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We treat quantum creation of gravitons by small scale factor oscillations around the average of an
expanding universe. Such oscillations can arise in standard general relativity due to oscillations of a
homogeneous, minimally coupled scalar field. They can also arise in modified gravity theories with a term
proportional to the square of the Ricci scalar in the gravitational action. The graviton wave equation is
different in the two cases, leading to somewhat different creation rates. Both cases are treated using a
perturbative method due to Birrell and Davies, involving an expansion in a conformal coupling parameter
to calculate the number density and energy density of the created gravitons. Cosmological constraints on
the present graviton energy density and the dimensionless amplitude of the oscillations are discussed. We
also discuss decoherence of quantum systems produced by the spacetime geometry fluctuations due to such
a graviton bath.

DOI: 10.1103/PhysRevD.94.084030

I. INTRODUCTION

A time-dependent spacetime metric can result in quan-
tum particle creation, as was first discussed by Parker [1] in
the context of the expansion of the universe. The cosmo-
logical creation of gravitons was discussed by Grishchuk
[2], using the equation for tensor perturbations of an
expanding universe found by Lifshitz [3]. The process of
quantum particle creation has been studied subsequently in
the context of inflation. After the end of inflation, quantum
creation of particles, including gravitons, can contribute
to the matter and radiation of the universe [4]. We here
focus on a different scenario involving graviton production
due to rapid oscillations around a mean expansion rate in a
spatially flat Friedmann-Robertson-Walker (FRW) back-
ground. We consider two cosmological models in which
these kinds of oscillations arise. The first one involves the
usual matter fields in standard general relativity plus a
minimally coupled scalar field (GRSF) in a harmonic
potential. The second model involves fðRÞ gravity, when
a term proportional to the square of the Ricci scalar is added
to the Einstein-Hilbert action, and can arise in semiclassical
gravity coupled to the renormalized expectation value of a
quantum matter stress tensor. Although both models lead to
quantum graviton creation, the graviton wave equation,
which determines the creation rates, is different for each
case. The framework of the GRSF model is standard
general relativity, so the graviton equation is that obtained
by Lifshitz [3], and in the transverse, tracefree gauge, has
the form of the Klein-Gordon equation for a massless,
minimally coupled scalar field. For this reason, the problem
of calculating graviton creation in the GRSF model can be

reduced to that of calculating scalar particle production [5].
In the case of fðRÞ gravity, the modified Einstein equation
includes higher order derivative terms which lead to a
modified of graviton wave equation [6,7].
This paper is organized as follows: In Sec. II, we review a

perturbation formalism which will be used to calculate the
graviton production rate. We also describe how, in both
models, an oscillating scale factor in a spatially flat FRW
background can arise, and give explicit results for the
number and energy density of the gravitons created by
oscillations around a flat background. In Sec. III, we
calculate the graviton energy density for both models in
an expanding universe. In Sec. IV, we discuss observational
constraints on the energy density of the created gravitons,
and hence on the oscillation amplitude of the scale factor.
In Sec. V, we estimate the decoherence time of quantum
systems induced by spacetime geometry fluctuations due to
the graviton bath. In Sec. VI, we summarize and discuss our
main results. In the Appendices, we derive in detail
the oscillating scale factor and the Friedmann equation
for each model. Units in which ℏ ¼ c ¼ 1 are used
throughout the paper. We define the reduced Planck mass
to be Mpl≡ ð8πGÞ−1=2, where G is Newton’s constant. The
metric signature is ð−;þ;þ;þÞ, Greek indices run from 0 to
3, and Latin indices for spatial components run from 1 to 3.

II. PERTURBATION CALCULATION
OF GRAVITON CREATION

A. Perturbation expansion about conformal coupling

We take the metric to be that of a spatially flat FRW
universe, with the following line element:

ds2 ¼ −dt2 þ a2ðtÞdx2 ¼ a2ðηÞð−dη2 þ dx2Þ; ð2:1Þ
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where the conformal time η is related to the scale factor aðtÞ
by η ¼ R t a−1ðt0Þdt0. In this conformally flat spacetime,
gravitons in general relativity, using the transverse tracefree
gauge, are equivalent to a pair of massless minimally
coupled scalar fields [5]. Each scalar field corresponds to
one of the independent polarization states of the gravitons.
In our case, we calculate scalar particle production in the
metric that we are interested in, Eq. (2.1), and then multiply
the final expressions for the number density and energy
density of the massless scalar field by a factor of 2. (For
discussions about graviton creation in Robertson-Walker
universes, including calculations of number and energy
densities, see Refs. [4,5].)
The massless scalar field ϕðxÞ satisfies the wave equation

½□ − ξRðxÞ�ϕðxÞ ¼ 0; ð2:2Þ
where □ ¼ ∇μ∇μ is the covariant d’Alembert operator,
RðxÞ is the Ricci scalar, and ξ is the coupling constant
between the scalar field and scalar curvature. The minimal
coupling corresponds to ξ ¼ 0, which is a necessary con-
dition to study graviton production using the scalar field
equation.
In general, obtaining an exact solution of Eq. (2.2) in a

given metric can be difficult. We adopt an approximation
developed by Birrell and Davies [8,9], which is a pertur-
bation expansion about the conformally invariant case,
ξ ¼ 1=6. After the mode decomposition of the field in
modes uk, which satisfy Eq. (2.2) and the separation of
these modes as ukðxÞ ¼ ð2πÞ−3

2 expðik · xÞa−1ðηÞχkðηÞ, the
equation for χkðηÞ becomes

d2χkðηÞ
dη2

þ ½k2 − VðηÞ�χkðηÞ ¼ 0: ð2:3Þ

Here k ¼ jkj and

VðηÞ ¼
�
1

6
− ξ

�
a2ðηÞRðηÞ: ð2:4Þ

The Ricci scalar for the spacetime of Eq. (2.1) can be
expressed as

R ¼ C−1
�
3 _Dþ 3

2
D2

�
; ð2:5Þ

where D ¼ _C=C, CðηÞ ¼ a2ðηÞ, and dot denotes the
derivative with respect to η. We impose the conditions
VðηÞ → 0 as η → �∞. Then the normalized solution of
Eq. (2.3) which has positive frequency in the past is denoted
by χkðηÞ, and has the asymptotic form χkðηÞ ∼ χink ðηÞ, as
η → −∞, where

χink ðηÞ ¼ ð2kÞ−1
2 expð−ikηÞ: ð2:6Þ

With this initial condition, Eq. (2.3) can be replaced by an
integral equation

χkðηÞ ¼ χink ðηÞ þ k−1
Z

η

−∞
Vðη0Þ sin ½kðη − η0Þ�χkðη0Þdη0:

ð2:7Þ
The perturbation expansion results from successive

iterations of this equation, and may be viewed as an
expansion in powers of 1=6 − ξ. We will work to first
order, and replace χkðη0Þ by χink ðη0Þ in the integrand of
Eq. (2.7). The resulting solution for χkðηÞmay be expressed
in the late time region as

χoutk ðηÞ ¼ αkχ
in
k ðηÞ þ βkχ

in�
k ðηÞ; ð2:8Þ

where the Bogoliubov coefficient, βk, is given by

βk ¼ −
i
2k

Z
∞

−∞
expð−2ikηÞVðηÞdη: ð2:9Þ

The number density per unit of proper volume of created
particles at late times is

n ¼ 2 × ½2π2a3ðηÞ�−1
Z

∞

0

jβkj2k2dk; ð2:10Þ

and the corresponding energy density is

ρ ¼ 2 × ½2π2a4ðηÞ�−1
Z

∞

0

jβkj2k3dk: ð2:11Þ

Here the factors of 2 account for the polarization states, and
the factors of 1=a3 and 1=a4 describe the dilution and
redshifting of massless particles by the continued expan-
sion of the universe after the creation process has essen-
tially finished.
After substituting Eqs. (2.4) and (2.9) into Eqs. (2.10)

and (2.11), and performing the respective integrals in k, the
number and energy density can be rewritten as coordinate-
space integrals, as shown in Refs. [8,9],

n ¼ 2 × ½16πa3ðηÞ�−1
Z

∞

−∞
V2ðη1Þdη1; ð2:12Þ

and

ρ ¼ −2 × ½32π2a4ðηÞ�−1
Z

∞

−∞
dη1

Z
∞

−∞
dη2

ln jðη2 − η1Þμj2
2

× _Vðη1Þ _Vðη2Þ: ð2:13Þ
Here μ is an arbitrary mass. The energy density ρ is
independent of μ, provided that _VðηÞ → 0 as η → �∞. In
general, the energy density of gravity waves, and hence of
gravitons, may not be clearly defined. However, when the
wavelength of the gravity waves is short compared to the
radius of curvature of the background spacetime, there is a
well-defined effective energy momentum tensor for gravity,
as is discussed, for example, in Ref. [10]. This will be the
case in the models we examine, as the period of the scale
factor oscillations is very short compared to the Hubble
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time of the FRW background. The graviton energy density
used here is obtained from this effective energy momentum
tensor, as discussed in Ref. [5].
Note that we are working to first order in a perturbation

expansion in powers of 1=6, so the lowest order results are
only approximate but should be adequate for the order of
magnitude estimates which we seek.

