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A gravitationally collapsed object can bounce out from its horizon via a tunnelling process that violates
the classical equations in a finite region. Since tunnelling is a nonperturbative phenomenon, it cannot be
described in terms of quantum fluctuations around a classical solution, and a background-free formulation
of quantum gravity is needed to analyze it. Here, we use loop quantum gravity to compute the amplitude for
this process, in a first approximation. The amplitude determines the tunnelling time as a function of the
mass. This is the key information to evaluate the relevance of this process for the interpretation of fast radio
bursts or high-energy cosmic rays. The calculation offers a template and a concrete example of how a
background-free quantum theory of gravity can be used to compute a realistic observable quantity.
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I. INTRODUCTION

A striking realization of the last decades is that
our Universe is teeming with gravitationally collapsed
objects—or “black holes”—of various sizes. The recent
gravitational-waves observation of the merger of two
black holes of unexpected size [1] makes this conclusion
even more compelling.
Classical general relativity predicts that gravitationally

collapsed objects are stable; once a dynamical [2] or
trapping horizon forms (light surfaces shrink), it lasts
forever (it is an “event” horizon). But this prediction
disregards quantum effects. Some of these are accounted
for by the theory of quantum fields interacting with
classical geometry, which predicts Hawking radiation.
However, macroscopic black holes are still effectively
stable on accessible time scales—–a stellar-mass black
hole takes ∼1050 Hubble times to evaporate via Hawking
radiation. But this theory, or any perturbative formulation
of quantum gravity, is still an approximation, because it
disregards nonperturbative quantum-gravitational phenom-
ena. Among these is the possibility of black-hole decay via
gravitational quantum tunnelling.1

The idea has a long history and has been considered by
numerous authors [4–24]. Kieffer and Hajichek have found
evidence that the quantum state of a spherically symmetric
in-falling null shell tunnels into an outgoing one in the
context of a minisuperspace model [25]. Quantum effects
could indeed make collapsing objects bounce when they
reach the “Planck star” stage [26], namely Planckian
density.
A key step was taken in Ref. [27], where it is shown

that a violation of the Einstein equations within a finite

spacetime region is sufficient to allow a black-hole tunnel
into a white hole (an “antitrapped” region, where all light
fronts expand). From the outside, the process looks like a
quantum bounce of the in-falling matter, and it is akin in
nature to the “big bounce” of quantum cosmology [28].
This is a standard tunnelling phenomenon: evolution that

violates the classical equations of motion in a finite spatial
region and during a limited time. It is therefore a very
plausible phenomenon. Its astrophysical relevance, on the
other hand, depends on the time it takes. Dimensional
arguments suggest that accumulation of small quantum
effects could trigger the tunnelling already after a time
τ ∼m2 in Planck units, wherem is the mass of the collapsed
object [27]. This is sufficiently long to be compatible
with the black holes we observe in the sky, but much
shorter than the huge Hawking evaporation time τH ∼m3.
Hawking radiation could be a subdominant phenomenon,
with respect to the bounce. Writing ℏ explicitly gives
τ ∼m2=

ffiffiffi
ℏ

p
, which indicates that this is not a perturbative

phenomenon.
A lifetime τ ∼m2 implies that primordial black holes

of lunar-size mass could be exploding today and yield
observable signals [29]. A component of the expected
resulting signal is tantalizingly similar to the recently
observed fast radio bursts [30]. Fast radio bursts [31–34]
could thus be the first genuinely quantum gravitational
phenomenon ever observed [35,36]. A second, high-
energy, component of the signal could be the source of
some very high-energy cosmic rays. In both cases, the
expected signal has a signature distance-frequency relation
that characterizes it [37,38]. Maybe black holes could
“reveal their inner secrets” [39] after all, thanks to quantum
theory.
The first objective of this paper is to compute the black-

hole lifetime from a full quantum theory of gravity, to
1Not “in a different universe” as in Ref. [3], but simply

exploding in its actual location.
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assess the credibility of the dimensional estimate of
Ref. [27] and therefore ground the astrophysical relevance
of black-hole tunnelling.
Since the quantum bounce of a Planck star is a non-

perturbative phenomenon, it is not captured by the small
quantum fluctuations around a classical solution of the
Einstein equations. Therefore, it can only be described by a
background-free quantum theory of gravity. Here, we use
loop quantum gravity (LQG) which provides a nonpertur-
bative definition of quantum gravity [40–43].
LQG is tailor made for this calculation, because in its

covariant formulation [44–50] it associates an amplitude to
any compact region of spacetime, as a function of the
boundary geometry. In a Planck star bounce, we know the
initial and final geometry, we know that no classical
solution interpolates between the two, and we need the
probability for a quantum transition from the first to the
second. This is precisely what the amplitudes of covariant
LQG provide.
The calculation we present is thus a concrete example

of how a background-free quantum theory of gravity can be
used to predict observable quantities. The difficulty of
computing realistically measurable quantities in a back-
ground-free quantum theory is well known [51–54]; it
raises conceptual subtleties related to the notion of time, to
the difficulty of defining general covariant observables, and
to locality. The second objective of this paper is to show
concretely how such a calculation can be done and how all
these problems can be successfully addressed. We consider
this a major result of this paper.
The article is organized as follows. In Sec. II, we explain

how a gravitational tunnelling amplitude can be computed,
and we list the assumptions and approximations we take. In
Sec. III, we discuss the intuitive physical picture of the
phenomenon we analyze. In Sec. IV, we write the external
metric. In Sec. V, we fix the boundary between the region
that we consider classical and the region we treat as the
quantum system, and we compute its geometry. In Sec. VI,
we specify the triangulation we use for the quantum
calculation. In Sec. VII, we write the quantum state of
the boundary. In Sec. VIII, we compute the amplitude. In
Sec. IX, we begin to analyze it.
Appendix A recalls the basic equations of loop quantum

gravity. Appendix B summarizes our result giving the
amplitude in a self-contained form useful for future
developments.

II. QUANTUM TUNNELLING

We study the black-hole tunnelling process, and we
derive explicitly the amplitude Wðm; TÞ for a collapsed
object of mass m to tunnel out after a time T, under a
number of simplifying assumptions and approximations.
These are listed below:
(1) We assume a vanishing angular momentum of the

collapsing object. This is not a plausible assumption

for astrophysical objects, but it is the best we can do
so far.

(2) We take as collapsing object a spherical, thin, null
shell, with mass (energy) m. This, too, is a drastic
simplification, because it eliminates the complexity
of the accretion and the physics of the explosion;
essentially, we disregard most of the dynamics of
matter.

(3) We disregard dissipative phenomena, such as Hawk-
ing radiation. This is a good approximation to the
extent that the bounce time turns out to be faster
than the Hawking evaporation time. Accordingly, we
disregard the thermal properties of quantum black
holes [55–57], and we do not consider the con-
straints on the mass loss rate studied in Ref. [58] nor
the corresponding backreaction.

(4) We assume the process to be time-reversal invariant.
This is related to the previous point, because
Hawking radiation breaks time-reversal symmetry.
In particular, we disregard the possibility of insta-
bilities (see for instance Refs. [23,59]). A time
asymmetric version of a black-hole bounce which
addresses these issues is studied in Ref. [60].

(5) We work at first order in the vertex expansion [50].
This means that we assume the phenomenon to be
dominated by large scale degrees of freedom. This is
needed in order to extract a doable computation from
the full nonperturbative definition of the theory.

