effect, which is
presented in detail here, in Sec. III B. This effect is inherent
to the RGGR approach and works as a (partial) screening
mechanism.
In this work, we also clarify the correspondence and the

validity of using the RGGR noncovariant approach (intro-
duced in Ref. [27]) as an approximation to the covariant
version [28]. Appendices A and B are devoted to this issue.
The starting point of this work is the covariant RGGR

formulation proposed in Ref. [28]. Section II is devoted to a
brief review of RGGR. Section III presents a proper post-
Newtonian framework, introduces the external potential
effect and presents in detail a point-particle solution.
Section IV applies the previous results to the Solar
System within the PPN formalism and the LRL technique.
This technique can be applied either with or without the
external potential effect, hence allowing for an evaluation
of the effect relevance. Considering the external potential
effect, both techniques can be applied and are compatible.
Finally, in Sec. V we present our conclusions and
discussions.

II. RENORMALIZATION GROUP EXTENDED
GENERAL RELATIVITY: A BRIEF REVIEW

A. The action

In Ref. [28] we proposed the following action for
describing the large-scale RG effects in gravity, which
we will in general label as RGGR,

S ¼
Z �

R − 2Λfμg
16πGðμÞ þ λðμ − fðg; γ;ΨÞÞ

� ffiffiffiffiffiffi
−g

p
d4xþ Sm;

ð1Þ

where S ¼ S½g; γ; μ; λ;Ψ�, Sm ¼ Sm½g;Ψ�, Ψ stands for
any matter fields of any nature, and μ is the RG scale,
whose relation to all the other fields is stated in the action in
a constraint-like way, as imposed by the Lagrange multi-
plier λ. The field γαβ, which only appears inside f and
without derivatives, is a tensor that works as a reference
metric. Reference or background metrics commonly appear
in QFT in curved spacetime and in some quantum gravity
approaches. As shown in Ref. [28], γαβ is important for
guaranteeing energy-momentum conservation, and for
presenting certain noncovariant scale settings in covariant
form. About the scalars G and Λ, they are respectively the
gravitational coupling and the cosmological “constant,”
and they both depend on the RG scale μ. Namely, G is a
standard function of μ, which is fixed at the action level.
This means that the form of this dependence is independent
on the other fields and their boundary conditions (i.e., if, for
instance, G ¼ μ2 for cosmology, then G ¼ μ2 for the Solar
System, for all the galaxies, for vacuum and for any other
system). On the other hand, the relation between Λ and μ is
not assumed to be universal, it is system dependent. It is not
fixed at the action level, but it can and must be derived from
the field equations. This is why we introduced in Ref. [28]
different notations for these dependences; we write GðμÞ
and Λfμg.
From the RG perspective, the difference between GðμÞ

and Λfμg is that for the first one we assume the existence of
a universal β function, that is, a β function that is indepen-
dent of any other properties of the system, while for Λfμg
the corresponding β function is system dependent. Since β
functions in general depend on the presence of other fields
(and gravity interacts with everything), the use of “fμg”
should not come as a surprise. Since there are diverse works
that suggest a simple and specific form for GðμÞ, for the
latter only we use the usual fixed dependence “(μ).”
Whenever it is necessary to specify a function GðμÞ we
use the following simple expression that has been derived
from different approaches (e.g., Refs. [6,7,29,33,57]):

G−1ðμÞ ¼ 1þ 2ν ln μ; ð2Þ

where ν is a small dimensionless constant, and GR is
recovered for ν ¼ 0.
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B. A class of covariant scale settings
and Tαβ conservation

The action (1) in general spoils the energy-momentum
tensor conservation, but there is a particular class of scale
settings (i.e., f functions) that preserves energy-momentum
conservation, namely [28],

μ ¼ fðUαUβhαβÞ; ð3Þ

where hαβ ≡ gαβ − γαβ. The tensor Uα denotes the four-
velocity field. The coupling of the RGGR action to a
general perfect fluid is presented in Ref. [28], which uses
the fluid action description of Ref. [58].
On the energy-momentum conservation, the action (1)

does not lead in general to ∇αTαβ ¼ 0, where Tαβ is the
matter energy-momentum tensor. The reason is that it is
not possible to write S ¼ Sg½g;ΦG� þ Sm½g;Ψ�, where ΦG

denotes fields of any nature that do not appear in Sm, while
Ψ denotes fields that do not appear in Sg (for a review, see
Appendix E of Ref. [59]). Since λ is the term that prevents
the action from splitting into gravitational and matter parts,
in general ∇αTαβ ∝ λ. Hence, if λ is set to zero at the level
of the field equations, it is possible to guarantee that
∇αTαβ ¼ 0. This is precisely achieved by using the scale
setting proposed in Eq. (3). Indeed, since γαβ only appears
in the action inside f, the variation of S with respect to γαβ
leads to

λf0UαUβ ¼ 0: ð4Þ

Hence either λ ¼ 0 or f0 ¼ 0. The last option simply
implies that μ is a constant, leading to standard GR. A
GR extension can be found if the other solution holds,
namely if λ ¼ 0 at the level of the field equations, which
implies that ∇αTαβ ¼ 0.
For the scale setting (3), the variation of the action (1)

with respect to the metric reads

Gαβ þ Λgαβ ¼ 8πGTαβ; ð5Þ

where

Gαβ ≡Gαβ þ gαβG□G−1 − G∇α∇βG−1; ð6Þ

□≡ gαβ∇α∇β, and ∇α is the usual covariant derivative.
From the energy-momentum tensor conservation, one
derives that [28,30,55]

∇α

�
Λ
G

�
¼ 1

2
R∇αG−1: ð7Þ

The equation above can also be derived from the action
variation with respect to μ. Further details on the RGGR
action can be found in Ref. [28].

