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We investigate the nature of low T=W dynamical instabilities in differentially rotating stars by means of
linear perturbation. Here, T and W represent rotational kinetic energy and the gravitational binding energy
of the star. This is the first attempt to investigate low T=W dynamical instabilities as a complete set of the
eigenvalue problem. Our equilibrium configuration has “constant” specific angular momentum distribu-
tion, which potentially contains a singular solution in the perturbed enthalpy at a corotation radius in linear
perturbation. We find the unstable normal modes of differentially rotating stars by solving the eigenvalue
problem along the equatorial plane of the star, imposing the regularity condition on the center and the
vanished enthalpy at the oscillating equatorial surface. We find that the existing pulsation modes become
unstable due to the existence of the corotation radius inside the star. The feature of the unstable mode
eigenfrequency and its eigenfunction in the linear analysis roughly agrees with that in three-dimensional
hydrodynamical simulations in Newtonian gravity. Therefore, our normal mode analysis in the equatorial
motion proves valid to find the unstable equilibrium stars efficiently. Moreover, the nature of the
eigenfunction that oscillates between corotation and the surface radius for unstable stars requires
reinterpretation of the pulsation modes in differentially rotating stars.

DOI: 10.1103/PhysRevD.94.084032

I. INTRODUCTION

Low T=W dynamical instability in differentially rotating
stars was first discovered by numerical simulations [1–5].
Here, T and W represent rotational kinetic energy and
gravitational binding energy of the star. The instability time
scale is dynamical, and the spiral- and bar-type deformation
is found, but the strength of instability seems weaker than
the standard dynamical bar instability [6–8]. Since low
T=W dynamical instability takes place in a simple physical
system of self-gravitating differentially rotating objects, it
is considered as playing an essential role in many astro-
physical scenarios of compact objects. Mergers of binary
neutron stars may form differentially rotating objects and
trigger a spiral type of low T=W dynamical instabilities
[9,10]. A spiral type of low T=W dynamical instabilities
may play an essential role in supernova explosion for
efficient angular momentum transport after the core
bounce, e.g., Ref. [11]. The effect of fragmentation of
the star may be caused by the low T=W dynamical
instabilities [12–14]. In all these scenarios, nonaxisym-
metric deformation of the compact objects arises due to low
T=W dynamical instabilities, and it generates gravitational
waves that are to be detected in the ground-based or the
space-based interferometer within next five years [15].

Among the variety of astrophysical applications of low
T=W dynamical instabilities, its mechanism is still unknown.
There are several studies on corotation instabilities along the
cylindrical star [16] or along the accretion disk system with
Wentzel-Kramers-Brillouin (WKB) approximation [17,18].
There is an indication from the basic pulsation equations that
the corotation radius (the radius where the equilibrium fluid
and pattern rotate at the same angular speed) inside the star
may play a role for low T=W dynamical instabilities [19].
For the rotating stellar configuration, Saijo and Yoshida [20]
investigate in practice the instabilities using the canonical
angular momentum by both hydrodynamical and perturba-
tive approaches and find that the corotation radius plays an
essential role for angular momentum transport (see also
Ref. [21]). Recently, properties of the f mode have been
studied when corotation exists inside the stars in the
linearized Newtonian hydrodynamics [22].
In this paper, we focus on the nature of low T=W