Under these assumptions, we derive the bounce ampli-
tude Wðm; TÞ, and we write it explicitly at the end of this
paper. In turn, this quantity determines the black-hole
lifetime τðmÞ.
The explicit expression for Wðm; TÞ that we derive is

finite (no divergences) and self-contained. However, it is
given by complicated sums of integrals and is not trans-
parent. It is also too complicated for a straightforward
numerical evaluation. Its evaluation requires further work,
which is in progress and will be reported elsewhere. Here,
we only mention, in closure, the preliminary tentative
indications that we have been able to derive so far from
it. These seem to support the quadratic dependence of the
evaporation on the mass: τ ∼m2. The main goal of the
present paper is only to derive the expression for Wðm; TÞ
and discuss the technical and conceptual questions raised
by the calculation.
Gravitational tunnelling has been treated in the literature

mostly in the context of tunnelling of the entire universe,
using WKB techniques and Euclidean solutions (see, for
instance, Refs. [61,62] and references therein). This is not
what we do here. The phenomenon we study concerns a
small finite spacetime region, and we study it using the
Lorentzian geometry-to-geometry transition amplitude.
To compute this amplitude, we choose a hypersurface Σ

surrounding the region where quantum effects cannot be
neglected. Σ includes also a small region outside the
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horizon, because the process we consider needs quantum
effects to leak outside the horizon, a possibility that has
recently drawn increasing attention [63,64]. Under the
assumptions listed above, the external geometry is given
in Ref. [27] and depends only on two parameters: the mass
m of the collapsing object and the decay time T. In
particular, the external geometry determines the (intrinsic
and extrinsic) geometry of Σ. We represent this geometry
by means of a quantum state and compute the associated
transition amplitude. Σ has a past and a future component
(the past and the future boundaries of the quantum region),
and Wðm; TÞ can be seen as the transition amplitude
between the past and the future states. Intuitively, it can
be thought of as the path integral over geometries in the
quantum region where the collapsed object bounces
(tunnels).
This strategy solves the problem of time in the following

sense. The calculation does not require a specific time
variable to describe evolution, while a physically (partial
[52,65]) observable clock time T is identified as one of the
parameters of the boundary state (see Ref. [43] for a full
discussion). The bounce region itself does not admit a
classical spacetime picture at all, in the same sense in which
there is no single trajectory for a quantum electron during a
quantum leap between two atomic orbitals. In the bounce
region, the “architecture” [66] of the quantum geometry is
fully nonclassical.
The modulus squared of the amplitude Wðm; TÞ deter-

mines the probability density for the process to happen at a
given (external) time T, for a given mass m. The lifetime τ
of the black hole is given by requiring the total probability
that the hole has not decayed before τ to be of order unity.
For consistency with traditional definitions of lifetime (for
instance, in nuclear physics), we set this to e−1; that is, we
define the lifetime τ by

Z
τ

0

jWðm; TÞj2dT ¼
�
1 −

1

e

�Z
∞

0

jWðm; TÞj2dT: ð1Þ

Since we work to first order in the vertex expansion (point 5
of the previous section), the estimate of the full T integral is
unreliable. Pending a higher order calculation, we circum-
vent the problem by taking the (reasonable) assumption that
the probability density for an existing black hole to decay
within a small interval of time is constant—as is the case in
standard radioactive decay—which is to say the probability
for the black hole to have decayed after a time T from its
formation takes the exponential decay form

pðTÞ ¼ 1 − e−T=τ; ð2Þ

possibly after a short initial transient. This will allow us to
compute the black-hole lifetime τ simply from the value of
the function Wðm; TÞ on two points (one for the normali-
zation and one for τ), as we show below in Sec. VIII.

The interpretation of the amplitude we compute requires
an important discussion, essential to understand the present
setting. In standard radioactive decay, a particle tunnels out
from the potential barrier that traps it inside the nucleus. If
we evolve an initial quantum state of the particle using the
Schrödinger equation, we find a state that slowly leaks out
of the confining potential. After some time, the quantum
state describes a quantum superposition of many different
positions of the particle, corresponding to different escape
times from the nucleus. A Geiger counter will detect the
escaping particle at some time and in a single position,
corresponding to a specific decay time T. Formally, the
measurement projects the widely spread quantum state to a
localized semiclassical state of the particle and realizes a
single time for the decay, which is determined probabilisti-
cally by the initial state. Equivalently (depending on one’s
preferred way of thinking about quantum theory), the
branches of the state corresponding to different decay
times decohere rapidly, due to the interaction with the
outside world.
We use this same logic for the case of the black hole.

The quantum state of the geometry in the future of a
collapsed object is formed by a quantum state spread over
vastly different geometries, as discussed in Ref. [67]. Due
to the large number of degrees of freedom involved, these
decohere rapidly. Equivalently, any interaction of the
geometry in the future of the quantum region “projects”
the widely spread quantum state onto a given classical
geometry, realizing (probabilistically) a well-determined
black-hole explosion time T. We are interested in the
probability distribution of this explosion time. Quantum
mechanics allows us to compute this probability by
sandwiching the transition amplitude between an initial
and a final state. This is what we do here. We isolate the
region where quantum phenomena cannot be disregarded
and describe the quantum phenomenon in terms of the
probability for different possible classical evolutions of the
world (outside and) after the transition region, namely for
different values of T.

III. PHYSICAL PICTURE OF
THE PHENOMENON

Before starting the calculation, we discuss in this brief
section the intuitive physical picture of the process we are
considering.
When a collapsed object shrinks inside its Schwarzschild

radius, its density keeps growing. When the density reaches
a Planckian value, the object is called a “Planck star” [26].
Importantly, this happens when the object has still a size
many orders of magnitude larger than the Planck length
[26,68]. At this scale, the curvature becomes Planckian
as well (that is, scalar functions of the curvature such as
RabcdRabcd reach the Planck scale). Simple dimensional
arguments indicate that quantum mechanical effects
become dominant. The classical Einstein equations are
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thus necessarily violated by quantum effects at this scale.
This is consistent with the standard picture in loop quantum
cosmology.
Quantum effects can act as an effective pressure, as in

loop quantum cosmology. These are akin to the quantum
pressure that forbids an electron to fall into an atomic
nucleus. Gravitational collapse can therefore stop, and the
Planck star can “bounce out” via quantum tunnelling into a
new classical solution of the Einstein equations.
This naive picture, however, is incomplete, because it

assumes a classical geometry, disregarding in particular the
fact that quantum-gravitational effects are not necessarily
confined to a fixed-geometry causal future of the matter
bounce. Quantum fluctuations of the background causal
structure can allow violations of the background-geometry
causality. This is the mechanism that permits quantum
effects to leak outside the horizon.
Indeed, notice that in the standard geometry of a collapse a

generic spacetime point outside the horizon is only a single
Planck spacelike distance away from the singularity. This is
counterintuitive at first, but true, due to the Lorentzian nature
of spacetime (see Fig. 2). Therefore, there is no surprise, nor
violation of any known fundamental physical law that we
know, if quantum effects leak outside the horizon. This
cannot happen in quantum field theory over a fixed back-
ground, but there is no reason we know of that it should not
happen when the full quantum dynamics of the gravitational
field is taken into account, including the nonperturbative
effects that are not accounted for by quantum field theory on
curved spacetime. Here, we see clearly the limitation of local
quantum field theory. See Ref. [69], and in particular the
contributions by Giddings and Rovelli therein, for a recent
discussion of this essential point.
The violation of Einstein’s equations outside the horizon

opens the channel for the matter bounce, the tunnelling of
the black hole into a white hole, and the explosion.
The most appealing aspect of this picture is its temporal

structure. At first, there seems to be a tension between the
long time during which a black hole is in existence, namely
the long black-hole lifetime (after all, a black hole is a
macroscopic object, and we cannot expect a short tunnelling
time) on the one hand and the short time required by the
bounce picture on the other hand. But the tension is
beautifully resolved by the general relativistic time dilata-
tion: the bouncing process can be at the same time extremely
fast measured by a clock on the star and extremely long in
external time, due to the huge gravitational redshift between
the inside and the outside of the hole. This is concretely
realized in the metric computed in Ref. [27].
The black holes we see in the sky could be “bouncing

stars,” seen at the extreme slow motion implied by the
standard general relativistic time dilation [26].
The fact that this intriguing physical picture has a chance

to be supported by direct astrophysical observations [29–34,
37,38] renders it, in our opinion, well worth studying.

We now close the introductory discussion and get to the
actual calculation of the black-hole lifetime. We emphasize
the fact that very little of this intuitive picture of the
phenomenon is relevant for the calculation below, which
simply moves from first principles to compute a quantum
transition amplitude between an incoming and an outgoing
classical state.