C. The noncovariant scale setting

An issue that any RG approach to gravity must answer is
the physical meaning of the scale μ, that is the relation of μ
with other physical quantities (which in the end is the same
as specifying the f function).
In the context of stationary, slow-velocity and weak-field

systems, some of us have introduced in previous works the
scale setting [27]

μ ¼
�
Φ
Φ0

�
α

; ð8Þ

where Φ0 and α are constants that describe the system, and
Φ is the Newtonian potential, defined by

∇2Φ ¼ 4πG0ρ; with Φðr → ∞Þ ¼ 0: ð9Þ

In the above, ρ is the matter density, G0 is the gravitational
constant at some spacetime point, and μ is the RG scale
written in dimensionless form. In the following, a system of
units such that G0 ¼ 1 is always used. The constant Φ0 is
actually irrelevant in any perturbative expansion up to the
first order of ν.
The noncovariant scale setting above can be seen as

an approximation to the covariant one, as detailed in
Appendix A.
The scale setting (8) has achieved interesting phe-

nomenological consequences for galaxy systems. In
particular we considered its implications for dark matter
[27,55,56,60–63], and it was found that this approach
can have a significant impact on the necessary amount
of dark matter in galaxies. Indeed, the internal dynamics
of galaxies alone shows that good results are achievable
in galaxies even without dark matter.
As previously stated, α is not a universal constant

(contrary to ν): it depends on the system. Considering
galaxy rotation curves (e.g., Refs. [27,56]), it is used as
a constant inside a galaxy, but it changes from galaxy to
galaxy.2 Since all the dynamical tests do not depend
only on α, but on the combination αν, effectively one
can replace the two constants α and ν by a single
system-dependent constant ν̄≡ να. In Ref. [53] it was
found that, for the Solar System internal dynamics,
jν̄⊙j≲ 10−17. More recently, Ref. [54] used more precise
data for the Solar System and arrived at the condition
jν̄⊙j≲ 10−21. Nevertheless, neither of these references
considered the external potential effect, which is
detailed in Sec. III B.

2This behavior can be qualitatively described by the covariant
formulation, as detailed in the Appendices. Nonetheless there is
no known covariant expression that can quantitatively explain
these variations.
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III. POST-NEWTONIAN FRAMEWORK, THE
EXTERNAL POTENTIAL EFFECT AND
THE POINT-PARTICLE SOLUTION

This section is devoted to three items not covered in
previous publications: i) introducing a perturbative scheme
that will allow for the application of the PPN formalism,
ii) presenting the external potential effect, which is a kind
of screening mechanism that is part of RGGR, and
iii) presenting a detailed evaluation of the point-particle
solution from the field equations such that it can be used in
the PPN and LRL analyses in the next section.
Although all the results present in this section are derived

from the noncovariant scale setting, the same results can
also be derived from the covariant one, as shown in
Appendices A and B.

A. GR and RG perturbations

Consider the following perturbative scheme about the

metric g
ð0Þ

αβ:

gαβ ¼ g
ð0Þ

αβ þ g
ð1;0Þ

αβ þ g
ð0;1Þ

αβ þ � � � ; ð10Þ

Tαβ ¼ T
ð0Þ

αβ þ T
ð1;0Þ

αβ þ T
ð0;1Þ

αβ þ � � � ; ð11Þ

GðμÞ≡ 1þ δGðμÞ ¼ 1þ G
ð1Þ
ðμÞ þ � � � ; ð12Þ

ΛðμÞ≡ Λ0 þ δΛðμÞ ¼ Λ0 þ Λ
ð1Þ
ðμÞ þ � � � ð13Þ

The metric g
ð0Þ

αβ satisfies the Einstein equation with the

energy-momentum tensor T
ð0Þ

αβ, the gravitational constant
G0 (which is set to be 1) and the cosmological constant Λ0.

The terms of the type X
ðn;0Þ

αβ refer to some perturbative
expansion within GR; for instance, n may refer to the order
of a post-Newtonian expansion. The terms of the type

X
ðn;mÞ

αβ are the RG correction of mth order to the GR
perturbation of order n.
The background is here picked to be Minkowski, that is,

g
ð0Þ

αβ ¼ ηαβ; Λ0 ¼ 0; T
ð0Þ

αβ ¼ 0: ð14Þ

Within this case, it was shown in detail in Ref. [28] that,
up to first order in both of the perturbations, if ~gαβ is a
solution of the Einstein equation given by ~Gβ

α ¼ 8π ~Tβ
α, then

the metric solution for the field equation (5) can be found
from the conformal transformation

gαβ ¼ G~gαβ þOð2; 2Þ: ð15Þ

The symbol Oðm; nÞ designates any terms of the mth or
higher order in the GR perturbation, and of nth or higher
order in the RG perturbation. For the particular case of
Oð2; 2Þ, when it is present it is implied that the mixed terms
in the perturbations are not explicitly written (since the

terms of the type X
ð1;1Þ

are necessarily equal or smaller than

either X
ð2;0Þ

or X
ð0;2Þ

). The use of Oð∞; mÞ, which will appear
later, implies that the expression is exact if ν ¼ 0; it is an
exact GR expression with RG corrections up to the
order m − 1.
In order to illustrate the notation and review an important

result that can also be found in Refs. [27,28], let ~gαβ ¼
ηαβ þ ~hαβ and gαβ ¼ ηαβ þ hαβ; therefore, using Eq. (15),

hαβ ¼ gαβ − ηαβ

¼ ðηαβ þ ~hαβÞG − ηαβ þOð2; 2Þ: ð16Þ

Hence, in particular,

h00 ¼ −2Φ − G
ð1Þ

þOð2; 2Þ
¼ −2Φþ 2ν ln μþOð2; 2Þ: ð17Þ

Since h00 is twice the effective potential (i.e., the
potential whose gradient yields the acceleration), the above
equation expresses the relation between the RGGR effec-
tive potential and the Newtonian potential (up to first order
in both of the perturbations).

