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Motivated by a recent experiment of J. Steinhauer, we reconsider the spectrum and the correlations of the
phonons spontaneously emitted in stationary transonic flows. The latter are described by “waterfall”
configurations which form a one-parameter family of stable flows. For parameters close to their
experimental values, in spite of high gradients near the sonic horizon, the spectrum is accurately
Planckian in the relevant frequency domain, where the temperature differs from the relativistic prediction
by less than 10%. We then study the density correlations across the horizon and the nonseparable character
of the final state. We show that the relativistic expressions provide accurate approximations when the initial
temperature is not too high. We also show that the phases of the scattering coefficients introduce a finite
shift of the location of the correlations which has so far been overlooked. This shift is due to the asymmetry
of the flow across the horizon, and persists in the dispersionless regime. Finally we show how the formation
of the sonic horizon modifies both local and nonlocal density correlations.
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I. INTRODUCTION

In a recent work [1], J. Steinhauer reported the obser-
vation of the spectrum and correlations of phonons emitted
in a flowing condensed atomic gas [2]. The flow was
stationary to a good approximation. Importantly, its veloc-
ity vðxÞ crossed the sound speed cðxÞ, so that there was a
sonic horizon [3]. On a qualitative level, the observations
agree rather well with the predictions one can draw from
the analogy with black hole radiation [4]. First, on the
subsonic side, one expects to find a steady flux of phonons
with a spectrum approximately thermal and with a temper-
ature fixed by the analog surface gravity, at least when the
healing length is much smaller than the scale of the horizon
surface gravity [5–9]. Second, in spite of dispersive effects
which radically modify the propagation near the horizon
[6], one expects that each of these quanta comes from a pair
of entangled phonons, the partner carrying negative energy
and propagating on the other side of the sonic horizon, as is
the case in relativistic settings [10–12]. Two important
features have been observed in [1]. On the one hand, near
the sonic horizon, the background flow was observed to be
close to a waterfall solution [13] with a high Mach number
in the supersonic region Mþ ≈ 5. On the other hand, the
initial temperature was reported to be low enough so that
the initial state can be considered to be the incoming
vacuum. Hence the phonons should be mainly emitted by
spontaneous amplification of vacuum fluctuations, rather

than stimulated by preexisting phonons (as is the case when
working at higher temperatures). In fact, from the observa-
tion of density-density perturbations [14,15], J. Steinhauer
also reported that, for large frequencies, the intensity of the
correlations fulfils an inequality which implies that the final
phonon state is nonseparable, as is the case when the
spontaneous channel is the dominant one [16–21].
When working in vacuum and with background flows

described by waterfall solutions, the spectral properties and
coherence of the emitted phonons can be determined
numerically by solving the Bogoliubov-de Gennes
(BdG) equation. In this paper, we focus on the solution
with a Mach number Mþ ¼ 5 in the supersonic region. To
test the sensitivity of the predictions, we also consider
nearby flows with Mþ ¼ 5ð1� 0.25Þ. Despite their high
spatial gradients (which are larger than the inverse healing
length evaluated at the sonic horizon), we see that the
spectrum accurately follows the Planck law in the relevant
low-frequency domain. We also observe that the scattering
coefficients involving the copropagating mode [9,22] are
about ten times smaller than the coupling between the two
counterpropagating modes carrying opposite energy
(encoding the analog Hawking effect [3,5]). Hence, to a
fairly good approximation, the spectral properties can be
accounted for by their relativistic expression. This stops
being true when the initial temperature of the condensate is
much higher than the Hawking temperature fixed by the
surface gravity.
We then study the correlations between the phonons

emitted on opposite sides of the sonic horizon. We find that
the norm and the phase of the Fourier components of the term
encoding these correlations are also well approximated by
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their relativistic expressions. Moreover, the weakness of the
couplings to the copropagating mode preserves the non-
separable character of the final phonons up to relatively high
initial temperatures. Focusing on the phase of the correlation
term, we find that its dependence on the frequency induces a
nontrivial shift of the locus of the correlations with respect to
the expression of [14]. Interestingly, this shift persists in the
dispersionless limit when sending to 0 the healing length. It
originates from the large asymmetry of the background flow
near the horizon.
The paper is organized as follows. In Sec. II, we first

review the basic properties of waterfall solutions and the
calculation of the scattering coefficients of linear density
perturbations. We then analyze the spectral properties of the
emitted phonons on waterfall flows with Mþ ≈ 5. In
Sec. III, we study the strength of the density correlations
of the pairs of phonons on the same flows. We conclude in
Sec. IV. In Appendix A, to take into account the three-
dimensional nature of the flow, we study the waterfall
solutions of the nonpolynomial Schrödinger equation. We
show that the phonon spectrum hardly varies with respect
to that obtained using the Gross-Pitaevskii equation (GPE).
In Appendix B we report numerical results which indicate
that local perturbations are expelled from the near horizon
region. Appendixes C and D are devoted to the study of
various properties of the two-point function in dispersion-
less settings, namely the time-dependent modifications
induced by the formation of the horizon in the former
and the calculation of the above-mentioned shift in asym-
metrical flows in the latter. Finally, Appendix E focuses on
the phase of individual scattering coefficients.

II. SPONTANEOUS EMISSION OF PHONONS
IN TRANSONIC FLOWS

A. Parametrization of the background flows

To describe the background flows, we consider a one-
dimensional, dilute, weakly interacting atomic Bose-
Einstein condensate with repulsive interactions [2]. In
the mean field approximation, the condensed atoms are
described by a complex field ψðt; xÞ which satisfies the
GPE,

iℏ∂tψ ¼ −
ℏ2

2m
∂2
xψ þ VðxÞψ þ gψ�ψ2: ð1Þ

Here V is the external potential and g the effective one-
dimensional two-body coupling; see Appendix A. We
assume that g is a constant and that V only contains the
sharp potential drop engendering the sonic horizon. That is,
we neglect the gradients of the longitudinal shallow har-
monic potential used in the experiment [1]. In this approxi-
mation,V only depends on x in the frame at rest with respect
to the sharp potential. Relaxing this approximation, one
would obtain a time-dependent inhomogeneous system,
rather similar to that numerically studied in [23–25].

To reduce the number of parameters, it is useful to
define the nondimensional quantities x≡ x=X, t≡ t=T,
ψðx; tÞ≡ ffiffiffiffi

X
p

ψðx; tÞ, VðxÞ≡ ðmX2=ℏ2ÞVðxÞ, and g≡
ðmX=ℏ2Þg, where T ¼ mX2=ℏ. In the following we only
work with these dimensionless quantities. In this system,
the healing length ξ≡ ℏ=

ffiffiffiffiffiffiffiffiffi
mgρ

p
(where ρ ¼ ψ�ψ is the

mean atomic density) becomes ξ ¼ 1=
ffiffiffiffiffiffi
g ρ

p
. As there is no

ambiguity, from now on, we remove the bars to avoid
cumbersome notations. The GPE then becomes

i∂tψ ¼ −
1

2
∂2
xψ þ VðxÞψ þ gψ�ψ2: ð2Þ

We look for stationary solutions of the form

ψðx; tÞ ¼
ffiffiffiffiffiffiffiffiffi
ρðxÞ

p
exp

�
i
Z

x

0

vðyÞdy
�
; ð3Þ

where ρ and v are two real-valued functions. (Note that a
nonzero frequency can be absorbed by adding a constant
to V.) Plugging this ansatz into Eq. (2) and taking the
imaginary part gives the conservation of the current
∂xðρvÞ ¼ 0. Setting the scale X so that ρv ¼ 1, the real
part of Eq. (2) becomes

1

2
∂2
xðρ1=2Þ ¼ Vρ1=2 þ gρ3=2 þ 1

2ρ3=2
: ð4Þ

As a simple model of the sharp variation of the potential
used in [1], we consider a steplike potential of the form

VðxÞ ¼
�
V− x < 0

Vþ x > 0
; ð5Þ

where ðVþ; V−Þ ∈ R2. In what follows, the subscript �
denotes the sign of x. In general, integrating Eq. (4) over x
in a region of homogeneous potential gives the square of
∂xρ as a polynomial of degree 3. In our case we have two
polynomials: one defined on the positive half-line and one
on the negative half-line. We now focus on waterfall
solutions [13]. Since these solutions are asymptotically
uniform on both sides, the two integration constants must
be chosen so that each polynomial has a double root,

ð∂xρÞ2 ¼ 4gðρðxÞ − ρ1;�Þ2ðρðxÞ − ρ2;�Þ; ð6Þ

where the constants ρ1;�, ρ2;� obey 2ρ1;�þρ2;� ¼−2V�=g
and ρ21;�ρ2;� ¼ 1=g. ρ1;� is the asymptotic value of ρ at
x → �∞, while ρ2;− is the density at the bottom
of the (unique) stationary soliton solution in the left region.
A waterfall solution is obtained by matching a uniform
configuration ρ ¼ ρ1;þ for x > 0 with a half-soliton in the
region x < 0. This solution thus requires ρ2;− ¼ ρ1;þ. As a
result, the solution is fully determined by the asymptotic
densities ρ1;− and ρ1;þ.
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At this point, it is useful to notice that the GPE is
invariant under the rescaling

ψ → λψ ; x → λ2x; t → λ4t;

V → λ−4V; g → λ−6g; ð7Þ

which preserves the condition J ¼ 1. In the following,
unless explicitly stated, the numerical values we give
(explicitly or in plots) involve only quantities invariant
under this rescaling. This allows us to work with a one-
dimensional set of waterfall solutions, which can be para-
metrized by the ratio ρ1;−=ρ1;þ.
Introducing the Mach number MðxÞ≡ vðxÞ=cðxÞ ¼

1=ðgρ3ðxÞÞ1=2, one gets Mþ ≡ limx→∞MðxÞ ¼ ρ1;−=ρ1;þ
and M− ≡ limx→−∞MðxÞ ¼ M−1=2

þ . Since the waterfall
solution is supersonic for x → þ∞, this imposes
ρ1;−=ρ1;þ > 1, i.e., V− < −1.5gρ1;þ. The other quantities
can be expressed in terms of ρ1;− and ρ1;þ, namely,
g ¼ ρ−11;þρ

−2
1;−, ρ2;þ ¼ ρ1;þM2þ, Vþ ¼ −gð2ρ1;þ þ ρ2;þÞ=2,

V− ¼ −gð2ρ1;− þ ρ2;−Þ=2.
In brief, when working with a uniform g and a steplike V,

up to an overall scale fixed by λ, there is a one-dimensional
series of inequivalent solutions parametrized by Mþ > 1.1

Explicitly, these solutions read

ρðxÞ=ρ1;þ ¼
�
Mþ þ ð1 −MþÞðcosh ðσxÞÞ−2 x ≤ 0

1 x ≥ 0
;

ð8Þ

where σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ − 1

p
=ξþ. In the upper plots of Fig. 1 we

show the (nondimensional) density profile and Mach
number for three nearby flows. The central blue curve
corresponds toMþ ¼ 5, close to its value in the experiment
[1]. The two others are obtained with relative changes of
25%, i.e., Mþ ¼ 6.25 (orange) and 3.75 (green). We use
these flows to illustrate the typical behavior of the scatter-
ing coefficients and their sensitivity to Mþ. It should be
also noticed that these flows are stable, and act as attractors
in that localized perturbations propagate outwards from the
sonic horizon leaving the solution intact; see Appendix B.
Their stability and the smallness of the nonpolynomial
parameter (discussed in Appendix A) probably explain why

the flow observed in Ref. [1] has a profile in rather good
agreement with that of Eq. (8); see Fig. 1(b) in [1].2

In the lower left plot of Fig. 1 we represent the gradient
κðxÞ ¼ ∂xðv − cÞ for the following reason. If the analogy
with gravity is accurate [3,5,9], the spectrum of phonons
emitted from the sonic horizon should closely follow the
Planck law with an effective temperature given (in units
where the Boltzmann and Planck constants are equal to 1)
by TH ¼ κH=2π, where κH ≡ κðxHÞ is the analog surface
gravity and xH gives the location of the sonic horizon where
MðxÞ ¼ 1. In the waterfall flows, it is given by [13]

κH ¼ 3
cþ
ξþ

M1=3
þ ðM1=3

þ − 1Þ3=2ðM1=3
þ þ 1Þ1=2: ð9Þ

It can be seen in the figure that κH is only ≈35% of the
maximal value of κðxÞ. This is in sharp contrast with
the symmetrical flows considered in [9]. It implies that the
deviations from the Planck spectrum will be larger than in
symmetrical flows with the same κH [26].
It should also be noticed that κH ≈ 5.1cþ;5=ξþ;5, where

cþ;5 and ξþ;5 are the asymptotic downstream sound velocity
and healing length for the flow with Mþ ¼ 5. By com-
parison, the dispersive frequency evaluated at the horizon
for the same flow is cðxHÞ=ξðxHÞ ≈ 2.9cþ;5=ξþ;5. Hence
κHξH=cH ≈ 1.7. Since this ratio is larger than unity, one
could a priori expect that the relativistic expressions will
not provide an accurate description of the emission spec-
trum. However, we will see that this is not the case. The
validity of the relativistic expressions comes from the fact
that the flows we consider are deeply supersonic since
Mþ ∼ 5; see below and [27].
We finally notice that the values of κHξþ;5=cþ;5 for the

three represented flows characterized byMþ ¼ 3.75, 5, and
6.25 are 5.5, 5.1, and 4.6, respectively. Contrary to what
could be expected, κH is larger for the flowswith smallerMþ.
To further study the variations of TH withMþ in the unit of
various dispersive scales, on the lower right plot of Fig. 1, we
represent TH multiplied by ξH=cH, ξþ=cþ, ξ−=c−, and
ξ−;5=c−;5. The first three products go to 0 like ðMþ −
1Þ3=2=ð ffiffiffi

6
p

πÞ whenMþ → 1. WhenMþ → ∞, they behave
differently: ξHTH=cH ∼ 3M1=3

þ =ð2πÞ, ξ−TH=c− ∼ 3=ð2πÞ,

1In physical terms, for a given type of atom and when
assuming that g does not vary with x, two independent parameters
also characterize these waterfall solutions. These can be taken to
be the density ρ1;− (which is determined by the shallow
longitudinal harmonic potential and the total number of atoms)
and the depth of the potential Vþ − V−. Then, requiring that the
solution be stationary and asymptotically homogeneous on both
sides fixes the value of the current J, and thus the relative velocity
of the sharp potential drop with respect to the harmonic potential
used in [1].