dynamical instabilities mainly from the normal mode
analysis in the equatorial motion of the star by the linear
perturbation approach. Our particular concern is the inves-
tigation of the stability and its nature of the system with
eigenvalue analysis. We introduce a simplified one-
dimensional eigenvalue problem in the equatorial motion,
with taking possible corotation singularity in perturbed
enthalpy into account (see also Ref. [18] for corotation
singularity in an accretion disk system). Although there is a
study that existing the f mode is unstabilized when a high
degree of differential rotation is taken into account [3,4] or
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corotation occurs [22], we never ascertain whether coro-
tation singularity generates new types of pulsation modes in
differentially rotating stars without examining the complete
set of eigenmode analysis. Full two-dimensional studies of
linear eigenmodes of rapidly rotating stars have been done
mainly in the uniformly rotating stars, e.g., Refs. [23,24].
The effect of differential rotation is considered [3,4,25–27],
but the detailed examination of relation between corotation
singularity and the excitation of low T=W dynamical
instability remains beyond their study. Therefore, we
simply focus on the equatorial motion, which can easily
handle corotation singularity. We then investigate the
nature of the eigenfunction of the mode from the viewpoint
of the existence of corotation inside the stars. Finally,
comparison of our eigenmode analysis in the perturbative
approach with those in three-dimensional hydrodynamics
clearly shows that our model contains sufficient valid
physics. Throughout this paper, we use gravitational units
with G ¼ 1.

II. LINEAR PERTURBATION

Axisymmetric equilibrium configuration of differentially
rotating stars in Newtonian gravity can be constructed
numerically by using the technique established by Hachisu
[28,29]. We impose perfect fluid with a polytropic equation
of state p ¼ κρΓ, where p is the pressure, ρ is the rest mass
density, κ is the constant, Γ ¼ 1þ 1=n is the adiabatic
exponent, n is the polytropic index, and j-constant rotation
law for the angular velocity distribution is

Ω ¼ j0
d2 þϖ2

;

where j0 is the constant, d is the degree of differential
rotation, and ϖ is the radial distance of the cylindrical
coordinates. Here, we focus on the low T=W dynamically
unstable star, which is summarized in Table I. Note that
models I and II represent m ¼ 2 and m ¼ 1 dominant
dynamically unstable stars.
We perturb the differentially rotating stars nonaxisym-

metrically in order to investigate the feature of low T=W
dynamical instabilities. The nonaxisymmetrically perturbed
quantity δq has a dependence of δq ¼ δqmðϖ; zÞe−iωtþimφ,
where z is the coordinate along the rotational axes and φ is
the azimuthal coordinate.

We impose one assumption in which the equatorial
motion of the perturbed quantities alone is taken into
account. Our basic idea is that the characteristic wave
propagation due to rotation mainly lies in the equatorial
plane. The pulsation equations of differentially rotating stars
in Newtonian gravity in the equatorial motion can be written
by using the perturbed continuity equation, perturbed Euler
equation, and perturbed Poisson equation as (e.g., Ref. [18])
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where δUm is the scalar potential δUm ≡ δhm þ δΦm, δhm is
the perturbed enthalpy, and δΦm is the perturbed gravita-
tional potential;D ¼ κ2 − ~ω2, with κ2 beingϖðdΩ2=dϖÞ þ
4Ω2 and ~ω ¼ ω −mΩ. Note that we discard the second-
order z derivative in δUm and δΦm (the first-order z
derivative in δUm and δΦm automatically disappears due
to the equatorial symmetry we imposed in the system) to
derive Eqs. (1) and (2). The equations contain a singular
solution around ~ω ¼ 0. Expanding the equations around the
corotation radius (the radius rcr where ω ¼ mΩ in a pure
real frequency), we can easily find the singular solution in
δUm as

δUm ¼ A1mxþ A2m½1þ jβjxð−1þ 2γ þ log jβj
þ log jxjÞ þOðx2Þ�; ð3Þ

β ¼ −
2Ωcr

rcrdΩ=dϖjϖ¼rcr

d
dϖ

�
ln

κ2

ρΩ

�����
r¼rcr

< 0; ð4Þ

where x≡ϖ − rcr, A1m and A2m are constants, γ is the
Euler’s constant, andΩcr is the angular velocity at corotation.
Since δUm contains the term x log jxj, dδUm=dϖ contains
singular behavior at corotation. To construct a solution across
corotation in a pure real frequency (ℑ½ω� ¼ 0), analytic
continuation is necessary on corotation. Since δΦm is regular
from the fact that δUm is continuous on the corotation [see
Eq. (2)], only the singular behavior (discontinuity in the first
derivative of δUm) is contained in δhm.
To check our assumption, we compare the results of

linear perturbation in the cylindrical model with those of
hydrodynamics in Sec. IV.