B. The external potential effect

Here we consider the dynamical effect of an external
Newtonian potential. It is shown that the larger the absolute
value of the external potential, the smaller the non-
Newtonian effects of the considered system. Hence, an
external potential acts as a screening mechanism for
RGGR, in the sense that the environment reduces the
RGGR non-Newtonian (and non-GR) contribution. To be
clear, this effect is not an ad hoc feature; it is already part of
the theory.
The spherically symmetric case. With the scale setting

(8) or (A1), which sets a relation between μ and Φ, gravity
is in general sensitive to the Newtonian potential value,
such that the dynamics of a system may change due to a
constant shift of the Newtonian potential.
In particular, for a static system with spherical symmetry,

it is possible to define an effective additional mass of
RGGR (δMRGGR) which can be expressed as [55]

δMRGGRðrÞ≡ ðΦ0
RGGR − Φ0Þr2

¼ ν̄
r

1þ 4πr
MðrÞ

R
∞
r ρðaÞada ; ð18Þ
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where ΦRGGR is the effective potential of RGGR (i.e., its
gradient yields the acceleration of a test particle). If the
mass distribution is simply that of a particle of massM, the
term with the integral is zero for r > 0, and the effective
additional mass increases linearly with r (and hence the
additional force decreases with r). Contrary to Newtonian
gravity or pure general relativity, this result is sensitive to
the existence of a spherical mass distribution at large radius.
If there is such a mass distribution, the integral

R∞
r ρðaÞada

will be greater than zero, and hence δMRGGR will be
suppressed.
In conclusion, considering a static spherical mass dis-

tribution, the larger the amount of mass outside a given
region, the smaller the non-Newtonian effects in that
region. Equation (18) reexpresses the external potential
effect as an external mass density effect, with the hypoth-
esis that stationary spherical symmetry holds.
Average potentials and subsystems. Let S0 be a

subsystem of a system S, much smaller than S, such
that at S0 the average Newtonian potential of S (denoted
by Φs) is a constant. The use of the term “average” is to
be explicit that structures whose characteristic sizes are
much smaller than the size of S are not individually
considered. Similarly, the (average) Newtonian potential
of a galaxy does not consider individual stars, and the
(average) Newtonian potential inside of a star does not
consider individual particles. Hence the Newtonian poten-
tials of S and S0 can be written as,

Φs ¼ ϕs þ ϕe; ð19Þ
Φs0 ¼ ϕs0 þ Φsjs0

¼ ϕs0 þ ϕsjs0 þ ϕe

¼ ϕs0 þ ϕe0 þ ϕe: ð20Þ

In the above, ϕs stands for the Newtonian potential
generated by the system S, and ϕe refers to the total
external contribution. The universe is not static or sta-
tionary at large scales, and hence ϕe is a priori an
unknown effective constant.
Since S0 is a small subsystem of S, the entire external

contribution is Φsjs0 , which is the total (average)
Newtonian potential of the system S at the position of
the system S0. The external potential contribution to the
system S0 can be described by two terms. One of them is
the same ϕe constant that appears in Φs, and the other
is ϕe0 ¼ ϕsjs0 .
Consequences for G in the system and subsystem. The

expression for G associated to the system S, with explicit
reference to the constants G0 and Φ0, reads [using Eqs. (2)
and (8)]

G−1
s ðϕsÞ ¼ G−1

0

�
1þ 2ν̄s ln

ϕs þ ϕe

Φ0

�
: ð21Þ

It is also possible to express the same function G−1
s with

respect to another reference potential. In particular, using
ϕe as the reference potential, one finds,

G−1
s ðϕsÞ ¼ G−1

e

�
1þ 2ν̄e ln

�
1þ ϕs

ϕe

��
; ð22Þ

with Ge and ν̄e such that

G−1
e ν̄e ¼ G−1

0 ν̄s; ð23Þ

G−1
e ¼ G−1

0

�
1þ 2ν̄s ln

ϕe

Φ0

�
: ð24Þ

The above equations are found by demanding that the two
expressions for G−1

s ðϕsÞ above are compatible among
themselves and that the relation between G0, Ge, Φ0 and
ϕe must be a constant, that is, that it cannot depend on ϕs.
Using the relations just presented for changing the

reference potential, the Gs0 function corresponding to
subsystem S0 can be written as

G−1
s0 ðϕs0 Þ ¼ G−1

00

�
1þ 2ν̄s0 ln

ϕs0 þ ϕe0 þ ϕe

Φ00

�

¼ G−1
e0

�
1þ 2ν̄e0 ln

�
1þ ϕs0 þ ϕe

ϕe0

��
: ð25Þ

If the unknown constant ϕe satisfies jϕej ≪ jϕsj in a
given region (which implies that jϕej ≪ jϕe0 j), then in this
region one can write

