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Collaborative international efforts under the name of the Event Horizon Telescope project, using sub-
mm very long baseline interferometry, are soon expected to provide the first images of the shadow cast by
the candidate supermassive black hole in our Galactic center, Sagittarius A*. Observations of this shadow
would provide direct evidence of the existence of astrophysical black holes. Although it is expected that
astrophysical black holes are described by the axisymmetric Kerr solution, there also exist many other
black hole solutions, both in general relativity and in other theories of gravity, which cannot presently be
ruled out. To this end, we present calculations of black hole shadow images from various metric theories
of gravity as described by our recent work on a general parametrization of axisymmetric black holes
[R. Konoplya, L. Rezzolla, and A. Zhidenko, Phys. Rev. D 93, 064015 (2016).]. An algorithm to perform
general ray-tracing calculations for any metric theory of gravity is first outlined and then employed to
demonstrate that even for extremal metric deformation parameters of various black hole spacetimes, this
parametrization is both robust and rapidly convergent to the correct solution.
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I. INTRODUCTION

It is nowwidely believed that at the center of every galaxy
resides a supermassive black hole. Observational evidence,
particularly for our own galactic black hole candidate,
Sagittarius A* (Sgr A*), is compelling [1,2] and supports
the notion of an object of enormous density, most likely
a supermassive black hole, residing in the innermost
central region.
However, direct observation of an astrophysical black

hole remains illusive, and this is because of the existence of
the event horizon, that is, a surface limiting a region of
spacetime beyond which neither matter nor radiation can
escape the gravity of the black hole. Outside this surface,
but still in close proximity to the event horizon, lies the
photon-capture region, where photons follow unstable
orbits. Hence, when observing a black hole directly, we
expect to see a “silhouette” of this photon region. Therefore,
black holes are expected to be observed as a shadow on the
background sky [3–5].
It is anticipated that submillimeter very long baseline

interferometry (VLBI) observations of Sgr A* with the
Event Horizon Telescope [6–8] will soon yield the first
radio images of the shadow of the candidate black hole
therein. The Black Hole Camera project, in addition to
other scientific activities, participates actively in the inves-
tigation of the physics and astrophysics of the black hole
candidate associated to Sgr A*. Particular attention is
dedicated to theoretical calculations of the shadows, whose
size and shape are sensitive to certain system parameters, in

particular, the black hole mass and spin, as well as the
orientation of the spin axis of the black hole with respect
to Earth (see, e.g., Ref. [9]). Observations of this shadow
would not only provide very compelling evidence for the
existence of an event horizon, but also enable estimates to
be placed on these system parameters.
While astrophysical black holes are expected to be

described by the Kerr solution, there exist numerous black
hole solutions in other theories of gravity (see, for example,
[10,11] and references therein). One cannot yet exclude
the possibility of many of the black hole metrics available
in the literature and as such they are all, in a sense, potential
candidates. Rather than investigate all possible theories
of gravity and their corresponding black hole solutions
one at a time, it is expedient to instead consider a
model-independent framework within which any particular
solution to any theory of gravity may be parametrized
through a finite number of modifiable parameters. These
parameters can then be chosen to measure deviations from
the Kerr metric and may be estimated from astrophysical
observations [12].
There is a simple reason why this avenue is a viable one,

and although it is quite obvious, it may be useful to recall it
here. The problem of defining the properties of the shadow
does not require the choice of a theory of gravity, but
only of a well-behaved expression for the metric tensor.
This is because all that is ultimately needed to compute
a shadow is the solution of the geodesic equations. The
latter obviously do not require any assumption on the
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theory of gravity, but only a well-defined and regular
definition of the metric tensor.
In Ref. [13], such a parametric framework was intro-

duced to describe the spacetime of spherically symmetric
and slowly rotating black holes in generic metric theories of
gravity. The parametrization in [13] is based on a continued
fraction expansion in terms of a compactified radial
coordinate. Building upon the framework of [13] to also
include axisymmetric spacetimes, Ref. [14] presented a
parametric description of axisymmetric black holes in
generic metric theories of gravity. This new parametrization
is based on a double expansion in both the radial and polar
directions of a general stationary and axisymmetric metric,
and is practically independent of any specific metric theory
of gravity. Although it was shown to accurately reproduce,
with only a small number of parameters, several different
spacetime geometries, the question of how many expansion
orders in each direction are required to accurately describe
physical processes within this parametric framework was
not addressed in Ref. [14].
However, it is important to establish whether such a

framework can reproduce, to high precision, the strong
field behavior of geodesics in the vicinity of the event
horizon of different black hole spacetimes. Calculating
the black hole shadow through direct numerical integra-
tion of the geodesic equations in the parametrized form
of a reference black hole metric (and repeating the
calculation at successive expansion orders), and sub-
sequently comparing this with the shadow obtained from
the analytic form of the “unparametrized” metric, pro-
vides a practical and stringent test of this framework.
In addition, ray-tracing calculations of the shadows cast
by different black hole solutions can provide insight into
the practical performance of the application of this
parametrization in astrophysical calculations involving
electromagnetic radiation.
Such a framework has several important applications.
(1) To enable black hole solutions in many metric

theories of gravity to actually be written in algebraic
form and therefore investigated using ray-tracing
and radiative-transfer methods.

(2) To represent all black hole solutions in terms of just
a few parameters, distinguishing between solutions
on this basis.

(3) To constrain and potentially (physically) exclude
black hole solutions from many theories of gravity
with just a few key observational parameters neces-
sary to reproduce the shadow curve (see [15] for a
general approach).

In this first study we concern ourselves only with the
shadow images obtained from black holes in different
metric theories of gravity. Since the observed properties of
radiation emanating from a black hole are subject to the
spacetime through which the radiation propagates, it is
prudent to first develop a method to ray trace through a

general parametrized metric and investigate the accuracy of
this parametrization.
Hence, we here numerically calculate the shadow boun-

dary curve and investigate, for several different spacetimes,
the accuracy of the parametrization at various orders
with respect to the original unparametrized form of the
spacetime. Since the parametrization exactly reproduces
Kerr in the equatorial plane, and in order to adequately test
the parametrization, we consider near-extremal values of
all spacetime-specific deformation parameters. Different
measures of the accuracy of the expansion for each
spacetime are presented and the excellent convergence
properties of the parametrization are demonstrated.
This paper is organized as follows. In Sec. II we describe

the ray-tracing formalism required to calculate geodesics
within an arbitrary metric parametrization, where the
expressions for such calculations are derived explicitly.
Section III presents a short overview of the axisymmetric
parametrization framework employed throughout this
paper. In Sec. IV we apply this ray-tracing formalism to
several different known black hole solutions. Each para-
metrized black hole solution is expanded to various orders
and the resultant black hole shadows are calculated and
compared with the shadow from the “exact”metric. Finally,
Sec. V is devoted to the conclusions.