B. Oscillating scale factors in a spatially flat
FRW background

We consider small oscillations around a FRW back-
ground, with a scale factor of the form

aðtÞ ¼ āðtÞ½1þ AeffðtÞ cosðω0tÞ�; ð2:14Þ
where āðtÞ is the background scale factor time averaged
over oscillations, AeffðtÞ ≪ 1 is a nonconstant oscillation
amplitude, and ω0 is the angular frequency of oscillations.
Note that if we take the background scale factor to be that
of flat spacetime and use t ≈ η to leading order, then
Eq. (2.14) takes the following form in conformal time:

aðηÞ ¼ 1þ A0 cosðω0ηÞ; ð2:15Þ
where A0 ≪ 1 is the constant amplitude of the metric
oscillations.
We analyze two models in which a scale factor of the

form in Eq. (2.14) can arise. First, we consider the standard
matter fields in general relativity consisting of a perfect
fluid plus the addition of a minimally coupled scalar field in
a harmonic potential. Second, we consider a specific model
in fðRÞ gravity in which the gravitational action is
expanded in a power series to second order in the Ricci
scalar.

1. Standard matter fields in general relativity plus
a minimally coupled scalar field (GRSF model)

Coherent scalar field oscillations in an expanding uni-
verse were studied by Turner [11], and have been widely
considered in the literature in the context of inflation and
the reheating epoch after inflation [12] or as a dark matter
candidate [13,14]. We focus on the oscillations of the scale
factor driven by scalar field oscillations. The action for this
model is given by

S ¼ M2
pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p
R

þ
Z

d4x½LMðgμν;ΨMÞ þ Lscalarðgμν;φÞ�; ð2:16Þ

where LMðgμν;ΨMÞ is the Lagrangian for the matter fields
ΨM, and Lscalarðgμν;φÞ¼ ð ffiffiffiffiffiffi−gp

=2Þ½−gμν∂μφ∂νφ−2VðφÞ�,
where φ is a homogeneous scalar field with a harmonic
potential, VðφÞ ¼ ðω2φ2Þ=2. The Friedmann equation for
the scale factor is

3H2M2
pl ¼ ρM þ ρφ; ð2:17Þ

and the scalar field equation of motion is

∂2
tφþ 3H∂tφþ ω2φ ¼ 0: ð2:18Þ

Here H ¼ _aðtÞ=aðtÞ is the Hubble parameter and ρM, and
ρφ ¼ ð∂tφÞ2=2þ VðφÞ are the energy density for matter
fields and the scalar field, respectively. In the regime
H ≪ ω, the friction term in Eq. (2.18) is subdominant,
and the scalar field oscillates around the minimum of the
potential with an angular frequency ω according to φðtÞ≈
AðtÞ cosðωtÞ. Let AðtÞ ∝ 1=āðtÞγ . Then, if we neglect
̈āðtÞ and _̄a2ðtÞ terms and take H ≈ H̄ ≡ _̄aðtÞ=āðtÞ, the
expression for φðtÞ satisfies Eq. (2.18) with γ ¼ 3=2. It
follows that the time evolution of the scalar field can be
expressed as

φðtÞ ¼ φi

�
āi
ā

�
3=2

cosðωtÞ; ð2:19Þ

where φi is the oscillation amplitude when oscillations start
at time ti and āi ≡ āðtiÞ. The oscillating behavior of the
scalar field causes the scale factor in this model also to have
an oscillating behavior. In Appendix A we calculate this
scale factor in detail, and find

aðtÞ ¼ āðtÞ
�
1 −Di

�
āi
āðtÞ

�
3

cosð2ωtÞ
�
; ð2:20Þ

where Di ≡ ðφ2
i Þ=ð16M2

plÞ is the initial amplitude of the
metric oscillations. Thus the scale factor oscillates at twice
the frequency of the scalar field. If we consider this
background scale factor to be that of flat spacetime and
Di ≪ 1, Eq. (2.20) takes the form, to leading order, of
Eq. (2.15) with Di ¼ A0 and ω ¼ ω0=2, where ω is the
mass of the scalar field φ.
The generation of gravitons in this model is ruled by

Eq. (2.3), because we are working in standard general
relativity.

2. Modified Einstein’s gravity: Quadratic
terms in the curvature [f ðRÞ model]

Oscillations of the scale factor shown by Eq. (2.14) can
also arise from modifications of Einstein’s equation by
terms quadratic in the curvature. An example is fðRÞ
gravity, where the Einstein-Hilbert action is taken to be
SH¼1

2
M2

pl

R
d4x

ffiffiffiffiffiffi−gp
fðRÞ, with fðRÞ being an analytic

function of the Ricci scalar R. Expand fðRÞ to second
order as

fðRÞ ¼ a0 þ a1Rþ a2
2!

R2 þ… ð2:21Þ

and set a0 ¼ 0 and a1 ¼ 1, so that fðRÞ ≈ Rþ ða2=2ÞR2.
The resulting modified vacuum Einstein’s equation and its
trace equation are, respectively,
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Gμν þ a2

�
RRμν −

1

4
R2gμν þ gμν∇α∇αR −∇μ∇νR

�
¼ 0;

ð2:22Þ�
□ −

1

3a2

�
R ¼ 0; ð2:23Þ

where Rμν is the Ricci tensor, and Gμν ¼ Rμν − gμνR=2 is
the Einstein tensor. The term proportional to a2 in
Eq. (2.22) need not arise from a modification of the
gravitational action, but perhaps more plausibly, can also
arise in semiclassical gravity where the renormalized
expectation value of a quantum matter stress tensor acts
as the source of gravity.
In either case, the modified Einstein’s equation,

Eq. (2.22), contains terms which are fourth order in the
metric and can cause flat spacetime to be unstable or to
oscillate, as was discussed by Horowitz and Wald [15]. Let
the spacetime metric be that of Eq. (2.1) with aðηÞ ¼ 1þ γ.
To first order in γ, Eq. (2.22) becomes

−∂μ∂νγ þ ð□γÞημν þ 3a2∂μ∂νð□γÞ − 3a2□ð□γÞημν ¼ 0;

ð2:24Þ
where □ ¼ ∂α∂α. The spatially homogeneous solutions of
this equation grow exponentially in η if a2 < 0, so flat
spacetime becomes unstable. If a2 > 0, the scale factor
oscillates, as described by Eq. (2.15), with an angular
frequency of

ω ¼ 1ffiffiffiffiffiffiffi
3a2

p ða2 > 0Þ: ð2:25Þ

Note the peculiar fact that as a2 becomes smaller, the
frequency of oscillation ω becomes larger. Laboratory tests
of the inverse square law of gravity place an upper bound
on a2 of about [16] a2 ≲ 2 × 10−9 m2. From Eq. (2.25),
this bound leads to a lower bound on ω of

ω≳ ωB ¼ 1.3 × 104 m−1 ¼ 4 × 1012 Hz: ð2:26Þ
The possible effect of these oscillations in causing

radiation by charged particles was discussed by Horowitz
and Wald [15], and their possible role in causing enhanced
quantum fluctuation effects through noncancellation of
anticorrelated fluctuations was treated in Ref. [17]. Our
primary interest is their effect on graviton creation, which
will be treated in the next subsection. Quantum creation
of particles by metric oscillations plays a role in the
Starobinsky model of inflation [18], and was discussed by
Vilenkin [19]. More recent treatments of graviton creation in
oscillatingmetrics have been given inRef. [20] in the context
of emergent cosmology and in Ref. [21] in a model of
inflaton decay.
Gravitational waves in general relativity are associated

with a massless spin two graviton field with two different

polarizations. However, the presence of higher order
derivative terms in the modified Einstein’s equation in
Eq. (2.22) causes, in addition to a graviton field, an extra
scalar mode associated with a massive spin zero field. To see
this extra scalar mode, consider small deviations from a flat
background of the form gμν ¼ ημν þ hμν, where jhμνj ≪ 1.
If we work to first order in the perturbation, then the
linearized version of the trace field equation, Eq. (2.23),
predicts scalar modes satisfying a massive Klein-Gordon
equation [16]

ð□ − ω2ÞRð1Þ ¼ 0; ð2:27Þ

where Rð1Þ ¼ ∂μ∂νhμν − ηαβ□hαβ is the linearized Ricci
scalar to first order. Thus, if we take seriously this modified
gravity theory, we should expect massive scalar particle
creation together with graviton creation. We will focus
solely upon graviton creation in the present paper. We
expect the scalar particle creation rate to be somewhat
suppressed compared to that for gravitons due to the
nonzero mass of the scalar particle and the two polarization
degrees of freedom of the gravitons. In any case, the
observational constraints which we will derive using grav-
itons alone may be regarded as lower bounds on the slightly
tighter constraints which would arise if the effects of scalar
particles were also included.
Gravitational waves in a spatially flat FRW background

can be analyzed by considering a transverse and traceless
perturbation of the metric. Rewrite Eq. (2.22) and define an
effective energy momentum tensor, Teff