G−1
s ðϕsÞ ≈G−1

e

�
1þ 2ν̄e ln

ϕs

ϕe

�
; ð26Þ

G−1
s0 ðϕs0 Þ ≈ G−1

e0

�
1þ 2ν̄e0 ln

�
1þ ϕs0

ϕe0

��

≈ G−1
e0

�
1þ 2ν̄e0

�
ϕs0

ϕe0
−
1

2

ϕ2
s0

ϕ2
e0

��
: ð27Þ

In the above we used that lnð1þ XÞ ¼ lnX þOð1=XÞ, for
jXj ≫ 1, and lnð1þ xÞ ¼ x − x2=2þOðx3Þ, for jxj ≪ 1.
The last expansion assumes ϕs0=ϕe0 < 1, which is a
condition realized in the Solar System context, as it will
be shown.
The expansion (27) will prove useful for the PPN

application. Henceforth, for simplicity, we will always
consider jϕej ≪ jϕsj. Also, this condition is necessary in
order to find compatibility with the galaxy results
of Ref. [27].
The Solar System as a subsystem of the Galaxy. For this

application, the system Swill be the Milky Way, designated
by the subscript “MW”, and the subsystem S0 will be the
Solar System, which is designated by “⊙.” From
Refs. [64,65], one arrives at the following estimates for
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the value of ϕMWj⊙, that is, the Newtonian potential
generated by the Milky Way evaluated at the Solar
System position: −5 × 10−7, if only the baryonic matter
is considered, or −2.1 × 10−6 considering both the bar-
yonic matter and a standard dark matter halo (both in
unities of c2, which is set to be one). Since the RG effects
may, at least in part, mimic dark matter-like effects, the true
value of ϕMWj⊙ should lie in between these two cases.
Figure 1 shows the Newtonian potential generated by the

Sun (ϕ⊙) across the Solar System and the values of ϕMWj⊙
either with or without dark matter. The Solar System data
was derived from Ref. [66].
The Solar System is a subsystem of the Milky Way, and

hence its external potential ϕe0 is ϕMW. For all the planets
one finds ϕ⊙=ϕe0 ≲ 10−2, which shows that the expansion
(27) can be used in this context. To be more precise, the
largest value of ϕ⊙=ϕe0 comes from Mercury at its
perihelion, and it reads 6.4 × 10−2 for the case without
dark matter, and 1.5 × 10−2 for the case with dark matter.

C. Point-particle solution of RGGR: Detailed derivation
from the field equations

The purpose of this subsection is to present a derivation
of the point-particle solution directly from the field equa-
tions (5). This is not the first time that point-particle

solutions have been considered in the RGGR context;
see for instance Ref. [27] and Eq. (17), where it was used as
a conformal transformation method. However, beyond
being useful for verifying the result without the use of
conformal transformations (whose employment in gravity
theories has led to diverse debates on its meaning), the latter
method only holds for the first-order perturbation in both
the GR and the RG expansions, while from the direct use of
the field equations it is possible to find analytical results
valid up to the order Oð∞; 2Þ, that is, up to arbitrary order
in the GR parameters, and apart from second-order cor-
rections on the RG parameter ν̄.
Considering the proper spacetime symmetry, and with-

out loss of generality in this context, let

ds2 ¼ g00ðrÞdt2 þ g11ðrÞdr2 þ r2dΩ2; ð28Þ
with dΩ2 ¼ dθ2 þ sin2ðθÞdϕ2.
With the above line element, it is straightforward to show

the following identities:

Gν
μ ¼ 0 ∀ μ ≠ ν;

G2
2 ¼ G3

3: ð29Þ

It is useful to use two field equations, from Eq. (5),
rearranged such that Λ does not appear explicitly, that is,

G0
0 ¼ G1

1; ð30Þ

G1
1 ¼ G2

2: ð31Þ

The remaining nontrivial field equation simply presents the
solution for Λ, and it can be written as Λ ¼ −G0

0. This
approach was also used in Refs. [55,67]. From the first one,
the relation between g11 and g00 up to first order in ν̄ is
derived to be

g11 ¼ −
K
g00

�
1þ 2ν̄

�
r
μ0

μ
− ln

μ

μ1

��
þOð∞; 2Þ; ð32Þ

where a prime means a derivative with respect to r and K
and μ1 are integration constants. Within GR, the constant K
can be trivially eliminated by a time redefinition
(t → t=

ffiffiffiffi
K

p
). Within RGGR, both the constants K and

μ1 can be absorbed through a time redefinition. To prove
this, one only needs to note that

K

�
1þ 2ν̄

�
r
μ0

μ
− ln

μ

μ1

��

≈ Kð1þ 2ν̄ ln μ1Þ
�
1þ 2ν̄

�
r
μ0

μ
− ln μ

��
; ð33Þ

up to first order in ν̄. And hence, after the time redefinition
t → t=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð1þ 2ν̄ ln μ1Þ

p
, the μ1 constant is eliminated.

Equivalently, it can be fixed to be 1.

FIG. 1. The Newtonian potential generated by the Sun ϕ⊙
across the Solar System, and the value of the Newtonian
potentials generated by the Galaxy at the Solar System
(ϕMWj⊙). The letters “P” and “A” after Mercury refer to its
perihelion and aphelion.
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From Eqs. (31) and (32), the g00 solution is derived to be

g00 ¼ −1þ C1

r
þ C2r2 þ 2ν̄

�
1 −

3C1

2r

�
ln μþOð∞; 2Þ:

ð34Þ

The constants C1 and C2 within general relativity (ν̄ ¼ 0)
are associated respectively to a mass at r ¼ 0 and to a
cosmological constant. As expected, the derived solution is
an extension of the Schwarzschild–de Sitter solution. The
above result, in the context of a point particle, extends the
solution (17).