II. RAY-TRACING FORMALISM

In order to calculate the shadow image of a black hole,
one must first solve the geodesic equations in the
background spacetime under consideration. For the Kerr
spacetime, there now exist several codes and schemes to
perform this task (e.g., [16–22]).
As the order of the series expansion of the metric

coefficients increases, the expressions for these coefficients
grow rapidly in algebraic complexity. Conventional meth-
ods to solve the geodesic equations either through quad-
ratures or by directly integrating the geodesic equations are
both impractical and inefficient, as well as prone to large
numerical errors.
Direct integration of the geodesic equations necessitates

determining the Christoffel symbols for the expanded
metric at any given order. Given the complexity of the
expanded forms, this is impractical and the resultant
algebraic expressions can span hundreds of lines of code
per Christoffel symbol component. Moreover, such large
expressions lead to a catastrophic loss of numerical
precision before the ray propagation even begins. A naive
approach would be to calculate the Christoffel symbols
numerically, but this again is inefficient since when
evaluating partial derivatives of the metric coefficients
there are many repeated (as well as zero) terms, and the
computational overhead is significant. Since we seek to
minimize the number of operations needed to integrate the
geodesic, we must recast the geodesic equations in a form
better suited to satisfy these requirements.
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A. Geodesic equations of motion

For a given metric gαβ, the Lagrangian may be written as

2L ¼ gαβ _xα _xβ; ð1Þ

where an overdot denotes differentiation with respect to the
affine parameter, λ. Making xα the variable of interest,
deriving the Euler-Lagrange equations and solving for ẍα

yields

gαβẍβ ¼ ∂αL − _gαβ _xβ; ð2Þ

which may be rewritten, upon raising and relabeling
indices, as

ẍα ¼ gαβð∂βL − _gβγ _xγÞ; ð3Þ

which are precisely the geodesic equations in a more
succinct form.
In solving Eq. (3) numerically, one must also employ the

result d=dλ ¼ _xμ∂μ which enables Eq. (3) to be written as

ẍα ¼ gαβð∂βL − ∂μgβγ _xγ _xμÞ: ð4Þ

In general, one is only provided with the covariant metric
components, perhaps as a series expansion (as in this
study), or on a grid of simulation data (which would require
interpolation between grid points, e.g., [23]). While one
may determine the components of the contravariant metric
tensor from an algebraic expression in terms of the
determinant of the metric, for general metrics this is
cumbersome, computationally expensive and error prone.
Instead, we opt for numerical lower-upper decomposition,
being careful with singular regions such as those near the
event horizon, where the determinant can vanish.

B. Application to axisymmetric spacetimes

Although Eq. (4) represents the geodesic equations for
any general metric tensor gαβ, in this study we restrict
ourselves to metric expansions of static and axisymmetric
spacetimes expressed in Boyer-Lindquist coordinates,
where the only off-diagonal metric coefficient is gtϕ. As
such, Eq. (4) may be rewritten in terms of the following
system of second-order ordinary differential equations
(ODEs):

ḡẍt ¼ gϕϕT t − gtϕT ϕ; ð5Þ

grrẍr ¼ ∂rL − ∂μgrr _xr _xμ; ð6Þ

gθθẍθ ¼ ∂θL − ∂μgθθ _xθ _xμ; ð7Þ

ḡẍϕ ¼ gttT ϕ − gtϕT t; ð8Þ

where

T t ≡ ∂μgtt _xt _xμ; ð9Þ

T ϕ ≡ ∂μgϕϕ _xϕ _xμ; ð10Þ

and the index μ in Eqs. (5)–(10) ranges from 1 to 2 (i.e., r, θ)
only. Additionally, g≡ detðgαβÞ ¼ −grrgθθðg2tϕ − gttgϕϕÞ,
where we have also defined

ḡ≡ −gðgrrgθθÞ−1 ¼ g2tϕ − gttgϕϕ: ð11Þ

SolvingEqs. (5)–(8) directly, compared to solvingEq. (4),
has the advantage of both removing all vanishing terms and
expressing all equations in terms of covariant metric
components, thereby simplifying the resulting calculations.1

We note that the static and axisymmetric nature of the
spacetime implies the conservation of energy, E, and
angular momentum, Lz, and consequently Eqs. (5)
and (8) may be replaced by the following first-order ODEs:

ḡ_xt ¼ gϕϕEþ gtϕLz; ð12Þ

−ḡ_xϕ ¼ gtϕEþ gttLz; ð13Þ

where

−E ¼ ∂L
∂ _xt ¼ gtt _xt þ gtϕ _xϕ; ð14Þ

Lz ¼
∂L
∂ _xϕ ¼ gϕϕ _xϕ þ gtϕ _xt; ð15Þ

thereby reducing the number of ODEs to be integrated from
8 to 6.
Two additional constants of motion, namely the par-

ticle’s rest mass, δ [equal to 0 for photons and −1 for
particles in the ð−;þ;þ;þÞ convention], and the Carter
constant, Q, enable the number of ODEs to be further
reduced from 6 to 4 [24]. However, Eqs. (6)–(7) are then
replaced by first-order ODEs which are of second degree in
_xr and _xθ, respectively. This introduces ambiguity in the
signs of _xr and _xθ at turning points in the geodesic motion
due to the presence of square roots in the equations. It
is therefore more straightforward to simply integrate
Eqs. (6)–(7) and avoid this issue altogether [19].
Although for any static and axisymmetric spacetime the

energy and angular momentum of a test point particle are
conserved, for the purposes of comparing results at differ-
ent expansion orders it is more convenient not to enforce
that E and Lz must be conserved by construction. For the
same geodesic calculated at different orders of the

1In particular, one may exploit the fact that, for axisymmetric
spacetimes, the following identities hold: grrgrr ¼ gθθgθθ ¼ 1,
gtt ¼ −gϕϕḡ−1, gtϕ ¼ gtϕḡ−1, and gϕϕ ¼ −gttḡ−1.
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expansion of the same spacetime, E, Lz and _xt are also
different at each expansion order.
Furthermore, when considering metrics written in

more general (e.g., Cartesian or modified and horizon-
penetrating) coordinate systems, it is useful to numerically
calculate all components of xα and _xα for practical general-
relativistic radiative transfer calculations, e.g., involving
general-relativistic magnetohydrodynamical simulation data
(e.g. [23]). With xα and _xα fully computed, we calculate the
values of ðE;Lz; δ;QÞ at every step of the geodesic integra-
tion. This enables us to check the accuracy of the integration
by monitoring the conservation of these computed constants
of motion with respect to their initial values at the beginning
of thegeodesic integration. For these reasons, in this studywe
numerically integrate Eqs. (5)–(8) directly.
Partial derivatives are evaluated using finite-difference

representations of the differential operators. The back-
ground spacetime is always represented algebraically
and in closed form in the parametrization scheme so in
principle all metric coefficients may be evaluated to
machine precision. As such, we find that second-order
centered finite differencing with a step size between 10−4

and 10−5M (where M is the black hole mass) is sufficient
for the vast majority of geodesic calculations considered
in this paper. Occasionally, switching to a fourth-order
method is necessary to maintain numerical precision in
problematic regions, e.g., near the event horizon, polar
regions or other coordinate-dependent pathologies. In such
regions, either forward or backward finite-differencing
methods are particularly useful.
Each geodesic is calculated to a precision of better than

10−9M using a fourth-order Runge-Kutta-Fehlberg inte-
grator with adaptive step sizing and fifth-order error control
[25]. If the input spacetime were, for example, tabulated on
a grid, then interpolation between grid points would be
required and thus higher order finite-differencing methods
would become necessary to preserve accuracy.