2The upstream and downstream values of the condensate
velocity v and sound speed c reported in [1] seem to be
incompatible with the conservation of the atom flux. Indeed,
the product c2v is constant for any stationary solution of the one-
dimensional Gross-Pitaevskii equation, while it varies by ∼20%
when using the reported values. When taking into account the
three-dimensional character of the flow, c2v can vary; see
Appendix A. However, in the experimental conditions, the
modification associated with this refined description is at most
of the order of 10%, which is too small to explain the discrepancy.
As a result the value of Mþ obtained by using the downstream
values of v and c differs from that obtained with the upstream
values and the hypothesis that the flow is described by a waterfall
solution.
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and ξþTH=cþ ∼ 3Mþ=ð2πÞ. Interestingly, when divided by
a fixed frequency, e.g., c−;5=ξ−;5, TH is a nonmonotonic
function ofMþ, themaximumbeing reached forMþ ¼ 3.17.
It behaves asTHξ−;5=c−;5 ∼

ffiffiffiffiffiffiffiffi
2=3

p ðMþ − 1Þ3=2 forMþ → 1

and THξ−;5=c−;5 ∼ 3M−1þ for Mþ → ∞.

B. Spontaneous emission of phonons, generalities

To describe the propagation of linear density fluctuations
in the above flows, we use quantum mechanical settings
[2]. We follow [9] where more details can be found. It is
convenient to write the atomic field operator as

ψ̂ðx; tÞ ¼ ψ0ðx; tÞð1þ ϕ̂ðx; tÞÞ; ð10Þ

where ψ0 is a known stationary solution of Eq. (2) with
mean density ρðxÞ and velocity vðxÞ. To first order in ϕ̂, one
obtains the BdG equation, which here reads

ið∂t þ vðxÞ∂xÞϕ̂ ¼ −
1

2ρðxÞ ∂x½ρðxÞ∂xϕ̂� þ gρðxÞðϕ̂þ ϕ̂†Þ:

ð11Þ

Since the background flow is stationary, we look for
stationary solutions of the form

ϕ̂ωðt; xÞ ¼ e−iωtϕωðxÞâω þ ðe−iωtφωðxÞâωÞ†: ð12Þ

The operators âω and â†ω destroy and create a phonon of
frequency ω, and obey the usual bosonic commutation
relations. This particular form of the decomposition of the
field operator follows from the antilinear term in Eq. (11). It
can be easily shown that the stationary c-number mode
doublet ðϕωðxÞ;φωðxÞÞ obeys

FIG. 1. Plots of the rescaled atomic density ρ=ρþ (top, left) and the Mach number (top, right) for three waterfall solutions similar to
that realized in [1]. The flow is from left to right and the subsonic region is on the left side. The asymptotic values of the Mach numbers
for the green (dotted), blue (continuous), and orange (dashed) curves are, respectively, M− ≈ 0.52; 0.45; 0.4 and Mþ ¼ 3.75, 5, 6.25.
The unit of the horizontal axis is ξþ;5; the healing length in the supersonic region for the flow with the central value Mþ ¼ 5 (blue
curves). The plots are shifted so that the sonic horizonM ¼ 1 (marked by a horizontal red dashed line the upper right panel) is at x ¼ 0.
The bottom left plot shows the profile of the adimensionalized gradient κðxÞξþ;5=cþ;5, where cþ;5 is the asymptotic downstream sound
velocity for the flow with Mþ ¼ 5. One clearly sees that κðxÞ identically vanishes on the right of the potential barrier located near
x=ξþ;5 ¼ 0.4. When evaluated at x ¼ 0, κ gives the surface gravity κH of Eq. (9). As functions of Mþ, the bottom right plot shows the
Hawking temperature TH ¼ κH=2π adimensionalized by ξH=cH (blue, continuous), ξþ=cþ (green, dotted), ξ−=c− (orange, dashed), and
ξ−;5=c−;5 (red, dot-dashed), for ρþ ¼ 1. The first three values increase with Mþ, unlike the last one which is not monotonic.
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�
ðωþ iv∂xÞ −

1

2ρ
∂xρ∂x − c2

�
ϕω ¼ c2φω;

−
�
ðωþ iv∂xÞ þ

1

2ρ
∂xρ∂x þ c2

�
φω ¼ c2ϕω: ð13Þ

Introducing the notation W1 ¼ ðϕ1;φ1Þ and W2 ¼
ðϕ2;φ2Þ, the inner product reads

ðW1jW2Þ≡
Z þ∞

−∞
dx ρðxÞðϕ�

1ϕ2 − φ�
1φ2Þ: ð14Þ

One verifies that it is conserved in time for any pair of
solutions of Eq. (11). We call ðW1jW1Þ the norm of the
solution represented by the doublet W1.
In the asymptotic regions where v and ρ are

uniform, any solution of Eq. (13) can be written as a
superposition of plane wave doublets Wω;kðt; xÞ ¼
ðUk; VkÞ expð−iωtþ ikxÞ, where ω and k are related by
the dispersion relation

Ω2 ¼ ðω − vkÞ2 ¼ gρk2 þ k4

4
: ð15Þ

Here Ω≡ ω − vk is the angular frequency in the rest frame
of the condensed atoms. This dispersion relation is repre-
sented graphically in Fig. 2. In the following we consider
only the caseω > 0. Then, forΩ > 0,Uk and Vk are related
by Vk ¼ Dðk; ρÞUk, where

Dðk; ρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gρk2 þ k4=4

p
gρ

−
�

k2

2gρ
þ 1

�
: ð16Þ

When Uk and Vk satisfy the usual relation jUkj2−jVkj2¼1,
the doublets Wω;k obey

ðWω;kjWω0;k0 Þ ¼ 2πρδðk − k0Þ: ð17Þ

For Ω < 0, the solutions of Eq. (13) are doublets Wω;k

obtained by exchanging the two components of those
with Ω > 0 and taking their complex conjugate.
When working with i∂t ¼ ω > 0, these doublets are
thus given by W−ω;−kðt; xÞ≡ ðV�

k; U
�
kÞ expð−iωtþ ikxÞ.

Importantly, they have a negative norm: ðWω;kjWω0;k0 Þ ¼
−ðWω;kjWω0;k0 Þ. The phonons described by W−ω;−k carry a
negative energy equal to −ω (in units where ℏ ¼ 1).
We now study separately subsonic and supersonic flows

to identify the number of independent solutions. In a
subsonic flow, i.e., 0 < v < c, there are two real roots in
k for ω > 0.

(i) kuω is counterpropagating (its group velocity is
negative in the rest frame of the condensate) and
left moving in the frame of VðxÞ of Eq. (1);

(ii) kv;bω is copropagating and right moving.
The corresponding modes are described by positive-norm
doubletsWω;k. There are also two complex roots with equal
and opposite imaginary parts. A superscript b has been
added to the copropagating root in order to distinguish it
from the root kv;pω found in a supersonic flow.
In a supersonic flow parametrized by Mþ > 1, there is a

critical frequency given by [9]

ωmax ¼
cþ
ξþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ þ 8

qr �
2ðM2þ − 1Þ

3Mþ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ þ 8

p �
3=2

:

ð18Þ
When ω crosses ωmax by increasing values, the two largest
roots merge and become complex. For 0 < ω < ωmax, the
four roots kω are real. From left to right in the right panel of
Fig. 2, they are

(i) kdω is counterpropagating and left moving;
(ii) kv;pω is copropagating and right moving;
(iii) −ku−ω is counterpropagating and right moving;
(iv) −kd−ω is counterpropagating and left moving.

FIG. 2. Plot of the dispersion relation in homogeneous subsonic (left) and supersonic (right) flows. The horizontal, dashed, black line
corresponds to a fixed frequency. The continuous curves correspond to positive values of Ω ¼ ω − vk and the dashed ones to negative
values ofΩ. One notices that the two extra roots on the right of the right plot haveΩ < 0. As explained in the text, they describe phonons
carrying a negative energy in the frame where the potential V is stationary. These two extra roots become complex when ω reaches the
critical frequency ωmax of Eq. (18), which is here indicated by a dotted line.
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The superscript “d” on the first and last roots indicates that
they are dispersive, i.e., that they do not vanish in the limit
ω → 0. The minus signs in front of the last two roots
indicate that the corresponding modes are negative-norm
doubletsW−ω;−kðt; xÞ describing negative-energy phonons.
These two roots merge when ω reaches ωmax.
When considering transonic stationary flows which

interpolate from a subsonic to a supersonic region, these
asymptotic modes are mixed by the scattering on the region
where ρ and v depend on x. Then three globally defined and
linearly independent doublets are found for ω < ωmax.
Three of the above roots, namely kdω, −kd−ω, and kv;bω ,
characterize the three incoming modes, each of them
containing asymptotically only one wave with a group
velocity oriented towards the horizon; see Fig. 3. The three
other roots characterize the three outgoing modes, each of
them containing only one asymptotic wave with a group
velocity oriented away from the horizon. Following [9], we
write the 3 × 3 matrix relating these two mode bases as

0
B@

ϕd;in
ω

ðφd;in
−ω Þ�
ϕv;in
ω

1
CA ¼

0
B@

αω β−ω ~Aω

β�ω α�−ω ~B�
ω

Aω Bω αvω

1
CA
0
B@

ϕu
ω

ðφu
−ωÞ�
ϕv
ω

1
CA ð19Þ

where the superscripts on the modes have the same
meaning as those of the wave vectors. To avoid any
ambiguity, we have labeled the inmodes by the superscript
“in”. For the out modes instead, the superscript “out” is
implicit. In each basis, the three globally-defined doublets
Wa

ωðxÞ ¼ ðϕa
ωðxÞ;φa

ωðxÞÞ are orthogonal to each others and
have a positive unit norm

ðWa
ωjWb

ω0 Þ ¼ δabδðω − ω0Þ: ð20Þ

This normalization differs from that of Eq. (17) because we
here exploit the stationarity of the flow (since the homo-
geneity is broken near the sonic horizon). Because of the
negative energy phonons described by doublets of the form
W−ω ¼ ðφ�

−ω;ϕ�
−ωÞ in Eq. (19), the 3 × 3 matrix is an

element ofUð1; 2Þ. As a result, for instance, the coefficients
of the first line obey

jαωj2 − jβ−ωj2 þ j ~Aωj2 ¼ 1: ð21Þ

For more details about these relations, we refer to [18].
The two sets of modes are orthonormal and complete.
Using for instance the out set, the Fourier component of the
field operator with ω > 0 thus reads

ϕ̂ωðxÞ ¼ âuωϕu
ωðxÞ þ âvωϕv

ωðxÞ þ âu†−ωðφu
−ωðxÞÞ�: ð22Þ

The three operators âuω, âvω, and âu−ω destroy respectively an
outgoing phonon with wave vector kuω, k

v;p
ω , and ku−ω. When

starting from the initial vacuum state, the mean numbers of
outgoing phonons spontaneously emitted by the scattering
on the flow are

nuω ¼ jβωj2; nvω ¼ j ~Bωj2: ð23Þ

For negative-energy phonons, by energy conservation, we
have nu−ω ¼ nuω þ nvω.

