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We show that Friedmann-Robertson-Walker geometry with a flat spatial section in quantized (Wheeler
deWitt quantization) Brans-Dicke (BD) theory reveals a rich phase structure owing to anomalous breaking
of a classical symmetry, which maps the scale factor a ↦ λa for some constant λ. In the weak coupling (ω)
limit, the theory goes from a symmetry preserving phase to a broken phase. The existence of a phase
boundary is an obstruction to another classical symmetry [see V. Faraoni, Phys. Rev. D 59, 084021 (1999).]
(which relates two BD theories with different couplings) admitted by BD theory with scale invariant matter
content, i.e., Tμ

μ ¼ 0. Classically, this prohibits the BD theory from reducing to general relativity (GR) for
scale invariant matter content. We show that a strong coupling limit of both BD and GR preserves the
symmetry involving the scale factor. We also show that with scale invariant matter content (radiation, i.e.,
P ¼ 1

3
ρ), the quantized BD theory does reduce to GR as ω → ∞, which is in sharp contrast to classical

behavior. This is a first known illustration of a scenario where quantized BD theory provides an example of
anomalous symmetry breaking and resulting binary phase structure. We make a conjecture regarding the
strong coupling limit of the BD theory in a generic scenario.

DOI: 10.1103/PhysRevD.94.084023

I. INTRODUCTION

Brans-Dicke (BD) theory [1] is one of the closest cousins
of general relativity (GR). The salient feature of BD theory
is that the curvature of geometry is nonminimally coupled
with a scalar field, which makes Newton’s constant G a
space-time dependent quantity. The significance of BD
theory lies in the fact that it provides us with a simple
prototype example of more realistic, sophisticated, and
physically motivated models including a wide class of
scalar-tensor theories, having an interesting application in
inflationary scenario [2–8], and constructing potential dark
energy models [9]. Furthermore, the nonminimal coupling
appears in the context of superstring theory [10] as a low
energy effective action for the dilaton-gravity sector in
supergravity, as well as in Kaluza-Klein theory [11] and
DGP theory [12], where the extra scalar field of the theory
emerges naturally from the compactification of an extra
dimension [13]. It also appears in Galileon theories [14],
proposed to explain cosmic acceleration while bypassing
the Solar System constraints. To add to the list, BD theory
can also be thought of as a limit of Horndeski theories
[15,16]. The further motivation and pertinence of the work
that follows comes from the basic expectation that any
quantum formulation of gravity requires ingredients for-
eign to GR, like higher order curvature correction, non-
minimal coupling to matter. All of these make it meaningful
to investigate scalar tensor theories as a quantum cosmo-
logical model, and because of its simplicity, BD theory is

the most natural platform to explore such a quantum
scenario to shed light on a wide class of scalar-tensor
theories.
It is widely believed that as coupling ω becomes

stronger, BD theory reduces to GR [17–21]. In fact, this
forms the basis to set lower limits of the ω parameter in
Solar System experiments [1]. Albeit, there are counter-
examples of several exact solutions not reducing to GR
upon ω → ∞ [22–29] and counterarguments for noncon-
vergence with a scale invariant matter content, i.e., with
Tμ

μ ¼ 0 [30,31]. Hence, if we can show that in a quantized
version, BD does reduce to GR, it would be of utmost
importance. The first obstacle in this regard is that
we do not have a complete picture of quantum gravity.
Nonetheless, there has been recent rejuvenation in the
Wheeler deWitt quantization [32,33] process of GR in a
series of papers [34–39], where we build an effective
quantum mechanical version of cosmological models.
Given this resurgence in the Wheeler deWitt quantization
process, it appears pertinent to explore the strong coupling
limit of quantized BD using the Wheeler de Witt quantiza-
tion process and to aim to answer the question posed in this
formalism. In fact, there has been recent work regarding
quantized BD theory [40,41].
In this article, we show for the first time that quantized