IV. THE PPN AND LRL ANALYSES FOR THE
SOLAR SYSTEM

A. PPN with the external potential effect

Reviews of the PPN formalism can be found in diverse
references (e.g., Refs. [45,48,49,68,69]). The full PPN
approach, as used in Ref. [45], depends on ten parameters,
but scalar-tensor theories have only two parameters whose
values can be different from the corresponding GR values,
which are commonly denoted by γ and β. As analyzed in
detail in Ref. [28], RGGR can be seen as a peculiar type of
scalar-tensor theory with a certain constraint and with a
potential that is system dependent. Since in a given system
the potential is fixed, in the Solar System RGGR is
expected to have only two nontrivial PPN parameters.
To find their values, we consider the line element (28) and
the following metric expansion [45,68]:

g00 ≈ −1þ 2M
r

− 2ðβ − γÞ
�
M
r

�
2

; ð35Þ

g11 ≈ 1þ 2γ
M
r
: ð36Þ

In the above, γ and β are constants, and for GR both of them
are equal to 1. A full detailed analysis of RGGR directly
from its covariant expression and without the restriction to
the Solar System is beyond the scope of this work, and is
currently a work in progress. This simpler PPN application,
sometimes also referred to as the Eddington expansion, is
nonetheless both useful for the Solar System application
and to introduce procedures that will be useful for the full
PPN development in this context.
Within the PPN framework, it is not uncommon to

associate an order of smallness such that vn ∼ ðM=rÞn=2∼
OðnÞ, where v is the test particle velocity. Nevertheless, for
clarity in the present context, we use the convention in
which n is associated with the power on the metric
perturbation, and hence we use ðM=rÞn ∼OðnÞ.
Comparing Eqs. (32) and (34) with Eqs. (35) and (36),

one sees that a minimum condition for applying this
parametrization is jC2jr2 ≈ 0 for the range of r considered

and C1=r ∼Oð1Þ. With these considerations, Eqs. (32) and
(34) can be written as

g00 ¼ −1þ C1

r
þ 2ν̄

�
1 −

3C1

2r

�
ln μþOð∞; 2Þ; ð37Þ

g11 ¼ 1þ C1

r
þ 2ν̄

�
r
μ0

μ
þ C1

�
μ0

μ
−
ln μ
2r

��

þOð2; 2Þ: ð38Þ

In the above, since C2 is no longer considered, Oðn;mÞ
refers to terms of nth order or higher in C1, and terms of
mth order or higher in ν̄. All the terms that depend on C1ν̄
are considered.
The “ln” terms can be expanded as in Eq. (27). It is

convenient to write explicitly the dependence on r; hence
let

ϕ⊙
ϕe0

≡ k
r
: ð39Þ

With these considerations,

g00 ¼ −1þ C1

r
þ k

r
ν̄

�
−2 −

k
r
−
2k2

3r2
þ 3

C1

r

þ 3kC1

2r2
þ k2C1

r3

�
þOð∞; 2; 4Þ; ð40Þ

g11 ¼ 1þ C1

r
þ 2

k
r
ν̄

�
1þ 3C1

2r

�
þOð2; 2; 2Þ; ð41Þ

where Oð∞; 2; 4Þ refer to terms of arbitrary order in C1,
of second or higher order in ν̄ and of fourth or higher order
in k. The meaning of Oð2; 2; 2Þ follows analogously. There
are no terms with C2

1 in g00 since there is no such terms up
to first order in ν̄ [see Eq. (34)].
To apply the formalism, it is necessary to relate the

expansions used above; otherwise it is impossible to know
whether, say, C2

1=r
2 can be neglected while and k2ν̄=r2 is

considered. For the case of the planet Mercury, the terms of
order Oð1Þ are of the same order as ϕ⊙ðr☿Þ ¼ −2.7 × 10−8

(the Newtonian potential generated by the Sun at Mercury’s
orbit). This should correspond, apart from higher-order
corrections, to−M=r. In other words, this is the assumption
that, at the Newtonian level in the Solar System, RGGR
must agree with GR and Newtonian theory; otherwise there
is no hope to be compatible with the Solar System data.
Moreover, ν̄ needs to be sufficiently small. Considering
galactic internal dynamics, the upper bound found for ν̄was
jν̄j ≲ 10−7 [27], which will be used as a starting point, but
soon a stronger bound will be shown.
The value of k=r☿ can be computed from its definition

(39), and it corresponds to Oð0.17Þ for the case without
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dark matter and Oð0.25Þ for the case with standard dark
matter.
With the above analysis, the relation between the three

expansions is clarified, and it is possible to sort the
expansion terms. Hence, Eqs. (40) and (41) can be
expressed as

g00 ≈ −1þ C1

r
−
k
r
ν̄

�
2þ k

r

�
; ð42Þ

g11 ≈ 1þ C1

r
þ 2

k
r
ν̄: ð43Þ

The relation between C1 and M is fixed by comparing
Eqs. (35) and (42), and it yields,

C1 ¼ 2M þ 2ν̄k: ð44Þ

From the coefficient of r−1 in g11, γ is found to be

γ ¼ 1þ 2ν̄k
M

¼ 1 −
2ν̄

ϕe0
: ð45Þ

According to Ref. [49], γ is constrained from
Solar System experiments and observations to satisfy
jγ − 1j ≲ 10−5. Since jϕe0 j ∼ 10−6, we derive from the
above that jν̄j≲ 10−11.
From the coefficient of r−2 in Eq. (42), the value of γ and

Eq. (35), β can be derived as

β ¼ 1þ ν̄k2

2M2
¼ 1þ ν̄

2ϕ2
e0
: ð46Þ

Since jβ − 1j≲ 10−4 [49], the above implies that

jν̄⊙j ≲ 10−16: ð47Þ

We stress that the external potential effect is essential for
the PPN application in its standard form [45], and that this
bound above considers it. In the next subsection, by using
the LRL approach, this bound with the external potential
effect is confirmed, and it will be compared to the case
without it.