μν , by

Gμν ¼
1

M2
pl

Teff
μν

≡ a2
1þ a2R

�
−
1

4
R2gμν − gμν∇α∇αRþ∇μ∇νR

�
:

ð2:28Þ

One may express Teff
μν in terms of effective fluid quantities

and describe the perturbations of the above equation
using a gauge invariant formulation. Let Hkðx; tÞ ∝
expðik · xÞukðtÞ be the graviton mode function. Then the
evolution of ukðtÞ is given by [6,7]

1

a3ðtÞFðRÞ ½a
3ðtÞFðRÞ∂tukðtÞ�;tþ

k2

aðtÞ2 ukðtÞ ¼ 0; ð2:29Þ

where FðRÞ≡ dfðRÞ=dR. Note that this equation differs
from the general relativity case by an extra term,
ðF;t =FÞð∂tukÞ, which comes from the nonzero anisotropic
pressure part of the imperfect fluid Teff

μν . Defining
ukðηÞ ¼ vkðηÞ=ða

ffiffiffiffi
F

p Þ, Eq. (2.29) becomes

d2vkðηÞ
dη2

þ
�
k2 −

1

a
ffiffiffiffi
F

p d2ða ffiffiffiffi
F

p Þ
dη2

�
vkðηÞ ¼ 0: ð2:30Þ
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In the limit a2 → 0, where F → 1, we recover the known
results from general relativity. In this limit, after setting
χkðηÞ ¼ vkðηÞ and using RðηÞ ¼ 6äðηÞ=aðηÞ3, Eq. (2.30)
becomes Eq. (2.3), as expected.
The easiest way to analyze the behavior of oscillations

in this model in a spatially flat FRW background is to
take advantage of the equivalence between fðRÞ theories
and scalar-tensor gravity. [For a review and discussion
about fðRÞ gravity and its equivalence with the scalar-
tensor theory for gravitation see Refs. [22,23].] The usual
approach to obtain a scalar-tensor gravity from fðRÞ
gravity is to perform a conformal transformation, ~gμν ¼
FðRÞgμν with FðRÞ≡ dfðRÞ=dR, and to introduce an
auxiliary scalar field ϕ according to FðRðϕÞÞ ¼
exp½ ffiffiffiffiffiffiffiffi

2=3
p ðϕ=MplÞ�. In the new frame, or Einstein frame,

the theory looks like conventional general relativity plus a
minimally coupled auxiliary scalar field ϕ. It is, however,
not identical to the GRSF model of the previous subsection.
Note that we use φ to denote the scalar field in the GRSF
model, and ϕ to denote that in the fðRÞ model. The scalar
field ϕ can oscillate around the minimum of its potential,
which leads to oscillatory behavior of the scale factor in the
original frame, or Jordan frame, of the form

aðtÞ ¼ āðtÞ
�
1 − Ei

�
āi
āðtÞ

�
3=2

cosðωtÞ
�
; ð2:31Þ

where Ei ¼ ðϕiÞ=ð
ffiffiffi
6

p
MplÞ is the initial amplitude of

metric oscillations, ϕi > 0 is the initial value of the scalar
field, āðtÞ is the background scale factor time averaged
over the oscillations, and āi ¼ āðtiÞ where ti is the time at
which oscillations start. The equivalence between fðRÞ
gravity and scalar-tensor gravity and the derivation of
Eq. (2.31) are discussed in detail in Appendix B. If we
consider the background scale factor to be flat spacetime
and Ei ≪ 1, Eq. (2.31) takes the form, to leading order,
of Eq. (2.15) with Ei ¼ A0 and ω ¼ ω0, where ω is the
mass of the scalar field ϕ. Thus in the fðRÞ model, the
scale factor and the scalar field oscillate at the same
frequency.
We can express the scale factors of both models,

Eqs. (2.20) and (2.31), as

aðtÞ ¼ āðtÞ½1þ δaðtÞ�; ð2:32Þ

where δaðtÞ ≪ 1 is the oscillatory part of the scale factor.
Figure 1 illustrates the behavior of this oscillatory part in
both models in a radiation dominated universe. Here
āðtÞ ∝ t1=2, so δaðtÞ ∝ āðtÞ−3 ∝ t−3=2 in the GRSF model
and δaðtÞ ∝ āðtÞ−3=2 ∝ t−3=4 in the fðRÞ gravity model.
Thus the oscillations are at twice the frequency and decay
more rapidly in the GRSF model as compared to the fðRÞ
gravity model.

C. Calculation of graviton creation caused by
oscillations around flat spacetime

We consider the graviton creation in both models using
the oscillating scale factor defined by Eq. (2.15), which
refers to small oscillations around a flat spacetime. Note
that even though oscillations are present in both scenarios,
the gravitational wave equation, which rules the graviton
creation, is different for each case.

1. Graviton creation in standard general relativity
plus a minimally coupled scalar field

We analyze the asymptotic behavior of the number and
energy density of created gravitons on time scales long
compared to the period of oscillation. From Eqs. (2.4) and
(2.5), the expression for VðηÞ is

VðηÞ ¼ 1

2CðηÞ2
�
C̈ðηÞCðηÞ − 1

2
_CðηÞ2

�
: ð2:33Þ

Substituting the expression for aðηÞ, Eq. (2.15), into this
equation, we obtain, to first order in A0,

VðηÞ ¼ −
A0ω

2
0 cosðω0ηÞ

1þ A0 cosðω0ηÞ
≈ −A0ω

2
0 cosðω0ηÞ: ð2:34Þ

Here we treat the case of oscillations around flat spacetime,
and hence set aðηÞ ¼ 1 in the prefactors to the integrals in
Eqs. (2.12) and (2.13). The graviton number density
becomes

n ≈
1

8π
×
Z

dη1½−A0ω
2
0 cosðω0η1Þ�2 ð2:35Þ

FIG. 1. Oscillatory part of the scale factor in a radiation
dominated universe is illustrated in the GRSF model and in
fðRÞ gravity. Here δaðtÞnorm is δaðtÞ expressed in units where
δaðtÞnorm ¼ 1 at an initial time given by ωt ¼ 1.
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¼ A2
0ω

4
0

8π
×
Z

dη1
1þ cosð2ω0η1Þ

2
; ð2:36Þ

where the integral on η1 is to be taken over a long, but finite
interval. On time scales long compared to ω−1

0 , the average
number density creation rate is the same in both conformal
time η and comoving time t and given by

dn
dη

����
GRSF

¼ dn
dt

����
GRSF

¼ A2
0ω

4
0

16π
: ð2:37Þ

If the oscillations last for a comoving time t, then the
number density of created gravitons becomes, to leading
order in A0,

ng ∼
A2
0ω

4
0t

16π
: ð2:38Þ

Let λ ¼ 2π=ω0 be the period of oscillation, and, in c ¼ 1
units, the wavelength associated with angular frequency ω0.
The number density creation rate of Eq. (2.37) can be
expressed as

dn
dt

����
GRSF

¼ π3A2
0λ

−3λ−1: ð2:39Þ

This result tells us that an average of π3A2
0 gravitons are

created in volume λ3 per oscillation.
For the case of the graviton energy density, we use the

approximate expression of VðηÞ in Eq. (2.34) and calculate
its derivative with respect to the conformal time,

_VðηÞ ≈ A0ω
3
0 sinðω0ηÞ: ð2:40Þ

Substituting this equation into Eq. (2.13), we now have for
the graviton energy density

ρ ≈ −
A2
0ω

6
0

16π2

Z
dη1 sinðω0η1Þ

×
Z

dη2
ln jðη2 − η1Þμj2

2
sinðω0η2Þ; ð2:41Þ

where the integrals on η1 and η2 are to be taken over long,
but finite intervals. First, let us focus on the inner integral

Iðη1Þ ¼
Z

T

−T
dη2

ln jðη2 − η1Þμj2
2

sinðω0η2Þ; ð2:42Þ

where we examine the limit T → ∞ for fixed η1. With the
change of variable y ¼ ω0η2, we have

Iðη1Þ¼ω−1
0 Re

Z
Tω0

−Tω0

dy

�
ln ½ðy−ω0η1Þ�2

2
þ ln

�
μ

ω0

�	
sinðyÞ

ð2:43Þ

¼ ω−1
0 Re

Z
Tω0

−Tω0

dy
ln ½ðy − ω0η1Þ�2

2
sinðyÞ ð2:44Þ

∼ −
π

ω0

sinðω0η1Þ þO

�
1

Tω0

�
; ð2:45Þ

where we have, in the second line, dropped the μ dependent
part because it is proportional to