C. Initial conditions

As is customary in ray-tracing calculations, an observer
needs to be placed at some distance from the source.
In our calculations the observer is positioned far from
the black hole (i.e., at robs ¼ 103M), where the spacetime
is assumed to be essentially flat. The observer’s position is
specified in Boyer-Lindquist (oblate spheroidal) coordi-
nates as ðrobs; θobs;ϕobsÞ.
The observer’s image plane is a two-dimensional rec-

tangular grid with zero curvature, where each ray arrives
perpendicular to the grid. The initial conditions of each ray
are then specified by transforming the ðx; yÞ coordinates of
the image plane into Boyer-Lindquist coordinates in the
black hole frame. The observer’s z-direction is oriented
along the radial direction towards the black hole center.
After this transformation, the coordinates of each pixel on
the image plane are expressed as follows:

r2 ¼ σ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ a2Z2

p
; ð16Þ

cos θ ¼ Z=r; ð17Þ

tanϕ ¼ Y=X; ð18Þ

where

X ≡D cosϕobs − x sinϕobs; ð19Þ

Y ≡D sinϕobs þ x cosϕobs; ð20Þ

Z≡ robs cos θobs þ y sin θobs; ð21Þ

and

σ ≡ ðX2 þ Y2 þ Z2 − a2Þ=2; ð22Þ

D≡ sin θobs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2obs þ a2

q
− y cos θobs: ð23Þ

The components of the three-velocity of the ray
are calculated through differentiation of Eqs. (16)–(18),
yielding

−Σ_xr ¼ rR sin θ sin θobs cosΦþR2 cos θ cos θobs; ð24Þ

−Σ_xθ ¼ R cos θ sin θobs cosΦ − r sin θ cos θobs; ð25Þ

R_xϕ ¼ sin θobs sinΦ cosecθ; ð26Þ

where

Σ≡ r2 þ a2cos2θ; ð27Þ

R≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
; ð28Þ

Φ≡ ϕ − ϕobs: ð29Þ

Without loss of generality, the initial condition for the
time coordinate is set to be t ¼ 0 for all rays originating
from the observer. The final initial condition for _xt is
calculated from the invariance of the line element, yielding

_xt ¼ β þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ

q
; ð30Þ

where

β≡ −
gti _xi

gtt
; ð31Þ

γ ≡ δ − gij _xi _xj

gtt
: ð32Þ
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Latin indices fi; jg range from 1 to 3 (i.e., r, θ, ϕ) and
denote the spatial components.

III. PARAMETRIZATION FRAMEWORK

We present here a brief overview of the parametrization
framework used throughout this study. Further details and
discussion may be found in Ref. [14]. We recall that in this
parametrization, any axisymmetric black hole spacetime
with mass M and rotation parameter a can be represented
by the following line element [14],

ds2 ¼ −
N2 −W2sin2θ

K2
dt2 − 2Wrsin2θdtdϕ

þ K2r2sin2θdϕ2 þ S

�
B2

N2
dr2 þ r2dθ2

�
; ð33Þ

where

S≡ Σ
r2

¼ 1þ a2

r2
cos2θ; ð34Þ

and N, B, W, K are functions of the radial and polar
(expanded in terms of cos θ) coordinates as follows:

B ¼ 1þ
X∞
i¼0

BiðrÞðcos θÞi; ð35aÞ

W ¼
X∞
i¼0

WiðrÞðcos θÞi
S

; ð35bÞ

K2 ¼ 1þ aW
r

þ a2

r2
þ
X∞
i¼1

KiðrÞðcos θÞi
S

; ð35cÞ

N2 ¼
�
1 −

r0
r

�
A0ðrÞ þ

X∞
i¼1

AiðrÞðcos θÞi; ð35dÞ

where r0 is the radius of the event horizon in the equatorial
plane.2

We next expand the coefficients in terms of the radial
coordinate as follows,

BiðrÞ ¼ bi0
r0
r
þ ~Bi

r20
r2
; ð36aÞ

WiðrÞ ¼ wi0
r20
r2

þ ~Wi
r30
r3

; ð36bÞ

Ki>0ðrÞ ¼ ki0
r20
r2

þ ~Ki
r30
r3
; ð36cÞ

A0ðrÞ ¼ 1 − ϵ0
r0
r
þ ða00 − ϵ0Þ

r20
r2

þ a2

r2
þ ~A0

r30
r3
;

Ai>0ðrÞ ¼ KiðrÞ þ ϵi
r20
r2

þ ai0
r30
r3

þ ~Ai
r40
r4
; ð36dÞ

where the tilded functions are given by

~Bi ≡ bi1

1þ bi2ð1−r0
r Þ

1þbi3ð1−
r0
r Þ

1þ…

; ð37aÞ

~Wi ≡ wi1

1þ wi2ð1−r0
r Þ

1þwi3ð1−
r0
r Þ

1þ…

; ð37bÞ

~Ki ≡ ki1

1þ ki2ð1−r0
r Þ

1þki3ð1−
r0
r Þ

1þ…

; ð37cÞ

~Ai ≡ ai1

1þ ai2ð1−r0
r Þ

1þai3ð1−
r0
r Þ

1þ…

: ð37dÞ

Any approximation given by the above form of the metric is
characterized by two orders: the order of expansion in cos θ
(m) and the order of the radial expansion (n). Specifying a
finite number m means discarding all higher orders of the
expansion, i.e., we set Bi>m ¼ 0,Wi>m ¼ 0, Ki>m ¼ 0 and
Ai>m ¼ 0. As noted in [14], it is not always possible to
choose aij ¼ 0, for any given j > 1, in a consistent manner.
The same applies to the other continued-fraction coeffi-
cients, bij, wij, and kij. This is why, in some cases, not all of
the coefficients in the radial expansion of order n vanish for
j > n, but their exact values are substituted only for j ≤ n.

IV. TESTING THE PARAMETRIZATION
WITH SHADOW CALCULATIONS

Unless stated explicitly otherwise, hereafter the observer
is positioned at i≡ θobs ¼ π=2, i.e., in the equatorial plane
of a rotating black hole. This provides the most extreme
test of the effects of gravitational lensing on the size and
shape of the shadow image. In calculating each shadow,
due to the top-bottom symmetry of the image one need only
calculate the upper half of the shadow and simply reflect
this in the observer’s x axis.
Consider the left panel of Fig. 1. A black hole shadow

may be represented as a closed parametric curve of radius
ρðψÞ, where ψ ¼ ½0; π�, since the shadow is symmetric
about the x axis. The interval ψ is divided into 103 equally
spaced points, and for each value ofψ bisection is performed
along ρ until convergence with the shadow boundary is
reached. Since the shadow is a single closed curve and ψ is
fixed, the bisection is one dimensional and always around a
single unknown but real and bounded point.
The bisection begins with the inner boundary placed at

ðα; βÞ ¼ ð0; 0Þ and the outer boundary placed at the
outermost ðα; βÞ value for the particular value of ψ chosen,
e.g., for Fig. 1, when choosing ψ ¼ 45° the inner and outer
boundaries are placed at (0,0) and (8,8), respectively. At
both points a ray is fired towards the black hole and
whether each ray is captured by the black hole (interior to
the shadow) or escapes to infinity (exterior to the shadow)
is determined. Convergence is then defined as when the

2In Ref. [13] the compactified radial coordinate x≡ 1 − r0=r
was introduced to simplify the expressions; while we could use
such a coordinate here as well, we resort to the radial coordinate r
to ease the comparison with the original unparametrized metrics.
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rays are within 10−6M of the shadow boundary, i.e.,
bisection continues until the bisection step size is smaller
than 10−6M.
Before calculating shadows from more complicated

expansions of metrics, it is instructive to consider first
the shadow from a Kerr black hole, whose line element may
be written in Boyer-Lindquist coordinates as

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

−
4aMrsin2θ

Σ
dtdϕþAsin2θ

Σ
dϕ2; ð38Þ

where

Δ≡ r2 − 2Mrþ a2; ð39Þ

A≡ ΣΔþ 2Mrðr2 þ a2Þ: ð40Þ
Figure 1 presents shadows cast by a Kerr black hole for a

fixed observer position and varying spin parameter (left
panel) and for a fixed extremal spin parameter and varying
observer inclination angle (right panel). It can be seen that
increasing the black hole spin shifts the shadow image to
the right, rendering it more asymmetric and sharpening the
deviation from a circular shape, while the vertical extent of
the shadow remains unchanged (right panel). Fixing instead
the spin parameter to a ¼ 0.998 and varying the observer
inclination angle both shifts the shadow and increases its
vertical extent (left panel).
The parametrization employed in this study exactly

reproduces the Kerr metric in the equatorial plane.
Consequently, a stringent test of the convergence properties
of this parametrization is best performed when considering

large values of the deformation parameters of the
parametrized metric. While such large parameters may
not be physically realistic, they represent an important and
practical “stress test” of the parametrization of each metric
at different expansion orders in the radial and polar
coordinates.