C. Spectral properties in waterfall background flows

To obtain the scattering coefficients in the three waterfall
solutions of Fig. 1, we numerically integrated Eq. (13)
following a procedure similar to that of [9], here imple-
mented in Mathematica [29]. We first consider the energy
spectrum ϵω ¼ ωjβωj2 of positive-energy u-phonons. On
the left plot of Fig. 4, for the three flows of Fig. 1, as a
function of ω=ωmax [where ωmax is the corresponding value
of the critical frequency of Eq. (18)], we represent ϵω=TH;5

where TH;5 is the Hawking temperature of the central flow
with Mþ ¼ 5. We see that the three energy spectra are
quite similar. We also see that they closely follow the

(adimensional) Planck spectrum ϵ
TH;5
ω =TH;5 ¼ ðω=TH;5Þ=

ðexpðω=TH;5Þ − 1Þ evaluated for the central flow with
Mþ ¼ 5. In fact, for this flow the maximum value of the

difference jðϵω − ϵ
TH;5
ω Þ=TH;5j is less than 9%. We also see

that ϵω becomes larger than ϵ
TH;5
ω for ω≳ 0.2ωmax ≈ 3TH,

something which indicates that TeffðωÞ, the effective
temperature of Eq. (24), should grow with ω.
To study more closely the Planckianity of the spectrum,

on the right plot of Fig. 4, we represent TeffðωÞ=TH for the
same flows, where the effective temperature Teff is
defined by

FIG. 3. Space-time diagram of the characteristics associated
with the three types of stationary modes propagating in the
transonic waterfall flow (from left to right) of Fig. 1 with
Mþ ¼ 5. The sonic horizon is located at x ¼ 0, and the character-
istics are computed for ω ¼ 2.5cþ=ξþ. As explained in [6,28],
they obey Eq. (15) treated as a Hamilton-Jacobi equation. The
initial (final) asymptotic values of their wave vectors are given by
the corresponding roots, indicated in the figure at early (late) time.
The arrows give the orientation of the group velocity in the rest
frame of the potential VðxÞ. The dispersive roots kdω,−kd−ω and the
copropagating one kv;bω characterize the three incoming modes.
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jβωj2 ¼
1

exp ðω=TeffðωÞÞ − 1
: ð24Þ

In the limit ω → 0, for each of the three flows, Teff goes to a
value close to the corresponding TH, with a difference of
the order of 10%. Moreover, the slope dTeff=dω evaluated
near ω ¼ TH is smaller than 0.05. Yet, relative deviations
become large when increasing ω (reaching a maximum of
∼70%). But these occur only for large values of ω=TH
where the energy spectrum is very small. For instance,
when Teff differs from TH by 20%, ϵω=TH is less than 8%.
Although THξH=cH ≈ 1.7 as discussed above, the values of
TH=ωmax for the three flows we consider are 0.062, 0.069,
and 0.080. It is the smallness of this ratio which guarantees
that the deviations from the Planck spectrum with a
temperature κH=2π are, in effect, so small [9,27].
To pursue the analysis of the scattering, it is instructive

to study the other coefficients of Eq. (19). Here we only
consider the flow with Mþ ¼ 5. It is then appropriate to
separate the coefficients whose norm squared diverges
like 1=ω for ω → 0, from those which remain regular in
this limit. (One can verify that the first ones involve one
of the two counterpropagating dispersive incoming
waves.) On the left plot of Fig. 5, we show the absolute
values of the squared scattering coefficients of the first
line of Eq. (19) and that of j ~B2

ωj. Besides the Planckianity
already discussed, we learn here that for all ω, j ~A2

ωj and
j ~B2

ωj both remain approximately six times smaller than
jα2ωj. The copropagating v-mode is thus relatively weakly
coupled to the two u-modes. This is confirmed by the
right plot of Fig. 5, where we show the absolute values
of the squared coefficients of the third line involving the
v-mode. We see that jA2

ωj and jB2
ωj are smaller than 0.06

for all values of ω. The weakness of the coupling of
the v-mode also explains why jβ−ωj remains close to jβωj,

as can be seen by the red curve in the right panel. Indeed,
the difference jβ2−ωj − jβ2ωj can be shown to be equal to
j ~B2

ωj for ω ≪ TH [9].
To complete the analysis, we study in Fig. 6 two key

properties characterizing the spectrum for the entire series
of waterfall solutions. On the left plot, as functions of Mþ,
we represent the low-frequency effective temperature Teff
and TH, both adimensionalized by cH=ξH. For all values of
Mþ, we see that Teff=TH remains in the interval [0.75,
1.25], thereby indicating that the low-frequency effective
temperature is always well approximated by TH ¼ κH=2π.
To estimate the largest value of the effective temperature

one can obtain for a monotonic flow given the asymptotic
values of v and c on both sides, we also represent Tstep, the
low-frequency effective temperature for the flow charac-
terized by the density

ρstepðxÞ
ρþ

¼ 1þMþ
2

þ 1 −Mþ
2

tanh

�
x
σ

�
: ð25Þ

In our simulations, we took σ ¼ ξ−=8 (decreasing σ does
not significantly modify the results).3 For all values ofMþ,
we observe that Tstep is larger than Teff by a factor close
to 2. The temperature observed in [1] is Teffξ−=c− ≈ 0.36.
This is larger than Tstepξ−=c− ≈ 0.29 obtained for the flow
with Mþ ¼ 5 and Teffξ−=c− ≈ 0.25 obtained for Mþ ¼ 4,
which is close to the value reported in the published version

FIG. 4. On the left panel, we show the adimensionalized energy spectrum ϵω=TH;5 of the outgoing phonons spontaneously emitted by
the scattering on the three flows of Fig. 1, where TH;5 ¼ κH;5=2π is the Hawking temperature for the flow with the central value of
Mþ ¼ 5. The black dashed line shows the adimensionalized Planck energy spectrum evaluated for this flow. On the right panel, we show
TeffðωÞ in units of the corresponding value of THðMþÞ for the same three flows. One clearly sees that TeffðωÞ becomes significantly
larger than TH , but this occurs in a domain where ϵω is very small. TeffðωÞ abruptly drops to 0 when ω reaches ωmax.

3Notice that the expressions in Appendix B of [27] for the
spectrum in the sharp profile limit cannot be used here, as
Eq. (B13) of that reference requires that logðvðxÞ=vHÞ be
symmetric with respect to xH in the steplike limit, while the
waterfall solutions become very asymmetric for Mþ ≫ 1. How-
ever, Tstep should be computable using the same techniques,
modifying Eq. (B13) to account for the flow asymmetry.
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of [1]. We currently have no explanation for this excess. (It
could be related to the uncertainty in the precise values of
the flow properties, see footnote 2, which could affect the
estimation of ξ−=c−. It could also be partially due to the
difficulty of measuring the temperature with accuracy by
considering the density fluctuations in a rather small
domain in the subsonic flow.)
On the right plot of Fig. 6, as functions of Mþ, we

represent the zero-frequency limit of the ratio j ~B2
ωj=jβ2ωj for

the waterfall solution and the steplike profile of Eq. (25).
This quantity characterizes the relative importance of the
u − v pair creation channel with respect to the standard
one involving the two u-modes. Since j ~B2

ωj and jβ2ωj both
diverge as 1=ω for ω → 0, their ratio is a constant at low
frequency.We observe that it is roughly linear inMþ − 1 and
becomes important for large values ofMþ. We also observe
that the curves are almost identical which means that this
ratio only depends on the asymptotic values of v and c.

In brief, for the flows here considered and when working
in the initial vacuum state, nuω, the mean occupation number
of outgoing positive frequency phonons closely follows the
relativistic expression in the relevant frequency domain
ω=TH ≲ 1, both in the Planckian character of the spectrum
and in the value of the effective temperature. The spectrum
of negative energy phonons, nu−ω ¼ nuω þ nvω, which
includes the spontaneous production pairs of u − v of
phonons, is larger than nuω by ≈15% at low frequency
when Mþ ¼ 5.

III. THE TWO-POINT
CORRELATION FUNCTION

A. Generalities

Following Refs. [14,15], J. Steinhauher measured the
density-density correlation function at a given time after
the formation of the sonic horizon. In the body of the text

FIG. 6. Left panel: As functions of the supersonic Mach numberMþ, we show the limit ω → 0 of Teff of Eq. (24) (green, continuous),
the Hawking temperature TH (blue, dashed), and Tstep obtained with the density profile of Eq. (25) (orange, dotted), all adimensionalized

by multiplication by the dispersive time scale ξH=cH . Right panel: Ratio of j ~B2
ω¼0=β2ω¼0j for the waterfall (green, continuous) and for the

steplike (orange, dotted) profiles. The very close agreement indicates that, for ω → 0, the ratio j ~B2
ω=β2ωj only depends on the asymptotic

values of v and c.

FIG. 5. Plots of the squared absolute values of the coefficients of Eq. (19) for the waterfall solution withMþ ¼ 5. The left panel shows
the coefficients of the first line as well as j ~B2

ωj and the Planck distribution with temperature TH;5 (dashed line), all multiplied by ω=TH;5.
The right panel shows the coefficients involving the incoming copropagating v-mode and the difference ðjβ2−ωj − jβ2ωjÞω=TH;5.
The smallness of these quantities reveals the weakness of the coupling between the v-mode and the two u-modes.
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we only consider the stationary regime, whereas in
Appendix C 2 we study the time-dependent case in a
simplified dispersionless model. To be close to the expres-
sion used in [1], we study the adimensional two-point
function

G2ðx; x0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ξþξ−
ρþρ−

s
hδρðxÞδρðx0Þi: ð26Þ

The prefactor has two effects. First, it obviously adimen-
sionalizes the density fluctuations. More importantly,
when working with a given phonon state, e.g., the vacuum,
G2 is invariant under the rescaling of Eq. (7), unlike
hδρðxÞδρðx0Þi=ðρðxÞρðx0ÞÞ.4 Because of the stationary of
the system, the correlation function can be written as a
single integral over ω: G2ðx; x0Þ ¼

R
∞
−∞ dωGωðx; x0Þ; see

Secs. IV D and IV F of [9]. We briefly review the main
points of that analysis.
When considering density fluctuations, since Eq. (10)

gives δρ̂ðt; xÞ=ρðxÞ ¼ ϕ̂ðt; xÞ þ ϕ̂ðt; xÞ†, it is appropriate to
introduce the modes χaω ¼ ϕa

ω þ φa
ω, as χaω is the only

combination which enters Gωðx; x0Þ. We now assume that
the temperature is sufficiently low such that the initial state
is well approximated by the vacuum, as seems to be the
case in the experiment of [1]. In this case, Gωðx; x0Þ can be
written in terms of the negative frequency modes only.
For ω > 0, one gets

Gvac
ω ðx; x0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
ξþξ−
ρþρ−

s
ρðxÞρðx0Þðχin;u−ω ðxÞÞ�χin;u−ω ðx0Þ: ð27Þ

This expression can be straightforwardly generalized to
account for initial states which are incoherent, i.e., fully
described by the mean occupation numbers nin;uω , nin;vω , and
nin;u−ω of the three types of incoming phonons; see [9].
When x < 0 and x0 > 0 are taken sufficiently far away

from the horizon in the sub- and supersonic homogeneous
regions, the in modes χin;u−ω are superpositions of four
asymptotic modes χa;asω : the outgoing mode χu;asω on the
subsonic side, and three modes in the supersonic side
(the incoming one, and two outgoing ones); see Fig. 3.
When the initial state is incoherent, only the three outgoing
modes interfere constructively when integrating over ω to
obtain G2ðx; x0Þ.5 Explicitly they are given by

χu;asω ðx < 0Þ ¼ Su−ðωÞeikuωx;
χu;as−ω ðx0 > 0Þ ¼ Suþð−ωÞeiku−ωx0 ;
χv;asω ðx0 > 0Þ ¼ SvþðωÞeik

v;p
ω x0 ; ð28Þ

where Sa�ðωÞ is the structure factor evaluated on the right
(þ) or left (−) asymptotic side. With our normalization
conventions, it is given by

Sa�ðωÞ ¼
Uka;�ω

þ Vka;�ωffiffiffiffiffiffiffiffiffiffiffi
2πρ�

p
���� dka;�ω

dω

����1=2; ð29Þ

where Uk and Vk are the usual coefficients obeying
jUkj2−jVkj2¼1 and Vka;�ω

¼Dðka;�ω ;ρ�ÞUka;�ω
; see Eq. (16).

Importantly, the three outgoing modes have a vanishing
wave number in the limit ω → 0. The correlation pattern is
thus a low wave number one which could be well described
in dispersionless settings. This is unlike what is found when
considering white hole flows [31,32].
Keeping only the above outgoing modes, for ω > 0, one

obtains

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξþξ−ρþρ−

p Gvac
ω ðx;x0Þ ¼ eik

u
ωx× ðAωe−ik

v;p
ω x0 þBωeik

u
−ωx0 Þ:

ð30Þ

(Including the prefactor of the left-hand side in the
coefficients Aω, Bω would multiply their norm byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξþξ−ρþρ−

p
, which is close to 25 for the flow with

Mþ ¼ 5 and for ρþ equal to the value reported in [1].)
Using Eqs. (27) and (28) and the second line of Eq. (19),
one finds

Aω ¼ Su−ðωÞSvþðωÞβ�ω ~Bω;

Bω ¼ Su−ðωÞSuþð−ωÞβ�ωα−ω: ð31Þ
The first accounts for the correlations between v-phonons
and positive energy u-phonons, while the second accounts
for correlations between u-phonons of opposite energies;
see [18] for more details.