BD theory can provide an elegant example of anomalous
symmetry breaking leading to the existence of a rich phase
structure, and thus the appeal of this work lies beyond
quantum cosmology. Not to mention, the anomalous
symmetry breaking is a widespread phenomenon in quan-
tum systems ranging from particle physics to critical*sridippaliiser@gmail.com, srpal@ucsd.edu
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phenomenon in condensed matter physics; for example,
relativistic quantum field theories admit chiral anomaly and
weyl anomaly. In fact, the anomaly cancellation is an
important tool to study quantum field theory in general. It is
known in condensed matter that a 3-body problem with a
large scattering length admits Efimov states [42] due to
anomalous breaking of scale symmetry of inverse square
potential down to a discrete scaling group and the resulting
appearance of a limit cycle in renormalisation group (RG)
flow. Generically, in a singular potential like inverse square,
renormalization is required to tame the singularity near the
origin. We find similar singular potential in the quantum
cosmological description of BD theory where the singu-
larity appears owing to big bang singularity. Thus, the
purpose of the communication is twofold, first to provide
yet another physical scenario to the list of examples ranging
from superconductivity [43,44], discrete Hamiltonian mod-
els [45,46], quantum field theory models [47] to S-matrix
models [48,49], where limit cycle and anomalous behavior
with such rich physics can be realized. On the other hand,
it is expected to elucidate the quantum behavior of
scalar-tensor theories in the quantum cosmological setup,
specifically to show the BD theory with scale invariant
matter does reduce to GR in the large ω limit. To be
specific, we will study the quantized Friedmann-
Robertson-Walker (FRW) metric in BD theory with
radiation-like matter content having conformal invariance.
It deserves mention that the conformal properties of BD
theory have been studied classically [50] as well as in the
loop quantized version [51], but such an existence of the
phase structure remains to be explored. Furthermore, such
novel physics has never before been reported or empha-
sized in the context of quantum cosmology to the best of
our knowledge.
The FRW model with a flat spatial section has a

symmetry under scaling of “scale factor” in GR. Under
the scaling a ↦ λa, the Einstein equation of motion
remains invariant. This symmetry is present in BD theory
as well with a homogeneous scalar field. In this work, we
show that the symmetry does not survive the quantization
process in BD theory. For some range of coupling, the
symmetry is broken anomalously solely due to quantum
effects, and this leads to a binary-phase structure of
quantized BD theory. We will show that the strong coupling
(ω → ∞) limit of BD theory is in a symmetry preserving
phase and so is the quantized GR. We argue that quantum
mechanically, the presence of a phase wall must be an
obstacle to the classical argument showing BD does not
reduce to GR for scale invariant matter. In fact, exploiting
the symmetry we explicitly show that BD theory does
reduce to GR in a strong coupling limit for a FRW universe
with a flat spatial section and radiation (scale invariant)
matter content, which is in sharp contrast with classical
behavior. This contrasting behavior along with the exist-
ence of a rich quantum phenomenon should initiate more

research exploring quantum BD theory along with other
scalar-tensor theories, its strong coupling limit in a generic
scenario.

II. BRANS-DICKE THEORY

The BD theory in the Jordan frame with a perfect fluid
(P ¼ αρ) is described by the following Lagrangian:

L ¼ ϕR −
ω

ϕ
∂μϕ∂μϕþ αρ; ð1Þ

where the scalar field ϕ is manifestly nonminimally
coupled with the Ricci scalar.
The line element of the FRW universe with a flat spatial

slice is given by

ds2 ¼ −n2dt2 þ a2ðtÞ½dx2 þ dy2 þ dz2�; ð2Þ
where n2ðtÞ is the lapse function and aðtÞ is the scale factor.
We parametrize the scale factor and ϕ in the following

way: aðtÞ ¼ eκðtÞ; ϕðtÞ ¼ eγðtÞ. Since we have assumed
an isotropic homogeneous universe, it is only natural to
assume that ϕ is a function of time only. Now, we define a
new variable βðtÞ≡ κðtÞ þ γðtÞ

2
and trade it in against κ

(as we will see, this redefinition allows us to write the
Lagrangian in a nice manner where β and γ gets decoupled;
otherwise, we would have terms like _κ _γ).
Using this parametrization, the Lagrangian for the

gravity sector can be written as

Lg ¼
e3β−

γ
2

n

�
−6_β2 þ 2ωþ 3

2
_γ2
�
: ð3Þ

The corresponding Hamiltonian is given by

Hg ¼ ne
γ
2
−3β

�
−
p2
β

24
þ p2

γ

2ð2ωþ 3Þ
�
; ð4Þ

where pβ and pγ are momenta conjugate to β and γ,
respectively.
For the matter sector, we take up a perfect fluid with

