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Motivated by the recent discoveries of binary black-hole mergers by the Advanced Laser Interferometer
Gravitational-Wave Observatory (Advanced LIGO), we investigate the prospects of ground-based detectors
to perform a spectroscopic analysis of signals emitted during the ringdown of the final Kerr black hole
formed by a stellar mass binary black-hole merger. Although it is unlikely that Advanced LIGO can
measure multiple modes of the ringdown, assuming an optimistic rate of 240 Gpc−3 yr−1, upgrades to the
existing LIGO detectors could measure multiple ringdown modes in ∼6 detections per year. New ground-
based facilities such as Einstein Telescope or Cosmic Explorer could measure multiple ringdown modes in
over 300 events per year. We perform Monte Carlo injections of 106 binary black-hole mergers in a search
volume defined by a sphere of radius 1500 Mpc centered at the detector, for various proposed ground-based
detector models. We assume a uniform random distribution in component masses of the progenitor binaries,
sky positions and orientations to investigate the fraction of the population that satisfies our criteria for
detectability and resolvability of multiple ringdown modes. We investigate the detectability and
resolvability of the subdominant modes l ¼ m ¼ 3, l ¼ m ¼ 4 and l ¼ 2, m ¼ 1. Our results indicate
that the modes with l ¼ m ¼ 3 and l ¼ 2,m ¼ 1 are the most promising candidates for subdominant mode
measurability. We find that for stellar mass black-hole mergers, resolvability is not a limiting criteria for
these modes. We emphasize that the measurability of the l ¼ 2, m ¼ 1 mode is not impeded by the
resolvability criterion.
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I. INTRODUCTION

The recent detection of gravitational waves from the
coalescence of binary black holes [1,2] stands as the first
stringent test of the validity of the general theory of
relativity in the regime of strong-field gravity [3–5]. We
investigate whether detections of stellar mass black holes
can be used to experimentally confirm some fundamental
predictions of this theory like the uniqueness theorem and
the no-hair theorem [6,7]. The no-hair theorem states that a
space-time dictated by an isolated and stationary black-hole
is fully characterized by just three parameters—the mass,
the spin and the charge of the black hole [8,9]. Verifying the
no-hair theorem would place strong constraints on possible
alternative theories of gravitation [10,11]. In a binary black-
hole system, the two black holes orbit around each other
eventually merging and settling down to a final stationary
Kerr black hole. This postmerger signal, often called
ringdown, contains information about the final Kerr black
hole formed by the coalescence of the progenitor black
holes [12], presenting us with an opportunity to verify the
no-hair theorem. In light of these observations, efforts were
made to study the ringdown signal. Although the features
of the black-hole ringdown were discernible and had
frequencies in a favorable regime of the detector’s
response, the signal-to-noise ratios (SNRs) of the signal
in the two Laser Interferometer Gravitational-Wave
Observatory (LIGO) detectors were inadequate to perform

a detailed ringdown analysis to draw firm conclusions
about the final black-hole properties [4].
The ringdown signal seen by a distant observer during

the coalescence of a binary black-hole system can be
modeled as the gravitational waves arising from the
perturbations, on the metric, associated with the final
Kerr black hole [13]. At spatial asymptotic infinity, these
perturbations on the Kerr background manifest themselves
as superpositions of damped sinusoidal oscillating modes,
known as quasinormal modes (QNMs) [14–19]. Assuming
the general theory of relativity is valid, the no-hair theorem
necessitates that the spectrum of frequencies and the
damping of these modes be dictated entirely by the mass
and the spin of the final Kerr black hole formed. Thus, a
spectral analysis of the ringdown part of the signal not only
helps us to understand the properties of the final black hole
formed, but also can serve as a test of the no-hair theorem.
We attempt to address the following three questions.