B. Strength of correlations and their
dispersionless pattern

As can be seen in Fig. 7, for the flow with Mþ ¼ 5, jAωj
is smaller than jBωj by a factor ≈5. It should be noticed that
the ratio jAωj=jBωj significantly varies withMþ, but remains
smaller than 1 for the flows we are considering. For instance,
for the three flows of Fig. 1, its limit ω → 0 is close to 0.13
for Mþ ¼ 3.75, 0.19 forMþ ¼ 5, and 0.24 for Mþ ¼ 6.25.
(This dependence is corroborated by the curves shown on the
right plot of Fig. 6.) Neglecting the vu-correlations weighted
by jAωj is thus a fairly good approximation.
In preparation for the subsequent analysis, in Fig. 7 we

have also represented by a dotted line the strength of the

4The invariance of G2ðx; x0Þ under Eq. (7) can be verified by
using Eq. (29) which shows that hδρðxÞδρðx0Þi scales like ρ=ξ.

5It should be noticed that this is not the case when working in
momentum space with G2ðk; k0Þ. Indeed, in that case, even when
the initial state is vacuum, the fluctuations of the incoming mode
with frequency ω constructively interfere with those of both
outgoing modes with the same frequency. These in-out interfer-
ences have been observed in a water tank experiment [30] in the
stimulated regime.
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uu-correlations when the initial state of the copropagating
incoming v-modes is a thermal state with temperature
T in ¼ 10TH in the fluid frame. [To get this result, we used
the complete expression of the uu-correlation which
includes the stimulated processes; see Eq. (50) in [9].]
We see that increasing significantly the initial temperature
of v-modes only slightly decreases Bω for low frequencies.
We also see that the strength of correlations remains largest
at low frequency.
It should be also noticed that jBωj closely follows the

corresponding relativistic expression,

Brelat:
ω ¼ eω=ð2THÞ

eω=TH − 1
ei arg ðαrelat:ω =βrelat:−ω Þ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξþξ−=ρþρ−

p
4πjvþ − cþjjv− − c−j

;

ð32Þ
which is indicated by a dashed line. The first factor comes
from the fact that jβrelat:ω j2 (exactly) follows the Planck law
with temperature TH ¼ κH=2π in the present settings where
there is no coupling between the v-mode and the two
u-modes. The phase plays no role here and is studied
below. The normalization comes from taking the disper-
sionless limit (ξ� → 0) of the structure factors of Eq. (29).
To obtain this expression, we used the low wave number
behaviors Uk þ Vk ≈ ðk=2cÞ1=2 and k ≈ ωðc − vÞ, both
valid when ξk → 0.
Having shown that the vacuum relativistic expressions

give reliable approximations at fixed ω, it is instructive to
integrate them over ω to get the dispersionless limit of the
equal-time correlation function of Eq. (26). When x and x0
are sufficiently far away from the horizon such that ρ, v and
c have reached their asymptotic values ρ�, v� and c�, one
obtains unambiguous expressions.
For points on opposite sides of the horizon xx0 < 0 with

x < 0, one gets, see [14],

Grel
2 ðx; x0Þ

≈
−πT2

Hξþξ−
4jvþ − cþjjv− − c−jcosh2ðπTHðuLðxÞ − uRðx0ÞÞÞ

;

ð33Þ

whereuR=LðxÞgive thevalues (at a given common time) of the
outgoing null lightlike coordinate on each side of the horizon;
see Eq. (C8). To make contact with Ref. [1], we study the
behavior of this function in the three waterfall solutions
considered in Fig. 1. In the left panel of Fig. 8, we show the
corresponding profiles of Grel

2 ðx; x0Þ evaluated along a seg-
ment orthogonal to the locus of the minima. (The segment is
represented by a dashed line on the right panel.) Usingffiffiffiffiffiffiffiffiffiffi
ξþξ−

p
as a unit of distance along this segment, we see that

the width of the hollow hardly varies for these values ofMþ.
We also notice that it is about twice as large as the value
reported in [1], while the depth of the hollow is only half that
reported in the experiment. These results are qualitatively
consistent with the fact that the effective temperature of the
flow withMþ ¼ 4 is significantly smaller than the measured
one, see the discussion below Eq. (25).
It is also interesting to study the angle θ between the

horizontal and the line of maxima of the correlations in the
domain x < 0, x0 > 0. It is given by

θ ¼ arctan ððcþ − vþÞ=ðc− − v−ÞÞ þ π

¼ π − arctan ð1þM1=2
þ Þ: ð34Þ

For the three values of Mþ we used (3.75,5,6.25); this
gives 1.90, 1.87, and 1.85 rad. The value reported in [1]
(θobs ≈ 2.2 rad) is slightly larger than the maximal value of
Eq. (34) accessible with waterfall solutions, which is
≈2.03 rad.
When working on the same side of the horizon xx0 > 0

and far away from the horizon, the autocorrelations of
u-modes are also modified by the Hawking temperature
[12], whereas those involving the copropagating v-modes
are essentially unchanged, as can be understood from
Eqs. (C2), (C5), and (C7). Explicitly, in the subsonic side
x < 0 one gets

Grel
2 ðx; x0Þ
¼ Grel

2;uðx; x0Þ þGrel
2;vðx; x0Þ

≈ −
ξ2−
4π

ffiffiffiffiffiffiffiffiffiffi
ξþρ−
ξ−ρþ

s � ðπTHÞ2
ðc− − v−Þ2sinh2ðπTHðuLðxÞ − uLðx0ÞÞÞ

þ 1

jx − x0j2
�
: ð35Þ

A similar expression applies on the supersonic side. It
should be noticed that, in the coincidence point limit, the
divergence of the first term [which describes a thermal flux
of outgoing u-phonons at temperature TH, see Eq. (C10)]

FIG. 7. We represent the absolute value of the spontaneous
correlation terms Aω (blue) and Bω (orange) defined in Eq. (31),
calculated for the waterfall solution with Mþ ¼ 5, and adimen-
sionalized by c−ρ−, so as to get a result invariance under a
rescaling of λ; see footnote 4. The dotted (red) line shows jBωj
when the initial state of the copropagating v-modes is a thermal
state with an initial temperature T in ¼ 10TH. The black, dashed
curve shows the relativistic limit for Bω given in Eq. (32).
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is the same as that of the second term which describes
v-phonons in their ground state. In both cases, one
has Grel

2;u=vðx→ x0Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðξþρ−Þ=ðξ−ρþÞ
p

∼−ξ2−=ð4πðx−x0Þ2Þ.
To complete this study, we represent in the right panel of

Fig. 8 a generalized version of Grel
2 , given by Eq. (C6),

defined in the whole ðx; x0Þ plane. For this figure we
only considered the waterfall solution with Mþ ¼ 5.
(Unlike for the above asymptotic expressions, it should
be noticed that there is some ambiguity in obtaining this
expression in the near horizon region where v and c
significantly vary; see footnote 8.) From this figure one
clearly sees how the asymptotic uu-correlations of Eq. (33)
emerge from the diverging autocorrelations near the sonic
horizon jxj ≈ jx0j ¼ Oð ffiffiffiffiffiffiffiffiffiffi

ξþξ−
p Þ.

C. Nonseparability

As discussed in [17–20], the relative strength of the
correlation, governed by jBωj of Eq. (30), with respect to
the final mean occupation numbers nuωnu−ω, can be used as a
reliable criterion for asserting that the state is nonseparable,
which implies that the spontaneous amplification of vac-
uum fluctuations contributes more than the stimulated
processes induced by the initial population of phonons.
More precisely, whenever the difference Dω, defined by

Dω ≡ jB2
ωj − nuωnu−ωðSuþðωÞSu−ð−ωÞÞ2; ð36Þ

is positive, the final state of the u-phonons of frequency�ω is
nonseparable.6 When the initial state is vacuum, Dω can be

shown to be positive definite. Yet it is of value to study its
behavior as a function of ω. On the left panel of Fig. 9, it is
represented by a continuous line. We see that it reaches its
maximum for ω ≈ TH. On the same panel, the dashed line
gives its dispersionless limit. Using Eq. (32) and nu;relat:ω ¼
nu;relat:−ω ¼ ðeω=TH − 1Þ−1, one easily finds that it follows

Drelat:
ω ¼

�
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξþξ−=ρþρ−

p
4πjvþ − cþjjv− − c−j

�
2 1

eω=TH − 1
: ð37Þ

We clearly see that the two curves closely agree, as can be
understood from thenear Planckianity of the spectrumand the
weaknessof thecoupling to thecopropagatingv-mode(which
affects the difference nuω − nu−ω; see the red curve of the left
panel of Fig. 5).
It should be also pointed out that Dω is bounded from

above, see [18,34,35]. When working in the initial vacuum,
a Cauchy-Schwarz inequality implies that Dω is smaller
than [see Eq. (B4) in [35]]

Dmax
ω ≡ jβ−ωj2ðSuþðωÞSu−ð−ωÞÞ2: ð38Þ

Thismaximal value is represented by a dotted line on the left
panel of Fig. 9. Working with relativistic settings in the
initial vacuum, the situation is simpler because Drelat:

ω . of
Eq. (37), the dashed curve, already gives the maximal value.
This is due to the fact that the coupling to the copropagating
v-mode identically vanishes in these settings.
To test the dependence of nonseparability with respect to

the initial state of the phonons, we assume that the initial
state is thermal in the frame of the condensed fluid in the
subsonic region. Computing the initial mean occupation
numbers of the counterpropagating dispersive u-modes in

FIG. 8. Left: We show the profile of Grel
2 ðx; x0Þ of Eq. (33) evaluated along a line orthogonal to the locus of its minima and located far

from the horizon. x00 is a coordinate along this line, defined by x00 ¼ 0 when G2 reaches its minimum and jdx00j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dx02

p
. The

three curves show the correlation profile for the waterfall solutions with Mþ ¼ 3.75 (green, dashed), 5 (blue, continuous), and 6.25
(orange, dotted) considered in Fig. 1. Right: We show Grel

2 ðx; x0Þ of Eq. (C6) as a function of x and x0 for the waterfall solution with
Mþ ¼ 5. The dashed segment indicates the domain used to represent the correlations on the left panel. The broad oblique white band
centered along x ¼ x0 corresponds to values of G2 outside the range represented in colors.

6It should be noticed that the nonseparability of a quantum
state does not seem to imply the nonclassicality as defined in [33].
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the supersonic region requires in principle the knowledge
of the whole time dependence and the fall-off of the
condensate density for x → þ∞. Irrespective of these
details, one finds that low-frequency modes with ω ≈ κ
in the black hole frame correspond to large frequencies
Ωu ≈ jkvþj in the rest frame of the fluid. For dispersive
modes, jku;dω vþj is of the order of ωmax, much larger than
TH ≈ κH=2π. As a result, their initial population is sup-
pressed. In a first approximation, one can thus neglect
their contribution and consider only the initial occupation
number of incoming v-modes

nv;inω ¼ ðeΩv=T in − 1Þ−1; ð39Þ

where Ωv ¼ ω − kv;bω v−. The right panel of Fig. 9 shows
Dω for T in=TH ¼ 10−6, 3, and 10. As was found in [17–19],
the temperature has the tendency to reduce the nonsepar-
ability of the state, with low-frequency modes becoming
separable before high-frequency ones. Overall, the non-
separability is strongly reduced only when T in becomes of
the order of 10TH. This is another consequence of the
relative weakness of the couplings involving the copropa-
gating v-mode.

D. Phase of uu-correlations

In the previous subsection we studied the strength of the
correlations, which is governed by the absolute value ofBω.
Here we consider the phase argBω, which is equal to
argðα−ωβ�ωÞ. It does not depend on the arbitrary phase of
the (globally defined) incoming modes, but it does depend
on the phases of the asymptotic outgoing modes of wave
numbers ku�ω. Each of them is asymptotically given by
ku�ωðx − xHÞ þ C�ω, where C�ω are two real constants.
In this paper, we work with C�ω ¼ 0; see Eq. (28).

(In the body of the paper we fix the origin of x so that
xH ¼ 0.)
To see the consequence of the ω dependence of argBω,

we consider the trajectories in the x − x0 plane where the
equal-time correlations among u-phonons reach their
maximal intensity; see Fig. 8 for their relativistic counter-
part. To get the locus of constructive interferences at a given
time, one should impose that the phase of the Bω term of
Eq. (30) is stationary [9], i.e.,

ð∂ωkuωÞxþ ð∂ωku−ωÞx0 ¼ −∂ω argðα−ωβ�ωÞ: ð40Þ

We thus see that ∂ω argðαωβ�−ωÞ introduces a nontrivial
shift. To our knowledge it has not been studied before in the
present context, although its existence was mentioned in
[9].7 When ∂ω argðα−ωβ�ωÞ ≠ 0, the asymptotic straight line
xðx0Þ solution of Eq. (40) will not cross exactly the sonic
horizon xH ¼ 0 when x0 ¼ 0. Rather x will be equal to x0 at
the point xM given by

xMðωÞ ¼ −
∂ω arg ðα−ωβ�ωÞ
∂ωkuω þ ∂ωku−ω

; ð41Þ

where the denominator is evaluated in the asymptotic
region.
In the left panel of Fig. 10, the continuous line shows

argðαωβ�−ωÞ as a function of ω=ωmax for the flow of Fig. 1

FIG. 9. Plot of the quantity Dω of Eq. (36) computed for the waterfall solution with Mþ ¼ 5, and adimensionalized by c2−ρ2−. On the
left panel, the blue continuous line gives the numerical value predicted by the Bogoliubov–de Gennes equation, while the black, dashed
line shows its relativistic limit given in Eq. (37). The dotted orange line shows the maximum value of Dω of Eq. (38). On the right panel,
we show how Dω varies when assuming that the copropagating incoming v-modes have an initial temperature T in. Curves are shown for
T in=TH ¼ 10−6 (blue), 3 (orange), and 10 (green).