α ¼ 1
3
, i.e., radiation. Using standard thermodynamical

considerations, the Hamiltonian for the matter sector is
derived as

Hf ¼ ne3ð
γ
2
−βÞαpT ¼ neð

γ
2
−βÞpT; ð5Þ

where pT is the momentum associated with fluid. A nice
and crisp exposition of using the fluid sector to define a
time variable T and conjugate momentum pT is given in
[34]. The fact that the Hamiltonian of fluid sector turns out
to be linear in pT facilitates writing down a Schrodinger-
like equation.
Equations (4) and (5) can be combined to yield the total

Hamiltonian,
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H ¼ ne
γ
2
−β
�
−
e−2βp2

β

24
þ e−2βp2

γ

2ð2ωþ 3Þ þ pT

�
: ð6Þ

The operators are now ordered following the prescription
as laid out in [34,36], and varying the Hamiltonian with
respect to n results in a Hamiltonian constraint, given by

�
−

1

24
e−βpβe−βpβ þ

e−2βp2
γ

2ð2ωþ 3Þ þ pT

�
¼ 0: ð7Þ

As we quantize the system, the operators are realized
in “position” space in the following way: pβ ↦ −{∂β,
pγ ↦ −{∂γ , and pT ↦ −{∂T , leading to the Wheeler
deWitt equation,

�
1

24
e−β∂βe−β∂β −

e−2β∂2
γ

2ð2ωþ 3Þ
�
ψ ¼ {∂Tψ : ð8Þ

A change of variable χB ¼ eβ recasts this Hamiltonian
constraint (8) into

1

24

∂2ψ

∂χ2B −
1

2ð2ωþ 3Þ
1

χ2B

∂2ψ

∂γ2 ¼ {
∂ψ
∂T : ð9Þ

We use the separation of variable technique ψðγ;χB;TÞ¼
ξðγÞφðχBÞe{ET to obtain

∂2ξ

∂γ2 ¼ −k2ξ ð10Þ

with the solution given by ξ ¼ e{kγ, where k appears due to
separation of variables; subsequently, φ satisfies

1

24

∂2φ

∂χ2B þ k2

2ð2ωþ 3Þ
1

χ2B
φ ¼ −Eφ: ð11Þ

We define parameters

g ¼ 12k2

2ωþ 3
; E0 ¼ 24E; ð12Þ

to cast Eq. (11) in the following form:

−
∂2φ

∂χ2B −
g
χ2B

φ ¼ E0φ: ð13Þ

So, we have transformed this problem to a well-known
inverse square potential problem with an attractive potential
for g > 0, i.e., ω > − 3

2
; and a repulsive one for g < 0, i.e.,

ω < − 3
2
. Apparently Eq. (13) admits a scaling symmetry

under χB ↦ λχB, which is reminiscent of classical scale
symmetry. To be specific, if ϕðχBÞ is an eigenstate with
energy E0, then ϕðλχBÞ is an eigenstate with energy with
λ2E0. This also implies a continuous spectra; i.e., if E0 is an
eigenenergy, then there exists a state with energy λ2E0 for

λ ∈ R. For g < 1
4
, one can show that E0 > 0, and we have a

spectra bounded below. For a strongly coupled regime,
g > 1

4
, there exist states with negative E0 which indicates

that if we have to preserve scaling symmetry, there cannot
be any ground state. This comes out of the S theorem
elucidated nicely in the appendix of [52]. Hence, in a
strongly coupled regime, we need to do a self-adjoint
extension of the Hamiltonian [53] or equivalently we need
to regularize and renormalize [54] the coupling so as to
ensure a ground state. This is precisely what leads to
anomalous (quantum) breaking of scale symmetry for g > 1

4

[55]. In summary, owing to quantum effects, we have two
distinct phases: in the weakly attracting and repulsive
regime (g < 1