IV. EXTERNAL CLASSICAL METRIC

We are interested in the geometry describing the
collapse and the bounce of a null shell found in
Ref. [27] and illustrated by the (Carter-Penrose) causal
diagram of Fig. 1. The relevant aspect of this geometry is
that it is an exact solution of Einstein’s equations outside a
compact region. In the figure, the thick gray lines
represent the incoming and outgoing spherical shell.
The dotted lines represent the black-hole (trapping)
horizon and the white hole (antitrapping) horizon. The
metric is flat in the white region and Schwarzschild in the
light gray region. More precisely, the light gray region is a
portion of a double covering of the Kruskal extension of
the Schwarzschild metric, as illustrated in Fig. 3. This is
why the white hole can be in the future of the black hole,
as explained in detail in Ref. [27]. The dark gray area of
Fig. 2 is the quantum region—-namely the region where
the classical equations are violated—which concerns us in
this paper. We call rS and tS the standard Schwarzschild
coordinates that cover the region of the Kruskal diagram
outside the horizons. The spacetime is time-reversal
invariant, and we assign the Schwarzschild time tS ¼ 0
to the reflection hypersurface.
There are two important points (spheres in spacetime) in

these diagrams, which we denote δ and Δ.
The point δ is the point where the incoming shell crosses

the surface with Schwarzschild time tS ¼ 0 in the Kruskal
diagram. With a slight abuse of notation, we call δ also the
dimensionless fractional Schwarzschild radial distance
from the horizon; that is, we write

FIG. 1. Causal diagram of the bouncing shell. The continuous
line is the null shell. The dotted line is the location of the
(trapping) horizons. The white region is flat. The light gray region
has Schwarzschild geometry. The dark gray region is the quantum
tunnelling region.
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δ ¼ rSðδÞ − 2m
2m

; ð3Þ

[rSðPÞ is the Schwarzschild radial coordinate of the point
P], or equivalently

rSðδÞ ¼ 2mð1þ δÞ: ð4Þ

Notice that δ is the image of two spacetime points (spheres),
one on the collapsing shell and one on the exploding shell,
both just outside the horizons, indicated respectively as δ
and δ0 in the rhs panel of Fig. 3.
In Ref. [27], it is shown that (for δ ≪ 1) the bouncing

time observed by an external observer (defined as the
proper time of a distant observer sitting at radius R ≫ 2m
from the moment she sees the in-falling shell passing by to
the moment she sees the outgoing shell passing by, minus
the time 2R for the shell to go in and come out from the
rS ∼ 2m region) is

T ¼ −2m ln δ: ð5Þ

The meaning of the time T is clarified by Fig. 4, which
displays the process in Schwarzschild coordinates. These
cover only the region outside the horizons.
The point Δ is the point where the map between

spacetime and the Kruskal geometry bifurcates, which

we take a bit outside the quantum region. Again, with
abuse of notation, we write the Schwarzschild radius of the
point Δ in the form

rSðΔÞ ¼ 2mð1þ ΔÞ: ð6Þ

We need

δ < Δ ð7Þ

because the two points where the ingoing and outgoing
shells cross tS ¼ 0 must be distinct in physical space, and
therefore inside the bifurcation point Δ (see Fig. 3).

V. BOUNDARY AND ITS GEOMETRY

We now choose a surface Σ surrounding the quantum
region. This will be the boundary for the computation of
the transition amplitude. As discussed in the Introduction,
quantum probabilities are computed, à la Bohr, at the
boundary with the classical world. As stressed by Wigner
[70], there is arbitrariness in choosing the boundary
between a quantum system and the classical world, in
computing quantum probabilities; accordingly, there is a
freedom in choosing Σ. We want Σ to be sufficiently away
from the tunneling region to be sure to capture all quantum
effects, that is, sufficiently away from the tunneling region
to permit the external region to be well approximated
by classical physics. But it is convenient to choose Σ of
minimal size, in order to minimize the technical complexity
of the calculation.
Tentatively, we choose the surface Σ depicted in Fig. 5.

To define it, it is convenient to use coordinates different
than the Schwarzschild coordinates. Very convenient

FIG. 2. A generic point P outside a black hole (sufficiently after
the collapse) is a single Planck distance away from the singu-
larity. To see this, flash a light from the point to the hole
(continuous line). This has zero 4-length. By continuity, there is
an arbitrarily short nearby spacelike line (dotted line).

FIG. 3. The map between the bouncing shell geometry and the
Kruskal geometry.

FIG. 4. The Schwarzschild region of the bouncing spacetime in
Schwarzschild coordinates: the shell (thick line) freezes near
the horizon (dashed line) until it reaches the point δ, and hence
bounces back. The bounce time T is the Schwarzschild time
during which the shell hovers near the horizon. An observer at
Schwarzschild radius R sees the shell emerge after a time which is
T plus the time for the shell to go in and come out. The gray
region is where quantum effects leak outside the horizon and the
Einstein equations are violated.
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coordinates are the Lemaître coordinates [71,72] which
are in time gauge (lapse ¼ 1, shift ¼ 0), the gauge in
which LQG transition amplitudes are written. In these
coordinates, which we denote r and t, the Schwarzschild
geometry reads

ds2 ¼ −dt2 þ 2m
rS

dr2 þ r2SdΩ2; ð8Þ

where rS > 0 is the function of r and t defined by

r3S ¼ 9m
2

ðr − tÞ2: ð9Þ

The line element (8) shows that rS is the Schwarzschild
radial coordinate. The Lemaître time t is related to the
Schwarzschild time coordinate tS by

t ¼ tS þ 2
ffiffiffiffiffiffiffiffiffiffiffi
2mrS

p
þ 2m ln

����
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rS=2m

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

rS=2m
p þ 1

����: ð10Þ

The Lemaître coordinates cover the exterior and the interior
of a black hole.
Each t ¼ constant hypersurface crosses the tS ¼ 0

hypersurface at a point (sphere) of Schwarzschild radius
rSðtÞ (see Fig. 6), which is obtained by setting tS ¼ 0 in
(10). In particular, consider the t ¼ constant hypersurface
that crosses the tS ¼ 0 in Δ. The portion B− of this
hypersurface inside Δ is a 3D (topological) ball bounded
by the 2-sphere Δ. Its image under time reversal Bþ is a 3D
(topological) ball with the same boundary. We choose Σ as
the union of B− and Bþ.
To be sure, the actual surface Σ, which is depicted in

Figs. 5 and 8, is not entirely within the Schwarzschild
region, because both its past and its future branches are cut
by the ingoing and outgoing, respectively, shells, inside

which the metric is flat. We disregard this fact here, under
the assumption that the geometry of this small region has no
effect on the transition, and we take the geometry to be
exactly the union of B− and Bþ.
It is easy to obtain the value of t on B−: assuming

0 < Δ ≪ 1, posing tS ¼ 0 (10) reduces to

t ¼ 2m lnΔ: ð11Þ

Notice that the Lemaître time goes logarithmically to −∞
when Δ → 0, namely when its intersection with tS ¼ 0
approaches the horizon on the tS ¼ 0 surface.
The metric of B−, from (8), is

dl2 ¼ qabdxadxb ¼
2m
rS

dr2 þ r2SdΩ2; ð12Þ

where the range ½rmin; rmax� of the radius r is determined by
rSðrmin; tÞ ¼ 0 and rSðrmax; tÞ ¼ 2mð1þ ΔÞ. Remarkably,
this metric is (3D) flat. This can be easily seen as follows.
The variation of (9) at constant t gives dr ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

rS=2m
p

drS,
so that rS and the angles are flat polar coordinates on B−.
Its extrinsic curvature is given by the time derivative

kab ¼ _qab, because we are in time gauge. Again, from (9),
we can compute the time derivative of rS at constant r:

drS
dt

¼ −

ffiffiffiffiffiffiffi
2m
rS

s
: ð13Þ

Using this, we have immediately

kabdxadxb ¼ ð2mÞ32r−5
2

s dr2 −
ffiffiffiffiffiffiffiffiffiffiffi
8mrS

p
dΩ2: ð14Þ

Equations (12) and (14) give the geometry of the past
component B− of the boundary surface Σ. Because of the
time-reversal symmetry, the geometry of Bþ is the time
reversal of the geometry of B−. This means that the intrinsic
geometry is the same, while the extrinsic curvature is the
same but with opposite sign. A flip of sign in the conjugate
momentum is of course the hallmark of a bounce (a ball that
bounces on the floor flips its velocity almost suddenly).
Thus, the tunnelling process we are considering is the flip
of sign of the extrinsic curvature of B−: something like
snapping over a cap (Fig. 7).
This determines entirely the intrinsic and extrinsic

geometries of the boundary surface Σ, as a function of
m and Δ > δ, where δ ¼ e−T=2m is related to the bounce
time T.
So far, we have used Einstein’s metric formalism. Loop

quantum gravity, however, is based on the tetrad-spin
connection and—on a boundary—the Ashtekar variables
formalism, which introduce a local SUð2Þ gauge. Before
proceeding, we therefore need to translate the geometry of
Σ in terms of Ashtekar variables. On Σ, we can introduce a

FIG. 5. A closeup of the quantum region. The surface Σ is in
black, the horizons are dotted, and the tS ¼ 0 surface is dashed.