B. LRL vector dynamics with and without
the external potential effect

This section is devoted to estimating the upper bound on
ν̄ in the Solar System from the LRL vector dynamics using
the perihelion precession data from Ref. [70], which is
more recent and precise than the data set used in Ref. [53].
Reviews on the LRL vector can be found in

Refs. [50–52]. The notation and approach used here follow
closely those of Ref. [53].
One of the most important results of general relativity is

predicting a correction to the precession of the orbit of the

planets. New determinations of the corrections to the usual
Newtonian-Einsteinian secular precession of perihelion
of the planets constitute a relevant data set to constrain
modified gravitation models in the Solar System; see
Table I.
From Eq. (17), the RGGR gravitational potential, apart

from the terms Oðν2Þ and OðνΦÞ, reads

ΦRGGR ¼ Φ − ν ln μ: ð48Þ

The above potential is essentially the one that appears in
Eq. (42) and was used for PPN, but without using the k
expansion. Although the PPN approach started from a more
precise framework, with computations valid to arbitrary
order in C1, in the end there was no significant change in
the RGGR potential in comparison with the one derived
from the conformal transformation. It should be stressed,
however, that the LRL technique only tests the planetary
orbits, while the PPN approach used here tests both the
orbits (from β) and the light deflection due to the Sun
(from γ). Therefore, since the major RGGR constraint
found from the PPN formalism came from the β observa-
tional constraints, the LRL analyses should yield essen-
tially the same bound on ν̄⊙. This will be confirmed in this
section.
From Eq. (48), for a point particle of mass m the force is

given by

FRGGR ¼ FN þmν∇ ln μ; ð49Þ

where FN is the Newtonian gravitational force for a point
particle. Using the effective μ from Eq. (8), and considering
the external potential effect,

FRGGR ¼ FN −
mν̄r0

rðrþ r0Þ
r̂; ð50Þ

where r0 ¼ −M⊙=ϕe0 and r̂ is the standard unit radial
vector with origin at the Sun. The above is the gravitational
force acting on a point particle of mass m in the weak-field
regime.

TABLE I. Estimated corrections, in milliarcseconds per cen-
tury, to the standard Newtonian-Einsteinian secular precessions
of the perihelion determined with the INPOP10a and the
EPM2011 ephemerides [71,72]. The relevant data for the
purposes of this work are the uncertainties in this table.

Planet EPM2011 INPOP10a

Mercury −2.0� 3.0 0.4� 0.6
Venus 2.6� 1.6 0.2� 1.5
Earth 0.19� 0.19 −0.20� 0.90
Mars −0.020� 0.037 −0.040� 0.150
Jupiter 58.7� 28.3 −41.0� 42.0
Saturn −0.32� 0.47 0.15� 0.65
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The LRL vector associated to the Sun with massM⊙ and
a planet of mass m is given by

A ¼ p × l −m2M⊙r̂; ð51Þ

where p is the linear momentum of the particle of mass m,
and l ¼ r × p is the angular momentum. Some important
properties of this vector are that A · l ¼ 0 and that, for an
unperturbed Newtonian gravity, dA=dt ¼ 0 and A is
collinear to the major axis. In the case of any perturbation,
in general A will not be a constant of motion and will
slowly precess. Also, the magnitude of the LRL vector
yields a relation to the eccentricity ε,

jAj ¼ m2M⊙ε: ð52Þ

The average precession of the orbit is derived from the
computation of hdA=dti and reads [53]

Ω ¼ −
hFp cosφi
M⊙m2ε

l; ð53Þ

where φ is the angle betweenA and the major semiaxis, the
symbol h i means an average in the sense

hXi≡ m
lτ

Z
2π

0

r2ðφÞXðrðφÞ;φÞdφ; ð54Þ

and τ is the period of the unperturbed motion.

From Eq. (53), the orbit precession velocity associated to
the force (50) reads,

Ω ¼ 2πν̄að1 − ε2Þ
M⊙τε2

2
64

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

h
r0ϵ

r0það1−ε2Þ
i
2

r − 1

3
75; ð55Þ

where a is the major semiaxis of the ellipse. The above
generalizes the Ω expression for RGGR of Ref. [53], by
considering the presence of an external potential. Namely,
the expression of Ref. [53] is found in the limit r0 → ∞.
Using Eq. (55) with the values of the perihelion

precession of the planets, as given by Table I, together
with the values of a, τ and ε from Table II, one can find an
upper bound on ν̄ for each of the planetary orbits. The ν̄
bounds with and without the external potential can be seen
respectively in Table III.

V. CONCLUSIONS

Currently there are research lines that look for GR
extensions based on the RG flow of G and Λ, and consider
their possible effects on large-scale (infrared) physics.
These extend GR by using principles that are well estab-
lished in other contexts. The approaches that are natural
within this RG framework are either impossible or unnatu-
ral to achieve by other means, and thus it introduces new
paths for extending and evaluating gravity. Also, finding
nontrivial flows of G and Λ on large scales may provide
clues about quantum gravity [15,17].
In this work we focused on a particular realization named

RGGR [27,28]. It is based on and extends the approaches of
Refs. [29,33]. This extension depends on an effective
dimensionless quantity ν̄ that measures the strength of
the RG in a given system, and it is such that in the limit
ν̄ → 0 the theory becomes pure GR. Two previous works
have found bounds on ν̄ in the Solar System (ν̄⊙) [53,54],
but they did not consider the external potential effect, which
we presented here for the first time. This effect is part of
RGGR within either the noncovariant or the covariant
formulations, and it acts as a new kind of screening
mechanism.
Considering this external potential effect, we found that

jν̄⊙j≲ 10−16 either from the PPN formalism or the LRL
vector technique. The external potential effect could
alleviate the bounds associated to the Solar System plan-
etary orbits from 3 to 6 orders of magnitude (see Table III).
However, this effect alone cannot fully explain the differ-
ence between the effective ν̄ in the Solar System from that
in a galaxy, in case RGGR does have a significant impact
on galactic dark matter.
The external potential effect acts as a screening mecha-

nism for RGGR in the sense that, the larger the external
potential, the smaller the non-GR corrections. In other
words, the environment can in principle hide the RG
effects. Quantitatively, the external potential effect is not

TABLE II. Orbital parameters of the planets. Here, τ is the
orbital period, ε is the eccentricity and a is the major semiaxis of
the orbit [66].