What are the prospects of performing black-hole spectros-
copy using future ground-based gravitational-wave detec-
tors? Which of the modes contained in the ringdown are
likely to be measurable? What is the frequency range that
should be targeted to optimize sensitivity of ground-based
detectors to test the no-hair theorem with the ringdown
signal?
Our study concentrates on stellar mass black-hole

mergers in our local universe. We focus our analysis on
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the measurability of the three largest subdominant modes:
l ¼ m ¼ 3, l ¼ m ¼ 4 and l ¼ 2, m ¼ 1. We perform a
Monte Carlo injection of 106 analytical postmerger gravi-
tational wave signals, which are modeled as damped
sinusoids with frequencies and damping times predicted
by the linear perturbation theory on the Kerr background
[20]. We do a mode-by-mode analysis; we consider each
mode separately to assess its detectability and resolvability
from the fundamental l ¼ m ¼ 2 mode. We calculate the
fraction of simulated signals that allow for measurability of
at least one subdominant mode as well as the dominant
l ¼ m ¼ 2 mode. We repeat this study with different
proposed ground-based detectors—Aþ [21], Einstein
Telescope (ET) [22] and Cosmic Explorer (CE) [23]. A
mode is considered detectable if its SNR is greater than 5
and resolvable if it satisfies the Rayleigh resolvability
criterion [24,25] described in Sec. II. If a mode satisfies
both of these conditions, we identify that mode as meas-
urable. A signal with more than one measurable mode is
spectroscopically valuable. Using the range of binary
black-hole coalescence rates [26] measured by Advanced
LIGO (aLIGO) [27], we estimate the number of spectro-
scopically valuable events per year.
Although it is improbable that we detect signals of

spectroscopic value with Advanced LIGO, we estimate that
hundreds of such signals will be detected by the future
ground-based detectors such as Einstein Telescope and
Cosmic Explorer every year. We deduce that the modes
with l ¼ m ¼ 3 and l ¼ 2, m ¼ 1 are the most promising
candidates for subdominant mode measurability. Further,
we find the measurability of the l ¼ 2, m ¼ 1 mode is not
impeded by the resolvability criterion. We find that
subdominant mode detectability is a sufficient condition
to ensure measurability for all the modes considered in our
study. We propose that a detector detuning around a
frequency range of 300–500 Hz would be optimal for
ringdown-oriented searches.
Our work is complementary to the recent work by Berti

et al. [28]. We perform a numerical Monte Carlo simulation
over sky positions and orientations and assume a uniform
distribution of component masses of progenitor black
holes, while Berti et al. perform an approximate analytical
angle-averaged analysis for different astrophysical black-
hole population models. We have used a method of mode-
by-mode matched filtering followed by a Fisher matrix
analysis [29] to arrive at our results, in contrast to
hypothesis testing and generalized likelihood used in
[28]. Another novel aspect of our work is that we include
the l ¼ 2, m ¼ 1 subdominant mode. Although the two
analyses differ in their methods, we agree on the result that
a detector beyond Advanced LIGO is essential for spectro-
scopic analyses of black-hole mergers.
The remainder of this paper is structured in the following

way. In Sec. II we provide a detailed description of the
analysis methods used in our study. Section III presents our

results and highlights their implications to the broader
theme of black-hole spectroscopy. We then conclude in
Sec. IV on the prospects of stellar mass black-hole
spectroscopy in our local universe with next-generation
ground-based gravitational-wave detectors.

II. METHODS

We perform Monte Carlo injections of ringdown-only
gravitational-wave signals corresponding to stellar mass
binary black-hole mergers in our local universe.
Specifically, 106 binary black-hole merger events are
simulated uniformly in a volume defined by a sphere of
radius 1500 Mpc around the detector in question. Focusing
our study on stellar mass mergers, we choose the compo-
nent masses of the progenitor binary systems to be a
uniform random distribution between 10 and 60 M⊙. Our
study is limited to systems whose progenitor binaries are
nonspinning, although we expect the qualitative results to
hold for spinning cases. The sky positions and orientations
of progenitor binaries with respect to the detector are also
assumed to have a uniform random distribution. The
analysis is performed independently for two future gen-
eration detectors—Einstein Telescope and Cosmic
Explorer, a proposed upgrade to the current Advanced
LIGO detector that we refer to as Aþ and the design
sensitivity of Advanced LIGO. Further, it is desirable to
investigate which part of the detector’s frequency range
needs to be tuned for a ringdown-optimized search in
addition to discerning which mode is more measurable,
independent of the detector’s sensitivity curve. For that
reason, we also repeat the entire analysis on an unrealistic
flat noise spectrum with a strain amplitude of 10−25 perffiffiffiffiffiffi
Hz2