III. UNSTABLE NORMAL MODES

We study the stability of the system by introducing the
eigenvalue problem. We impose regularity conditions at the
center as

TABLE I. Equilibrium configuration of differentially rotating
stars.

Model n rp=re
a Ωc=Ωe

b T=W

I 1 0.625 26.0 6.09 × 10−2

II 3 0.625 26.0 7.21 × 10−2

arp: Polar surface radius; re: Equatorial surface radius
bΩc: Central angular velocity; Ωe: Equatorial surface angular

velocity
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δUm ¼ C1mϖ
jmj; δΦm ¼ C2mϖ

jmj;

where C1m and C2m are constants. We set the boundary
condition for δΦm at infinity as the quantity is finite
(δΦm ∝ ϖ−jmj). This is equivalent to imposing a surface
boundary condition as δΦm ¼ C3mϖ

−jmj. The constant C3m
is described by an appropriate combination of C1m and C2m,
which is determined from the condition that δΦm and
dδΦm=dϖ are continuous across the surface.We also impose
the surface boundary condition for δUm as the enthalpy
vanishes on the oscillating surface of the stars. Namely,

δhm þ ξjm∇jh ¼ 0; ð5Þ

where ξim is the Lagrangian displacement [30], ∇j is the
covariant derivative, and h is the equilibrium enthalpy. Only
1 degree of freedom seems to remain in the system, which
represents the normalization factor. We set C1m ¼ 1 in our
computational code.
The axisymmetric equilibrium configuration of the

differentially rotating stars is computed in the two-
dimensional cylindrical coordinates [29]. Then, we take
the equilibrium quantities q (≡p=ρ) and Φ (gravitational
potential) 3841 grid points along the equatorial plane from
the center to the stellar surface in order to integrate the
pulsation equations. We apply a fourth-order Runge-Kutta
method to integrate Eqs. (1) and (2).
We search a complex frequencyω in the region ofℜ½ω� ∈

½0; mþ 0.4�Ωc andℑ½ω� ∈ ½0; 0.1�Ωc, with nondimensional
resolution Δω=Ωc ¼ 1 × 10−5 for both real and imaginary
frequencies. Introducing a complex frequency ω avoids
singular solution at corotation ( ~ω ≠ 0 forℑ½ω� ≠ 0 inside the
star).We integrate Eqs. (1) and (2) from the center to the half-
radius, and from the surface with boundary conditions
including Eq. (5) to the half-radius, and then match the
solutions by computing the determinant, composed of two
sets of solutions δUm, dδUm=dϖ, δΦm, and dδΦm=dϖ.
Only a successful choice of frequency can generate the
solution from the center to the surface. We determine the
eigenfrequency when the absolute value of the determinant
takes the minimum at a certain complex frequency by
comparing with that at the neighbouring four frequencies
in the complex frequency plane. Since our approach cannot
treat ~ω ¼ 0 inside the star due to corotation singularity,
we simply discard the search region ℜ½ω� ∈ ½0; m�Ωc
and ℑ½ω� ∈ ½0; 0.2Δϖ=re�Ωc, where the nondimensional
grid resolution Δϖ=re ≡ 1=3840 ≈ 2.6 × 10−4. Note
that ω=Ωc ¼ 0.2Δϖ=re is a typical angular momentum
resolution around the surface (ΔΩ=Ωc ≳ ΔΩe=Ωc ≈
7.4 × 10−2Δϖ=re for Ωc=Ωe ¼ 26). Here, we only focus
on m ¼ 1 spiral and m ¼ 2 bar modes.
We show the series of the complex eigenfunction in