FIG. 6. A t ¼ constant surface in the extended black-hole
spacetime and, in bold, the ball B−. The dot ending the surface
is the sphere S.
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triad field eia such that qab ¼
P

3
i¼1 e

i
aeib by simply choos-

ing a local triad at each point. This freedom gives the
local SOð3Þ gauge invariance. The Ashtekar variables are
the densitized inverse triad field Ea

i ¼ det eeai and the
Ashtekar-Barbero connection Ai

a ¼ Γi
a þ γkia where Γ is

the spin connection of the triad, γ is the Barbero-Immirzi
parameter, and kab ¼ kiaebi. These fields are uniquely
determined by qab and kab once the gauge, namely the
orientation of the triad at each point, is fixed. We make
this choice explicitly in the following section, after
discretization.
There is one last geometrical quantity that we shall need

below: the boost angle betweenB− and Bþ at their junction.
This is twice the boost angle ζo=2 between the tS ¼ 0
surface and the t ¼ constant surfaces. Calling ns ¼ dtS and
n ¼ dt the normals to these surfaces, we have

cosh
ζo
2
¼ ðdtS; dtÞ

jdtSjjdtj
¼

ð1 − 2m
rS
Þ−1

ð1 − 2m
rS
Þ−1

2

¼
�
1 −

2m
rS

�
−1
2

: ð15Þ

On Δ, which is the intersection point, this gives

cosh
ζo
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

Δ

r
: ð16Þ

For small Δ, this gives

ζo ∼ − lnΔ: ð17Þ

For the simple discretization we consider below, we will be
forced to take γζo ≤ 4π. For γ ∼ oð1Þ, this gives Δ > 10−5

which is still within the above approximation.
The last point we need to discuss is the relation between

Δ and δ. The boundary between a quantum system and its
classical environment can be moved arbitrarily out without
affecting the probabilistic predictions of the theory [70].
Therefore, there is some arbitrariness in the choice of
the exact position of Δ, which should not affect the final
result. However, Δ is bounded from below by (7) but also
from above by the fact that we need the t ¼ constant
surface it defines to intersect the shell, rather than end on
the singularity (see the right panel of Fig. 8). Thus, the
maximum value of Δ we can take is bounded by the

Lemaître time of the point where the shell reaches the
singularity. This time can be easily calculated by integrat-
ing a null geodesic from δ to the singularity in Lemaître
coordinates. The calculation is straightforward and gives
the Lemaître time t ¼ tðδÞ þ 2mð1þ δÞ. This is thus the
time of the maximal Δ. Using then the (approximate)
equation (11) both for Δ and δ, we obtain 2m lnΔ ¼
2m ln δþ 2mð1þ δÞ, which for small δ gives the maximum
value Δ ¼ eδ. In other words, if we want to use the
constant-Lemaitre-time surfaces for the calculation, we
have to take Δ very close to δ. Consequently, we can
simply use

T ¼ −2m ln ðe−1ΔÞ ∼ −2m lnΔ: ð18Þ

We now want to compute the quantum amplitude for a
spacetime region bounded by a surface Σ with this
geometry, using loop quantum gravity. To that end, one
needs a spin network state describing the boundary
geometry and to sum over all bulk spin foams compatible
with the boundary. As a first approximation, we will select
(i) a single spin network graph, dual to a simple triangu-
lation of the continuum boundary geometry, and represent
the geometry of Σ via a coherent state peaked on discrete
data approximating the boundary geometry, and (ii) the
lowest order spin foam amplitude. Before going to the
quantum theory, we present in the next section the details of
the discretization used.

VI. DISCRETIZATION

The boundary surface Σ is formed by two (flat) balls
joined at their (spherical) boundary. A ball can be nicely
triangulated by a single equilateral flat tetrahedron τo. We
refine this triangulation splitting τo into four equal isosceles
tetrahedra, as in Fig. 10. The boundary surface Σ is then
triangulated by eight tetrahedra (four in B− and four in Bþ)
connected to one another as in Fig. 9, where the tetrahedra
are the nodes of the graph. This is not the minimal
triangulation of Σ but—as we shall see—is the boundary
of the minimal triangulation of the region enclosed by Σ,
which respects time-reversal invariance.
We now derive the data describing the geometry of this

triangulation. We do so in two steps. First, in terms of the
metric formalism, giving the area of all the triangles of the

FIG. 8. The two surfaces B− and Bþ, sharing the boundary S.
Ingoing and outgoing null spherical shells are also depicted.FIG. 7. The transition from B− to Bþ is like snapping over a

cap.
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triangulation and—again at each triangle—the four-
dimensional boost angles between tetrahedra normals,
which discretize the extrinsic curvature. Next, we give
the discrete version of the Ashtekar variables, called the
flux and holonomy variables. All these data can be
immediately computed from (8).
To fix notation, we call the four upper (future) tetrahedra

τþa with a ¼ 1, 2, 3, 4 and the four lower (past) tetrahedra
τ−a . We call l�

ab the (oriented) upper links and la the side
links, which are dual to the triangles forming the 2-sphere
Δ. Because of the symmetries of Σ, and because each 3-ball
is flat, we will see that we can take all isosceles tetrahedra
with the same shape, so that all links l�

ab (straight links of
the graph) are dual to triangles that have the same area
A− ¼ Aþ and extrinsic curvature angle ζ�. The four links
la (curved in the picture) are dual to triangles that have area
Ao and extrinsic curvature angle ζo. These are “thin”
triangles; namely the outgoing normals of the two tetra-
hedra they bound have opposite time directions, as one
belongs to Bþ and one to B−. The explicit values of these
data can be computed as follows, as functions of m and T.

A. Discrete metric variables

To match with the continuum geometry, we identify the
total surface of τo with the sphere Δwhere B− and Bþ join,
thus posing

4Ao ¼ 4πð2mð1þ ΔÞÞ2: ð19Þ

An equilateral tetrahedron splits into four equal isosceles
tetrahedra, each with base area A0 and side areas A− with
ratio

A− ¼ 1ffiffiffi
6

p Ao; ð20Þ

as can be immediately derived from the Pythagoras
theorem.2 This fixes the shape of all tetrahedra, for instance
the dihedral angle α (see Fig. 10), which we will need later
on, is given by

cos α ¼ EF
EO

¼
ffiffiffi
2

3

r
: ð21Þ

As for the discrete extrinsic curvature, this is con-
centrated on the triangles and is given by the boost
angle between the four-dimensional normals to the
tetrahedra. On the sphere Δ, this is given by ζo.
More precisely, the triangles discretizing Δ, such as
ABC, are thin, and ζo, given in (17), is the angle
between their future normals.
The discrete curvature on the radial triangles, such as

ABO, is determined by the tangential part of kab, which
depends on the time dependence of the tangential compo-
nents of the metric. We can determine it as follows. Let dV
be the change of volume of a tetrahedron τ in a time dt, due
to a change in the metric. This change can be split into two
parts: a change of volume dVrad due to the change in qrr
which corresponds to a growth normal to the basis of τ
and a change dV tang due to the angular part in qab which
corresponds to a growth normal to the side faces of τ. Since

V ¼
Z

rmax

rmin

dr
ffiffiffiffiffiffi
qrr

p
4πr2S; ð22Þ

the two can be computed explicitly. In particular,

dV tang

dt
¼

Z
rmax

rmin

dr
ffiffiffiffiffiffi
qrr

p
4π

dr2S
dt

¼
Z

2m

0

drS8πrS

ffiffiffiffiffiffiffi
2m
rS

s

¼ 16

3
πð2mÞ2: ð23Þ

FIG. 9. The boundary spin network with the orientation chosen
for later convenience. The two balls B− and Bþ correspond to the
upper and lower parts, sharing the boundary S which corresponds
to the four intermediate links.