A. General testing setup

As discussed in [14], the axisymmetric expansion of the
metric may be in terms of r (radial coordinate), cos θ
(where θ is the polar coordinate) or a combination of the
two. It is important to remember that all axisymmetric
black holes considered in this study possess mirror sym-
metry, meaning that only even powers of cos θ are nonzero
in the expansion. In this study, three distinct black hole
metrics are considered, each being represented as a series
expansion. The first is the Kerr-Sen metric [26], where an
exclusively radial expansion is employed. The second is the
Einstein-dilaton-Gauss-Bonnet (EDGB) [11] metric, which
we expand in terms of cos θ, leaving the coefficients in their
exact form as functions of the radial coordinate. The third
metric is that proposed by Johannsen and Psaltis [28],
wherein the expansion is performed in both the radial
coordinate and in cos θ.
In order to validate, both qualitatively and quantitatively,

the convergence properties and behavior of the metric
expansion, several tests are performed. Naturally, given the
original expression for a metric and its series expansion at
any particular order, one may visually compare the shadow
calculated from both forms of the metric, providing a
qualitative view of the performance of the expansion. This
is the first test, whereby the shadow calculated from the
original metric is plotted in black, and the shadows

FIG. 1. Shadows cast by a Kerr black hole. Left panel: As viewed by an observer at i≡ θobs ¼ 90°, with black hole spin parameters
varied as 0 (red, leftmost), 0.1; 0.2;…; 0.9; 0.95; 0.998 and 1 − 10−6 (purple, rightmost). Right panel: Spin parameter fixed as a ¼ 0.998
and i varied as 0° (red, leftmost), 10°; 20°;…; 90° (blue, rightmost).
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obtained from the expansion of this metric at successive
orders are overplotted as colored curves for comparison.
As it can be seen in Fig. 1 (left panel), the shadow may

be represented as a closed parametric curve ρðψÞ. In
calculating the shadow a bisection scheme is employed
and the ρðψÞ value for each sampled ψ is recorded. The
value of ρðψÞ is calculated both for the original metric and
for the various orders of expansion of this metric. From this,
the percentage error difference between the original metric
and any given order of the same expanded metric, i.e.,
100 × j1 − ρðψÞanalytic=ρðψÞexpandedj, may be calculated as a
function of ψ along the shadow boundary. Since ψ ¼ ½0; π�,
the percentage error is plotted as a function of
cosψ ¼ ½−1; 1�. This constitutes the second test.
Since each shadow is a closed parametric curve, and

given that only the upper half of the shadow needs to be
calculated, another measure of the accuracy of the expan-
sion is the area of the half shadow. Since we store the (x, y)
coordinates of the shadow boundary curve we readily
obtain the area by calculating

R
xmax
xmin

dxyðxÞ numerically.
Finally, the third test of the expansion is the percentage
error difference between the half-shadow areas of the
original metric and its corresponding expansion.

B. Kerr-Sen metric

An exact solution of the equations of motion corre-
sponding to the low-energy effective field approach of the
heterotic string theory was found by Sen in Ref. [26]. This
solution describes a charged, axially symmetric black hole
(the Kerr-Sen black hole) [26,27], whose charge also
introduces the presence of a scalar (dilaton) field b. The
Kerr-Sen (Sen) metric is a particular case of a more general
axion-dilaton black hole with a null Newman-Unti-
Tamburino charge [29], and it can be described by the
line element (33) if one chooses the expansion in [14],
yielding

W ¼ 2aðμþ bÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

p
− bÞ

rðr2 þ a2cos2θÞ ; ð41aÞ

B2 ¼ r2

b2 þ r2
; ð41bÞ

K2 ¼
�
1þa2cos2θ

r2

�−1��
1þa2

r2

�
2

−
a2sin2θ

r2
N2

�
; ð41cÞ

N2 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r2

p
− bÞ2 − 2μð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r2

p
− bÞ þ a2

r2
; ð41dÞ

where the Arnowitt-Deser-Misner mass is now given by
M ¼ μþ b. Hereafter we measure the parameters a and b
in units of μ, i.e., we choose μ ¼ 1.
The radial expansion of the Kerr-Sen metric is calculated

from the first through the fourth order. The results of

ray-tracing calculations of the shadows from the radial
expansion for the Kerr-Sen metric are illustrated in the left
panels of Figs. 2 and 3 for values of the dilaton field given
by b ¼ 0.5 and b ¼ 1, respectively.
In the left panels of Fig. 2, the first-order expansion

(blue line) and the second-order expansion (red line) are
still visible and most distinct from the exact shadow
boundary (black line) towards the left half of the image.
For the right half of the image, on the other hand, the
agreement is excellent and improves as the shadow
traverses the equatorial plane (y ¼ 0 in the shadow
image). The third- and fourth-order expansions (orange
and green lines, respectively) cannot be seen and overlay
the exact black curve very well. As expected, the effect of
increasing the spin parameter from 0.9 to 0.998 is to
further distort the shadow image and slightly slow the
convergence, as evidenced by the blue and red curves
being visually further apart from the black curve in the
a ¼ 0.998 case.
In the right panels of Fig. 2 we show instead the relative

error (as a percentage) of each expansion order of the Kerr-
Sen metric relative to the exact metric; the various curves
are plotted as a function of ψ along the shadow boundary.
For a ¼ 0.95, the maximum error in the first-order expan-
sion (blue line) is ∼1.7%. At second order (blue line) this
drops to ∼0.25% and by the third (orange line) and fourth
order (green line) the error is negligible and thus the orange
and green curves appear as horizontal lines.
As an additional stress test of the parametrization

approach, we consider in Fig. 3 the more extreme
deformations which follow when considering a dilaton
field with b ¼ 1. We note that the effect of increasing b is
that of increasing the absolute size of the shadow (the mass
is proportional to b), so that the error inherent to each
expansion order also increases. Overall, the behavior
shown in Fig. 3 is very similar to that of Fig. 2, with
the second and higher order radial expansions again
exhibiting excellent convergence properties. Furthermore,
and as found for lower values of b, the error plots
demonstrate that already at the second order the error is
everywhere below 0.3% and that the error at third and
fourth order is very close to 0 across the entire shadow.
As a final check of the accuracy and convergence

of the series expansion, the half-shadow area (i.e., for
ψ ∈ ½0; π=2�) for both the exact Kerr-Sen metric and its four
different expansion orders is calculated. These results are
presented in Table I, where four different values of the
black hole spin parameter (i.e., a ¼ 0.2, 0.5, 0.95, 0.998)
are considered both for b ¼ 0.5 and for b ¼ 1. The table
also reports as ϵn;m the relative error between the area
computed from the exact metric shadow and that obtained
from the same expanded metric shadow at order n in the
radial direction and m in the polar direction.
In the case of slowly rotating black holes, i.e., a ¼ 0.2,

the error in the area for the first-order expansion is
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∼10−4% and by the fourth-order expansion it is within
the precision used to calculate the shadow and thus
effectively 0. This trend also holds for a ¼ 0.5 (moderate
spin), which is why shadow and error plots for these values
were not presented. For higher spins, the error at first order is
larger but still at the one percent level. More importantly, it
can be seen that the values of the area of the shadow rapidly
converge to the “true” shadow area as the order of the
expansion is increased.
Before concluding this section dedicated to Kerr-Sen

black holes we note that the values chosen here both for the
spin and for the dilaton field are extreme and likely to be
much larger than what would be found for an astrophysical
black hole. That being said, the convergence of the radial
expansion of the Kerr-Sen metric is both fast and highly
accurate even in these extremal cases.