4
) the symmetry is preserved, while in the

strongly attractive regime (g > 1
4
) the symmetry breaks

down. It has been shown [54,56] that the symmetry is not
lost completely but rather broken down to a discrete scaling
symmetry, and we have limit cycle behavior in theory
space. The critical point g ¼ 1

4
translates to a parabola in

ðk;ωÞ space (see Fig. 1), given by

ω ¼ 48k2 − 3

2
; ð14Þ

where k is the eigenvalue of the pγ operator; i.e., k can be
thought of as momentum associated with γ and ω is
coupling of the BD theory. This k dependence of the
critical point can be interpreted in the following way, which
is very popular in field theory community: the scalar field
(hence, the system as a whole) is composed with different
momentum kmodes, which do not talk with each other and
evolve independently, just like a free field theory. Each of
these modes exhibits phase transition at a critical point,
which is a function of its momenta.

FIG. 1. Phase structure in ðk;ωÞ plane. The red (dark shaded)
region is where symmetry is broken due to quantum effects, while
in the yellow (lightly shaded) region, the symmetry is preserved.
The thick blue line represents the phase wall. The dotted red line
is supposed to be at ω ¼ ∞. The dotted green line below which
we have the yellow (lightly shaded) region is at ω ¼ −1.5.
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For a given couplingω such that 2ωþ 3 > 0, if we are to
preserve the symmetry in the quantized version, then we
restrict the possible momentum modes in a range, i.e.,

jkj < 1
4

ffiffiffiffiffiffiffiffiffi
2ωþ3
3

q
. Only in the limit ω → ∞ are all the

momentum modes allowed. It is worth noting that for a
fixed ω, g is invariant under k ↦ −k. Hence, in the regime
where 2ωþ 3 > 0, i.e., g is positive definite, for k > 0 as
well as for k < 0, the universe can be in either phase. But,
for 2ωþ 3 < 0, g is negative definite, i.e., g < 0 < 1

4
;

therefore the symmetry is always preserved. The yellow
region (lightly shaded) below the ω ¼ −3

2
horizontal line

represents this regime in the graph. It also deserves mention
that for a given nonzero mode k such that jkj < 1

4
, the

broken phase is attained only when ω becomes negative, to
be precise when −3

2
< ω < 0. Furthermore, the k ¼ 0 mode

is very special in the sense that it never undergoes phase
transition for any value of coupling ω.

III. BREAKDOWN OF FARAONI
CLASSICAL SYMMETRY

The BD theory with scale invariant matter content has a
classical symmetry as pointed out in [31,57]. Two

Brans-Dicke space-time ðM; gðωÞμν ;ϕðωÞÞ and ðM; ~g ~ω
μν; ~ϕ

~ωÞ
are equivalent if we have ~ϕ ¼ ϕ1−2θ⇔~γ ¼ γð1 − 2θÞ,
~gμν ¼ ϕ2θgμν⇔~β ¼ β, and ~ω ¼ ωþ6θð1−θÞ

ð2θ−1Þ2 .

This symmetry is Abelian in nature and described by one
parameter θ. By this mapping, i.e., choosing θ suitably, we
can classically relate two ω across a phase transition. In
fact, ω → ∞ can be thought of as moving within this
equivalence class. Now GR does not have this classical
symmetry, implying GR cannot belong to this equivalence
class. Thus GR cannot be classically realized as a strong
coupling limit of BD theory with scale invariant matter
content. Nonetheless, in the quantized version, the ω → ∞
limit of BD theory always lies in a symmetry preserving
phase. Had this symmetry been there quantum mechan-

ically, we could choose θ aptly [θ ¼ 1
2
ð1�

ffiffiffiffiffiffiffiffiffi
ωnsþ3

2

ωsþ3
2

r
Þ] to

approach the limit and conclude that a theory in a broken
phase with ωns is equivalent to a theory in a symmetry
preserving phase with ωs > ωns ≥ −3

2
. But quantum

mechanically the nature of the spectrum changes dramati-
cally across the phase transition. Thus this classical sense of
equivalence must break down quantum mechanically and
so must the argument proving that the GR is not a strong
coupling limit of BD with Tμ

μ ¼ 0.
One can modify the argument by Faraoni and argue that

within the symmetric (a ↦ λa) phase, there is no phase
wall, hence, the classical Faraoni equivalence might survive
in this phase and the ω → ∞ limit is in this symmetry
preserving phase and hence lies in the Faraoni equivalence
class. This modified (restricted) sense of equivalence has no

obstruction coming from the phase transition wall. Albeit,
as we will show below, the strong coupling limit of BD
does reduce to GR for a FRWmetric with a flat spatial slice
and radiation like matter content.