7A phase similar to argðαωβ�−ωÞ governs the loci of the nodes of
the stationary zero-frequency modulation emitted in transonic
flows which are analogous to white holes; see [32,36]. When
working in homogeneous time-dependent settings, such as in
inflationary cosmology [34] and in condensed matter [37,38], a
similar phase, also given by the argument of the product αβ� of
two Bogoliubov coefficients, fixes the location of the nodes of the
equal-time correlations.
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with Mþ ¼ 5. As can be seen, its slope is nearly constant
except for ω ≈ ωmax and ω ≈ 0. In the intermediate fre-
quency domain, the shift xMðωÞ is thus nearly independent
of ω. The dashed line shows argðα−ωβ�ωÞ for the relativistic
field propagating in the same background flow. Its value is
computed in Appendix D. Quite surprisingly, its slope does
not vanish and agrees rather well with the slope of Fig. 10
in the intermediate frequency domain. It is therefore
interesting to study the relativistic limit to see the residual
role played by short distance dispersion. To this end, we
numerically computed the low-frequency slope when
decreasing the healing length. Specifically, we solved the
rescaled BdG equations

�
ðωþ iv∂xÞ −

γ2

2ρ
∂xρ∂x −

c2

γ2

�
ϕω ¼ c2

γ2
φω;

−
�
ðωþ iv∂xÞ þ

γ2

2ρ
∂xρ∂x þ

c2

γ2

�
φω ¼ c2

γ2
ϕω; ð42Þ

for several values of γ. This rescaling neither modifies the
background flow nor the conserved scalar product, but
multiplies the dispersive length scale by γ. The relativistic
limit thus corresponds to γ → 0, while Eq. (13) is recovered
when γ ¼ 1. Numerical results are shown in Fig. 10,
right panel. Although we were not able to obtain trust-
worthy values of the shift Δx for γ < 1=2, the figure
indicates that xM − xH converges to the value obtained
from Eq. (D3) when decreasing γ towards 0. We hope
that this shift can be measured in forthcoming experiments.
We also hope that arg ðαωβ�−ωÞ itself will be measured in
water tank experiments where one can work at fixed ω;
see [30].

IV. CONCLUSIONS

In this paper we studied the spectral properties and the
coherence of the phonon pairs emitted in transonic flows
which are similar to those experimentally realized in [1]. In
Sec. II, we first analyzed the stationary, asymptotically
homogeneous transonic background flows which are sol-
utions of the one-dimensional GPE in a steplike potential.
These are described by a one-parameter family of stable
waterfall solutions. When Mþ, the Mach number in the
asymptotic supersonic region, is significantly larger than 1,
they have high spatial gradients near the sonic horizon
whereM ¼ 1. Indeed, forMþ ≳ 3, the surface gravity κH is
larger than the dispersive scale measured on the horizon.
These flows are highly asymmetrical with respect to the
horizon: for large Mþ, the gradients of flow parameters
such as the sound speed c or the velocity v increase
significantly on the supersonic side. As a byproduct of the
strong asymmetry, when Mþ ≳ 3, the surface gravity
(measured on the horizon) decreases when increasing
Mþ. These results are summarized in Fig. 1. The stability
of these solutions is studied in Appendix B where it is
shown that perturbations are expelled from the near horizon
region. In Appendix Awe studied a generalized version of
waterfall solutions which better takes into account the
three-dimensional character of the background flow.
We then studied the spectrum of the phonons sponta-

neously emitted when the initial state is vacuum. In spite of
the fact that the surface gravity κH is larger than the
dispersive scale, for Mþ ≲ 6, we found that the emission
spectrum is well approximated by its relativistic prediction,
namely a Planck spectrum governed by the temperature
TH ¼ κH=2π. This can be understood from the fact that the
critical frequency ωmax above which the emission spectrum
vanishes is about 15 times larger than TH for Mþ ¼ 5. We

FIG. 10. Left: As a function of ω=ωmax, we show the phase of αωβ�−ω for the flow of Fig. 1 with Mþ ¼ 5. The dashed line shows
the relativistic phase which is obtained from Eq. (D6). The dotted line shows argðα−ωβ�ωÞ − argðαωβ�−ωÞ. Its smallness is another test of
the validity of the relativistic approximation, which predicts that this difference should vanish. Right: As a function of γ of Eq. (42),
we show the shift Δx ¼ xMð0Þ − xH , see Eq. (41), evaluated in the small-frequency limit and adimensionalized by the surface gravity
length cH=κH . The four dots are obtained from the numerical integration of Eq. (42), whereas the horizontal line shows the relativistic
result of Eq. (D3).
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also found that the spontaneous production of phonons
involving a copropagating mode (which is not related to the
standard Hawking effect) is subdominant. We finally
studied the behavior of Tstep, the low-frequency temper-
ature computed in steplike flows which possess the same
asymptotic properties as the waterfall solutions. We expect
that Tstep gives a reliable estimate of the maximal temper-
ature in flows with a monotonic ρðxÞ and we found that it is
about twice the temperature in waterfall flows. When
compared to the experimental data of [1], the observed
temperature is about 20% higher than Tstep when using
Mþ ¼ 5 and 40% higher when using Mþ ¼ 4, which is
closer to the reported value of Mþ.
In Sec. III, we studied the strength and phases of the

correlations between phonons and their partners emitted on
the other side of the sonic horizon. In agreement with the
above study of spectral properties, we found that the
frequency dependence of the strength of the correlations
is well approximated by its relativistic expression. We
showed that the correlation strength is hardly affected when
attributing an initial temperature to these phonons, as can
be understood from the smallness of the coupling terms
involving the copropagating mode. We then studied the
pattern of equal-time correlations in the dispersionless
limit, and we showed that their profile has a narrow width,
of the order of two healing lengths evaluated at the horizon.
This is a consequence of the above noticed fact that the
surface gravity κH is larger than the dispersive scale
measured on the horizon. We also showed that this width
hardly changes when varying Mþ from 3.75 to 6.25. We
finally noticed that it is about twice the value reported in
[1]. At present, together with the intensity of the correla-
tions, which is about half the reported value, this is the
largest discrepancy between the observed properties and
the predictions we draw by studying phonon propagation
over waterfall flows. We hope that the present analysis can
help sort out these questions and be used in forthcoming
experimental works.
We also studied the phase of the product of scattering

coefficients which enters in the long distance correlation
pattern. We found that there is a nontrivial, almost
linear, dependence in ω which induces a finite shift of the
location of the equal-time correlations in the ðx; x0Þ plane.
When considered in the waterfall solution withMþ ¼ 5, we
showed that it is a significant fraction of the typical horizon
width cH=κH. We also showed that this shift persists when
taking the dispersionless limit, and studied its behavior in
various background flows in Appendix D. We hope it can be
measured in he near future. In Appendix E we briefly studied
the phase of individual scattering coefficients as functions of
the frequency. It would be interesting to measure them in
analog gravity experiments where one can work at fixed
frequency, as is the casewhen studyingwaterwaves in flumes.
Finally, in Appendix C 2, we studied the time-dependent

modifications of the density correlations which are induced

by the formation of a sonic horizon. We worked in a simple
relativistic model to characterize in analytical terms both the
growth of the nonlocal correlations and the modifications of
the autocorrelations that have so far been overlooked.
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APPENDIX A: NONPOLYNOMICAL
SCHRÖDINGER EQUATION

In this appendix we study the waterfall solutions and the
phonon spectrum using the nonpolynomial Schrödinger
equation (NPSE) [39] coming from integration of the three-
dimensional GPE over the two orthogonal directions in a
harmonic trap. The results are then compared with those of
the main text based on Eq. (1). Before doing the explicit
calculation, it is useful to keep in mind the expected order
of magnitude of the deviations. The one-dimensional GPE
corresponds to the leading order in an expansion of the
NPSE in the nondimensional parameter asρ, where as is the
scattering length of the atoms and ρ their one-dimensional
number density. In the experiment of [1], the condensate is
made of 87Rb atoms with as ≈ 5 × 10−9 m. On the other
hand, the maximum value of ρ reported in [1] in the region
used for analyzing the data is close to 2 × 107 m−1. The
maximum value of asρ is thus close to 0.1, indicating that
the one-dimensional GPE should be a relatively good
approximation, although some corrections from the next
orders in asρ could be visible. In the following subsections,
we first explain how the knowledge of the two asymptotic
densities and of the Mach number on one side fully
determines the waterfall solution. We then compute the
effective temperature of Eq. (24) and relative phase of the
coefficients αω and βω, and we compare them with results
derived in the main text.

1. Waterfall solutions

The NPSE may be written as [23,39]

iℏ∂tf ¼
�
−
ℏ2

2m
∂2
x þ VðxÞ þ g3DN

2πa2⊥
jf2j
η

�
f

þ ℏω⊥
2

�
ηþ 1

η

�
f; ðA1Þ

where η≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2asNjf2j

p
, and g3D is the three-

dimensional coupling. [The constant g used in Eq. (1) is
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given by g ¼ g3D=2πa2⊥.] In this expression, f is the
longitudinal part of the condensate wave function, N the
number of atoms, as the scattering length, ω⊥ the trans-
verse frequency of the trap (assumed to take the same value
in the two transverse directions), and a⊥ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmω⊥Þ
p

.
Notice that the lengths as and a⊥ give two additional scales
with respect to the one-dimensional GPE. As a result, when
working with dimensionless quantities, waterfall solutions
are described by three independent parameters instead of
one in the case studied in the main text.
It is useful to define the dimensionless quantities

ψ ≡ ffiffiffiffiffiffiffiffiffiffiffi
2Nas

p
f, t≡ ω⊥t, x≡ x=a⊥, V ≡ V=ðℏω⊥Þ, and

g3D ≡ g3D=ð4πℏω⊥a2⊥asÞ. Since we work only with these
variables, we remove the bars in the following. The NPSE
then becomes

i∂tψ ¼
�
−
1

2
∂2
xþVðxÞþ1

2

�
ηþ1

η

�
þg3D

jψ2j
η

�
ψ ; ðA2Þ

where η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jψ2j

p
. As was done in the main text, we

assume g3D > 0, and we look for stationary solutions of the
form

ψðx; tÞ ¼ e−iωt
ffiffiffiffiffiffiffiffiffi
ρðxÞ

p
ei
R

x vðyÞdy; ðA3Þ

where ρ and v are two real functions, and ω ∈ R. Taking
the imaginary part of Eq. (A2) gives J ≡ ρv ¼ Cst. The
real part of Eq. (A2) then gives

−
1

2
ffiffiffi
ρ

p ∂2
x

ffiffiffi
ρ

p þ Veffðρ; xÞ − ω ¼ 0; ðA4Þ

where the effective potential Veff is

Veffðρ; xÞ ¼
J2

2ρ2
þ VðxÞ þ 1

2

�
ηþ 1

η

�
þ g3D

ρ

η
: ðA5Þ

When considering a region of homogeneous potential V,
the possible homogeneous solutions are given by
VeffðρÞ − ω ¼ 0. To determine the number and properties
of these solutions, we compute

∂Veff

∂ρ ¼ ð1þ ρÞ−3=2
�
ρ

4
þ g3D

�
1þ ρ

2

��
−
J2

ρ3
: ðA6Þ

After multiplication by the (strictly positive for ρ > 0)
factor ρ3, the right-hand side of Eq. (A6) is a monotonically
increasing function of ρ, which is negative for ρ → 0þ and
changes sign at a value ρc > 0 of ρ. So, VeffðρÞ is a
monotonically decreasing function of ρ for 0 < ρ ≤ ρc and
an increasing function for ρ > ρc. Moreover, Veff → ∞ in
the two limits ρ → 0þ and ρ → ∞. The existence of
homogeneous (or solitonic) solutions thus requires
ω ≥ VeffðρcÞ. For ω > VeffðρcÞ there are two homogeneous

solutions: a supersonic one with density ρp < ρc and a
subsonic one with density ρb > ρc (their super- and
subsonic characters are proven in Sec. A 2).
To characterize the soliton solutions, one can integrate

once Eq. (A4) after multiplication by
ffiffiffi
ρ

p ∂x
ffiffiffi
ρ

p
. This gives

−
1

4
ð∂x

ffiffiffi
ρ

p Þ2 − J2

4ρ
þ V − ω

2
ρþ

ffiffiffiffiffiffiffiffiffiffiffi
1þ ρ

p
2

þ 1

6
ð1þ ρÞ3=2

þ g3Dρ
ffiffiffiffiffiffiffiffiffiffiffi
1þ ρ

p
−
2

3
g3Dð1þ ρÞ3=2 þ C ¼ 0; ðA7Þ

where C is an integration constant. The soliton solution is
then obtained by choosing C such that Eq. (A7) is satisfied
for ρ ¼ ρb and ∂xρ ¼ 0. The bottom of the soliton is given
by the largest root ρs of the left-hand side of Eq. (A7) for
∂xρ ¼ 0 in the interval ]0, ρb[. Its existence is guaranteed
by the facts that V 0

effðρbÞ > 0 and that the left-hand side of
Eq. (A7) goes to −∞ for ρ → 0þ.
We can now look for waterfall solutions in a steplike

potential given by Eq. (5). That is, we look for a half-soliton
for x < 0matched with a homogeneous supersonic solution
for x > 0. In our nondimensional system of units, this
leaves three free parameters: g3D, J, and V− − ω. The value
of Vþ is then fixed by imposing that ρp;þ ¼ ρs;−. [As in the
main text, a subscript − (respectivelyþ) denotes a quantity
evaluated in the left (respectively right) region.]
To determine the three-dimensional waterfall solution

which matches what has been observed in [1], it is
appropriate to use the values of the asymptotic density
on each side and the asymptotic Mach number on one
side. These fix the values of the three free parameters, and
thus the whole solution. From the inset of Fig. 1(b)
in [1], we find (in our nondimensional units) ρb;− ≈ 0.1,
ρs;− ¼ ρp;þ ≈ 0.02. To see the modifications brought in by
the NPSE with respect to the results of the main text, we
work with Mþ ¼ 5. The corresponding flow is shown in
Fig. 11. To estimate the difference with the flow obtained
using the one-dimensional GPE, we consider the quantity