Fig. 1 for the m ¼ 2 mode of model I and in Fig. 2 for the
m ¼ 1 mode of model II. All the first five nodes for m ¼ 2
and the first three for m ¼ 1 can be seen along the radial

direction in each eigenfunction. For example, the funda-
mental unstable mode (N ¼ 0 in Table II) has no node (the
eigenfunction does not cross zero), which represents the f
mode (e.g., Ref. [31]). The other unstable modes in Table II
have N nodes, i.e. the eigenfunctions cross zero N times
between the corotation and surface radius. The features can
be interpreted to mean that these modes are p modes (e.g.,
Ref. [31]). The reason for counting the node numbers
between the corotation and surface radius is to reckon the
strength of the corotation barrier to each eigenfunction. An
unstable eigenfunction has a sharp change at the corotation
radius, since the corotation singularity acts as a potential
barrier for wave propagation. The sharp change in the
eigenfunction can also be interpreted as a phase gap in the
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FIG. 1. Eigenfunctions of the first five m ¼ 2 normal modes of
differentially rotating n ¼ 1 polytropic stars in the cylindrical
model. Labels f and pN denote the f mode and p modes with
node number N in Table II, respectively. Note that node numbers
counted between corotation (rcr=re ¼ 0.486, 0.222, 0.132,
0.0564 for N ¼ 0; 1; 2; 3 normal modes) and the equatorial
surface radius are used to identify f and p modes.
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eigenfunction, which arises through analytic continuation
on corotation. We summarize our results of complex
eigenfrequencies in Table. II. We only find the known
types of modes (f and p modes) with every node numbers
are present in our analysis of the equatorial fluid motion,
except for the f mode (N ¼ 0) in model I. Note that we
discard the “eigenfrequency,” which relates to a constant
cylindrical displacement [32]. Also, all eigenfrequencies
which possess corotation inside the star are found unstable.
The dominance of the m ¼ 1 or m ¼ 2 mode depends on
the stiffness of the equation of state. In fact, the shortest
time scale τ≡ ðℑ½ω�Þ−1 (largest growth rate) from the
normal mode analysis for model I is the case m ¼ 2 f
mode, while for model II, it is the casem ¼ 1 f mode. This
feature has also been found in numerical simulations [5,20].

IV. COMPARISON WITH
HYDRODYNAMICAL SIMULATION

We briefly introduce our three-dimensional hydrody-
namical simulation in Newtonian gravity and compare the
results with the linear analysis. We compute the same
differentially rotating equilibrium stars summarized in

Table I and impose nonaxisymmetric perturbation in the
rest mass density as

ρ ¼
X4
k¼1

ρeq

�
1þ δk

ϖ

re
ðcos kφþ sin kφÞ

�
;

where we set δi ¼ 5 × 10−5 (i ¼ 1;…; 4) for evolution.
Note that ρeq is the equilibrium configuration of the rest
mass density, x and y are the components of Cartesian
coordinates, and the cylindrical radiusϖ isϖ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

We insert the approximate Harten-Lax-van Leer (HLL)
Riemann solver [33] with the same reconstruction method,
MC-limiter [34], for hydrodynamics in our code [29]. We
have demonstrated the results of the wall shock problem in
our code, which are in full agreement with those of one-
dimensional analytical solution. We monitor the diagnos-
tics M1 and M2 (e.g., Ref. [29]), which are the m ¼ 1 and
m ¼ 2 rest mass density-weighted average in the whole
volume, and find that both M1 and M2 grow exponentially
in time for the low T=W dynamically unstable case. Here,
we focus on the dominantmmode for each model (Table I).
In practice, the diagnostic M2 grows exponentially up to
t ≈ 170 Pc for model I and M1 to t ≈ 70 Pc for model II,
and saturates its amplitude around M2 ≈ 0.16 for model I
and M1 ≈ 0.006 for model II. Note that Pc is the central
rotation period of the equilibrium star. The diagnostic M1

and M2 clearly show that the characteristic frequency is
ℜ½ω� ¼ 0.387 Ωc for model I and ℜ½ω� ¼ 0.586 Ωc for
model II, and the growth time scale is τ≡ ðℑ½ωi�Þ−1 ¼
10.7 Pc for model I and τ≡ ðℑ½ωi�Þ−1 ¼ 9.75 Pc for