C. Einstein-dilaton-Gauss-Bonnet metric

InD > 4 spacetimes, whereD is the number of spacetime
dimensions, the second-order term in curvature, i.e., the
Gauss-Bonnet term, is the dominant one. However, in four-
dimensional spacetimes, like those considered in this paper,
theGauss-Bonnet termalone is invariant and leads to solutions
of the Einstein equations which are not affected unless the
scalar field (dilaton) is coupled to the system. An approximate
metric for a rotating black hole in this system with such a
dilaton coupling, i.e., in EDGB theory, was deduced in the
regime of slow rotation [11]. The metric was obtained in
the form of an expansion in terms of two small parameters: ζ
and χ≡a=M. For finite values of these parameters, themetric
has a divergence at the Schwarzschild horizon r ¼ 2M.
However, the equivalent form proposed in Ref. [14] removes
this divergence and the line element then reads

FIG. 2. Left column: Shadows from the radial expansion of the Kerr-Sen metric for b ¼ 0.5 as viewed by an observer in the equatorial
plane of the black hole for a ¼ 0.95 (top) and a ¼ 0.998 (bottom). The black curve represents the exact analytic form of the metric. Blue
(first order), red (second order), orange (third order) and green (fourth order) curves represent the radial metric expansion. For
comparison, the dotted curve shows the shadow from a Kerr black hole with the same spin parameter. Right column: Corresponding
percentage error plots of each expansion order with respect to the original Kerr-Sen metric as a function of cosψ along the shadow
boundary curve.
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ds2 ¼ −
f − w2sin2ϑ

κ2
dt2 þ β2σ

f
dρ2 þ ρ2σdϑ2

− 2wρsin2ϑdtdϕþ ρ2κ2sin2ϑdϕ2; ð42Þ

where the various terms in the metric are given by

κ2 ¼ 1þ χ2
M2

ρ2

�
1þ 2M

ρ
ð1 − cos2ϑÞ

�

þ ζχ2ðcos2ϑ − 1=3ÞM
3

ρ3
X7
k¼0

ck
Mk

ρk
; ð43aÞ

FIG. 3. As in Fig. 2, but now the deformation parameter b ¼ 1.

TABLE I. Table of the half-shadow area, An;m (in units of M2), and its corresponding percentage error (with respect to the analytic
Kerr-Sen metric), ϵn;m, of each expansion order fn;mg of the Kerr-Sen metric. Indices n and m correspond, respectively, to the order of
the radial and cos θ expansions. The exact area obtained from the analytic metric is denoted by Aexact. Numbers within square brackets
denote multiplicative powers of 10. For the Kerr-Sen metric cos θ is fixed at second order and the radial expansion is varied up to fourth
order.

a b Aexact A1;2 A2;2 A3;2 A4;2 ϵ1;2 ϵ2;2 ϵ3;2 ϵ4;2

0.2
0.5 73.5640 73.5641 73.5642 73.5640 73.5640 1.06½−4� 3.22½−4� 3.08½−5� 4.85½−6�
1.0 110.576 110.601 110.581 110.575 110.576 2.32½−2� 4.38½−3� 4.29½−4� 2.75½−6�

0.5
0.5 72.6472 72.6289 72.6478 72.6471 72.6472 2.52½−2� 8.20½−4� 1.29½−4� 8.18½−6�
1.0 109.237 109.241 109.240 109.235 109.237 3.83½−3� 2.91½−3� 1.28½−3� 6.11½−5�

0.95
0.5 68.3328 67.9290 68.4379 68.3317 68.3328 5.91½−1� 1.54½−1� 1.49½−3� 1.10½−4�
1.0 102.953 102.512 103.081 102.940 102.954 4.28½−1� 1.25½−1� 1.25½−2� 9.51½−4�

0.998
0.5 66.7159 65.8826 67.1017 66.7136 66.7160 1.25½þ0� 5.78½−1� 3.41½−3� 1.90½−4�
1.0 100.620 99.7024 101.032 100.588 100.622 9.12½−1� 4.10½−1� 3.13½−2� 1.77½−3�
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σ ¼ 1þ χ2
M2

ρ2
cos2ϑþ ζχ2ðcos2ϑ − 1=3ÞM

3

ρ3
X7
k¼0

ck
Mk

ρk
;

ð43bÞ

w ¼ 2χ
M2

ρ2
þ 1

15
ζχ

M4

ρ4
X4
k¼0

wk
Mk

ρk
; ð43cÞ

f¼ 1−
2M
ρ

þχ2
M2

ρ2
þζ

M3

6ρ3
ð2−χ2Þ

þζ
M4

ρ4
X7
k¼0

ðχ2cos2ϑfk;1þχ2fk;2þfk;3Þ
Mk

ρk
; ð43dÞ

β2¼1þM2

6ρ2
ðχ2−2Þ

�
3þ8M

ρ

�

þζ
M4

ρ4
X6
k¼0

ðχ2cos2ϑβk;1þχ2βk;2þβk;3Þ
Mk

ρk
: ð43eÞ

The numerical values for the coefficients in the series in
Eqs. (43) may be found in Table II.
In order to transform this metric into the form of Eq. (33)

we proceed as in Ref. [14]. We rewrite Eq. (42) in the form
(33) by imposing that in terms of the new coordinates, r and
θ, relation (34) and the additional condition

�
K2 − 1 −

aW
r

−
a2

r2

�����
θ¼π

2

¼ 0

are fulfilled. Finally, we obtain the functions B,W, K2, and
N2 as an infinite series in terms of cos θ, as in (35). The
lowest order is then given by expressions (80) in Ref. [14],
which we do not report here for compactness. To provide a
test of the polar expansion, the nondivergent EDGB metric
is expanded up to eighth order in powers of cos θ. This is
then compared with the exact form of the nondivergent
EDGB metric given in Eq. (42).
Figure 4 presents shadow calculations for the EDGB

metric at successive expansion orders in cos θ. The spin
parameter is chosen as a ¼ 0.5, which is near the limit of
validity of the EDGB solution, itself only derived in the

literature for very small values of the spin parameter. Two
values of the deformation parameter, ζ, are chosen as 0.1 and
0.15. We recall that the value ζ ¼ 0.15 is a critical value,
beyondwhich, fora ¼ 0.5, the EDGBmetricwould develop
a naked singularity. As such, these deformation parameters
coupled with the moderate spin parameter represent an
extreme test of the behavior of the metric expansion.
As it can be seen in the top row of Fig. 4, near the

equatorial plane, and for the majority of the region away
from the poles, the expansion at all orders is in close
agreement with the exact EDGB metric. However, consid-
ering the α < 0 portion of the shadow, the shadow in the
expanded metric begins to differ more significantly from
the analytic one when approaching the polar region, before
reconverging towards precisely θ ¼ π=2. This behavior is
then mirrored in the α > 0 portion of the shadow.
To see this more clearly, a magnified view of the

neighborhood of the polar region is presented in the middle
row of Fig. 4. The expansion exhibits some mild oscillatory
behavior as it approaches the pole, diminishing as the order
of the expansion is increased. The red (fourth order and
second order in cos2 θ) and orange (sixth order and third
order in cos2 θ) curves are almost indistinguishable in this
region, but upon closer inspection of the image, the red
curve is always above the orange curve. The small
discrepancy observed in the polar region is not due to
any singular behavior in the expansion of the EDGB metric
itself, but merely a reflection of the fact that the expansion
is made near the equatorial plane and, in this instance,
yields the largest error near the poles.
The bottom row of Fig. 4 reports the percentage relative

error and, as expected, it demonstrates that the expansion
worsens near the pole and the error may be as large as 14%
in the case of the second-order expansion. However, in this
instance a global measure of the shadow, namely the half-
shadow area, is perhaps more representative of the overall
performance. Table III shows that for ζ ¼ 0.1 the error is
always less than 1%. The effect of increasing the value of ζ
is to decrease the radius of the event horizon, and therefore
the photon region and by extension the calculated area of
the half shadow. For ζ ¼ 0.15 the error is 1.45%. In both
cases the convergence of the expansion as the order is
increased is clear.