p
and present its results. For comparison, we display the

relative sensitivities of all the detector curves used in our
study in Fig. 1.
We assume the binary black-hole ringdown signals

observed by gravitational-wave detectors are comprised
of linear superpositions of a finite number of QNMs.
Despite the mathematical issues, such as the incomplete-
ness of QNMs [30,31], it is known that for binary black-
hole mergers this is a good approximate model [32,33]. We
test each mode independently for its measurability. Since
we conduct a mode-by-mode analysis, we model the signal
waveform as a single damped sinusoid of the following
form:

hðþ;×Þ
lm ðtÞ ¼ M

r
½Aðþ;×Þ

lm sinð2πflmtÞe
−t
τlmYlmðι; βÞ�: ð1Þ

Here Aþ;×
lm , flm and τlm denote the amplitudes associated

with the two polarizations, the central frequency and the
damping time, respectively, of the dominant overtone of
ðl; mÞ modes in a black-hole ringdown. ðι; βÞ specify the
orientation of the progenitor binary system in the sky.
Further, we approximate the spheriodal harmonic function
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associated to each mode by spin-2 weighted spherical
harmonics Ylmðι; βÞ ¼ Ylmðflm; ι; βÞ, which is a good first
order approximation for Kerr black holes that are not
extremally spinning [34].
We calibrate the central frequency and the decay time of

each mode using the fitting functions presented in [35].
Reference [36] presents mode amplitudes as functions of
symmetric mass ratios η of the progenitor binary system by
fitting 68 numerical relativity wave forms corresponding to
nonspinning black-hole binary systems. We have used the
corrected formulas from the erratum [37] for our analysis.
The start time of all modes is chosen to be 10 M after the
occurrence of the peak in luminosity corresponding to the
l ¼ m ¼ 2mode.We use these fitting formulas to determine
the mode amplitudes Alm in our wave form model. Figure 2
presents the mode amplitudes of the subdominant modes.
Dictated by the symmetry of the initial perturbation, the l ¼
m ¼ 2mode is the dominant mode in the ringdown of a Kerr
black hole formed during the merger of a binary black-hole
system. Based on the subdominant mode amplitudes, we
limit the scope of this study to l ¼ m ¼ 3, l ¼ m ¼ 4 and
l ¼ 2, m ¼ 1 subdominant mode measurability.
The signal hðtÞ observed at a detector is then given as

hðtÞ ¼ FþhþðtÞ þ F×h×ðtÞ; ð2Þ

where Fþ;× are orientation-dependent detector pattern
functions that project the signal on to the detector.
Expressing this in the Fourier domain, we obtain

~hþðfÞ ¼
M
r
Aþ
lm½eιϕ

þ
lmYlmbþ þ e−ιϕ

þ
lmY�

lmb−� ð3Þ

~h×ðfÞ ¼ −ι
M
r
A×
lm½eιϕ

×
lmYlmbþ − e−ιϕ

×
lmY�

lmb−�; ð4Þ

where

b� ¼ 2=τlm
ð1=τlmÞ2 þ 2πðf � flmÞ2

ð5Þ

and ϕþ
lm and ϕ×

lm are phases of arrival associated with ~hþðfÞ
and ~hþðfÞ, respectively. We follow [38] in setting up the
framework for our analysis.
We use the standard expression for SNR ρ,

ρ2 ¼ 4

Z
∞

0

~h�ðf0Þ ~hðf0Þ
Shðf0Þ

df0 ¼ hhjhi; ð6Þ

where ~hðfÞ is the Fourier transform of the wave form and
ShðfÞ is the power spectral density of the detector [39]. A
mode is considered detectable if the single detector SNR of
that mode exceeds a predefined threshold for detection. We
choose ρ ≥ 5 as our threshold and each mode is independ-
ently checked for this detectability criterion. Once a
subdominant mode passes this criterion for detectability,
we then proceed to check that its central frequency is
resolvable from that of the dominant mode.
We use an extension of the Rayleigh criterion developed