R Tω0

−Tω0
dy sinðyÞ ¼ 0, and,

in the third line, used the asymptotic values at �∞ of the
cosine and sine integral functions. Note that the assumption
of ω0 ≫ T−1 in Eq. (2.45) makes the integrand in the
expression for the graviton energy density, Eq. (2.41),
approximately local. Now, we have

ρ ∼
A2
0ω

5
0

16π

Z
dη1sin2ðω0η1Þ: ð2:46Þ

Again, on long time scales, the average energy density
creation rate is the same in both conformal and comoving
time, so

dρ
dη

����
GRSF

¼ dρ
dt

����
GRSF

¼ A2
0ω

5
0

32π
: ð2:47Þ

The leading order for the graviton energy density after a
time t is

ρgjGRSF ∼
A2
0ω

5
0t

32π
: ð2:48Þ

Here we are ignoring any possible interference terms. That
is, we assume that the energy density of gravitons created at
earlier times adds incoherently to that of gravitons cre-
ated later.
Equations (2.37) and (2.47) show that the graviton

number density creation rate, as well as the energy density
creation rate, are proportional to the square of the metric
oscillations A0, and that the mean graviton energy is ω0=2.
This latter result can be explained using the analogy with
the spontaneous parametric down-conversion in nonlinear
optics, where a nonlinear crystal is used to split photon
beams into pairs of photons. Here, in accordance with the
law of conservation of energy, the sum of the energies of
the pair equals the energy of the original photon. Graviton
production in pairs with energy ω0=2 per particle has
previously been found in the context of the Starobinsky
model for inflation [19].

2. Graviton creation in f ðRÞ gravity
Now we can obtain the number and energy density

creation rate in fðRÞ gravity from those in the GRSF
model. Substituting the expression for VðηÞ, Eq. (2.34),
into the gravitational wave equation in standard general
relativity, Eq. (2.3), we obtain for the GRSF model

d2vkðηÞ
dη2

þ ½k2 þ A0ω
2
0 cosðω0ηÞ�vkðηÞ ¼ 0: ð2:49Þ

For the case of fðRÞ gravity, using FðRÞ ¼ 1þ a2R and
working to second order inA0 in the term ða ffiffiffiffi

F
p Þ;ηη =ða

ffiffiffiffi
F

p Þ
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in the modified gravitational wave equation, Eq. (2.30),
we have

d2vkðηÞ
dη2

þ ½k2 − 3A2
0ω

2
0 cosð2ω0ηÞ�vkðηÞ ¼ 0: ð2:50Þ

The difference between Eqs. (2.49) and (2.50) lies in their
respective sinusoidal factors. Note that the overall sign is not
important and does not change the particle creation rate.
Making the replacements ω0 → 2ω0 and A0 → ð3=4ÞA2

0 in
Eqs. (2.37) and (2.47) for the GRSF model, we can obtain
the corresponding results for fðRÞ gravity:

dn
dt

����
fðRÞ

¼ 9A4
0ω

4
0

16π
; ð2:51Þ

dρ
dt

����
fðRÞ

¼ 9A4
0ω

5
0

16π
: ð2:52Þ

These last equations show that the graviton number density
and energy density creation rates are proportional to the
fourth power of themetric oscillation amplitude,A0, and that
the mean graviton energy is ω0.

III. GRAVITON ENERGY DENSITY
IN AN EXPANDING UNIVERSE

Now we wish to extend the results for the energy density
creation rate in flat spacetime obtained in both cases,
Eqs. (2.47) and (2.52), to an expanding universe. The
general scale factor in a spatially flat FRW background is
given by Eq. (2.14), where the amplitude of the oscillations
decreases with time. So long as the expansion rate of the
background is slow compared to the oscillation rate,

1

āðtÞ
dā
dt

≪ ω; ð3:1Þ

we may treat the background spacetime as approximately
flat, and use the results of Eqs. (2.47) and (2.52) with
A0 → AeffðtÞ. Recall that AeffðtÞ ¼ Diðāi=āÞ3 in the GRSF
model and AeffðtÞ ¼ Eiðāi=āÞ3=2 in the case of fðRÞ
gravity. Then the energy density creation rates in the
expanding universe become

dρ
dt

≈ Jω5
0

�
āi
āðtÞ

�
6

; ð3:2Þ

where J ¼ ðD2
i Þ=ð32πÞ in the GRSF model and J ¼

ð9E4
i Þ=ð16πÞ in fðRÞ gravity. Note that dρ=dt ∝ ā−6 in

both cases.
In addition to the damping effect on the metric oscil-

lations, the expansion causes redshifting and dilution of the
created gravitons. After creation, the graviton energy
density scales as 1=ā4ðtÞ. Including both effects, the energy
density at t ¼ t0 due to gravitons created in an interval dt at
an earlier time t is

dρgðt0Þ ¼ Jω5
0

�
āi
āðtÞ

�
6
�
āðtÞ
ā0

�
4

dt; ð3:3Þ

where ā0 ¼ āðt0Þ. If we take t0 to be the present time, the
gravitons in question were created at redshift z, where
1þ z ¼ ā0=āðtÞ. These expressions tell us that the present
contribution of earlier graviton production is suppressed by
a factor of ð1þ zÞ−4 due to redshifting and increased by a
factor proportional to ð1þ zÞ6 due to the greater oscillation
amplitude at earlier times.
If we substitute into Eq. (3.3) the values of ω0 and J for

each model, which depend upon the scalar field initial
values, either φi or ϕi, we find that the energy density
creation rate in the fðRÞ gravity case is 4 times that in the
GRSF model, if the scalar field masses and initial values are
the same. Specifically we have

dρgðt0ÞjGRSF ¼ φ4
iω

5

256πM4
pl

�
āi
āðtÞ

�
6
�
āðtÞ
ā0

�
4

dt; ð3:4Þ

dρgðt0ÞjfðRÞ ¼ 4 ×
ϕ4
iω

5

256πM4
pl

�
āi
āðtÞ

�
6
�
āðtÞ
ā0

�
4

dt: ð3:5Þ

If the oscillations start at time ti, then the graviton energy
density at time t0 will be given by

ρgðt0Þ ¼ Jω5
0a

6
i

Z
t0

ti

āðtÞ−2dt; ð3:6Þ

with ā0 ¼ 1. We assume that ti is after the end of inflation
and that gravitons created at earlier times do not cause
interference with gravitons created at later times, as was
assumed in Eq. (2.48).
Consider a model of the universe which is spatially flat

and contains radiation (photons, neutrinos, and gravitons),
nonrelativistic matter (baryonic and nonbaryonic dark
matter) and a cosmological constant associated with the
dark energy. The model is first radiation dominated, then
nonrelativistic matter dominated, and is now entering into
its dark energy dominated phase. On time scales much
longer than the period of oscillations, the Friedmann
equation in this model of universe, which is derived in
detail in the Appendices, can be expressed as

3H̄ðtÞ2M2
pl ≈

ρr;0
ā4ðtÞ þ

ρm;0

ā3ðtÞ þ ρΛ;0 þ
ω2χ2i
2

�
āi
ā

�
3

; ð3:7Þ

where H̄ðtÞ≡ ½ _̄aðtÞ�=½āðtÞ� is the Hubble parameter as a
function of the time-averaged scale factor, āðtÞ. Here ρr;0,
ρm;0, and ρΛ;0 are the radiation, nonrelativistic matter, and
dark energy densities today, respectively, and the scalar
field energy density is ρχ ≈ ðω2χ2i =2Þðāi=āÞ3, where χ
refers to either the φ scalar field in the GRSF model or
the ϕ scalar field in fðRÞ gravity.
Since we are interested in cosmological implications of

the quantum graviton creation, we assume that oscillations
of the scale factor continue through the present epoch. This
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is equivalent to requiring that the scalar field in each model
continues in its oscillatory phase. Note that the scalar
energy density in both cases scales like nonrelativistic
matter, and could grow to dominate the radiation energy
density before the expected beginning of the matter-
dominated epoch. In order to avoid that, the scalar energy
density, ρχðtÞ, should be always less than that of the
nonrelativistic matter, ρmðtÞ, through the present epoch.
Indeed, this conclusion is supported by observational data,
as will be explained in detail in Sec. IV.
If we assume ρχðtÞ < ρmðtÞ, the Friedman equation for

both models, Eq. (3.7), becomes

H̄ðtÞ2
H2

0

≈
Ωr;0

ā4ðtÞ þ
Ωm;0

ā3ðtÞ þΩΛ;0; ð3:8Þ

where Ωr;0 ¼ ρr;0=ρc;0, Ωm;0 ¼ ρm;0=ρc;0, and
ΩΛ;0 ¼ ρΛ;0=ρc;0. Here ρc;0 ¼ ð3H2

0Þ=ð8πGÞ is the critical
density today and G is Newton’s constant. Then Ω0 ¼
Ωr;0 þΩm;0 þ ΩΛ;0 ≈ 1 is the energy density parameter
today. We use the values H0 ≡ 100 h0 km s−1Mpc−1,
Ωr;0¼4.15×10−5h−20 , and ρc;0 ¼ 1.88 × 10−26 h20 kgm