10
-2

10
-1

10
0

10
1

10
2

10
3

|δ
U

|

10
-2

10
-1

10
0

10
1

10
2

10
3

|δ
U

|

10
-2

10
-1

10
0

10
1

10
2

10
3

|δ
U

|

0 0.2 0.4 0.6 0.8 1
ϖ / re

10
-2

10
-1

10
0

10
1

10
2

10
3

|δ
U

|

p1

p3

p2

f

FIG. 2. Same as Fig. 1, but for first three m ¼ 1 normal modes
of n ¼ 3 polytropic stars. Note that the corotation radius for
N ¼ 0, 1, and 2 normal modes are rcr=re ¼ 0.190, 0.122,
and 0.0288.

TABLE II. m ¼ 1 and m ¼ 2 normal modes of differentially
rotating stars in the cylindrical model.

Model m Na ℜ½ω�=Ωc ℑ½ω�=Ωc rcr=re
b

I 1 1 0.65275 0.00012 0.14587
I 1 2 1.15197 0.00000 � � �
I 2 0 0.29017 0.00855 0.48549
I 2 1 0.89791 0.00100 0.22158
I 2 2 1.39597 0.00039 0.13156
I 2 3 1.86074 0.00024 0.05471
I 2 4 2.31080 0.00000 � � �
II 1 0 0.52603 0.05126 0.18985
II 1 1 0.72759 0.00688 0.12238
II 1 2 0.97965 0.00011 0.02883
II 1 3 1.24636 0.00000 � � �
II 2 0 0.52656 0.00041 0.33456
II 2 1 0.71208 0.00147 0.26897
II 2 2 0.94196 0.00072 0.21197
II 2 3 1.17403 0.00039 0.16775
II 2 4 1.40432 0.00037 0.13026
II 2 5 1.63112 0.00038 0.09511
II 2 6 1.85820 0.00046 0.05525
II 2 7 2.08739 0.00000 � � �

aN: Node numbers between the corotation and surface radius.
brcr: Corotation radius (the radius where ℜ½ω� ¼ mΩ).
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model II, both time scales being extracted from the first
60 Pc. Note that our time scales are typical for low T=W
dynamical instability [35]. We extract the complex frequen-
cies by spectrum analysis [29] for the real part and the
fitting formula of the dominant m mode of M1 and M2

diagnostics for the imaginary part. Note that 161 grid points
are covered along the equatorial diameter of the star, with
an equatorial radius twice as large as the outer boundary for
each coordinate direction. We also check the different grid
resolution for accuracy in both characteristic frequencies
and growth time scales. We find that the characteristic
frequency changes 0.4%–2% in the relative error rate and
the growth time scale changes 20%–40%, the covered grid
points along the equatorial diameter of the star varying
between 121 and 161, fixing the ratio between the stellar
radius and the outer boundary.
The real part of the eigenfrequency in the cylindrical

model roughly agrees with that of hydrodynamical simu-
lation. This situation is improved to ℜ½ω� ¼ 0.352 Ωc and
ℑ½ω� ¼ 0.0168 Ωc for model I, m ¼ 2, N ¼ 0, when we
take the z structure of δUm and δΦm into account as
associated Legendre polynomial functions Pm

mðzÞ.
However, the imaginary part of the eigenfrequency, which
represents the growth time scale of the instability, has few
times difference with that of hydrodynamical simulation.
This may be the fact that rotational configuration of the
stars is not fully taken into account in our model. The
results of quasinormal modes of black holes suggest that
the imaginary part of eigenfrequency decreases as the black

hole rotation becomes fast for corotating modes [36].
Therefore, two-dimensional eigenvalue analysis of differ-
entially rotating stars is required for the full agreement of
complex eigenfrequency with corotation, but this, however,
is out of the scope of this paper.
We also compute the m ¼ 1 and m ¼ 2 diagnostic of the

scalar potential density-weighted average Um in the area of
the equatorial plane as