FIG. 10. The triangulation of a spherically symmetric 3d ball
as a regular tetrahedron A, B, C, D split into four isosceles
tetrahedra. O is the center of the regular tetrahedron, E the center
of a side and F the center of a face.

2Using the notation of the figure, by elementary geometry,
the height of a face is ED ¼ EC ¼ 3EF, and the height of the
tetrahedron τo is CF ¼ 4OF. By the Pythagoras theorem on the
two triangles EFO and EFC, a line of algebra gives immediately
that EC ¼ ffiffiffi

6
p

EO.
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On the other hand, a little geometry shows that if the
discrete extrinsic curvature on each of the three faces is ζ,
the change of the tangential volume in time is

dV tang

dt
¼ 3

1

2
A−ζ− ¼ 3

2

1ffiffiffi
6

p πð2mÞ2ζ−: ð24Þ

From the last two equations, we have

ζ− ¼ 32

9

ffiffiffi
6

p
: ð25Þ

(A comparable estimation can be obtained by integrating
the trace of the extrinsic curvature on the continuous
hypersurface Σ.) Since Bþ is the image under the time
reversal of B−, with opposite extrinsic curvature, we have
then immediately

ζþ ¼ −
32

9

ffiffiffi
6

p
: ð26Þ

B. Holonomy-flux data

Next, we compute the discretized version of the Ashtekar
variables describing the geometry of the triangulation.
These are the variables in terms of which the coherent
states of loop quantum gravity are defined. They are the

holonomy-flux variables ð~X;HÞ respectively in R3 and
SUð2Þ, associated to each triangle. Like the triad and
Ashtekar variables, these introduce a local rotation gauge.
Geometrically, this corresponds to fixing a local frame on
each tetrahedron; see Ref. [73] for a discussion.
The holonomy-flux variables allow a generalization of

the Regge geometry, called twisted geometry [74], where
the discontinuity of the metric on the triangles allows a
mismatch of the shape of the shared triangles [75]; here, we
are not concerned with this generalization, since we use
these variables to describe the Regge geometry con-
structed above.
The “flux” Xi ¼ R

Eiana is the flux of the densitized
tried Ea

i , a 2-form, across each triangle. Here, na is the
geometrical normal to the triangle. Choosing a constant

Euclidean triad EiaðxÞ ¼ δia with each tetrahedron, ~X ¼
fXig is simply given by ~X ¼ A~n, the unit normal ~n to the
face, in the coordinates defined by the triad chosen in the
tetrahedron, multiplied by the area A of the triangle. More
precisely, since the triad on the triangulation is in general
discontinuous across the (oriented) triangle, there are two
vectors, ~n and ~n0, associated to its source and target sides,
respectively.
The “holonomy” H ∈ SUð2Þ is the holonomy of the

Ashtekar connection A, along a line (“link”) dual to the
triangle. Since the triad chosen is constant inside each
tetrahedron, both the extrinsic curvature and the spin
connection on a triangulation are distributional and

concentrated on the triangle, and therefore the holonomy
is a single group element associated to the triangle itself,
and the exact points where the link starts and ends in the
tetrahedra are irrelevant. The holonomy is the group
element that turns the two triads on the two tetrahedra
into one another. It depends on the two ingredients of A, the
spin connection ΓðEÞ, and the extrinsic curvature multi-
plied by the Immirzi parameter γK. The holonomy of the
spin connection alone is

n0e−i
2
ασ3n−1; ð27Þ

where n and n0 are SUð2Þ group elements that turn the unit
vector in the z direction ẑ into ~n and −~n0, respectively (the
minus sign is because we take all normal vectors to
tetrahedra faces as outgoing), and α is the rotation angle
in the ðx; yÞ plane needed to match the x, y axis of the two
triads across the face.3 However, the exponentiation of the
γK term also contributes a rotation around an axis normal to
the triangle, because the only nonvanishing component of
the extrinsic curvature of a triangulation is kab ∼ nanb.
Therefore, the discretized holonomy reads

H ¼ n0e−i
2
ðαþγζÞσ3n−1 ≡ n0e−i

2
ξσ3n−1; ð28Þ

where ζ is a boost angle between the normals of the
tetrahedra. Thus, in the discretization of the Ashtekar
variables, the extrinsic curvature is coded into an extra
rotation along the normal to triangles [75,79]. The relation

ξ ¼ αþ γζ ð29Þ

is the discrete equivalent of the Ashtekar-Barbero relation
A ¼ ΓðEÞ þ γK.4 Notice that the quantity ξ − α is gauge
invariant.
The map from ~n to n is not unique, because there are

many rotations n that bring ẑ into ~n, that is, different
choices of the section of the Hopf fibration SUð2Þ → S2.
Different choices of map differ by a rotation along the
normal to the face and therefore give different values of α.
Following Ref. [74], we chose the natural section where the
rotation is around an axis normal to both ẑ and ~n. This is the
one used in the definition of the SUð2Þ coherent states.
Explicitly, describing a unit vector with its polar angles
~n ¼ ðθ;ϕÞ, it is given by

3To fix α for general twisted geometries, one has to pick a
preferred edge (see Refs. [76,77]); the angle can be nicely
parametrized in terms of spinors’ phases in the spinor formalism
[73,77,78].

4Encoding in a γ-dependent way the extrinsic curvature in the
boost can be interpreted as the solution of the secondary
simplicity constraints for Regge configurations [73,77,80,81],
gauge fixing the first-class primary simplicity constraints [82].
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n ¼ e−
i
2
ϕσ3e−

i
2
θσ2e

i
2
ϕσ3 : ð30Þ

For the target of the same link, we compensate the minus
sign by adding a parity transformation (given by P ¼ iσ2)
to ensure that both normals are outgoing; if ~n0 ¼ ðθ;ϕÞ,
then

n0 ¼ e−
i
2
ϕσ3Pe−

i
2
θσ2e

i
2
ϕσ3 : ð31Þ

Since the tetrahedra are all equal, we can exploit the local
rotational freedom to assign the same four normals to all of
them. Using the orientation of Fig. 11, we get

~n0 ¼ ð0; 0Þ; ð32Þ

~nk ¼
�
arccos

�
−

ffiffiffi
2

3

r �
;φk

�
; ð33Þ

with k ¼ 1, 2, 3 and

φ1 ¼ 0; φ2 ¼
2

3
π; φ3 ¼ −

2

3
π: ð34Þ

Given two tetrahedra sharing a face, the group elements n
and n0 given by (30) and (31) rotate them in such a way that
the respective triangles match [lie in the ðx; yÞ plane], with
opposite orientation. To make them match, that is to align
the edges, a further rotation α around the ẑ axis is needed in
general. Because of the symmetry of the tetrahedra, it is
easy to see that the required rotations have angles

α0 ¼ 0; αk ¼ φk: ð35Þ

Then, α in (29) is given by α ¼ 0 for the angular (equi-
lateral) faces, and for the radial (iscosceles) faces, we have

α ¼ αk − αk0 : ð36Þ

This gives explicitly all variables n; n0; ξ for all links,
which, along with the η’s which are given in the next
section, are the data needed to define the quantum states.
Notice that, using (29) with the explicit values (35), these
cancel the right-most exponentials in (30) and (31). The
effect of the angles α is therefore simply to replace n and n0
in (30) and (31) by