−3.
We take h0 ¼ 0.673 and Ωm;0 ¼ 0.315 from the Planck
temperature power spectrum data including WMAP polari-
zation at low multipoles [24].
Substituting Eq. (3.8) into Eq. (3.6), the graviton energy

density today is found to be

ρgðt0Þ ¼
Jω5

0ā
6
i

H0

Z
1

āi

 
ā−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωr;0þΩm;0āþΩΛ;0ā4
q

!
dā: ð3:9Þ

This integral cannot be expressed in terms of elementary
functions and must be calculated numerically. The graviton
energy density during the radiation dominated epoch can be
calculated more easily. At some time tr ≲ trm, where trm is
the time of radiation-matter equality, the scale factor can be
approximated as

āðtÞ ≈ ð2 ffiffiffiffiffiffiffiffi
Ωr;0

p
H0tÞ1=2 ∝

ffiffi
t

p
: ð3:10Þ

This is a solution of Eq. (3.8) when the nonrelativistic
matter and dark energy terms may be neglected compared
to the radiation term, and the latter term is assumed to come
entirely from photons and neutrinos. If other relativistic
particles are present, then the constant of proportionality
increases by a factor of the fourth root of the number of
types of particles present. This factor will be assumed to be
of order one, and will be ignored in our rough estimates.
As a result, the graviton energy density at time tr ≫ ti is

given by

ρgðtrÞ ¼ Jω5
0

Z
tr

ti

�
āi
āðtÞ

�
6
�
āðtÞ
āðtrÞ

�
4

dt ≈ Jω5
0

�
t3i
t2r

�
lnðtr=tiÞ:

ð3:11Þ

Here we are assuming that the oscillations begin during the
radiation dominated era. Clearly some significant event is
needed to cause the oscillations to begin and to determine
the initial amplitude. Two possibilities are the reheating
at the end of inflation, or a subsequent phase transition.
Note that the graviton energy density in Eq. (3.11) vanishes
in the limit ti → tr as is expected.
Thus far we have not discussed the decay of the scalar

fields caused by direct coupling with other fields such as
radiation or nonrelativistic matter and/or the quantum
particle production different from gravitons. Even though
in the GRSF model we have not considered a direct
coupling between the scalar field and matter fields, the
field φ couples with those fields through gravity by means
of the scale factor (the oscillatory part of the scale factor is
proportional to φ̄2). This coupling results in quantum
particle production not only of gravitons (when the scale
factor coupling to a pair of minimally coupled massless
scalar fields) but also, for instance, of massive scalar
particles, vector bosons and fermions [21]. In any case,
if we are interested in values for ω below the masses of
these particles, we expect that these processes are mass
suppressed. We have a similar scenario for fðRÞ gravity,
with the difference that in this theory there is a direct
coupling between the auxiliary scalar field ϕ and the matter
fields. However this coupling is suppressed in the regime in
which we are working, where Ei ∝ ðϕi=MplÞ ≪ 1.

IV. COSMOLOGICAL CONSTRAINTS
ON THE OSCILLATION AMPLITUDE

OF THE SCALE FACTOR

In this section, we explore three cosmological constraints
on the graviton creation. The first two are observational
constraints on the effects of the created gravitons, one from
big bang nucleosynthesis (BBN) and another from obser-
vational Hubble parameter measurements. The third comes
from an observational constraint on scalar field energy
density, which in the context of the specific models we
treat, implies a strong constraint on the amplitude of
oscillations. All of these constraints will depend on the
value for ω considered. In fðRÞ gravity the angular
frequency of oscillations is bounded from below,
ω ≥ ωB. There is no analogous bound in the GRSF model,
but in both models we will consider a range of angular
frequencies beginning at ωB and extending upward by
several orders of magnitude. The upper bound on ω could
be as high as the Planck frequency, 1031ωB, where our
semiclassical approach is expected to break down.
However, we will be primarily concerned with more typical
particle physics energy scales.

A. Big bang nucleosynthesis constraint

Commonly, the BBN bound is expressed as a number of
extra neutrino varieties, ΔNν. (For a review, see big bang
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cosmology and big bang nucleosynthesis reviews in
Ref. [25].) In the early universe, relativistic particles
dominate the total energy density. For this reason, at T ¼
1 MeV (before electron-positron annihilation), the total
energy density is ρBBN ¼ NðTÞðπ2=30ÞT4, where NðTÞ is
the equivalent number of degrees of freedom at temperature
T, approximately given by the contribution of photons,
electrons, positrons and neutrinos. Any additional contri-
bution at that time to the total energy density from a
component with a radiation-like equation of state can be
described as an equivalent number of extra neutrinos. Thus,
the graviton energy density ρgBBN at T ¼ 1 MeV is

ρgBBN ¼ 7

8
ΔNνργ; ð4:1Þ

where ργ ¼ ½ð2π2Þ=ð30Þ�T4 refers to the photon energy
density.
It is possible to find in the literature several constraints

on ΔNν, which depend upon the specific light element
abundances considered, from ΔNν ≤ 0.2 to ΔNν ≤ 1
[26]. The constraint can be relaxed in some nonstandard
nucleosynthesis scenarios [27]. We take for our purpose
ΔNν ≈ 1. Then, using Eq. (3.11) for the graviton energy
density in the radiation-dominated epoch, we have

ρgðtrÞ ≈ Jω5
0

�
t3i
t2r

�
ln ðtr=tiÞ ≤

7

8
ργ; ð4:2Þ

where tr refers to the time when T ¼ 1 MeV, which is
approximately one second. Equation (4.2) gives a bound on
Di, in the GRSF model, and Ei, in fðRÞ gravity, for a given
ω of

DijGðRÞ ≲ 10−5
�
10−6 s
ti

�3
2

�
1010ωB

ω

�5
2½ln ð1 s=tiÞ�−1=2;

ð4:3Þ

EijfðRÞ ≲ 3 × 10−3
�
10−6 s
ti

�3
4

�
1010ωB

ω

�5
4½ln ð1 s=tiÞ�−1=4:

ð4:4Þ

Recall that the initial oscillation amplitude, Di and Ei,
needs to be small for the consistency of our treatment. This
condition can be fulfilled if ω≳ 1010ωB ≈ 26 MeV. Note
that an initial time ti ¼ 10−6 s corresponds to a temperature
of Ti ≈ 1 GeV.

B. Constraint from the expansion rate of the universe

Observational data on the late universe can be used to
obtain an upper bound on the present density of gravitons.
Rewriting the scale factor as a function of the redshift in
Eq. (3.8) using āðzÞ ¼ 1=ð1þ zÞ, we obtain

H̄ðzÞ ¼ H0½Ωr;0ð1þ zÞ4 þ Ωm;0ð1þ zÞ3
þ ð1 − Ωr;0 − Ωm;0Þ�1=2; ð4:5Þ

which shows the dependence of H̄ðzÞ on the cosmological
parameters. Taking into account graviton production,
Eq. (4.5) becomes

H̄ðzÞ ¼ H0½ðΩr;0 þΩg;0Þð1þ zÞ4 þ Ωm;0ð1þ zÞ3
þ ð1 −Ωr;0 − Ωm;0 −Ωg;0Þ�1=2; ð4:6Þ

where Ωg;0 is the graviton energy density parameter today.
We use a sample of 18 observational measurements of

Hubble parameter in the range of 0.09 ≤ z ≤ 1.75 with
their respective standard errors reported by Moresco et al.
[28], Table I. Measurements are provided by passively
evolving galaxies, high-quality spectra of red-envelope
galaxies in galaxy clusters, and spectroscopic evolution
of early type galaxies. The least-squares method is applied
by means of minimizing the reduced sum of the square of
residuals weighted by errors χ2ν according to

χ2νðΩg;0Þ ¼
1

ν

X18
i¼1

½HobsðziÞ − H̄ðzi;Ωg;0Þ�2
σ2HobsðziÞ

; ð4:7Þ

where HobsðziÞ is the ith observational value of HðzÞ at
redshift zi, H̄ðzi;Ωg;0Þ is the theoretical ith value of HðzÞ
obtained by means of Eq. (4.6) at redshift zi, σHobsðziÞ is the
error associated with the ith observational value of HðzÞ at
redshift zi, and ν is the number of degrees of freedom (18
observational data points minus one parameter to be
adjusted, i.e., Ωg;0). The standard errors, σΩg;0