Planet τ (years) ε a (1010 m)

Mercury 0.241 0.2056 5.791
Venus 0.615 0.0067 10.82
Earth 1 0.0167 14.96
Mars 1.881 0.0935 22.792
Jupiter 11.862 0.0489 77.857
Saturn 29.457 0.0565 143.353

TABLE III. Upper bound on jν̄⊙j either with or without the
external potential effect (EPE), using ϕe0 ∼ 10−6. The data for Ω
came from the uncertainties in Table I. Among the two samples in
that table, the smallest uncertainties were selected for each planet.

Planet jν̄⊙j (with EPE) jν̄⊙j (without EPE)
Mercury ≲10−16 ≲10−19
Venus ≲10−15 ≲10−19
Earth ≲10−16 ≲10−20
Mars ≲10−16 ≲10−20
Jupiter ≲10−12 ≲10−17
Saturn ≲10−13 ≲10−19
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sufficient to completely hide the RG effects in the Solar
System, if the RG effects are relevant for galactic dynamics;
but, in the end, it is a significant dynamical effect that
should always be considered.
The change of ν̄ from system to system may follow a

linear correlation to the system mass, as argued in
Refs. [27,56], and also be compatible with the bounds
derived here for the Solar System. The Appendices develop
further the effective changes of ν̄ from system to system,
but the precise mechanism that may allow for a variation of
ν̄ of about 8 to 10 orders of magnitude from the Solar
System to a galaxy, if there is one, is still unclear.
Independent of the possible connection to dark matter,

here we have evaluated the RGGR Solar System bounds,
introduced in detail the external potential effect for the first
time, developed an approach for applying the standard
PPN formalism to RGGR (this approach requires the use
of the external potential effect), and used the LRL technique
to evaluate the magnitude of the external potential
effect. This latter effect may open new possibilities for
screening mechanisms, not necessarily related to the RGGR
approach.
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APPENDIX A: A SPECIFIC COVARIANT
SCALE SETTING

Consider the following simple realization of the covar-
iant setting (3):

μ ¼ fðUαUβhαβÞ ¼ Aþ BUαUβhαβ; ðA1Þ
where A and B are constants. This simple covariant scale
setting was introduced in Ref. [28], and it will be shown in
detail in this and the next appendix that, under certain
reasonable limits, it is a covariant extension of the scale
setting (8).
Adopting a comoving coordinate system (Ui ¼ 0), the

scalar UαUβhαβ can be expressed as, with γαβ ¼ ηαβ,

UαUβhαβ ¼ U0U0h00

¼ −
h00
g00

¼ −
�
1þ 1

Gḡ00

�

¼ −1þ G−1

1 − h̄00
: ðA2Þ

In the above, we used the fact that ḡ00 ≡G−1g00. The
above expression fixes a relation between μ and h̄00. For
a Minkowski background, following Sec. III A, the
relation between h̄00 and the Newtonian potential Φ,
reads

h̄00 ¼ −2ΦþOð2; 2Þ; ðA3Þ

where we used the fact that the metric that solves the
Einstein equation ~Gαβ ¼ 8π ~Tαβ is ~gαβ, whose time-time
component satisfies ~g00 ¼ −1 − 2ΦþOð2Þ, and that
~g00 ¼ G−1g00 þOð2; 2Þ ¼ ḡ00 þOð2; 2Þ.
The function μðh̄00Þ, or μðΦÞ, will not be an analytical

function in general. Indeed, considering the GðμÞ expres-
sion as given in Eq. (2), the equation (A2) is a transcen-
dental one for μ.
Far away from any mass, hαβ should become zero

(i.e., the metric gαβ should coincide with the background),
and hence in this limit μ ¼ A, which in turn implies that
G−1 ¼ 1þ 2ν lnA. Using unities such that Gjhαβ¼0 ¼
G0 ¼ 1, one finds

A ¼ 1: ðA4Þ

To avoid any singularity in G for any μ ∈ ½1;∞Þ, ν needs to
be positive, and this is always assumed henceforth.
Combining the previous equations,

μ ¼ 1þ B

�
−1þ G−1

1 − h̄00

�

¼ 1þ B

�
−1þ 1þ 2ν ln μ

1þ 2Φ
þOð2; 2Þ

�
: ðA5Þ

This is a transcendental equation for μ, but it can be solved
for Φ,

Φ ¼ 1

2

�
1þ 2ν lnð1þ δμÞ

1þ δμ
B

− 1

�
þOðν2Þ: ðA6Þ

In the above, we introduced δμ≡ μ − 1 > 0. As expected,
from the above one finds limδμ→0Φ ¼ 0.
Up to this point, B is simply any real number, but from

the previous results, and two considerations, its value can
be found. For sufficiently small δμ, Φ reads

Φjδμ≪jBj
δμ≪1

≈
1

2

�
2νδμ −

δμ

B

�
¼ 1

2
δμð2ν − B−1Þ: ðA7Þ

The first consideration is that the inequality Φ ≤ 0 must be
satisfied, and hence, since ν > 0,