χ ≡ xH

�
dM
dx

�
x¼xH

; ðA8Þ

where xH is the position of the sonic horizon relative to that
of the potential step. χ is proportional to the surface gravity
and has no dimension; hence it is insensitive to the
adimensionalization procedure. [It is also independent of
the scale λ of Eq. (7) and thus can be used to directly compare
the flows obtained with the two equations.] For the solution
shown in Fig. 11, we obtain χ ≈ −1.26. By comparison, for
the flow of Fig. 1 with Mþ ¼ 5 we obtain χ ≈ −1.12. The
relative difference is of the order of 12%, which is close to
the maximum value of η2 − 1 ≈ 0.1 (reached in the subsonic
region). As a last remark, we note that c2v is nearly uniform,
varying by less than 1%between the two asymptotic regions.
We found larger variations when changing the asymptotic
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parameters by ≈10%, but never more than 15%. This
suggests that the large difference between the asymptotic
values of c2v observed in [1] is not only due to the three-
dimensional nature of the flow. (However, such differences
could be reached with larger asymptotic densities.)

2. Equation on linear perturbations

We now look for perturbed solutions of the form

ψðx; tÞ ¼ ψ0ðx; tÞð1þ ϕðx; tÞÞ; ðA9Þ

where ψ0 is a known stationary solution with angular
frequency ω0, local density ρ0 ≡ jψ2

0j, and velocity
v0 ≡ ℑðð∂xψ0Þ=ψ0Þ. To first order in ϕ, Eq. (A2) becomes

ið∂t þ v0∂xÞϕ ¼ −
1

2ρ0
∂xðρ0∂xϕÞ

þ d
dρ0

�
Veffðρ0Þ −

J2

2ρ20

�
ρ0ðϕþ ϕ�Þ:

ðA10Þ

When the background flow is homogeneous, one can find a
basis of solutions of the form

ϕðx; tÞ ¼ Uke−iωtþikz þ V�
ke

iω�t−ik�z; ðA11Þ

where ðUk; Vk;ω; kÞ ∈ C4. The angular frequency ω and
wave vector k are related by the dispersion relation

ðω − v0kÞ2 ¼
d
dρ0

�
Veffðρ0Þ −

J2

2ρ20

�
ρ0k2 þ

k4

4
: ðA12Þ

The sound velocity c0 is thus related to the background
flow velocity v0 through

c20 ¼ V 0
effðρ0Þρ0 þ v20

¼ g3Dρ0 þ
�
1

4
− g3D

�
ρ20 þOðρ30Þ: ðA13Þ

As expected, the first deviations with respect to the one-
dimensional expression are governed by the density ρ in
units of as. One verifies that c20 − v20 ¼ V 0

effρ0 is positive for
ρ0 ¼ ρb and negative for ρ0 ¼ ρp, showing that the former
is subsonic while the latter is supersonic. Apart from the
new expression of the sound velocity, Eq. (A10) is identical
to the BdG equation Eq. (11). In particular, it has the same
conserved inner product and mode structure.
To characterize the deviations of the spectrum with

respect to the GPE, we first compute TH=ωmax. Using
the solution shown in Fig. 11, we obtain TH=ωmax ≈ 0.065.
By comparison, for the flow corresponding to the blue
curve in Fig. 1, TH=ωmax ≈ 0.063, i.e., smaller by only 3%.
The effective temperature of Eq. (24) evaluated in the flow
of Fig. 11 is shown in the left panel of Fig. 12. We observe
that its behavior closely resembles that of Fig. 4, with
maximum relative deviations of a few%. The relative phase
of β−ω and αω, shown in the right panel, is also close to that
of Fig. 10, with maximum deviations close to 0.1 rad. In
conclusion, although weworked here with the experimental
values of the asymptotic densities [1], we observed no
significant deviation with respect to the results obtained
when working with one-dimensional waterfall solutions.
Even when using asymptotic values of the density twice
larger than those reported in [1], we still find that the
deviations are smaller than 10%.

APPENDIX B: STABILITY OF THE
WATERFALL SOLUTIONS

In this appendix we report on numerical results con-
firming the stability of the waterfall solutions. We first note
that the linear analysis of [40], done for the homogeneous

FIG. 11. Plots of the local density adimensionalized by as (left) and Mach number (right) for the waterfall solution of the NPS
Eq. (A2) in a steplike potential. The asymptotic densities ρ� and the value of Mþ are chosen to model the flow of [1]; see the text. The
horizontal dashed line shows the density at the horizon (left) and M ¼ 1 (right). The unit of the coordinate x is a⊥.
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black hole solutions with steplike profiles for both g and V,
remains valid in our present setup as it only relies on the
behavior of the scattering coefficients near ω → 0 and
ω → ωmax, which is the same for the homogeneous
configurations considered in that reference and the water-
fall ones studied here. To linear order, density perturbations
thus decay polynomially in time, with an exponent equal to

3=2. The numerical results shown below confirm that this
behavior persists when considering finite perturbations.
We solved the time-dependent GPE (2) starting from a

perturbed waterfall configuration at t ¼ 0, on a torus of
radius much larger than the healing length and length
scales of the initial perturbations. Explicitly, the density at
t ¼ 0 is

ρðx; t ¼ 0Þ ¼ ρþ

��
Mþ þ 1 −Mþ

cosh ðσxÞ2 þ
1 −Mþ

cosh ðσðxþ xmaxÞÞ2
�
1 − tanh ðx=ϵÞ

2
þ 1þ tanh ðx=ϵÞ

2

�
þ δρðx; 0Þ ðB1Þ

where ϵ is a regulator of the order of the step of the uniform spatial grid, xmax is half the length of the integration domain

(centered on x ¼ 0), δρðx; tÞ is the density perturbation, and σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ − 1

p
=ξþ. The phase θ≡ argψ is

θðx; t ¼ 0Þ ¼
�
M−

x
ξ−

þ M1=2
þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ − 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mþ − 1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ −Mþ

pq arctan

�
tanhðσx=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Mþ − 1 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ −Mþ

pq �

−
M1=2

þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ − 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mþ − 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ −Mþ

pq arctan

�
tanhðσx=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Mþ − 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ −Mþ

pq �

þ M1=2
þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ − 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mþ − 1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ −Mþ

pq arctan

�
tanhðσðxþ xmaxÞ=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Mþ − 1 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ −Mþ

pq �

−
M1=2

þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ − 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mþ − 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ −Mþ

pq arctan
�

tanhðσðxþ xmaxÞ=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mþ − 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ −Mþ

pq ��
1 − tanhðx=ϵÞ

2

þMþ
x
ξþ

1þ tanhðx=ϵÞ
2

þ δθðx; 0Þ: ðB2Þ

In Eqs. (B1) and (B2), the terms in xþ xmax are added
to implement the periodic boundary conditions; the
value of xmax is chosen so that θðxmaxÞ − θð−xmaxÞ is
sufficiently close to an integer multiple of 2π to avoid

large perturbations originating from x ¼ xmax. The con-
figuration is thus nearly stationary for δρ ¼ δθ ¼ 0, and
contains a black hole horizon close to x ¼ 0 and a white
hole horizon close to x ¼ xmax.

FIG. 12. Effective temperature (left, in units of TH) and relative phase of the coefficients αω and β−ω (right) as functions of ω=ωmax for
the waterfall solution shown in Fig. 11. There are no significant differences with respect to the results obtained in the main text; see
Fig. 4 right panel and Fig. 10.
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The numerical integration uses a modified version of the
code of [41], written inMathematica [29] with a dissipative
term linear in δρðx; tÞð jxj

xmax
− 1

2
Þ added in the region jxj >

xmax=2 to suppress the perturbations coming back to the
black hole horizon after making a full turn. We verified that
the residual waves going to the white hole horizon and back
to the black hole one, as well as the part of the perturbation
reflected around x ¼ �xmax=2 because of the dissipation
term, are small enough not to affect the results.
To estimate the evolution of the perturbations, we

compute the integral of the squared density perturbation
δρ2 over the interval ½−xmax=8; xmax=8� as a function of
time. In Fig. 13 we show results for Mþ ¼ 5 and an initial
perturbation of the form

δρðx;0Þ¼Aexpð−ðx−xpÞ2=χ2Þ; δθðx;0Þ¼ 0: ðB3Þ

As can be seen in the figure, the integrated squared density
perturbation decays as t−3, in accordance with the linear
theory. We verified that this behavior remains for
Mþ ¼ 1.2; 2, and 3.5, as well as for similar perturbations
on the phase. Although a systematic study of the domain of
stability of the waterfall solutions is beyond the scope of the
present work, our results indicate that they are stable both at
a linear level and under finite initial perturbations.

APPENDIX C: DISPERSIONLESS SETTINGS

In this appendix we study the propagation of a dis-
persionless, massless field in transcritical flows. Our first
aim is to obtain a generalization of the asymptotic expres-
sions of the density correlations of Eqs. (33) and (35) which
is valid in the near horizon region where v and c rapidly
vary. This generalized expression allows us to describe the
gradual change of the correlations in this region, see

Fig. 14, and the modifications of the correlations induced
by the formation of a sonic horizon. Our second aim is to
prepare the calculation of the shift of Eq. (41) which is done
in the next appendix.

1. Generalized expression for Grel
2

Starting from Eq. (13), we perform two simplifications.
We first send the healing length to 0, as was done in
Eq. (42) when sending γ to 0. We also reorder the
derivatives ∂x and x-dependent factors to obtain the wave
equation of a relativistic massless scalar ϕðt; xÞ. Then,
because of conformal invariance, there is a complete
decoupling of the v (copropagating) sector from the u
sector which describes waves counterpropagating with
respect to the background flow. As a result, the two-point
function Grel

2 is a sum of terms G2;v þ G2;u encoding each
contribution separately.
This decoupling between the v and u sectors can be

easily understood by considering the acoustic metric
associated with the background flow [3,5], and by rewriting
it in terms of the lightlike coordinates V and u,

ds2 ¼ −c2ðxÞdt2 þ ðdx − vðxÞdtÞ2
¼ −ðc2ðxÞ − v2ðxÞÞdVdu; ðC1Þ

where

du≡ dtþ dx
cðxÞ− vðxÞ ; dV≡ dt−

dx
cðxÞ þ vðxÞ : ðC2Þ

[The signs in the definition of our lightlike coordinates u
and V are chosen so that lines of constant u give the
characteristics of the counterpropagating waves for a flow
from left to right. The differences with the notations of [9]

FIG. 13. Integrated squared density perturbation over a waterfall solution as a function of time. The background solution is the
waterfall with Mþ ¼ 5. The initial perturbation has the form Eq. (B3) with A ¼ 1, χ ¼ 4, and xp ¼ −20 (left) and 20 (right). For these
simulations, xmax ≈ 249.5 and the squared density perturbation is integrated between −xmax=8 and xmax=8. The spatial grid is made of
12800 uniformly spaced points; the time step is 0.0025. The oblique dashed lines show 104t−3 (left) and 103t−3 (right). [In this plot, the
scale λ of Eq. (7) is fixed so that ρþ ¼ 1.]
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come from the fact that our flow velocity is from left to
right vðxÞ > 0.]
In these settings, to obtain the Hawking radiation and its

associated uu-correlation pattern, one should introduce the
notion of “Unruh” vacuum [42], which is unambiguously
defined as the only regular state across the horizon which is
stationary with respect to time translations ∂tjx. In this
state, at fixed t, regularity across the sonic horizon implies
that in its near vicinity one has [12]

~G2;uðt; x; t; x0Þ ∼
−1
4π

ln jx − x0j: ðC3Þ

In other words the regularity of the state is expressed as a
translation invariance when using the regular coordinate x
which is an affine coordinate at fixed t, since ds2 ¼ dx2 at
fixed t. When considered globally, the two-point function
in Unruh vacuum can be written as