ν ¼ e−
i
2
φσ3e−

i
2
θσ2 ; ð37Þ

ν0 ¼ e−
i
2
φσ3Pe−

i
2
θσ2 ; ð38Þ

so that on each link we have

H ¼ ν0e−i
2
γζσ3ν−1: ð39Þ

VII. QUANTUM BOUNDARY STATE

It is time to move to the quantum theory. The basic
equations of covariant LQG are briefly recalled in
Appendix A. We follow Ref. [50], to which we refer the
reader for all details. We start by constructing a quantum
boundary state representing the geometry of Σ, and then we
write its quantum amplitude. The quantum state is essen-
tially a wave packet peaked on the classical geometrical

data ð~X;HÞ.
LQG states are defined over abstract graphs. The nodes n

of the graph represent quanta of space. The links l of the
graph represent the surfaces between the quanta of space. A
state is represented by a square integrable function ψðhlÞ,
where hl ∈ SUð2Þ, for every link l. The interpretation of
hl is the holonomy of the Ashtekar connection between
two nodes. Here, in the first relevant approximation, we
choose the graph depicted in Fig. 9, dual to the triangu-
lation of the boundary described in the previous section.
We call h�ab and ha the oriented group elements on the links
l�
ab and la.
Coherent states approximating a discrete classical

intrinsic and extrinsic geometry have been constructed
by various authors. Here, we shall use the heat-kernel
coherent states by Thiemann [83] (denoted “extrinsic” in
Ref. [50]), parametrized in terms of twisted geometries [84]
as in Ref. [85], that depend on a complex number z ¼
ηþ iξ and two unit-length 3D vectors ~n; ~n0 per each link l.
These are defined [see (A1)] as the product over the links of
the coherent link states

Ψz;~n;~n0 ðhÞ ¼
X
j

dje−
jðjþ1Þ
2σ tr½Djðn−1h−1n0ÞDjðezσ32 Þ�; ð40Þ

FIG. 11. The orientation chosen for the isosceles tetrahedra and
their four normals (33). Fixing these normals amounts to
choosing the SOð3Þ gauge at each node. The equatorial angle
ϕ is 2π=3, and the polar angle satisfies cos θ ¼ −

ffiffiffiffiffiffiffiffi
2=3

p
.
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where dj ¼ 2jþ 1 and the matrices Dj are spin-j Wigner
matrices, in the last term analytically extended to complex
parameters.5

The spin network coherent states are obtained by gauge
averaging these states on the nodes, but this is not needed
when contracting the state with a spin foam, as we do
below, since the SLð2;CÞ integral in the spin foam
amplitude already implements the gauge averaging and
renders the SUð2Þ averaging redundant.
For large real part η of z, the trace is dominated by the

highest magnetic moment component which is proportional
to eηj, and the sum over j is therefore peaked on the
minimum of jðjþ 1Þ=ð2σÞ − ηj, which is

j0 ∼ ησ: ð41Þ

The quantity σ determines whether the state is peaked on
the area or on the extrinsic curvature. A convenient choice
allowing both to be peaked in the large j limit is σ ¼ ffiffi

j
p

0,
which gives

η ¼
ffiffiffiffi
j0

p
: ð42Þ

If we want the state to be peaked on an area A, we must
pose, recalling the LQG relation between spin area
A ∼ 8πγℏGj,

η ¼
ffiffiffiffi
j0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

8πγℏG

s
: ð43Þ

Thus, for our geometry, we have

η0 ¼
ffiffiffiffiffi
jo

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ao

8πγℏG

s
¼ 2mð1þ ΔÞffiffiffiffiffiffiffiffiffiffiffi

2γℏG
p ð44Þ

and

η� ¼
ffiffiffiffiffi
j−

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A−

8πγℏG

s
¼ ηoffiffiffi

4
p

6
: ð45Þ

For the labels ξ, we take (29) as discussed above. Using
this, the boundary state representing the geometry of Σ is

Ψm;Tðha; h�abÞ ¼
Y
a

ΨaðhaÞ
Y
ab;�

Ψ�
abðh�abÞ; ð46Þ

where

Ψ�
abðhÞ ¼

X
j

dje−
jðjþ1Þ
2σ trj½h−1ν�abe−

i
2
z�σ3ν�ba

−1�

ΨaðhÞ ¼
X
j

dje−
jðjþ1Þ
2σ trj½h−1ν�a e−i

2
z0σ3ν∓a −1�

with

z� ¼ η ∓ iγζ z0 ¼ ηo þ iγζo

and where from (17), (18), and (25)

ζo ¼
T
2m

; ζ ¼ 32
ffiffiffi
6

p

9
ð47Þ

and

η0 ¼
2mð1þ e−

T
2mÞffiffiffiffiffiffiffiffiffiffiffi

2γℏG
p ∼

2mffiffiffiffiffiffiffiffiffiffiffi
2γℏG

p ; η ¼ ηoffiffiffi
4

p
6
: ð48Þ

These expressions provide the explicit form of the
boundary state as a function of m and T.

VIII. QUANTUM TRANSITION AMPLITUDES

The lowest order triangulation filling the triangulated
surface Σ is obtained gluing two regular 4-simplices by a
single tetrahedron. The 2-skeleton of the dual of this
triangulation is depicted in Fig. 12. The corresponding
spin foam has no internal faces. In each of the two vertices,
we can drop the integral associated to the edge connecting
the two vertices. Then, the amplitude is like that of an eight-
valent vertex of which the edges are all connected to the
boundary, with the only difference being that in the four
lateral faces an SUð2Þ projection associated to the internal
edge is inserted between the two SLð2; CÞ group elements.
From the general formulas of the Appendix, the ampli-

tude of such a spin foam can be written in the form

WðhlÞ ¼
Z
SLð2;CÞ

dge
Y
f

Pfðge; ge0 ; hlÞ; ð49Þ

FIG. 12. The spin foam and its 2-skeleton (edges and vertices)
with the orientation of the edges. The boundary orientation is as
in Fig. 9. The faces are orientated as in Fig. 13.

5Alternatively, it would be interesting to use theUðNÞ coherent
states proposed in Ref. [86].
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where

Pfðg0; g; hÞ ¼
X
j

djD
γj;j
j;m;l;pðg0ÞDγj;j

l;p;j;nðg−1ÞDj
n;mðhÞ ð50Þ

for the upper and lower faces and

Pfðg0; g; hÞ ¼
X
j

djD
γj;j
j;m;l;pðg0ÞδjlDγj;j

l;p;j;nðg−1ÞDj
n;mðhÞ

ð51Þ

for the lateral faces. (The difference between the two
expressions is that the first includes a sum over the spin
index l while in the second this is fixed to j by the
projection.) Here, the Dj are the Wigner matrices of
SUð2Þ, and the Dp;k are the Wigner matrices of the unitary
representations of SLð2;CÞ in the canonical basis. Writing
this explicitly for the spin foam that concerns us, we get

Wðha; h�abÞ ¼
Z
SLð2;CÞ

dg�a

�Y
a

Paðg−a ; gþa ; haÞ
�

×

�Y
ab;�

P�
abðg�a ; g�b ; h�abÞ

�
: ð52Þ

The amplitude for the boundary coherent state is
obtained contracting the two,

Wðm; TÞ ¼
Z
SUð2Þ

dhadh�abWðha; h�abÞΨm;Tðha; h�abÞ:

Using

Z
SUð2Þ

dhDj
mnðh−1ÞDj

abðhÞ ¼
1

dj
δnaδmb; ð53Þ

the SUð2Þ integrals are immediate, giving

Wðm; TÞ ¼
Z

dg�a
Y
a

Paðg−a ; gþa ; ν−a ; νþa ; z0Þ

×
Y
�

Y
ab

P�
abðg�a ; g�b ; ν�ab; ν�ba; z�Þ; ð54Þ

where

Pfðg0; g; n; n0; zÞ ¼
X
j

dje−jðjþ1Þ=ð2σÞDγj;j
j;m;l;pðg0Þ

×Dγj;j
l;p;j;nðg−1ÞDj

n;mðn0ez
σ3
2 n−1Þ ð55Þ

for the upper and lower faces (f ¼ fab�g) and

Pfðg0; g; n; n0; zÞ ¼
X
j

dje−jðjþ1Þ=ð2σÞDγj;j
j;m;l;pðg0Þδjl

×Dγj;j
l;p;j;nðg−1ÞDj

n;mðn0ez
σ3
2 n−1Þ ð56Þ

for the lateral faces (f ¼ a). Equations (54), (55), and (59)
define Wðm; TÞ completely.
The modulus square jWðm; TÞj2 is proportional to the

probability density for the process to happen at time T.
Assuming that the process happens, the proportionality
constant is determined by requiring the total probability
to be unity. This gives in particular the probability density
in time