in [24,25,35] to establish the limits of resolvability. The
Rayleigh criterion for diffraction states that to distinguish
two points, the diffraction maxima of the second point
should lie at least at the minima of the first point [29]. This
translates to a condition that the peak of the estimators of
QNM frequencies should be separated by at least the largest
of their variances. If σ2f1 and σ2f2 are the variances of the
maximum likelihood estimators of f1 and f2 associated
with the modes under investigation, then the minimum
criterion for resolvability is given by

l=m=2

l=2, m=1

l=m=3

l=3, m=2

l=m=4

0.00 0.05 0.10 0.15 0.20 0.25
10-5

10-4

0.001

0.010

0.100

1

η

M
od

e
A

m
pl

it
ud

e
A

FIG. 2. This figure presents the magnitude of mode amplitudes
∥A∥ predicted by the fitting formulas given in [36] as a function
of dimensionless symmetric mass ratio η. Comparing the ampli-
tudes of different modes, we infer that the potential candidates for
subdominant mode measurability correspond to l ¼ m ¼ 3,
l ¼ 2, m ¼ 1 and l ¼ m ¼ 4.
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FIG. 1. The following are sensitivity models for each detector
[23] we consider in our study. The aLIGO curve corresponds to
the design sensitivity of Advanced LIGO and the Aþ curve to the
proposed upgrade to the Advanced LIGO detectors. The CE and
the ET are two of the proposed next-generation ground-based
detectors. We also perform the analysis with a flat noise curve at a
strain per

ffiffiffiffiffiffi
Hz2

p
of 10−25, to infer some conclusions which are

independent of the shape of the noise curve. The shaded region
shows the frequency band that corresponds to optimal tuning of
the detectors for ringdown searches.
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max½σf1 ; σf2 �
jf1 − f2j

¼ 1: ð7Þ

In the scheme of Fisher information theory, the spread
σfi in the estimate of the frequency fi is given by

σ2fi ¼ Γ−1
fifi

; ð8Þ

where Γ is the Fisher matrix [40]. To compute the Fisher
matrix, we parametrize the wave form by the mode
amplitude, frequency, quality factor, arrival time and phase.
The likelihood function has peaks around the central
frequency of each of the QNMs. We perform a Fisher
matrix analysis around each of these mode frequencies to
determine the spread in the estimate of the central fre-
quency of the modes. Then it follows that the critical SNR
ρc that sets the resolvability limit of these modes is given by

ρc ¼
max½ρσf1 ; ρσf2 �

jf1 − f2j
: ð9Þ

A dimensionless ratio R determines the resolvability of
QNMs,

R ¼ ρ

ρc
¼ jf1 − f2j

max½σf1 ; σf2 �
: ð10Þ

When R is greater than 1, the central frequency of the
subdominant mode in the signal can be successfully
resolved from the dominant mode.
Having established our criteria of detectability and

resolvability, we perform a mode-by-mode analysis on
each of the injected signals with the detector curves
depicted in Fig. 1. Equations (6) and (10) are evaluated
numerically and for each mode we test if ρlm > 5 and
R > 1 to determined their measurability. We then catego-
rize the signals based on their measurability.

III. RESULTS AND IMPLICATIONS

We find that we are able to measure subdominant
modes during the ringdown of stellar mass Kerr black
holes with the proposed designs for future ground-based
gravitational-wave detectors. The results are summarized
in Tables I–IV. With detectors like Cosmic Explorer and
Einstein Telescope, we find that approximately 10% of

TABLE I. The above table shows the results we obtain from a Monte Carlo simulation of 106 stellar mass binary black-hole mergers
uniformly distributed in component mass, orientation and in volume defined by a sphere of radius 1500 Mpc. We categorize each event
into one of the set defined below and tabulate the fraction of signals that fall into each set. Set 1, the l ¼ m ¼ 2 mode could not be
detected; set 2, l ¼ m ¼ 2 could be detected but no other subdominant mode could be detected; set 3, the l ¼ m ¼ 3 subdominant mode
can be measured; set 4, the l ¼ m ¼ 4 subdominant mode can be measured; set 5, both l ¼ m ¼ 3 and l ¼ m ¼ 4 subdominant modes
can be measured; Set 6, failed measurability of the subdominant mode due to the resolvability criterion.