0 < B ≤
1

2ν
: ðA8Þ

RODRIGUES, MAURO, and DE ALMEIDA PHYSICAL REVIEW D 94, 084036 (2016)

084036-10



The second consideration is that when δμ → 0 or equiv-
alently when hαβ → 0, Φ should smoothly go to zero,
implying that

lim
δμ→0

∂δμΦ ¼ 0: ðA9Þ

Therefore,

B ¼ 1

2ν
: ðA10Þ

With the above, Eq. (A6) can now be simply written as

Φ ¼ ν lnð1þ δμÞ − νδμþOðν2Þ: ðA11Þ
To clarify the meaning of the above equation, it is stating a
correlation between δμ and Φ, and this correlation, natu-
rally, only exists if ν ≠ 0. This correlation is the one that
comes from the covariant scale setting, and should be
compared with the noncovariant one (8). The above
equation cannot be solved analytically to express either
δμ or μ as a function of Φ, and hence Eq. (8) should be seen
as a local analytical approximation for the function μðΦÞ.
Figure 2 shows a parametric plot of the evolution of δG

as a function of Φ for different values of ν. The highest
value of ν used in that figure corresponds to the value used
in galaxies without dark matter (e.g., Refs. [55,56]), and the
smallest one is close to the Solar System bound derived in
Ref. [54]. It can be seen that changes of many orders of
magnitude in Φ translate into a much smaller variation in
δG. The range of Φ includes values corresponding to the
surface of a neutron star (∼10−1), and down to 10−10, which
is about the Newtonian potential generated by the baryonic

matter of dwarf galaxies at their farthest observed rotation
curve radius.

APPENDIX B: THE NONCOVARIANT SCALE
SETTING AS AN APPROXIMATION FOR THE

COVARIANT ONE

Equation (8) implies that

α ¼ 1

μ∂μ lnð−ΦÞ
; ðB1Þ

where ∂μ is the derivative with respect to μ. In Eq. (8), α
appears as a constant, but from the perspective of the
covariant scale setting, α should in general be a function of
μ, as given by the above equation. If, for a given system, α
is close to a constant, then for that system the noncovariant
scale setting may work as a good approximation. The
relation between α and Φ can be seen in Fig. 3, which
indeed shows that α changes slowly even if Φ changes by
some orders of magnitude.
By using the noncovariant approach, one is using an

approximation to derive the PPN parameters of the covar-
iant approach. This approximation must be sufficiently
precise. One way to evaluate this error is to consider, from a
given value of Φ, the relative error between the two μ’s
inferred from Eqs. (8) and (A11). Since it is possible to
analytically expressΦðμÞ, it is more convenient to adopt the
inverse route, that is, from a given μ, to find the relative
error between the potentials inferred by Eqs. (8) and (A11),
which we call here Φ and ΦA respectively. If the maximum
relative error between Φ and ΦA, along Mercury’s orbit, is

FIG. 2. The relation between jδGj ¼ jG − 1j ≈ 2ν ln μ [from
Eq. (2)] and jΦj [from Eq. (A6)] for four different values of ν.

FIG. 3. The relation between α andΦ for different values of ν. It
shows that the noncovariant approximation, where α is a constant,
can be a good approximation for many systems, since large
changes of Φ lead to much smaller changes in α.
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εmax
ν , then the PPN parameter γ, and consequently β,
acquires an additional uncertainty of �γεmax

ν when inferred
from the other approach. In particular, if εmax

ν ∼ 10, it is no
longer possible to use one approach (the noncovariant scale
setting) to state precisely the order of magnitude of either γ
or β of the other approach (the covariant scale setting case).
In order to show that both of the approaches lead to

compatible bounds for Mercury’s orbit, we compare the
Newtonian potential from Eq. (A11), ΦðμÞ, to an approxi-
mated potential given by Eq. (8), namely

ΦAðμ; μ0Þ≡ μ1=αðμ0ÞΦ0ðμ0Þ; ðB2Þ

where αðμÞ is given by Eq. (B1), and Φ0ðμ0Þ is such that
ΦAðμ0; μ0Þ ¼ Φðμ0Þ. In the plot of Fig. 3, the above
approximation corresponds to a straight line approximation
at μ0 to the αðμÞ curve. To quantify the approximation, we
use the relative error that is given by

ενðμ; μ0Þ≡
����1 − ΦðμÞ

ΦAðμ; μ0Þ
����: ðB3Þ

Without considering the external potential effect, the
range of Φ values of relevance is from −3.2 × 10−8 to
−2.1 × 10−8. The contribution of the Milky Way to the
local potential depends on whether dark matter is being
considered or not, but for both cases it is about
ϕMWðr⊙Þ ∼ 10−6 at the Solar System position. This
means that the range of variation of the Newtonian potential
along the orbit of Mercury is ½−ðKMW þ 0.032Þ × 10−6;
−ðKMW þ 0.021Þ × 10−6�, where KMW is a number
roughly equal to unity whose precise value depends on
the amount of dark matter in the Milky Way.
Figure 4 shows that the relative error introduced by the

approximation (8) is small enough to allow for a PPN
evaluation for the planet Mercury for all the relevant
values of ν. For the case without the external potential
effect, one can draw a similar plot as that of Fig. 4, with
higher values of the relative errors, but no higher
than 10−2.
Since the main focus here is on order-of-magnitude

evaluations of the Solar System bounds, the above shows
that there exists a value for α such that Eq. (8) can work
as a satisfactory approximation to the covariant scale
setting (A1), considering the post-Newtonian analysis of
Mercury’s orbit.
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