TABLE II. Table of coefficients for the nondivergent EDGB metric.

k ck wk fk;1 fk;2 fk;3 βk;1 βk;2 βk;3

0 −4463=875 −9 3019=875 −3048=875 26=3 2 5 −14
1 −2074=175 −140 11201=1750 −18551=5250 22=5 11 139=15 −128=5
2 −266911=12250 −90 −1497089=36750 838039=110250 32=5 2767=15 −907=45 −48
3 −12673=525 −144 30316=3675 −253756=11025 −80=3 −208=5 616=5 0
4 12371=245 400 −26233=245 1917=245 0 1658=5 2102=15 0
5 3254=35 … 9214=21 −20422=315 0 −26288=15 28688=45 0
6 2536=15 … −6136=15 7336=45 0 2160 −720 0
7 −240 … 240 −80 0 … … …
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At this point it is important to emphasize that the EDGB
metric discussed above is essentially non-Kerr in the sense
that it refers to a non-Einsteinian theory of gravity built out
of the Einstein-Hilbert action and of a scalar field coupled
to the higher curvature Gauss-Bonnet term. Furthermore,
the values of the coupling constants χ and ζ are chosen in
the test to be rather large so as to produce a smooth but
non-negligible deformation of the spacetime geometry.
In this respect, the EDGB metric represents not only a
very good (and challenging) test for the parametrization

approach, but also a demanding benchmark for the new ray-
tracing formalism.

D. Johannsen-Psaltis metric

As a final test of the metric parametrization we
consider the Johannsen-Psaltis metric [28], where, for
simplicity, we take ε3 as the only nonzero deformation
parameter. In this case, the Johannsen-Psaltis metric may
be written as

FIG. 4. Top row: Shadows from the polar coordinate expansion of the EDGB metric with spin parameter a ¼ 0.5 for deformation
parameters ζ ¼ 0.1 (left panel) and ζ ¼ 0.15 (right panel). Middle row: A magnified view of the polar region. Bottom row: Percentage
error plots of each expansion order relative to the original EDGBmetric. Blue, red, orange and green curves denote the expansion at first,
second, third and fourth order in cos2 θ, respectively. For comparison, the dotted curve shows the shadow from a Kerr black hole with the
same spin parameter.
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ds2 ¼ −
f − w2sin2ϑ

κ2
dt2 þ β2σ

f
dρ2 þ ρ2σdϑ2

− 2wρsin2ϑdtdϕþ ρ2κ2sin2ϑdϕ2; ð44Þ
where

σ ¼ 1þ a2

ρ2
cos2ϑ; ð45aÞ

κ2 ¼ ðρ2 þ a2Þ2 − a2sin2ϑðρ2 − 2Mρþ a2Þ
ρ4σ

þ h
a2sin2ϑðρ2 þ 2Mρþ a2cos2ϑÞ

ρ4σ
; ð45bÞ

β ¼ 1þ h; ð45cÞ

f ¼ ð1þ hÞ ρ
2 − 2Mρþ a2 þ a2h sin2 ϑ

ρ2
; ð45dÞ

w ¼ 2aMð1þ hÞ
ρ2σ

; ð45eÞ

h ¼ ε3
M3

ρ3σ2
: ð45fÞ

Following Ref. [14], we obtain the new coordinates as a
series expansion in terms of cos2 ϑ as

cos θ ¼
�
1þ ε3

a2M3

ρ5

�−1=2
cosϑþOðcos3ϑÞ; ð46Þ

r ¼ ρ

�
1þ ε3

a2M3

ρ5

�
1=2

þOðcos2ϑÞ: ð47Þ

Although this series expansion cannot be inverted
analytically, one may calculate as many coefficients in
the double expansion as is necessary. More specifically, the
radial expansion has been considered from the first through
the eighth order, while the polar expansion was kept fixed
at fourth order in cos θ. Figure 5 (left column) presents
shadows of the first four orders of the expanded form of the
Johannsen-Psaltis metric (red, blue, green and orange
lines), along with the shadow computed from the analytic
metric, which is shown for comparison (black line). As in
the previous figures, the right column displays the corre-
sponding relative errors of each shadow as a function of the
polar angle ψ .
We have here considered a value ε3 ¼ 0.24 as this

enables the deformations in both the spin and ε3 to be
large. Increasing ε3 further (without creating a naked
singularity) would require decreasing the spin parameter.

Since the metric expansion reproduces Kerr exactly in the
equatorial plane and is increasingly accurate for decreasing
values of a, and since for fixed spin parameter, increasing
ε3 has the effect of decreasing the shadow size, the
aforementioned choice of ε3 ¼ 0.24 proves useful when
scrutinizing the performance of the expansion.
It is clear from the top right panel of Fig. 5, which

refers to ε3 ¼ 0.24, that the series expansion converges
more slowly, with the second-order expansion error (red)
proving worse than that at first order for approximately
−0.85 ≤ cosψ ≤ 0.15, i.e., roughly half of the shadow
boundary. Similar behavior is also observed for the third-
order (orange) and fourth-order (green) curves. This
behavior continues for the fifth through eighth orders
(not shown in the figure for clarity). However, when
considering the half-shadow areas in Table IV the con-
vergence is apparent, except for the f6; 4g expansion, for
which we find in Table V that ϵ6;4 > ϵ5;4. For this reason
the expansion was continued up to eighth order.
Decreasing the value of ε3 to ε3 ¼ −0.5, the shadow

area grows and this is shown in the left panel of the middle
row of Fig. 5. Note that the first-order expansion is now
the least accurate, as one would expect (although more
accurate that for ε3 ¼ 0.24). However, inspecting the
corresponding right panel for the percentage error reveals
that the second-order expansion is, in the region roughly
−0.75 ≤ cosψ ≤ 0.15, more accurate than both the third-
and fourth-order expansions. For ε3 ¼ −1 this trend con-
tinues and it is hard to discern just by looking at the first
four expansion orders whether convergence is present.
To address this issue and clarify matters, Tables IVand V

report, respectively, the half-shadow areas and their corre-
sponding percentage errors as they are calculated up to the
eighth order in the radial coordinate and at second order in
cos θ. While the shadow curves are calculated for all orders,
they are only displayed up to fourth order in Fig. 5 since
they are visually indistinguishable from the fourth-order
case. In this way it is evident upon inspecting Table V that
the expansion is indeed convergent. For all values of ε3 it is
found that ϵ8;4 < ϵ8;2, and thus the expansion is convergent.
Two remarks should be made at this point. First, to

appreciate the oscillatory behavior in the convergence of
the shadow one should recall that parametrization is the
result of a double expansion in the r and θ directions and
that the convergence in each direction occurs at a different
“rate.” Therefore, it is perfectly possible at some order n of
the expansion in one direction and order m in the other