ðΩ�
g;0Þ and

σHðz;Ω�
g;0Þ, associated with the graviton energy density

today and the fitted function H̄ðzÞ, respectively, are calcu-
lated following standard procedures [29]. Here we have
defined Ω�

g;0 as the value of the graviton energy density
parameter today which minimizes χ2ν.
Figure 2 shows the fiducial cosmology without grav-

itons, obtained from Eq. (4.5), and the best fit with a
nonzero value for the graviton energy density parameter
today, obtained from Eq. (4.6). Including gravitons in the
evolution of the Hubble parameter is equivalent to increas-
ing the radiation energy density parameter. This produces
an increase of the Hubble parameter for a given z in
comparison to the fiducial cosmology. The best fit is found
to be Ω�

g;0 ¼ 0.011� 0.015 (for 1 standard deviation) with
χ2ν ¼ 0.75. The value of χ2ν is reasonably close to 1
indicating that the fit can be considered meaningful.
(See, for example, Ref. [29].) At the level of two standard
deviations, we obtain an upper bound for the graviton
energy density parameter today of Ω�

g;0 ≤ 0.04.
Because the graviton energy density increases as the

comoving time increases, it is in principle possible to obtain
constraints on the oscillation amplitude for each case:
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ρgðt0Þ
ρc;0

¼ Ω�
g;0 ≲ 0.04: ð4:8Þ

Use Eq. (3.9) for ρgðt0Þ. Then the constraints on the
oscillation amplitudes may be expressed as

DijGRSF ≲ 10−5
�

Ti

1 GeV

�
3
�
1010ωB

ω

�5
2

; ð4:9Þ

EijfðRÞ ≲ 10−2
�

Ti

1 GeV

�3
2

�
1010ωB

ω

�5
4

: ð4:10Þ

Here we have used āi ≈ 3K=Ti, where Ti is the initial
energy scale, for the factor ā6i in Eq. (3.9). Moreover, since
the definite integral in this equation is slowly varying with
respect to its lower limit, āi, we have evaluated it at
Ti ¼ 1 GeV, where its value is about 2 × 103.
Note that these constraints from late time dynamics of

the universe are comparable to those obtained from
nucleosynthesis in Eqs. (4.3) and (4.4). There seem to
be competing effects which nearly cancel one another.
Nucleosynthesis occurs earlier in the history of the universe
when then characteristic amplitude of the oscillations is
greater and there has been less redshifting of the created
gravitons. However, in the late universe, there has been far
more time for graviton creation.

C. Constraints on the scalar field energy density

Now we consider a constraint on the scalar energy
density, ρχ , and its implications. Data from the dynamics

of galaxy clusters [30] lead to an estimate of the current
matter density of Ωm;0 ¼ 0.26. This estimate includes all
matter, including dark matter, which is localized on the
scale of a cluster of galaxies, but would not include a
homogeneous background density, such as that due to a
scalar field. CMB data from the Planck collaboration 2013
[24] leads to a slightly larger value of Ωm;0 ¼ 0.315. Given
that about 70% of the current energy density is dark energy,
the scalar field energy density must be less than the matter
density,

ρχðtÞ < ρmðtÞ: ð4:11Þ
Note that this is also a constraint on χi, the initial value of
the scalar field. Because ρm ≈ ρm;0=ā3 ≈ ρm;0ðT=T0Þ3 and
ρχ ≈ ðω2χ2i =2Þðāi=āÞ3 ≈ ðω2χ2i =2ÞðT=TiÞ3, we have

χi
Mpl

≲ 10−11
�

Ti

1 GeV

�
3=2
�
ωB

ω

�
; ð4:12Þ

where Ti and T0 are the temperature at time ti and the
current temperature of the cosmic microwave background,
respectively.
This constraint on the scalar energy density leads to a

very strong constraint on the initial amplitude of oscilla-
tions in both models:

DijGRSF ≲ 10−23
�

Ti

1 GeV

�
3
�
ωB

ω

�
2

; ð4:13Þ

EijfðRÞ ≲ 10−12
�

Ti

1 GeV

�3
2

�
ωB

ω

�
: ð4:14Þ

These constraints are much stronger than the constraints
which come directly from the observable effects of the
created gravitons. This is presumably related to the weak-
ness of the graviton creation process. However, the scalar
field energy density constraint is more model dependent,
and comes from the key role played by scalar fields in both
of the specific models treated here.

V. QUANTUM DECOHERENCE INDUCED
BY THE GRAVITON ENERGY DENSITY

A realistic quantum system cannot be considered iso-
lated, but is in interaction with the surrounding environ-
ment. This interaction can induce in the system a loss of
quantum coherence, namely, a local suppression of inter-
ference between two different states [31]. The environment
can refer to ordinary matter, quantum fields, or gravitational
fields. For a recent review and discussion about quantum
decoherence and gravitational interactions, see Ref. [32].
De Lorenci and Ford [33] studied the decoherence rate of
quantum systems induced by a bath of long wavelength
gravitons. The basic mechanism arises from quantum
geometry fluctuations produced by the graviton bath, which
in turn produce length and hence phase fluctuations in a

FIG. 2. Observational data for HðzÞ and their errors (see
Ref. [28]) are plotted. The solid line gives the fiducial cosmology,
which assumes no gravitons with h0 ¼ 0.673, Ωr;0 ¼ 4.15×
10−5 h−20 , Ωm;0 ¼ 0.315, and ΩΛ ¼ 1 − ðΩr;0 þΩm;0Þ. The
dashed line is a best fit using the least squares method with
nonzero Ωg;0. The boundaries of the regions associated with
confidence levels of σHðz;Ω�

g;0Þ and of 3σHðz;Ω�
g;0Þ are also

illustrated.
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quantum system. These phase fluctuations lead to a loss of
contrast in interference patterns, and hence decoherence by
dephasing. We will apply these results to quantum systems
in a bath of graviton created by the mechanism discussed in
the GRSF model. First, we summarize the essential results
of Ref. [33].
Adopt the transverse-tracefree gauge and define h as the

root-mean-square fractional length fluctuations in a par-
ticular direction, such as the x-direction by

h2 ¼ hðhxxÞ2i ¼ ð1=9ÞhhTTij hijTTi: ð5:1Þ
We can reexpress h as a function of the graviton energy
density as

h ¼ 4

3

ffiffiffiffiffiffi
2π

p λg
ffiffiffiffiffi
ρg

p
Ep

; ð5:2Þ

where λg ¼ 2π=ωg is the characteristic graviton wavelength
and Ep is the Planck energy. Suppose we have a quantum
system in which Δω is the energy difference between the
interfering states. The decoherence time td induced by
length fluctuations is approximately td ≈ 1=ðhΔωÞ. If the
graviton wavelength is large compared to the geometric
size of the quantum system, the decoherence time may be
written as

td ¼
3

4
ffiffiffiffiffiffi
2π

p Ep

λg
ffiffiffiffiffi
ρg

p Δω
: ð5:3Þ

Note that decoherence by the effects of a graviton bath
seems to be compatible with the assumption, stated after
Eq. (2.48), that the graviton energy density accumulates
incoherently. A thermal bath of gravitons is maximally
incoherent, but is expected to produce length and hence
phase fluctuations. The key issue is that the typical graviton
wavelength be larger than the size of the quantum system.
In our case, the graviton energy density may be taken

to be the present value given by Eq. (3.9), and λg is
understood to be an average wavelength at the present
time. For the purpose of an estimate, we take the energy
density to be at the upper bound of 4% of the total energy
density of the universe found in Eq. (4.8). We also take
λg ¼ 2π=ωg ≈ 4π=ω0. That is, we use the GRSF model,
where the gravitons are created with an angular frequency
of ω0=2, and we are assuming that the present graviton bath
is composed of gravitons which have not been significantly
redshifted since their creation. This is reasonable, given that
in the time that a given graviton’s energy has been
redshifted by a factor of 1=2, its contribution to the energy
density has decreased by a factor of 1=16. With these
assumptions, we obtain a lower bound on the decoherence
time of

td ≳ 107 yr

�
ω

ωB

��
1 eV
Δω

�
; ð5:4Þ

where we have associated the mass of the scalar field φwith
the angular frequency of oscillations using ω ¼ ω0=2. For
ω ≈ ωB, this lower bound holds for quantum systems with a
geometric size small compared to λg ≈ 0.05 cm. This
decoherence time is quite long unless the energy difference
Δω is large.