Detector curve Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Advanced LIGO 0.8 0.2 0.0001 2 × 10−5 8 × 10−6 0
Aþ 0.6 0.4 0.001 0.0004 0.00008 0
Einstein Telescope 0.3 0.6 0.07 0.02 0.007 3 × 10−6

Cosmic Explorer 0.3 0.6 0.08 0.02 0.007 5 × 10−6

A flat noise curve at 10−25
ffiffiffiffiffiffi
Hz2

p −1 0.2 0.5 0.2 0.06 0.1 0.0003

TABLE II. The above table has information similar to Table I
but with sets defined differently. Here, set 1, l ¼ m ¼ 2 mode
could not be detected; set 2, l ¼ m ¼ 2 could be detected but the
l ¼ 2, m ¼ 1 subdominant mode could be detected; set 3, the
l ¼ 2, m ¼ 1 subdominant mode is detected but not resolved; set
4, the l ¼ 2, m ¼ 1 subdominant mode is both detected and
resolved. Here again, we tabulate the number of events out of 106

Monte Carlo simulated binary black-hole mergers that fall in each
of these sets.

Detector curve Set 1 Set 2 Set 3 Set 4

Advanced LIGO 0.8 0.2 3 × 10−6 0
Aþ 0.6 0.4 0.0004 0
Einstein Telescope 0.3 0.6 0.03 0
Cosmic Explorer 0.2 0.6 0.1 0
A flat noise curve at 10−25

ffiffiffiffiffiffi
Hz2

p −1 0.2 0.5 0.3 0

TABLE III. Using our results in Table I and the optimistic
(pessimistic) rates of binary black-hole mergers, predicted based
on the recent discoveries of binary black-hole mergers [26], at
240 Gpc−3 yr−1 (13 Gpc−3 yr−1), we present the rate of events
that would allow measurability of the l ¼ m ¼ 3 or l ¼ m ¼ 4
subdominant mode with current and future ground-based detec-
tors. We present this combined (l ¼ m ¼ 3 or l ¼ m ¼ 4) rate,
because detuning the detector around the frequency band
300–500 Hz for a ringdown-oriented search benefits both of
these modes.

Detector curve Optimistic
rate

Pessimistic
rate

Advanced LIGO 0.5=yr 0.03=yr
Aþ 6=yr 0.3=yr
Einstein Telescope 350=yr 19=yr
Cosmic Explorer 375=yr 20=yr
A flat noise curve at 10−25

ffiffiffiffiffiffi
Hz2

p −1 1200=yr 65=yr
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the total detected stellar mass black-hole mergers will be
spectroscopically valuable. Our results also indicate that
the design sensitivity of Advanced LIGO is insufficient
to detect signals that would allow for multimode
measurements unless an exceptionally loud signal is
observed. However, implementing Aþ to the detector
would increase our odds of subdominant mode meas-
urability to approximately 0.1% of the total detected
black-hole mergers.
The astrophysical rates of stellar mass black-hole merg-

ers have significant uncertainty and hence, in Table III, we
tabulate both the optimistic and pessimistic rates of events
that would allow for ringdown spectroscopy of the final
Kerr black hole using various proposed ground-based
detectors. With an optimistic rate of 240 Gpc−3 yr−1

merger events [26], we expect that 300–400 events per
year will be spectroscopically valuable with Einstein
Telescope and Cosmic Explorer. It is further encouraging
to notice that, with the implementation of the Aþ upgrade
to the current detectors, an optimistic rate would indicate
that about an order of 10 spectroscopically valuable events
will be detected every year. Further, even a pessimistic
rate of only 13 Gpc−3 yr−1 binary black-hole mergers
leads us to estimate about 20 events that allow for
multimode measurements using Einstein Telescope and
Cosmic Explorer.
From our analysis using a flat detector curve depicted