TABLE III. Table of half-shadow areas and their corresponding percentage errors for the first four successive expansion orders of the
EDGB metric. The expansion considered in this case is in terms of cos2 θ only.

a ζ Aexact A0;2 A0;4 A0;6 A0;8 ϵ0;2 ϵ0;4 ϵ0;6 ϵ0;8

0.5
0.1 39.9885 40.3445 40.2700 40.2559 40.2088 8.90½−1� 7.04½−1� 6.69½−1� 5.51½−1�
0.15 38.9264 39.4915 39.3773 39.3536 39.2825 1.45½þ0� 1.16½þ0� 1.10½þ0� 9.15½−1�
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FIG. 5. Left column: Shadows from the radial expansion of the Johannsen-Psaltis metric with spin parameter a ¼ 0.9 for ε3 ¼ 0.24
(top), ε3 ¼ −0.5 (middle) and ε3 ¼ −1 (bottom). Only the first four orders of the expansion are shown. Right column: Percentage errors
of each expansion order relative to the original Johannsen-Psaltis metric. Blue, red, orange and green curves denote the expansion at
first, second, third and fourth order in cos2 θ, respectively. For comparison, the dotted curve shows the shadow from a Kerr black hole
with the same spin parameter.
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direction that one may have a situation where further
extension of the expansion in only one of these directions
leads to worse results. In this case, this behavior simply
indicates that an increase of the expansion order in one
direction should be accompanied also by the equivalent
increase for the expansion in the other direction. Second,
for all the values of ε3 considered here, the relative error
between the expanded and analytic shadows is ≲1%
already at the third order and this is already much smaller
than the precision at which the measurements of the
shadow will be carried out in practice.
In summary, although in principle the convergence of the

parametrization cannot be analyzed in the general case, the
examples considered with the Kerr-Sen (see Table I) and
EDGB (see Table III) black holes show a clear convergence
between the shadow from the expanded metric and that
from the analytic metric. Furthermore, for the Johannsen-
Psaltis metric, we observe convergence in both directions
even for very large values of the deformation parameter ε3
(see Table V). In particular, large positive values of this
parameter, combined with rapid rotation, correspond to a
shape of the event horizon that is highly prolate and close to
its extreme form (further increases of this deformation lead
to discontinuity of the horizon). At the same time, it is
possible to study smaller negative values of the deformation
parameter (which correspond to more oblate horizon
shapes) that, in the case of rapid rotation, yield rather
exotic event-horizon shapes, akin to a dumbbell. Yet,
convergence is also observed for such exotic configura-
tions, thus representing a convincing evidence that our
parametrization suitably represents a wide class of axisym-
metric black hole spacetimes.

V. CONCLUSIONS

We have introduced and subsequently employed a
new method for performing general-relativistic ray-tracing

calculations in order to calculate the black hole shadow
images from a new parametrization of any axisymmetric
black hole metric. This new parametrization can, with a
small number of terms, represent any general stationary and
axisymmetric black hole in any metric theory of gravity. We
investigated and verified the effectiveness of this para-
metrization for successive orders in the expansion, dem-
onstrating both its convergence and accuracy for three
different spacetimes.
(1) The Kerr-Sen metric, fixed at second order in the

polar expansion and varied from first through fourth
order in the radial expansion (the Kerr black hole is
exactly reproduced at second order in the polar
direction).

(2) A regular form of the EDGB metric, itself obtained
from an expansion in terms of the parameters χ
and ζ. This regular solution is approximate but
converges, to any desired accuracy, to the original
approximate EDGB solution that diverges at r¼2M.
The expansion was purely polar and varied from first
through fourth order (in cos2 θ) in the polar direction.

(3) The Johannsen-Psaltis metric, represented as a
double expansion in both the polar and radial
directions. The expansion was fixed at second order
in the polar direction and varied from first to eighth
order in the radial direction.

For all the aforementioned metrics, we chose values of
the spin parameter and metric deformation parameters to be
as extremal as possible while still ensuring the existence of
an event horizon (i.e., avoiding the appearance of a naked
singularity). We performed three tests for each expansion
order of each metric, calculating the following: (i) the black
hole shadow polar curve obtained at each order, (ii) the
error relative to the exact metric along the shadow curve,
and (iii) the error of the half-area of the black hole shadow
with respect to that obtained from the exact metric.

TABLE IV. Table of half-shadow areas for successive expansion orders of the Johannsen-Psaltis metric. The expansion is fixed at
fourth order for cos θ whilst the radial expansion is considered up to eighth order. Note that for the eighth order radial expansion the
value of A8;2 (i.e., second order in cos θ) is included to compare with A8;4.

a ε3 Aexact A1;4 A2;4 A3;4 A4;4 A5;4 A6;4 A7;4 A8;2 A8;4

0.9
0.24 38.8979 39.5424 38.5721 38.9766 38.8723 38.9158 38.9175 38.8838 38.9171 38.8888

−0.5 41.2918 40.4947 41.0235 41.2720 41.1276 41.3215 41.3076 41.2778 41.2747 41.2880
−1.0 42.5892 41.5207 41.1449 42.5444 42.4225 42.6546 42.5539 42.5356 42.5678 42.5806

TABLE V. Table of percentage errors corresponding to the half-shadow areas for successive expansion orders of the Johannsen-Psaltis
metric as reported in Table V. As expected, ϵ8;4 < ϵ8;2 for all values of ε3.

a ε3 ϵ1;4 ϵ2;4 ϵ3;4 ϵ4;4 ϵ5;4 ϵ6;4 ϵ7;4 ϵ8;2 ϵ8;4

0.9
0.24 1.66½þ0� 8.38½−1� 2.02½−1� 6.59½−2� 4.58½−2� 5.02½−2� 3.63½−2� 4.91½−2� 2.34½−2�

−0.5 1.93½þ0� 6.50½−1� 4.78½−2� 3.98½−1� 7.19½−2� 3.82½−2� 3.39½−2� 4.13½−2� 9.20½−3�
−1.0 2.51½þ0� 3.39½þ0� 1.05½−1� 3.91½−1� 1.54½−1� 8.29½−2� 1.26½−1� 5.02½−2� 2.00½−2�
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Test (i) provided a qualitative comparison of the perfor-
mance of the expansion as the order was increased, while test
(ii) provided a quantification of the performance of the
parametrization everywhere along the shadow boundary.
This test, in particular, provided an understanding of how
well the parametrization represents the spacetime, for exam-
ple, in the equatorial plane and at the poles. Finally, test
(iii) verified the excellent convergence behavior and accuracy
of the parametrization as the expansion order was increased.
We demonstrated that by increasing the order of polar and
radial expansions the spacetime under consideration can be
represented to essentially any desired accuracy [30].
Accurate calculations of black hole shadows in para-

metrized metrics represent a stringent test of parametrized
representations of metric theories of gravity. Photons which
delineate the shadow boundary pass very close to the event
horizon and are subject to the steepest gradients of the
gravitational potentials. Hence, accurately reproducing the
behavior of the spacetime in these regions lends credence to
the prospect of employing this parametrization framework
to investigate not only black hole solutions in other metric

theories of gravity, but to also perform the detailed radiative
transport calculations required to investigate physical
processes in other theories of gravity. Such calculations
will prove useful for the interpretation of upcoming
sub-mm VLBI observations from Sgr A* and for testing
the Kerr black hole hypothesis.