Pðm; TÞ ¼ jWðm; TÞj2R∞
0 jWðm; TÞj2dT ð57Þ

and the black-hole lifetime τ by

Z
τ

0

Pðm; TÞdT ¼
�
1 −

1

e

�
; ð58Þ

which gives Eq. (1).
The integration for all T is problematic: Eq. (46) is

periodic in the boost parameters ζo and ζ�, with period
4π=γ, and ζo becomes larger than 4π=γ for large T; see
(47). As discussed in Ref. [87], the periodicity makes the
amplitude ill defined, and its validity should be restricted to
a single period. To allow for large T then, one needs to go to
a higher order in the vertex expansion. Therefore, the use of
the simple discretization defined above, and the quantum
amplitude associated to it derived above, should be used
for small T. A meaningful half-life can still be extracted at
this level of approximation, if, as mentioned in the
Introduction, we consider an additional hypothesis on
the decay of the black hole: that, at least in some
appropriate regime, it follows the usual exponential form
of decay processes. Namely the probability to decay at
time T has the form

Pðm; TÞ ¼ e−
T

τðmÞ

τðmÞ : ð59Þ

Equating this and (57), we have

e−
T

τðmÞ

τðmÞ ¼
1

NðmÞ jWðm; TÞj2; ð60Þ

where NðmÞ ¼ R∞
0 jWðm; TÞj2dT. Putting for instance

T ¼ 0 and T ¼ 2π, we can calculate τðmÞ by

τðmÞ ∼ 2πlog−1
jWðm; 0Þj2
jWðm; 2πÞj2 : ð61Þ
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IX. FIRST ANALYSIS OF THE AMPLITUDE

In the previous section, we have derived the black to
white hole transition amplitude Wðm; TÞ. In this paper, we
do not extract an estimation for τðmÞ, which will be
reported elsewhere. In this section, we only sketch a
procedure for simplifying the form of the amplitude.
The final expression and all relevant definitions are
summarized in a self-contained form in Appendix B, for
future reference.
As a first step, we notice that the real part of zo and z� is

large compared to unit. Because of this, in the last matrix of
(55), the term with the highest magnetic number dominates,
and we can write

Dj
nmðez

σ3
2 Þ ∼ δjnδ

j
mezj: ð62Þ

As wewill see, this decouples the z data, and thus them and
T dependence, from the combinatorial structure of SUð2Þ
and SLð2;CÞ.
Next, following Ref. [88], we parametrize the

SLð2;CÞ elements as g ¼ ue
rσ3
2 v−1 with u; v ∈ SUð2Þ

and r ∈ ð0;∞Þ, and write the SLð2;CÞ integrals as
Z
SLð2;CÞ

dg ¼
Z

∞

0

dr
sinh2r
4π

Z
SUð2Þ

du
Z
SUð2Þ

dv: ð63Þ

The SLð2;CÞ representation matrices are expanded as

Dγj;j
jmlnðgÞ ¼ Dj

mpðuÞdjlpðrÞDl
pnðv−1Þ; ð64Þ

where the middle term is explicitly known in terms of a
real integral; see Appendix B. The SUð2Þ integral can be
performed usingZ

SUð2Þ
dU ⊗k D

jk
mknkðUÞ

¼
X
J

ð2J þ 1ÞiJ;j1;j2;j3;j4m1;m2;m3;m4
iJ;j1;j2;j3;j4n1;n2;n3;n4 ; ð65Þ

where the four-valent intertwiners are given as a product
of two Wigner 3j symbols; see Appendix B. Using this, we
can perform all the SUð2Þ integrals, giving intertwiners that
join the indices of the matrices DjðnÞ. To each node
correspond four intertwiners, two from the u integration
and two from the v integration, one for each of the four
(half-)links attached to the node.
Bringing all of the above together, Wðm; TÞ can be

written as a sum over the spin configurations fja; j�abg, with
the summand containing an eight-dimensional real integral
over dr�a and contractions between these integrals, 3j
symbols and Wigner’s matrices.
Because of the highest-weight approximation, the

dependence on the spacetime parameters m and T (z data)
is pulled into a weight function wðz0; z�; ja; j�abÞ. Then, in

order to arrive to a compact expression, we rearrange the
combinatorial structure and the gauge data (normals) at the
level of nodes. The orientations of the spin foam and its
boundary as defined in Figs. 9, 12, and 13 were chosen so
that the pattern of signs appearing in the indices of the
various objects and the functional dependence of the boost
integrands are identical for each node.
Before giving the final expression, we remind the reader

of and explain notation: spins on the four angular links are
labelled as ja and on the 12 radial links are labeled as j�ab,
where ab≡ ba and a ≠ b. Spins appearing in (65) are
indicated as capital letters and labelled as J�a ; they live on
the eight four-valent nodes. The composite index fj�a g is
the set of indices on the links connected to the node a� (one
ja and three j�ab). Magnetic indices of Wigner’s matrices
live on half-links and are indicated as f ~m�

a g, where a right
arrow means those ingoing to the node come with a minus
sign, while a left arrow means that those outgoing to the
node come with a minus sign.
Explicitly, with a bit of algebra, we have

Wðm; TÞ ¼
X

fja;j�abg
wðz0; z�; ja; j�abÞð−1Þ

P
l∈Γjl

×
X

fJ�a ;K�
a ;la;l�abg

�
⊗
a;�

δjalaN
J�a
fj�a gðνl∈a�Þf

J�a ;K�
a

fj�a gfl�a g

�

×
�
⊗
a;�

iK
�
a ;fl�a g

�
Γ
: ð66Þ

We have defined the following objects. The weight
function wðz0; z�; ja; j�abÞ includes all the z data and
depends on all j’s,

wðz0; z�; ja; j�abÞ ¼ cðη; η0Þ
�Y

a

djae
− 1
2ηðja−ð2η2−1Þ

2
Þ2eiγζja

�

×

�Y
ab;�

dj�abe
− 1
2η0

ðj�ab−
ð2η2

0
−1Þ
2

Þ2eiγζ0j
�
ab

�
:

ð67Þ
In this expression, we see explicitly that the “position”
variable j is peaked on the area ∼ReðzÞ2 and the conjugate

FIG. 13. The wedge amplitude with the orientation of the two
edges and the link. The face is oriented in accord with the link.
Note that the group elements are acting on their right, so
following the arrow in the picture actually means to insert the
terms in reverse order inside the traces.
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“momentum” variable ζ multiplies j in the oscillating part.
The factor cðη; η0Þ arises from completing the square in the
Gaussian and can be absorbed in the normalization.

The part containing the normals,NJ�a
fj�a g, is the contraction

of one of the intertwiners with the Wigner matrices of the
group elements defining the normals of the tetrahedron
(node) τ�a as given in (37) and (38):

NJ�a
fj�a g ¼

�
⊗
←

l∈a�
Djl

mljl
ðνlÞ

�
iJa;fj

�
a g

f ~m�
a g: ð68Þ

The arrowed product indicates that the magnetic indices
of the representation matrices on the half-links outgoing
from the node come with a minus sign. The real integrals
over the boost parameters are contracted with two inter-
twiners and are in

fK
�
a ;J�a

fj�a gfl�a g ≡ dJ�a i
Ja;fj�a g

f~p�
a g

�Z
dr�a

sinh2r�a
4π

× ⊗
→

l∈a�
djlllpl

ðr�a Þ
�
iKa;fl�a g

fp⃖�
a gdK�

a
: ð69Þ

The arrow in the tensor product of the djlpðrÞ indicates
that those on links ingoing to the node appear as dljpð−rÞ.
There remains one intertwiner from each node. These are

contracted among them according to the schema ,

yielding a 24j symbol. Explicitly, it is given by

�
⊗
a;�

iK
�
a ;fl�a g

�
Γ
¼

X
fha;h�abg

ð−1Þ
P

l∈Γhl
Y
a;�

iK
�
a ;fl�a g
fh⃖�a g

; ð70Þ

The above specify the half-life of a black hole as a
function of the mass. The final formula is summarized in
Appendix B with some further details.
Preliminary partially numerical and partially analytical

estimates developed in Ref. [89] appear to support the
lifetime τ ∼m2. The mechanism for this to happen is
intriguing: taking the semiclassical approximation where
the horizon area is fixed to its classical value, namely
restricting the sum to a fixed value of the spins associated to
the surfaces representing the size of the black-hole horizon
(ja ∼ jmax ∼m2), renders the lifetime infinite. But includ-
ing fluctuations of the horizon area (terms in the sum
ja ≠ jmax) generates interference terms that make the
lifetime finite. This suggests that the tunneling channel
could be open precisely by the quantum fluctuations of the
geometry at the horizon.
A detailed analysis of the amplitude is in progress and

will be reported elsewhere.
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APPENDIX A: REVIEW OF LQG