Um ¼ 1

U

Z
S
ds ueimφ; U ¼

Z
S
ds u;

where u≡H þ Φ ¼ εþ P=ρþ Φ and ε is the specific
internal energy. The diagnostics U1 and U2 are regarded as
an “eigenfunction” when the system possesses a dominant
characteristic frequency and growth time scale, as it is
regarded as a “single” mode. Our choice of a low T=W
dynamically unstable star clearly meets this criteria. We
show our eigenfunction in the equatorial plane computed
from hydrodynamic simulation in Figs. 3 and 4. The slope
of them ¼ 2 eigenfunction seems to have a sharp change in
model I around the radius ϖ=re ≈ 0.45 for all three
snapshots especially at time t ¼ 89.5 Pc. The m ¼ 1
eigenfunction seems to have a sharp change in model II
around ϖ=re ≈ 0.20 for all three snapshots. Although the
hydrodynamics system may contain multiple “modes” in
the nonlinear regime, and they complicate the outcome, we
find similar behavior in the diagnostics as what is found in
the eigenfunction by linear analysis.
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FIG. 3. The m ¼ 2 scalar potential density diagnostics in the
equatorial plane. Note that U2 represents the m ¼ 2 scalar
potential density weighted average in the equatorial plane. The
labels (a), (b), and (c) denote the evolution time t ¼ 59.7 Pc,
74.6 Pc, and 89.5 Pc, respectively. We find features similar to the
cylindrical model (Fig. 1) in which no nodes are present.
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FIG. 4. Same as Fig. 3 but form ¼ 1. Note thatU1 represent the
m ¼ 1 scalar potential density-weighted average in the equatorial
plane. The labels (a), (b), and (c) denote the evolution time
t ¼ 52.0 Pc, 58.5 Pc, and 64.9 Pc, respectively. We find features
similar to the cylindrical model (Fig. 2) in which no nodes are
present.
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V. CONCLUSIONS

We have investigated the unstable feature of low
T=W dynamical instabilities in differentially rotating
stars by means of normal mode analysis in the
equatorial plane.
We find unstable normal modes for low T=W dynami-

cally unstable stars in the linear analysis. Any additional
modes to the well-known f and p modes in the linear
analysis are not found in our analysis, and these modes
become unstable when corotation radii exist inside the
stars. The frequencies of the real part in the cylindrical
model of the linear analysis roughly agree with those of the
hydrodynamic simulation. The results confirm that our
models are efficient for finding low T=W dynamically
unstable stars.
We also find that the eigenfunction of the modes has

behavior similar to the well-known f and p modes. Once
corotation exists inside the stars, the perturbed enthalpy
oscillates between corotation and the surface radius. Note
that the perturbed enthalpy globally oscillates between the
center and the surface for the no-corotation case. This may
indicate that the perturbed enthalpy is affected by corota-
tion singularity barrier and therefore cannot cross the
corotation radius. This feature requires the reinterpretation

of the pulsation modes in rotating stars when corotation
exists inside the stars.
We have computed the linear analysis in the equatorial

plane by reducing the system to ordinary differential
equations. Our results clearly show that the rotational
configuration of the star should be fully taken into account
for quantitative comparison to hydrodynamic simulations.
To make a complete agreement between the linear
analysis and hydrodynamic simulation, a two-dimensional
eigenmode analysis with corotation is required, and it is a
challenging task in this field.
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