VI. SUMMARY AND DISCUSSION

We have studied quantum creation of gravitons by small
scale factor oscillations in a spatially flat FRW background.
We use the perturbative method of Birrell and Davies [8,9],
which is an expansion in powers of a parameter describing
the deviation from conformal coupling. In our case, the
effective expansion parameter has the value 1=6, which
should be small enough for order of magnitude estimates,
but not for precise results.
Sinusoidal scale factor oscillations can arise in various

cosmological models and we consider two examples. The
first consists of the standard matter fields in general
relativity plus the addition of a minimally coupled scalar
field, φðxÞ, in a harmonic potential (GRSF model). The
second model involves a modification of Einstein gravity
in which a term proportional to the square of the Ricci
scalar is added to the gravitational action [fðRÞ gravity
model]. The same modified Einstein equation also arises,
perhaps more naturally, in semiclassical gravity theory,
where the classical gravitational field is coupled to the
renormalized expectation value of a quantum matter stress
tensor. The fðRÞ gravity model is equivalent to a scalar-
tensor theory of gravity, and the scale factor oscillations
may be described in terms of oscillations of the scalar field
in the scalar-tensor theory. Laboratory tests of the inverse
square law for gravity give an upper bound on the
coefficient of the R2 term in fðRÞ gravity, which leads
to a lower bound, ωB, on the oscillation frequency ω. By
contrast, in the GRSF model the value of ω is not bounded
from below. In both models the amplitude of oscillations is
a free parameter and presumably determined by initial
conditions. In the GRSF model, the quantum graviton
production is ruled by the standard gravitational wave
equation from general relativity, but in fðRÞ gravity,
the graviton creation is ruled by a modification of this
equation. This leads to different expressions for the graviton
creation rates in the two models. In both models, the
amplitude of the scale factor oscillations decays as the
universe expands. If āðtÞ is the background scale factor,
time averaged over oscillations, then the amplitude
decreases as āðtÞ−3 in the GRSF model, and as āðtÞ−3=2
in the fðRÞ model.
We first obtained expressions for the number and

energy density creation rates on an average background
of flat spacetime in both models, Eqs. (2.37), (2.47),
(2.51), and (2.52). We then extended our analysis to an
expanding universe by including two effects: damping
of the metric oscillations and density dilution and
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redshifting of the created gravitons. The results show
the differences between the two models with respect to
the dependence upon initial amplitude, angular fre-
quency, and damping rate of the oscillations. If the
mass of the scalar field in each model is ω, the angular
frequency of the metric oscillations is 2ω in the GRSF
model, and ω in fðRÞ gravity. The angular frequency of
the created gravitons is ω in both models. The initial
amplitude of oscillations is expected to be determined
by processes in the early universe, such as at reheating
or a subsequent phase transition.
We assumed the matter fields in both models to be the

usual perfect fluids associated with radiation, nonrelativ-
istic matter and a cosmological constant. We examined two
cosmological constraints on the energy density of the
created gravitons, and hence on the initial amplitude of
the oscillations for fixed ω. The first constraint comes from
big bang nucleosynthesis and the second from data on the
expansion rate of the late universe. Both constraints lead to
similar bounds on the initial metric oscillation amplitudes.
These bounds become meaningful if ω≳ 26 MeV. The
expansion rate data indicate that gravitons cannot comprise
more than about 4% of the present mass density of the
universe. We also used data from the dynamics of galaxy
clusters and the cosmic microwave background to argue
that the energy density of the scalar fields, which appear in
both of our models, must be small compared to the current
density of nonrelativistic matter. This in turn places strong
constraints on the amplitudes of the scalar field oscillations,
and hence on the amplitudes of the scale factor oscillations.
The latter constraints are much stronger than those obtained
from the effects of the created gravitons, but are more
dependent upon the details of our specific models, and
potentially less robust.
Finally, we examined the role of the bath of gravitons

produced by the GRSF model in decohering quantum
systems, using the results of Ref. [33]. Long wavelength
gravitons produce quantum spacetime geometry fluctua-
tions which in turn lead to length and phase fluctuations
in a system exhibiting quantum interference. The phase
fluctuations lead to a loss of contrast in the interference
pattern. Using our upper bound on the present graviton
energy density from data of the Hubble parameter in the
late universe, leads to a lower bound on the characteristic
decoherence time, td, given in Eq. (5.4). This bound
allows the decoherence time to be quite long unless the
energy difference of interfering components of the system
is large.
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APPENDIX A: DYNAMICS OF THE GRSF MODEL

In this Appendix, we will derive Eqs. (2.20) and (3.7) for
the GRSF model in a spatially flat FRW background.
Consider the Friedmann equation for this model,

Eq. (2.17), with the energy density for matter fields, ρM, con-
sisting of the usual energy density components of radiation
(ρr ¼ ρr;0=a4), nonrelativistic matter (ρm ¼ ρm;0=a3), and
vacuum (ρΛ). Here ρr;0 and ρm;0 are the current energy
density of radiation and nonrelativistic matter, respectively.
Taking into account that ρφ ¼ ð∂tφÞ2=2þ ðωφÞ2=2 and
Eq. (2.19), in the regime H ≪ ω, we have

3H2M2
pl ≈ ρ̄total þ

3

2
φ2
i H̄ω

�
āi
ā

�
3

cosðωtÞ sinðωtÞ; ðA1Þ

where ρ̄total≡ρr;0=ā4þρm;0=ā3þρΛ;0þðω2φ2
i =2Þðāi=āÞ3

and H̄ ≡ _̄a=ā. Define a ¼ āð1þ δaÞ where δa ≪ 1 is the
oscillating part of the scale factor, which leads to
H ¼ _a=a ≈ _̄a=āþ _δa ¼ H̄ þ _δa. After a binomial expan-
sion in powers of φi=Mpl, Eq. (A1) becomes

H ≈
�
ρ̄total
3M2

pl

�
1=2

þ φ2
iω

8M2
pl

�
āi
ā

�
3

sinð2ωtÞ: ðA2Þ

By inspection, we have that _δa corresponds to the second
term on the right side of Eq. (A2). If we integrate _δa during a
period of time △tosc greater than 1=ω but much less than
1=H, the background scale factor is essentially constant in
comparison to the oscillating function sinð2ωtÞ. Then,
setting the integration constant to be zero, we have

δa ¼ −
φ2
i

16M2
pl

�
āi
ā

�
3

cosð2ωtÞ: ðA3Þ

Taking into account that a ¼ āð1þ δaÞ, we obtain the result
shown by Eq. (2.20).
On time scales much longer than△tosc, we may consider

the cosmological evolution of the model to be time
averaged over oscillations and the original Friedmann
equation, Eq. (2.17), becomes

3H̄2M2
pl ¼

ρr;0
ā4

þ ρm;0

ā3
þ ρΛ;0 þ

φ2
iω

2

2

�
āi
ā

�
3

: ðA4Þ

Note that this equation, in a rough approximation, becomes
Eq. (3.8) when ρφðtÞ < ρmðtÞ.

APPENDIX B: DYNAMICS OF THE f ðRÞ
GRAVITY MODEL

In this Appendix, we will derive Eqs. (2.31) and (3.7) for
the fðRÞ gravity model in a spatially flat FRW background.
The action for fðRÞ gravity can be expressed in the

Jordan frame (JF) as

S ¼ M2
pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ

Z
d4xLMðgμν;ΨMÞ; ðB1Þ
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whereLM is thematter Lagrangian,ΨM arematter fields and
we set fðRÞ¼Rþa2R2=2. Recall that the reduced Planck
mass is Mpl ≡ ð8πGÞ−1=2. Let us rewrite this action as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
FðRÞR −UðRÞ

�

þ
Z

d4xLMðgμν;ΨMÞ; ðB2Þ

where UðRÞ ¼ M2
pl½FðRÞR − fðRÞ�=2 with FðRÞ≡

dfðRÞ=dR. The action can be transformed to the Einstein
frame (EF) by introducing the conformal transformation
~gμν ¼ FðRÞgμν, where FðRÞ is the conformal factor and the
tilde refers to any quantity in the Einstein frame. We
introduce an auxiliary scalar field ϕ such that

FðRðϕÞÞ ¼ e

ffiffiffiffi
2=3

p
Mpl

ϕ
: ðB3Þ

After some manipulation, the action of Eq. (B2) under the
conformal transformation becomes [22]

SEF ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
~R −

1

2
~gμν∂μϕ∂νϕ − VðϕÞ

�

þ
Z

d4xLMðe−
ffiffiffiffi
2=3

p
ϕ

Mpl ~gμν;ΨMÞ; ðB4Þ

where VðϕÞ ¼ UðRðϕÞÞ=FðRðϕÞÞ2. Note that the degrees
of freedom in the field gμν in the original frame or Jordan
frame (JF) split in the Einstein frame into a massless spin-2
field ~gμν and a massive scalar field ϕ. Indeed, the action in
this last frame is just the usual action in GR with an
additional scalar field which propagates freely in the
spacetime minimally coupled to gravity but nonminimally
coupled to the matter fields. For simplicity, we work in the
EF to solve the cosmological equations of motion and then
we come back to the JF in order to interpret our results. We
interpret the JF as the physical frame in which test particles
move along geodesics and the energy momentum tensor of
the matter fields is covariantly conserved.
Recall that the metric in the JF is given by Eq. (2.1). The

metric in the EF may be expressed as

d~s2 ¼ F½−dt2 þ a2ðtÞdx2� ¼ −d~t2 þ ~a2ð~tÞdx2; ðB5Þ
where d~t ¼ ffiffiffiffi

F
p

dt and ~a ¼ ffiffiffiffi
F

p
a. The variation of the

action, Eq. (B4), with respect to the scalar field ϕ and the
metric ~gμν result, respectively, in the following cosmologi-
cal equations of motion [23]:

3 ~H2M2
pl ¼ ~ρM þ ~ρϕ ¼ ~ρM þ 1

2
ð ~∂tϕÞ2 þ VðϕÞ; ðB6Þ

~∂2
tϕþ 3 ~H ~∂tϕ ¼ −

dVðϕÞ
dϕ

−
~TMffiffiffi
6

p
Mpl

¼ −
∂Veffðϕ; ~aÞ

∂ϕ ;

ðB7Þ

with

Veffðϕ; ~aÞ ¼ VðϕÞ þ ~ρM ¼ 3ω2M2
pl

4



1 − e

−
ffiffiffiffi
2=3

p
ϕ

Mpl

�2
þ ~ρM:

ðB8Þ
Here ~H is the Hubble parameter in the EF, and ~TM ¼
−~ρM þ 3 ~pM is the trace of the energy momentum tensor of
the matter fields in the EF, where ~ρM and ~pM refer to the
energy density and pressure, respectively. In addition,
Veffðϕ; ~aÞ is the effective potential acting on the scalar
field, and ω ¼ 1=

ffiffiffiffiffiffiffi
3a2

p
, as defined in Eq. (2.25). Let ~ρM

consist of the usual energy density components of radiation
(ρr¼ ρr;0=a4 in the JF), nonrelativistic matter (ρm¼ ρm;0=a3

in the JF), and vacuum (ρΛ in the JF), where ρr;0 and ρm;0 are
the current energy density of radiation and nonrelativistic
matter, respectively. Then, using the relation between
both frames for the energy density ~ρM ¼ F−2ρMðaÞ ¼
F−2ρMðF−1=2 ~aÞ, the effective potential can be written as

Veffðϕ; ~aÞ ¼ VðϕÞ þ ρ̄rð ~aÞ þ ρ̄mð ~aÞe
− ϕffiffi

6
p

Mpl þ ρΛe
−4ϕffiffi
6

p
Mpl ;

ðB9Þ
where ρ̄mð ~aÞ ¼ ρm;0= ~a3 and ρ̄rð ~aÞ ¼ ρr;0= ~a4.
We analyze the cosmological effects of this model under

the assumption of jϕj=Mpl ≪ 1 and in the regime ~H ≪ ω
where the oscillation time of the scalar field is much less
than the expansion time in the EF. We do not treat ϕ as the
inflaton field and neglect its possible decay in other
particles.
When jϕj=Mpl ≪ 1, the potential VðϕÞ shown in Fig. 3

can be approximated by a quadratic potential near the
minimum at ϕ ¼ 0 leading to VðϕÞ ≈ ω2ϕ2=2.
Equation (B9) may also be expanded to write

Veffðϕ; ~aÞ ≈
1

2
ω2ϕ2 þ constantþOðjϕj=MplÞ: ðB10Þ

To leading order, Eq. (B7) becomes

~∂2
tϕþ 3 ~H ~∂tϕþ ω2ϕ ¼ 0: ðB11Þ

The scalar field oscillates around the minimum of VðϕÞ
with angular frequency ω and with an amplitude that
redshifts as ~a−3=2 according to [23]

ϕð~tÞ ¼ ϕi

�
~ai
~a

�
3=2

cosðω~tÞ; ðB12Þ

where ϕi > 0 and ~ai corresponding to the oscillation
amplitude and scale factor, respectively, when oscillations
start at time ~ti. The derivation of Eq. (B12) can be obtained
directly from the equation of motion of the scalar field. We
will show this for the cases of a power law expansion and de
Sitter spacetime in the EF, which are the cases of greatest
interest. Note that ~að~tÞ is a solution of Eq. (B6). To leading
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order, the scalar field energy density may be ignored
compared to the matter contribution. This leads to the
usual cosmological solutions, such as ~að~tÞ ∝ ~t1=2 for radi-
ation, etc.
For a power law expansion, let ~a ∝ ~tc with c a constant.

Then ~H ¼ c=~t and Eq. (B11) becomes

~∂2
tϕþ 3c

~t
~∂tϕþ ω2ϕ ¼ 0; ðB13Þ

whose solution is

ϕð~tÞ ¼ ~t
1−3c
2 ½C1J3c−1

2
ðω~tÞ þ C2Y3c−1

2
ðω~tÞ�; ðB14Þ

where C1 and C2 are constants and JνðzÞ and YνðzÞ are the
Bessel functions of the first and second kind, respectively.
The limit ~H ≪ ω implies ω~t ≫ c, and we assume that c is
of order one. Using the asymptotic forms of JνðzÞ and
YνðzÞ for ω~t ≫ 1, we have

ϕð~tÞ ∝ ~t−3c=2 cosðω~tÞ; ðB15Þ

∝ ~a−3=2 cosðω~tÞ; ðB16Þ

where we have ignored the phase in the argument of the
cosine function.
For the case of de Sitter spacetime, let ~a ∝ expð ~H ~tÞ.

Then Eq. (B11) becomes

~∂2
tϕþ 3 ~H ~∂tϕþ ω2ϕ ¼ 0: ðB17Þ

Let ϕð~tÞ ∝ expðiθ~tÞ in Eq. (B17), which leads to

θ2 − 3i ~Hθ − ω2 ¼ 0: ðB18Þ

The solution for θ is

θ ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
3 ~H
2ω

�2
s

þ 3

2
i ~H; ðB19Þ

where we have selected the positive root. We can approxi-
mate Eq. (B19) as

θ ≈ ωþ 3

2
i ~H þO

�
~H2

ω

�
: ðB20Þ

Then the real solution of Eq. (B17) has the form

ϕð~tÞ ∝ e−3 ~H ~t =2 cosðω~tÞ; ðB21Þ
∝ ~a−3=2 cosðω~tÞ: ðB22Þ

Equations (B16) and (B22) confirm the general expression,
Eq. (B12), for the cases of primary interest.
We may now combine Eq. (B3) with ~a ¼ ffiffiffiffi

F
p

a to write,
under the condition jϕj ≪ Mpl,

aðtÞ ¼ 1ffiffiffiffi
F

p ~að~tÞ ¼ e
− ϕð~tÞffiffi

6
p

Mpl ~að~tÞ ≈ ~aðtÞ
�
1 −

1ffiffiffi
6

p
Mpl

ϕðtÞ
�
;

ðB23Þ
where we have used t ≈ ~tþOðjϕj=MplÞ. Next we use
Eq. (B12) as ϕð~tÞ ≈ ϕðtÞ ¼ ϕið ~ai= ~aÞ3=2 cosðωtÞ in this
expression, and then average over the oscillations to find
that āðtÞ ≈ ~aðtÞ. The result may be written as Eq. (2.31).
Note that the assumption jϕj=Mpl ≤ ϕi=Mpl ≪ 1 is equiv-

alent to Ei ≪ 1 since Ei ≡ ½ϕi=ð
ffiffiffi
6

p
MplÞ�.

Now, note that in the regime jϕj=Mpl ≪ 1 and
~H=ω ≪ 1, the scalar energy density in the Einstein frame
can be expressed as ~ρϕ ≈ ð1=2Þð ~∂tϕÞ2 þ ðω2ϕ2=2Þ ≈
ðω2ϕ2

i =2Þð ~ai= ~aÞ3 by using the expression for ϕð~tÞ from
Eq. (B12). Then, the Friedmann equation in the Einstein
frame, Eq. (B6), can be expressed as

3 ~H2ð~tÞM2
pl ¼

�
ρr;0
~a4ð~tÞ

�
þ
�
ρm;0

~a3ð~tÞ
�
e
− ϕð~tÞffiffi

6
p

Mpl

þ ρΛe
− 4ϕð~tÞffiffi

6
p

Mpl þ ω2ϕ2
i

2

�
~ai
~að~tÞ
�
3

: ðB24Þ

Taking t ≈ ~tþOðjϕj=MplÞ, ~aðtÞ ≈ āðtÞ, and Taylor
expanding the exponential functions in Eq. (B24), we
obtain

3

�
1

āðtÞ
dāðtÞ
dt

�
2

M2
pl ≈

�
ρr;0
ā4ðtÞ

�
þ
�
ρm;0

ā3ðtÞ
�
þ ρΛ

þ ω2ϕ2
i

2

�
āi
āðtÞ

�
3

þOðjϕj=MplÞ;

ðB25Þ
where āðtiÞ ¼ āi. Note that Eq. (B25), in a rough approxi-
mation, becomes Eq. (3.8) when ρϕðtÞ < ρmðtÞ.

FIG. 3. The field potential VðϕÞ, Eq. (B8), for the model
fðRÞ ¼ Rþ ða2=2ÞR2.
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