ACKNOWLEDGMENTS

It is a pleasure to thank Arne Grenzebach, Oliver
Porth, Bruno Mundim, Mariafelicia de Laurentis, Hector
Olivares andChristian Fromm for numerous discussions and
comments. We thank the anonymous referee for useful
comments which helped improve themanuscript. This work
was supported by theERCsynergy grant “BlackHoleCam—
Imaging the Event Horizon of Black Holes” (Grant
No. 610058). Z. Y. acknowledges support from an
Alexander von Humboldt Fellowship. A. Z. was partially
supported by Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq). This research has made
use of NASA’s Astrophysics Data System.

[1] A. Eckart and R. Genzel, Nature (London) 383, 415 (1996).
[2] S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R.

Genzel, F.Martins, andT.Ott,Astrophys. J.692, 1075 (2009).
[3] A. Grenzebach, V. Perlick, and C. Lämmerzahl, Phys. Rev.

D 89, 124004 (2014).
[4] Arne Grenzebach, The Shadow of Black Holes—An Analytic

Description, SpringerBriefs in Physics (Springer,
Heidelberg, 2016).

[5] C. T. Cunningham and J. M. Bardeen, Astrophys. J. 183,
237 (1973).

[6] C. Goddi, H. Falcke, M. Kramer, L. Rezzolla et al.,
arXiv:1606.08879.

[7] L. Huang, M. Cai, Z.-Q. Shen, and F. Yuan, Mon. Not. R.
Astron. Soc. 379, 833 (2007).

[8] S. S. Doeleman et al., Nature (London) 455, 78 (2008).
[9] H. Falcke, F. Melia, and E. Agol, Astrophys. J. 528, L13

(2000).
[10] L. C. Stein, Phys. Rev. D 90, 044061 (2014).
[11] D. Ayzenberg and N. Yunes, Phys. Rev. D 90, 044066

(2014).
[12] S. Vigeland, N. Yunes, and L. C. Stein, Phys. Rev. D 83,

104027 (2011).
[13] L. Rezzolla and A. Zhidenko, Phys. Rev. D 90, 084009

(2014).
[14] R. Konoplya, L. Rezzolla, and A. Zhidenko, Phys. Rev. D

93, 064015 (2016).
[15] A. A. Abdujabbarov, L. Rezzolla, and B. J. Ahmedov, Mon.

Not. R. Astron. Soc. 454, 2423 (2015).
[16] Z. Younsi and K. Wu, Mon. Not. R. Astron. Soc. 454, 3283

(2015).

[17] Z. Younsi, K. Wu, and S. V. Fuerst, Astron. Astrophys. 545,
A13 (2012).

[18] S. V. Fuerst and K. Wu, Astron. Astrophys. 424, 733
(2004).

[19] H.-Y. Pu, K. Yun, Z. Younsi, and S.-J. Yoon, Astrophys. J.
820, 105 (2016).

[20] J. Dexter, arXiv:1602.03184.
[21] X. Yang and J. Wang, Astrophys. J. Suppl. Ser. 207, 6

(2013).
[22] C.-K. Chan, D. Psaltis, and F. Özel, Astrophys. J. 777, 13

(2013).
[23] Z. Meliani, Y. Mizuno, H. Olivares, O. Porth, L. Rezzolla,

and Z. Younsi, arXiv:1606.08192.
[24] B. Carter, Phys. Rev. 174, 1559 (1968).
[25] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery, Numerical Recipes in FORTRAN. The Art of
Scientific Computing, 2nd ed. (Cambridge University Press,
Cambridge, 1992).

[26] A. Sen, Phys. Rev. Lett. 69, 1006 (1992).
[27] K. Hioki and U. Miyamoto, Phys. Rev. D 78, 044007

(2008).
[28] T. Johannsen and D. Psaltis, Phys. Rev. D 83, 124015

(2011).
[29] T. Okai, Prog. Theor. Phys. 92, 47 (1994); A. Garcia,

D. Galtsov, and O. Kechkin, Phys. Rev. Lett. 74, 1276
(1995).

[30] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.94.084025 for Mathema-
tica notebooks containing the relevant coefficients for the
metrics considered in this study.

NEW METHOD FOR SHADOW CALCULATIONS: … PHYSICAL REVIEW D 94, 084025 (2016)

084025-15

http://dx.doi.org/10.1038/383415a0
http://dx.doi.org/10.1088/0004-637X/692/2/1075
http://dx.doi.org/10.1103/PhysRevD.89.124004
http://dx.doi.org/10.1103/PhysRevD.89.124004
http://dx.doi.org/10.1086/152223
http://dx.doi.org/10.1086/152223
http://arXiv.org/abs/1606.08879
http://dx.doi.org/10.1111/j.1365-2966.2007.11713.x
http://dx.doi.org/10.1111/j.1365-2966.2007.11713.x
http://dx.doi.org/10.1038/nature07245
http://dx.doi.org/10.1086/312423
http://dx.doi.org/10.1086/312423
http://dx.doi.org/10.1103/PhysRevD.90.044061
http://dx.doi.org/10.1103/PhysRevD.90.044066
http://dx.doi.org/10.1103/PhysRevD.90.044066
http://dx.doi.org/10.1103/PhysRevD.83.104027
http://dx.doi.org/10.1103/PhysRevD.83.104027
http://dx.doi.org/10.1103/PhysRevD.90.084009
http://dx.doi.org/10.1103/PhysRevD.90.084009
http://dx.doi.org/10.1103/PhysRevD.93.064015
http://dx.doi.org/10.1103/PhysRevD.93.064015
http://dx.doi.org/10.1093/mnras/stv2079
http://dx.doi.org/10.1093/mnras/stv2079
http://dx.doi.org/10.1093/mnras/stv2203
http://dx.doi.org/10.1093/mnras/stv2203
http://dx.doi.org/10.1051/0004-6361/201219599
http://dx.doi.org/10.1051/0004-6361/201219599
http://dx.doi.org/10.1051/0004-6361:20035814
http://dx.doi.org/10.1051/0004-6361:20035814
http://dx.doi.org/10.3847/0004-637X/820/2/105
http://dx.doi.org/10.3847/0004-637X/820/2/105
http://arXiv.org/abs/1602.03184
http://dx.doi.org/10.1088/0067-0049/207/1/6
http://dx.doi.org/10.1088/0067-0049/207/1/6
http://dx.doi.org/10.1088/0004-637X/777/1/13
http://dx.doi.org/10.1088/0004-637X/777/1/13
http://arXiv.org/abs/1606.08192
http://dx.doi.org/10.1103/PhysRev.174.1559
http://dx.doi.org/10.1103/PhysRevLett.69.1006
http://dx.doi.org/10.1103/PhysRevD.78.044007
http://dx.doi.org/10.1103/PhysRevD.78.044007
http://dx.doi.org/10.1103/PhysRevD.83.124015
http://dx.doi.org/10.1103/PhysRevD.83.124015
http://dx.doi.org/10.1143/ptp/92.1.47
http://dx.doi.org/10.1103/PhysRevLett.74.1276
http://dx.doi.org/10.1103/PhysRevLett.74.1276
http://link.aps.org/supplemental/10.1103/PhysRevD.94.084025
http://link.aps.org/supplemental/10.1103/PhysRevD.94.084025
http://link.aps.org/supplemental/10.1103/PhysRevD.94.084025
http://link.aps.org/supplemental/10.1103/PhysRevD.94.084025
http://link.aps.org/supplemental/10.1103/PhysRevD.94.084025
http://link.aps.org/supplemental/10.1103/PhysRevD.94.084025
http://link.aps.org/supplemental/10.1103/PhysRevD.94.084025