This review is condensed; we follow Ref. [50], to which
we refer the reader for all details.
States are defined over four-valent graphs. The nodes n

of the graph represent quanta of space. The links l of the
graph represent the surfaces between the quanta of space. A
state is represented by a square integrable function ψðhlÞ,
where hl ∈ SUð2Þ, for every link l. The interpretation of
hl is the holonomy of the Ashtekar connection between
two nodes.
Coherent states approximating a discrete classical intrin-

sic and intrinsic geometry have been constructed by various
authors. Here, we shall use the states defined in Ref. [85]
that depend on a complex number z ¼ ηþ iζ and two unit-
length 3D vectors ~n; ~n0 per each link l. These are defined as
the product over the links of the link states

Ψz;~n;~n0 ðhÞ ¼
X
j

dje−jðjþ1Þ=2σtr½Djðh−1ÞDjðn0ezσ32 n−1Þ�;

ðA1Þ

where dj ¼ 2jþ 1, the matrices Dj are spin-j Wigner
matrices analytically extended to complex parameters,
and we have indicated with n and n0 the SUð2Þ elements
corresponding to the rotation of the z axis to the vectors ~n
and ~n0. These states can be seen as a smearing of the states

Ψz;~n;~n0 ðhÞ ¼ δðh; n0ezσ32 n−1Þ; ðA2Þ

which are peaked on the holonomy h ¼ n0ez
σ3
2 n−1. They

have the property that the expectation value of the
geometrical operators defines a discrete geometry where
~n and ~n0 are the normals to the face dual to the link, in the
frames of the two quanta; η is the (dimensionless) area of
the face; and ζ is, in the gauge where ~n ¼ ~n0, the angle
between the four-dimensional normals to the two space
quanta, namely the boost giving the relative velocity
between the two.
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The amplitude associated to a state can be approximated
by choosing a five-valent two-complex C bounded by the
graph. The finer the 2-complex, the better the approxima-
tion. The LQG amplitude associated to a state is [50]

hWCjψi ¼
Z
SUð2Þ

dhlWðhlÞΨðhlÞ;

where the amplitude associated to the two complex C is

WCðhlÞ¼NC

Z
SUð2Þ

dhfv
Y
f

δ

�Y
v∈f

hfv

�Y
v

AvðhfvÞ: ðA3Þ

Here, f and v denote the faces and the vertices of C. In
turn, the vertex amplitude Av is defined as follows.
Denoting the variables on the links of the vertex graph
as hl ¼ hvf, and denoting the nodes of the vertex graph as
n, the vertex amplitude is

AvðhlÞ ¼
Z
SLð2;CÞ

dg0e
Y
l

X
j

djD
ðγj;jÞ
jnjm ðgeg−1e0 ÞDðjÞ

mnðhlÞ

ðA4Þ

The integration is over one ge for each node (edge of v),
except one. The product is over ten faces f per each vertex,
and DðjÞ and DðpkÞ are matrix elements of the SUð2Þ and
SLð2;CÞ representations. See Fig. 13 for the relative
orientation of edges and links.

APPENDIX B: SUMMARY OF THE AMPLITUDE

Here, we summarize in a self-contained form all the
formulas defining our resulting expression. All labels refer
to the oriented boundary which determines the pattern of
contraction. This is fixed by Fig. 9. The notation is
summarized in the paragraph above Eq. (66).
The lifetime τðmÞ of a black hole as a function of its mass

m is given by LQG to first order in the vertex amplitude and
in the highest-weight approximation (62) byZ

τðmÞ

0

jWðm; TÞj2dT ¼ 1

2

Z
∞

0

jWðm; TÞj2dT: ðB1Þ

The amplitude is

Wðm; TÞ ¼
X

fja;j�abg
wðz0; z�; ja; j�abÞð−1Þ

P
l∈Γjl

×
X

fJ�a ;K�
a ;la;l�abg

�
⊗
a;�

δjalaN
J�a
fj�a gðνl∈a�Þf

J�a ;K�
a

fj�a gfl�a g

�

×
�
⊗
a;�

iK
�
a ;fl�a g

�
Γ
; ðB2Þ

where the weight function is

wðz0; z�; ja; j�abÞ ¼ cðη; η0Þ
�Y

a

djae
− 1
2ηðja−ð2η2−1Þ

2
Þ2eiγζja

�

×

�Y
ab;�

dj�abe
− 1
2η0

ðj�ab−
ð2η2

0
−1Þ
2

Þ2eiγζ0j
�
ab

�

ðB3Þ

with

cðη; η0Þ ¼
�
e

1
2η0

ðð2η
2
0
−1Þ
2

Þ
2�4�

e
1
2ηðð2η

2−1Þ
2

Þ2
�

12

: ðB4Þ

The normals are in

NJ�a
fj�a g ¼

�
⊗
←

l∈a�
Djl

mljl
ðνlÞ

�
iJa;fj

�
a g

f ~m�
a g: ðB5Þ

The arrowed product indicates that the magnetic indices of
the representation matrices on the half-links outgoing from
the node come with a minus sign. The boost part is

fK
�
a ;J�a

fj�a gfl�a g ≡ dJ�a i
Ja;fj�a g

f~p�
a g

�Z
dr�a

sinh2r�a
4π

× ⊗
→

l∈a�
djlllpl

ðr�a Þ
�
iKa;fl�a g

fp⃖�
a gdK�

a
: ðB6Þ

The arrow in the tensor product of the djlpðrÞ indicates
that those on links ingoing to the node appear as dljpð−rÞ.
The ranges on the l and p indices are l ≤ j, and p is
summed over the range jpj ≤ j. The functions djlpðrÞ are
given by the integral

djlpðrÞ ¼
ffiffiffiffiffi
dj

q ffiffiffiffi
dl

p Z
1

0

dtdljp

�
te−r − ð1 − tÞer
te−r þ ð1 − tÞer

�

× djjpð2t − 1Þðte−r þ ð1 − tÞerÞiγj−1; ðB7Þ

where djmnðcos βÞ are Wigner’s SUð2Þ matrices. The 24j
symbol is given by

�
⊗
a;�

iK
�
a ;fl�a g

�
Γ
¼

X
fha;h�abg

ð−1Þ
P

l∈Γhl
Y
a;�

iK
�
a ;fl�a g
fh⃖�a g

: ðB8Þ

The four-valent intertwiners are defined as

iJ;j1;j2;j3;j4m1;m2;m3;m4
¼ ð−1Þj1−j2þμ

�
j1 j2 J

m1 m2 μ

��
j3 j4 J

m3 m4 −μ

�

ðB9Þ

with μ ¼ −m1 −m2 ¼ m3 þm4, and
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�
j1 j2 j3
m1 m2 m3

�

are the Wigner 3j symbols. Finally,

zo ¼
2mð1þ e−

T
2mÞffiffiffiffiffiffiffiffiffiffiffi

2γℏG
p þ i

T
2m

: ðB10Þ

z� ¼ 2mð1þ e−
T
2mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6
p

2γℏG
q ∓ i

32
ffiffiffi
6

p

9
: ðB11Þ

The black-hole decay time can then be estimated from

τðmÞ ∼ 2πlog−1
jWðm; 0Þj2
jWðm; 2πÞj2 : ðB12Þ
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