~G2;uðu; u0Þ ¼
−1
4π

ln jU −U0j; ðC4Þ

whereU is a lightlike coordinate which is regular across the
horizon at x ¼ xH, which means that ∂xU is continuous at
xH, both at fixed V and at fixed t. Up to an arbitrary scale
which plays no role in the physics, U is uniquely defined

FIG. 14. Plots of equal-time correlation functions evaluated in a background flow given by Eqs. (C15) and (C16). In the upper left
panel, we show the stationary contribution of v-modes given by Eq. (C7). The contribution of u-modes given by Eq. (C13) evaluated at
t ¼ 0 is shown on the upper right panel, whereas that evaluated at κHt ≈ 5.9 is shown on the lower left panel. The growth of the
correlations on opposite sides is the main signal. One should also notice that on both sides, there is a narrowing of the autocorrelations
which encodes the thermal radiation emitted from the horizon. On the lower right panel, we show the sum of the u and v contributions
evaluated again at κHt ≈ 5.9.
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by the regularity on the horizon and the stationarity
of G2;u.
Before expressing U in terms of the coordinate u

entering Eq. (C2), following [14], we relate the present
formalism to density correlations of phonons in a transonic
flow. To this end, we first consider

~GðxxÞ
2;u ðx; t; x0; t0Þ≡ −1

4π
∂x∂x0 ln jUðt; xÞ −Uðt0; x0Þj: ðC5Þ

The link between this function and the relativistic limit of
Eq. (26) is given by8

Grel
2 ðx; x0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
ξþξ−
ρþρ−

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðxÞξðxÞρðx0Þξðx0Þ

p
½ ~GðxxÞ

2;u þ ~GðxxÞ
2;v �:

ðC6Þ

Here ~GðxxÞ
2;v encodes the contribution of the v-modes. It is

given by

~GðxxÞ
2;v ðx; t; x0; t0Þ≡ −1

4π
∂x∂x0 ln jVðt; xÞ − Vðt0; x0Þj; ðC7Þ

where Vðx; tÞ obeys Eq. (C2). The physics encoded in this
choice is clear: it means that the incoming v-modes are in
their ground state in the asymptotic left region; see Fig. 3.
For the contribution of u-modes, some extra algebra is

needed to relate U entering Eq. (C4) to the two coordinates
uL, uR which obey du ¼ dtþ dx=ðcðxÞ − vðxÞÞ, and
which cover respectively the left and right side of xH.
Indeed, due to the divergence of 1=ðc − vÞ on the sonic
horizon for x → xH, two u coordinates must be used. When
integrating du ¼ dtþ dx=ðcðxÞ − vðxÞÞ, the integration
constant can be chosen independently on each side of
xH. More precisely, using the fact that close to the horizon,
v − c ≈ κHðx − xHÞ, one gets

uR=L ¼
x→xH

t −
1

κH
lnðjx − xHjÞ þ CR=L þ oð1Þ; ðC8Þ

where CR=L are two real constants, taking a priori
different values on each side of the horizon. It is convenient
to adopt the conventional choiceCL ¼ CR, as it allowsone to

express the regularity of Eq. (C4) in simple terms.
Indeed, when CL ¼ CR, one recovers the standard
relation [10]

U ¼
(

1
κH
e−κHuR x > xH

− 1
κH
e−κHuL x < xH

: ðC9Þ

Equivalently, starting with these relations, one easily
verifies that the continuity of ∂xU across the horizon is
equivalent to the condition CL ¼ CR in Eq. (C8). In the
following, we work with uR and uL which satisfy this
relation.
We remind the reader that the above exponential relation

between U, specifying the regular vacuum state, and uL,
which is linearly related to t and x for asymptotic values of
x in the subsonic region, encodes the steady production of
thermally distributed particles at the Hawking temperature
TH ¼ κH=2π. The thermality of the u-phonons shows up

when considering the equal-time expression of ~GðxxÞ
2;u on one

side of the horizon, say on the left subsonic region. One
obtains

~GðxxÞ
2;u ¼ −

κ2H
16π

∂xuLðxÞ∂x0uLðx0Þ
sinh2ðκH

2
ðuLðxÞ − uLðx0ÞÞÞ

: ðC10Þ

When considered sufficiently far from the horizon that

∂xuLðxÞ reaches its asymptotic value, ~GðxxÞ
2;u becomes

identical to the u contribution of the 2-point function in
a thermal state at temperature κH=2π [12].
Similarly the symmetry under the exchange U → −U,

uL → uR encodes the correlations across the horizon
between phonons of opposite energy. This can be seen
by studying wave packets of regular in modes [6] or,
equivalently, the reduction of the state due to the detection
of a localized quantum on one side of the horizon [10,11].
In the present formalism, these correlations show up when

considering ~GðxxÞ
2;u at equal time for x < xH and x0 > xH. In

the place of Eq. (C10), one gets

~GðxxÞ
2;u ¼ −

κ2H
16π

j∂xuRðxÞ∂x0uLðx0Þj
cosh2ðκH

2
ðuRðxÞ − uLðx0ÞÞÞ

: ðC11Þ

In the asymptotic regions where v − c becomes constant,

the locus of the maxima of GðxxÞ
2 gives back the mirror-

image relationship between two null characteristics on
opposite side of the horizon, expressed here as uR ¼ uL.

2. Time-dependent modifications
of density correlations

We aim to study the modifications of the density
correlations which result from the formation of a sonic
horizon. These have been already studied in numerical
simulations based on the Wigner truncated method [15].

8It should be noticed that the ordering of the derivatives ∂x and
the functions ρðxÞ and ξðxÞ adopted here to get Eq. (C6) is
different from that given in Eqs. (5,6) of [14]. In our case, the
derivatives ∂x act on the log, but not on the prefactor CðxÞ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðxÞξðxÞp

of their Eq. (6). We have made this choice in order
to avoid the infrared divergences which occur when acting on
CðxÞ while assuming that the two-point function can be approxi-
mated by ln½ΔUΔV�; see [43,44]. In brief, Eq. (C6) can be viewed
as a local density approximation.
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Here instead we use the dispersionless settings presented
above combined with a simple analytical model to describe
the formation of the horizon [12]. The advantages of this
method is that we can analytically follow both the develop-
ment of the long-distance correlations and the replacement
of vacuum autocorrelations of u-configurations by thermal
ones given in Eq. (C10).
The model consists in working with a stationary back-

ground flow in which the phonon state at t ¼ 0 is imposed
to be the instantaneous local vacuum. That is, at t ¼ 0, the
u-contribution of the two-point function is given by

~Ginst: vac:
2;u ðt ¼ 0; x; t ¼ 0; x0Þ ¼ −1

4π
ln jx − x0j; ðC12Þ

see Eq. (C3). Because of the two-dimensional conformal
invariance, for t > 0, one gets

~Ginst: vac:
2;u ðt; x; t; x0Þ ¼ −1

4π
ln jXuðx; tÞ − Xuðx0; tÞj; ðC13Þ

where Xuðx; tÞ gives the value of x reached at t ¼ 0 by the
null characteristic passing through x at t. Using Uðx; tÞ of
Eq. (C9), which is well defined for any regular flow profile
given by vðxÞ and cðxÞ, we introduce UðxÞ defined by
UðxÞ≡Uðx; 0Þ. Then, by definition of Xu, UðXuðx; tÞÞ ¼
Uðx; tÞ. Using Eq. (C9), one finds that Uðx; tÞ ¼
e−κHtUðx; 0Þ, from which

Xuðx; tÞ ¼ U−1ðUðx; tÞÞ: ðC14Þ

To obtain simple equations, we work with a background
flow given by

vðxÞ − cðxÞ

¼ ðvþ − cþÞ
eκHx=ðvþ−cþÞ − e−κHx=ðc−−v−Þ

eκHx=ðvþ−cþÞ þ vþ−cþ
c−−v−

e−κHx=ðc−−v−Þ
; ðC15Þ

where κH gives the surface gravity. The (positive) constants
vþ − cþ; c− − v− and κH can be adjusted so as to match the
properties of some transcritical flow one wishes to consider.
For instance, for the waterfall solution with Mþ ¼ 5, one
finds vþ−cþ

cþ
≈ 4, c−−v−

cþ
≈ 1.2, and κHξþ

cþ
≈ 5.1. To be able to

compute the contribution of the v-modes, the profile needs
to be completely fixed, namely vðxÞ þ cðxÞ should also be
given. Here we chose to work with

vðxÞ þ cðxÞ ¼ 2c1 þ ð1 − 2qÞðvðxÞ − cðxÞÞ; ðC16Þ

where the constants c1 and q are fixed by the asymptotic
values in the background flow. For the waterfall solution
with Mþ ¼ 5, we get c1

cþ
≈ 1.9 and q ≈ 0.24.

Knowing the profile, we can integrate Eq. (C2)
to find Xuðt; xÞ and Vðt; xÞ governing the u- and
v-contribution of the two-point function of Eq. (C6)
in the instantaneous vacuum. On the left upper plot of
Fig. 14, we represent Grel

2;v, the equal-time correlations of
v-modes. When using Vðt; xÞ of Eq. (C2) to fix the
initial state of v-modes, this term is independent of
the time lapse after the formation of the horizon. On
the right upper plot, using Eq. (C14), we represent the
equal-time correlations of u-modes just after the
formation of the horizon. As expected Grel

2;v and
Ginst: vac:

2;u evaluated at t ¼ 0 are very similar, and
contain only a vacuumlike diverging contribution
∼ − ξ2ðxÞ=ðx − x0Þ2. On the lower left plot of Fig. 14,
we show the equal-time correlations Ginst: vac:

2;u evaluated
after a finite time (κHt ≈ 5.9), chosen so as to match the
observations reported in [1]. On opposite sides of the
horizon, we see the propagation of correlated pairs of
u-phonons. In addition, on both the subsonic and
supersonic sides, we see a narrowing of the autocorre-
lations associated with the replacement of vacuumlike
correlations ∼ − ξ2=ðx − x0Þ2 by thermal correlations
given in Eq. (C10). On the lower right plot, we
represent the sum of u and v contributions. Whereas
the nonlocal correlations are hardly affected, we see that
the narrowing of the u-correlations is now less visible.
For κHt → ∞, one obtains a stationary situation very
similar to that represented in the right plot of Fig. 8.

APPENDIX D: SHIFT OF CORRELATIONS
INDUCED BY THE FLOW ASYMMETRY

In Sec. D 1, we present the general expressions for the
shift of Eq. (41) using the settings of the former appendix.
In Sec. D 2 we consider an asymmetric tanh profile and
show that, surprisingly, the shift vanishes. We then turn to
two asymmetrical profiles which display a nontrivial
shift: a perturbed tanh profile in D 3 and a linear profile
in D 4.

1. Generalized expression for the shift

To compute the shift xM, we first assume that the
coordinate u, solution of Eq. (C2), has the following
asymptotic expansion:

uðx; tÞ ¼
x→�∞

tþ x − xH þ b�
vgr�

þ oð1Þ; ðD1Þ

where vgr� ≡ −c� þ v� gives the group velocity in the
laboratory frame in each asymptotic region, which satisfies
vgr− < 0 and vgrþ > 0. In the limit x → −∞ and x0 → þ∞,

the maximum of GðxxÞ
2 is located where
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x − xH þ b−
vgr−

¼ x0 − xH þ bþ
vgrþ

: ðD2Þ

To get the point where these asymptotes cross each
other, we set x ¼ x0, giving the shift

Δx≡ xM − xH ¼ vgr− bþ − vgrþb−
vgrþ − vgr−

: ðD3Þ

As expected, the correction terms b� in Eq. (D1) fix the
shift Δx.
To complete the calculation, we now relate Δx to the

profile of cðxÞ − vðxÞ. To this end, we use that, for ϵ > 0
and x > xH, and up to a global constant,

uR ¼ tþ
Z

x

xHþϵ

dy
cðyÞ − vðyÞ þ

1

κH
lnðjϵjÞ þOðϵÞ; ðD4Þ

while for x < xH,

uL ¼ tþ
Z

x

xH−ϵ

dy
cðyÞ − vðyÞ þ

1

κH
lnðjϵjÞ þOðϵÞ: ðD5Þ

Using these expressions and the definition of b� Eq. (D1),
we obtain

bþ
vgrþ

−
b−
vgr−

¼ lim
ϵ→0

lim
X→∞

�Z
½xH−X;xHþX�−½xH−ϵ;xHþϵ�

dx
cðxÞ−vðxÞ−

X
vgrþ

−
X
vgr−

�
:

ðD6Þ

The near horizon contribution is given by a principal value
(and vanishes in the case one uses the approximation
c − v ¼ −κHx, which globally describes de Sitter space).
The overall shift is related to the asymmetry in the ways
c − v approaches its asymptotic values on the two sides of
the horizon.
In Fig. 15, we show Δx as a function of the downstream

Mach numberMþ for the waterfall solution Eq. (8), in units
of cH=κH. We notice that it is positive for all values ofMþ.
Its behaviors at Mþ → 1 and Mþ → ∞ are

κH
cH

Δx ∼Mþ→1þ

ffiffiffi
2

3

r �
1 −

ffiffiffi
2

3

r �
argtanh

� ffiffiffi
2

3

r �
ðMþ − 1Þ

ðD7Þ

and

κH
cH

Δx ∼Mþ→∞
1

2
M1=6

þ lnðMþÞ: ðD8Þ

In the following we compute the same shift for tanh,
perturbed tanh, and linear profiles.