in Fig. 1 we infer, independent of proposed-detector

sensitivities, that the l ¼ m ¼ 3 subdominant mode has
the most measurability, closely followed by the subdomi-
nant mode with l ¼ 2, m ¼ 1. An optimistic rate of
240 Gpc−3 yr−1 merger events suggests that nearly 300
events would allow for measurability of the l ¼ m ¼ 3
subdominant mode and about a 100 would allow for
measurability of the l ¼ m ¼ 4 mode each year with
Cosmic Explorer and Einstein Telescope. Furthermore,
analyzing the mode l ¼ 2, m ¼ 1, we find that its meas-
urability with Cosmic Explorer is about 500 events per year
and that with Einstein Telescope is about a 100 events per
year. Some of the existing literature [28,41] has not
considered the subdominant mode corresponding to
l ¼ 2, m ¼ 1 in its studies. Our study highlights that for
the detection of stellar mass black-hole mergers with
Cosmic Explorer, the l ¼ 2, m ¼ 1 is the most promising
mode. From Fig. 2, we can see that the l ¼ 2, m ¼ 1
subdominant mode has a slightly smaller mode amplitude
compared to the l ¼ m ¼ 3 mode. However it should also
be noted that it is the least damped subdominant mode.
Thus, for noise curves such as that of Cosmic Explorer,
where the detector has a favorable sensitivity in lower
frequencies, the odds of measuring the l ¼ 2, m ¼ 1
subdominant mode is markedly elevated.
In contrast to the naive expectation formed by looking at

Fig. 3, we find that the frequency of the subdominant mode
corresponding to l ¼ 2, m ¼ 1 is well separated from the
central frequency of the dominant mode for the case of
stellar mass black-hole mergers. For all the subdominant
modes, including l ¼ 2, m ¼ 1 we notice that detectability
is the primary condition that limits mode measurability and
that only very few signals fail measurability due to the
resolvability criterion. Figure 4 shows that even for the
l ¼ 2, m ¼ 1 mode, the central frequency of the dominant

TABLE IV. Using our results in Table II and the optimistic
(pessimistic) rate of binary black-hole mergers, predicted based
on the recent discoveries of binary black-hole mergers [26], at
240 Gpc−3 yr−1 (13 Gpc−3 yr−1), we present the rate of events
that would allow measurability of single subdominant modes.

Optimistic
rate

Pessimistic
rate

For l ¼ m ¼ 3
Advanced LIGO 0.4=yr 0.02=yr
Aþ 4=yr 0.2=yr
Einstein Telescope 280=yr 15=yr
Cosmic Explorer 300=yr 16=yr
A flat noise curve at 10−25

ffiffiffiffiffiffi
Hz2

p −1 980=yr 53=yr

For l ¼ m ¼ 4

Advanced LIGO 0.1=yr 0.006=yr
Aþ 1=yr 0.08=yr
Einstein Telescope 92=yr 5=yr
Cosmic Explorer 102=yr 5=yr
A flat noise curve at 10−25

ffiffiffiffiffiffi
Hz2

p −1 560=yr 30=yr

For l ¼ 2, m ¼ 1

Advanced LIGO 0.09=yr 0.005=yr
Aþ 1.5=yr 0.08=yr
Einstein Telescope 120=yr 7=yr
Cosmic Explorer 520=yr 30=yr
A flat noise curve at 10−25

ffiffiffiffiffiffi
Hz2

p −1 990=yr 54=yr
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FIG. 3. We show the dimensionless central frequency of QNMs
as a function of symmetric mass ratio η as predicted by [35]. Note
that modes with different l have central frequencies that are well
separated. One could naively expect that resolving modes with
the same l could be challenging. However, for stellar mass black-
hole mergers this is not the case.
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and subdominant mode differs by at least 20 Hz for all
cases considered in our study. Thus, resolvability does not
seem to crucially affect measurability of the modes. This
result might be advantageous while developing new data-
analysis techniques to measure subdominant modes for
stellar mass black-hole mergers because it indicates that
checking detectability is sufficient and removes an addi-
tional layer of complexity of having to check mode
resolvability. However, resolvability could indeed become
a potential challenge if one were to deal with supermassive
black-holes targeted by planned space-based detectors. In
such cases a more carefully designed data-analysis tech-
nique needs to be developed.
Finally, we address the question of which frequency