2. The tanh case

We consider a profile of the form

cðxÞ − vðxÞ ¼ a − b tanhðxσÞ; ðD9Þ

where ða; b; σÞ ∈ R3 and b2 > a2. Equation (C2) can be
integrated explicitly, giving

(
uR ¼ t − 1

κ

	
log

	
b sinhðx=σÞ−a coshðx=σÞ

b sinhðxR=σÞ−a coshðxR=σÞ


þ a

b
x−xR
σ



uL ¼ t − 1

κ

	
log

	
b sinhðx=σÞ−a coshðx=σÞ

b sinhðxL=σÞ−a coshðxL=σÞ


þ a

b
x−xL
σ


 ;

ðD10Þ

where xR and xL are two integration constants. κ is the
surface gravity, equal to

κ ¼ b
σ

�
1 −

�
a
b

�
2
�
: ðD11Þ

Continuity of ∂xU across the horizon imposes

b sinh ðxL=σÞ − a cosh ðxL=σÞ
b sinh ðxR=σÞ − a cosh ðxR=σÞ

¼ − exp

�
a
b
xR − xL

σ

�
:

ðD12Þ

Using this relation and the position of the horizon,
xH ¼ ðσ=2Þ logððaþ bÞ=ðb − aÞÞ, uR and uL can be writ-
ten in the limits x=σ → �∞,

FIG. 15. As a function of the downstream Mach number Mþ,
we show the relativistic shift Δx of Eq. (D3) adimensionalized by
the length associated with the surface gravity cH=κH.
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8<
:

uR ¼
x→þ∞

t − 1
κ

	
log

	
−

ffiffiffiffiffiffiffiffiffi
b2−a2

p
b sinhðxL=σÞ−a coshðxL=σÞ



− a

2b log
	
b−a
bþa



− a

b
xL
σ þ

	
1þ a

b



x−xH
σ



þOðe−2x=σÞ

uL ¼
x→−∞

t − 1
κ

	
log

	
−

ffiffiffiffiffiffiffiffiffi
b2−a2

p
b sinhðxL=σÞ−a coshðxL=σÞ



− a

2b log
	
b−a
bþa



− a

b
xL
σ −

	
1 − a

b



x−xH
σ



þOðe2x=σÞ:

ðD13Þ

Notice that the constant terms in uR and uL are the same.
So, with the notations of Eq. (D1), bþ=v

gr
þ ¼ b−=vgr− , hence

a vanishing shift Δx ¼ 0.

3. Perturbed tanh profile

The result of the Sec. D 2 can be misleading as they seem
to suggest that the vanishing of the shift Δx is a generic
property of flows with smooth c − v. To show that this is
not the case, let us consider the following generalization of
Eq. (D10):

uðt; xÞ

¼ tþ 1

κ

�
log

�jb sinh ðx=σÞ − a cosh ðx=σÞ − cj
A0

�
− η

x
σ

�
;

ðD14Þ

where ða; b; c; κ; A0; η; σÞ ∈ R7. One can check that the
function U thus defined is smooth.9 As in Sec. D 2, we
assume b2 > a2. One can reduce the number of free
parameters by defining the nondimensional variables

t≡ κt; x≡ x
σ
þ 1

2
log

�
b−a
bþa

�
and u≡ κu: ðD15Þ

In the remainder of this subsection we work only with these
nondimensional variables and remove the bars to simplify
the notations. Equation (D14) then becomes

uðx; tÞ ¼ tþ logðjsinhðxÞ − γjÞ þ ηx; ðD16Þ

where γ ≡ c=b. Differentiating Eq. (D16) gives

1

cðxÞ − vðxÞ ¼
coshðxÞ

sinhðxÞ − γ
þ η: ðD17Þ

The horizon is located at xH ¼ argsinhðγÞ. A straightfor-
ward calculation shows that cðxÞ − vðxÞ has no divergence,
and thus can correspond to a physical flow, if and only if

η2 < 1 ∧ ηγ <
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
: ðD18Þ

Notice however that c − v is not a monotonic function of x
when γ ≠ 0: c0 − v0 changes sign at x ¼ argsinhð1=γÞ; see
Fig. 16.
Setting uðt; xÞ ¼ uðt; x0Þ with x > xH and x0 < xH and

taking the limit x → ∞ gives

x
vgrþ

−
x0

vgr−
¼ 0: ðD19Þ

Using Eq. (D2), we get Δx ¼ −xH. In other words, the
asymptotes of the lines uR ¼ uL intersect at xM ¼ 0, which
is not the position of the horizon for γ ≠ 0. The corre-
sponding two-point correlation function of Eq. (C11) is
shown in Fig. 17 for a positive γ. We also represent the

equal-time correlation GðttÞ
2 given by

GðttÞ
2 ðx;t;x0; tÞ≡−1

4π
∂t∂t0 lnðUðt;xÞ−Uðt0;x0ÞÞt¼t0

¼ κ2H
16πðcoshðκH

2
ðuRðxÞ−uLðx0ÞÞÞÞ2

; ðD20Þ

which behaves differently in the near horizon region, as it
only depends on uRðxÞ and uLðxÞ, and not on their space

derivatives. Hence the maximal value of GðttÞ
2 ðx; t; x0; tÞ

exactly follows the xðx0Þ giving the image of the pair of null
geodesics in the x, x0 plane.

4. Linear profile

As a third example, we consider a profile of vþ c which
is linear in a near horizon region and uniform outside it. To

FIG. 16. Profile of c − v for the perturbed tanh flow of
Eq. (D16) with γ ¼ η ¼ 0.5. The horizon is located at x ≈ 0.48.

9Because of the absolute value, u can be continued in the
complex plane to a function which is smooth just above the real
axis, up to a term iπ=κ which arises when passing above xH . This
additional term exactly compensates the relative sign in the
definition of U on both sides of the horizon; see Eq. (C9).
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be specific, we define three real numbers κ, xþ > 0, and
x− < 0, and choose the profile

cðxÞ − vðxÞ ¼
8<
:

−κx− x < x−
−κx x− ≤ x ≤ xþ
−κxþ xþ < x

: ðD21Þ

κ is then the surface gravity. Integrating 1=ðc − vÞ over x,
imposing that U be a smooth function of x across the
horizon and at x ∈ fx−; xþg, gives

uðxÞ ¼

8>>>>><
>>>>>:

t − x−x−
κx−

− 1
κ log

	
−x−
jx0j



x < x−

t − 1
κ log

	
j x
x0
j



x− ≤ x ≤ xþ

t − x−xþ
κxþ

− 1
κ log

	
xþ
jx0j



xþ < x

; ðD22Þ

where x0 is an arbitrary integration constant. Considering
two points x > xþ and x0 < x−, setting uðt; xÞ ¼ uðt; x0Þ,
gives

x
κxþ

−
x0

κx−
¼ 1

κ
log

�
−x−
xþ

�
: ðD23Þ

Since the horizon is at xH ¼ 0, we obtain

Δx ¼ log ð−x−=xþÞ
ð1=xþÞ − ð1=x−Þ

: ðD24Þ

APPENDIX E: PHASE OF THE
COEFFICIENTS αω AND βω

In this appendix we consider the phases of the individual
coefficients αω and β−ω appearing in the first line of Eq. (19).
When working with the vacuum, it is unclear whether these
phases can be measured experimentally. However they can
be measured when working in the stimulated regime by
sending a classical wave [30,45,46], or a coherent state [9],
towards the horizon. We hope they will be measured in
forthcoming experiments based on water waves. Wewish to
emphasize here that the comparison of theirmeasured values
with those theoretically computed could provide an impor-
tant additional check that the observed phenomena are
indeed due to the particular mode conversion one wishes
to probe. So far, only the norms of the scattering coefficients

FIG. 17. Two-point correlation function Eq. (C5) (left) and Eq. (D20) (right) (rescaled so that the maximum represented value is 1) for
a perturbed tanh profile given by Eq. (D17), with γ ¼ 2η ¼ 1. The black, dashed line shows the locus uRðxÞ ¼ uLðx0Þ and
uLðxÞ ¼ uRðx0Þ. The white, straight, dashed half-lines are their asymptotes. In these plots, the origin of x has been put where they meet,

i.e., xM ¼ 0. Hence the sonic horizon is located at xH ¼ −Δx. On the right plot, we clearly see that the maxima of GðttÞ
2 , which give

xðx0Þ, start from x ¼ xH . On the left plot, we see that the maxima of GðxxÞ
2 emerge from a broad region which is approximately centered

on xM ¼ 0, and not on xH .
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have been used, and there is a need for alternative ways to
discriminate between possible different explanations.
To compute the phases of individual coefficients, one

needs to choose the phases of the asymptotic modes that are
involved. For the coefficients αω and β−ω, the latter are the
incoming mode ϕd;in

ω , governed by the dispersive root kdω,
and the two out modesϕu

ω and ðφu
−ωÞ�; see Fig. 3. As done in

Eq. (28), we work with modes whose phase is (on the side
where the mode is defined) asymptotically equal to kaωxþ
oð1Þ [we remind the reader that oð1Þ means “up to terms
going asymptotically to 0”]. The phases of the scattering
coefficients αω and β−ω as functions ofω=ωmax and obtained
by solving numerically Eq. (13) are shown by continuous
lines in Fig. 18 for the waterfall solution withMþ ¼ 5. We
see that both argαω and arg β−ω display a regular smooth
behavior which could be compared with experimental data.
To complete this study, we now compare these curves

with the predictions of [47]. This theoretical analysis
involves modes evaluated in an intermediate region satisfy-
ing the two following properties; see Eqs. (42)–(45) and
Fig. 2 of this reference. First, it must be sufficiently far away
from the turning point xt:p:ð−ωÞ of the negative-frequency
mode, see Fig. 3, for the WKB approximation to be valid.
Second, it must be close enough to the sonic horizon for
cðxÞ − vðxÞ ≈ κHx to provide a good approximation. To
perform the comparison with the above curves, the modes
defined in this intermediate region need to be propagated
further away from the horizon towards jxj → ∞. Assuming
that this propagation can be described under the WKB
approximation, the phases accumulated from the near
horizon region to the asymptotic ones are given by

arg ðϕd;WKB
ω ðxÞÞ ¼

x→þ∞

Z
x

xdðωÞ
kdωðyÞdyþ CdðωÞ þ oð1Þ;

arg ðφu;WKB
−ω ðxÞÞ ¼

x→þ∞

Z
x

xuð−ωÞ
ku−ωðyÞdyþ Cuð−ωÞ þ oð1Þ:

ðE1Þ

The phases CdðωÞ and Cuð−ωÞ are then chosen to match
Eqs. (42) and (44) of [47] at the corresponding locations
xdðωÞ and xuð−ωÞ situated in the intermediate region, on the
supersonic side. (The outgoing mode ϕu

ω can be matched at
the same point as the incoming mode ϕd;in

ω because their
wave vectors belong to the same branch of the dispersion
relation.) When the intermediate region is sufficiently
extended, the results should hardly depend on the exact
location of xdðωÞ and xuð−ωÞ. However, in the waterfall
solution with Mþ ¼ 5, the scale of variation of κðxÞ ¼
∂xðc − vÞ is of the same order as the dispersive length scale;
see the discussion in the paragraph after Eq. (9). Considering
for instance thevalueω ¼ 0.1ωmax ≈ 0.9TH, we find that κH
and κðxt:p:Þ differ by more than 60%. As a result, the
treatment used in [47] is not expected to give accurate
results in the present flow, and can only be applied to
frequencies lower than ωmax=10. The phases given in
Eq. (76) of [47] are shown by dots in Fig. 18 for
ω ≤ 0.1ωmax. They are reexpressed in terms of the asymp-
toticmodes obeyingEq. (E1). [To get thevalues represented,
we adjusted the location of xdðωÞ and xuð−ωÞ to minimize
the residual phase dependence in the mode matching.] The
dashed line on the left plot shows the result of the naive
WKB approximation, assuming the mode ϕω is given by its
WKB expression everywhere up to a phase jump of π=4
[which is the ω → 0 limit of the analytical result; see
Eqs. (71) and (76) in [47]] around the horizon. This naive
treatment is unable to predict the phase of the βω coefficient.
As can be seen in the figure, in spite of the fact that the

waterfall solution with Mþ ¼ 5 does not meet the regu-
larity conditions used in the analytical treatment, its
predictions are in rather good agreement with numerical
values. We also see that the error significantly increases
when ω approaches 0.1ωmax, in agreement with the above
remark. These results indicate that the phases of the
scattering coefficients seem rather robust quantities, which
could ease the comparison between observational and
numerical values.

FIG. 18. Phase of the scattering coefficients αω (left) and β−ω (right) for the waterfall solution withMþ ¼ 5. Continuous curves show
the phases of αω and β−ω obtained by numerical integration and working with the definition of the asymptotic modes used in the main
text. Dots show the analytical prediction of [47] reexpressed with the same modes. The dashed line on the left plot shows the result of the
naive WKB approximation; see the text for explanation.
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