band should be targeted for a ringdown oriented detector
detuning. For a spectroscopic analysis of black-hole ring-
downs, our focus should be on measuring the subdominant
modes because their single-mode SNRs are generally much
smaller than the dominant mode. The scatter plots in Fig. 5
capture the information of mode frequencies corresponding
to the population of signals that passed our measurability
criterion. Again, this plot is made using a flat sensitivity
curve to arrive at a conclusion that is independent of the
shape of the detector noise curve. Looking at the central
frequencies of subdominant modes l ¼ m ¼ 3 and l ¼
m ¼ 4 of signals that passed our measurability criterion in
Fig. 3 and Table II, we propose that an increase in
sensitivity around 300 and 500 Hz would enhance the
measurability of both l ¼ m ¼ 3 and l ¼ m ¼ 4.
Measurability of the l ¼ 2, m ¼ 1 subdominant mode
however would benefit from detector detuning around
150–300 Hz. Considering that the joint measurability of
subdominant modes l ¼ m ¼ 3 and l ¼ m ¼ 4 seems more
promising, it can be inferred that a frequency band between
300 and 500 Hz is the best target for detector tuning
optimized for spectroscopic analysis of stellar mass black
holes. This result for frequency tuning relies on the
assumption that the initial black holes are uniformly
distributed in the mass range of 10 to 60 M⊙. Using a
different astrophysical source distribution leads to different
optimal frequency bands, since the distribution of QNM

FIG. 4. These contour plots show the differences in the central
frequencies of the subdominant modes, l ¼ 2, m ¼ 1, l ¼ m ¼ 3
and l ¼ m ¼ 4, with the dominant mode. The color bar presents a
measure of frequency difference in Hz. Notice that the central
frequency of the l ¼ m ¼ 3 and l ¼ m ¼ 4 subdominant mode
differs from the dominant mode by hundreds of Hz. It would be
right to assume that resolvability of these modes is not chal-
lenging. However, it is very interesting to note that even for the
l ¼ 2, m ¼ 1 subdominant mode the central frequency is sepa-
rated by at least 20 Hz from the central frequency of the dominant
mode. This is consistent with the fact that our results indicate that
resolvability is not a limiting factor.
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frequencies depends on the masses of progenitors. Our
method can be used to compute this frequency tuning for
other mass distributions.

IV. CONCLUSION

In this paper we have investigated the prospects of our
ability to perform black-hole spectroscopy using the current
and future ground-based gravitational-wave detectors. We
find that with a realistic rate of binary black-hole mergers,
one could expect to detect several tens of spectroscopically
valuable signals with future ground-based detectors like
Einstein Telescope and Cosmic Explorer. Although
Advanced LIGO is unlikely to detect signals that would
allow for multimode measurements, implementing Aþ
upgrade increases our odds of detecting such signals.
From the results of this study, we also conclude that
subdominant modes corresponding to l ¼ m ¼ 3 and
l ¼ 2, m ¼ 1 offer the most measurability. We emphasize
that resolvability is not a limiting factor for stellar mass
black-hole mergers for all the modes we have considered in
our study. Further, we propose that a detector detuning
around a frequency band between 300 and 500 Hz is
optimal for a ringdown-oriented search.
In this study we have used the choice made in [36] that

all modes of ringdown begin 10 M after the peak of
luminosity corresponding to the l ¼ m ¼ 2 mode. This
choice was motivated by the work pioneered in [42].
Although there is no absolute framework to choose the
start time of the ringdown, this is a conservative choice.
Even with this conservative choice, we find an encouraging
rate of detectable spectroscopically valuable signals using
the future ground-based detectors. We intend to explore
alternative choices, such as in [43] in a future study and we
expect this will improve the chances of measuring sub-
dominant modes significantly. Further, this study is done in
the scheme of the Fisher information theory. Future work
will follow this study with a full Bayesian parameter
estimation like that in [44] and a comparison of the results.
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FIG. 5. Scatter plots of all points that allow for measurability of
subdominant modes in our analysis using a flat detector sensi-
tivity curve at a strain of 10−25

ffiffiffiffiffiffi
Hz2

p −1. The x and y axes of these
plots correspond to the central frequencies of l ¼ m ¼ 2 and the
measurable subdominant modes in Hz, respectively. From these
plots, we can infer that if one were to perform detector detuning
optimized towards a spectroscopic analysis of stellar mass black
holes, a frequency band around 300 to 500 Hz would be the best
choice for narrow banding.
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