IV. STRONG COUPLING LIMIT AND GR

In this section, we will explicitly probe the strong
coupling limit of BD and compare it to GR in the quantized
version. The FRW line element is again given by Eq. (2),
and we parametrize a ¼ eσðtÞ.
The fluid sector can be dealt with in a similar manner as

in BD, following the operator ordering prescription to
arrive at the Hamiltonian of quantized GR,

Ĥ ¼ ne3ασ
�
1

24
e−

3ð1−αÞ
2

σ∂σe−3
ð1−αÞ
2

σ∂σ þ pT

�
; ð15Þ

and a change of variable for α ¼ 1
3
≠ 1, χG ¼

Exp½3ð1−αÞ
2

σ� ¼ Exp½σ� recasts the Wheeler de Witt

equation ĤΨ ¼ 0 into 1
24

∂2Ψ
∂χ2G ¼ {∂TΨ. Plugging in the

ansatz Ψ ¼ ψðχGÞe{ET , we obtain

−
1

24

∂2ψ

∂χ2G ¼ Eψ : ð16Þ

This precisely mimics the g → 0 limit of BD theory as in
this limit the governing equation (13) becomes

−
1

24

∂2φ

∂χ2B ¼ 1

24
E0φ ¼ Eφ: ð17Þ

Thus governing equations (17) and (16), controlling the
behavior of χB and χG, are the same. In fact, both of them
admit symmetry under scaling of χB and χG; albeit the scale
factor behaves differently in these two scenarios. In GR, the
scale factor a is given by a ¼ χG, while in BD theory, it is
given by a ¼ e−

γ
2χB.

Now, for g ≠ 0, φðχBÞ depends on g (the solution being

given by the modified Bessel function of order
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gþ 1

4

q
)

and hence on momentum mode k (12) of scalar field γ (10).
As ω → ∞, g becomes 0, and this dependence goes away.
Even if we make a time dependent state by superposing
energy eigenfunctions φ, the behavior of γ is unaffected.
On the other hand, even if we superimpose various
momentum modes of γ, that does not affect the evolution
of φ. Hence, in the ω → ∞ limit, the wave function ξðγÞ
controlling the behavior of γ is explicitly time independent,
which in turn implies that on the expectation value level, the
GR FRW thus obtained has a scale factor that is some time
independent multiple of the scale factor obtained from the
strong coupling limit of BD. Thus for some constant c, we
can write haGRi ¼ chaBDi.
We know the strong coupling limit of both BD and GR

preserves symmetry even after quantization; hence haGRi
and haBDi are related by symmetry transformation. Thus,
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we have been able to show that quantum FRW obtained
from BD does reduce to quantum FRWobtained from GR.
For example, by superposing solutions of (10), one can

have ξðγÞ ¼ 1ffiffi
4

p
2π3

R
dke−k

2þikγ ¼ 1ffiffi
4

p
2π
e−

γ2

4 , to obtain

c ¼ he−γ
2i ¼ e

1
8. One might wonder about the fluctuation

of γ, but note, in the strong coupling limit, even the
fluctuations are time independent. Hence, even in the sense
of the operator, we have aGR ¼ C · aBD for constant

operator C. For example,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hC2i − hCi2

p
¼ e

1
8

ffiffiffiffiffiffiffiffiffiffiffiffi
e
1
4 − 1

p
for

the above mentioned ξ.

V. DÉNOUEMENT

We have shown the existence of a binary phase structure
of the FRW model with a flat spatial section in quantized
BD theory, identifying the phase transition wall, explaining
how the quantum effects break the classical symmetry
which maps a ↦ λa. The obstruction provided by the phase
transition wall implies the argument, showing that the BD
theory with a scale invariant matter content does not reduce
to GR and does not go through in the quantized version.
Hence, we explore the strong coupling limit of the
quantized BD theory and show explicitly that in sharp
contrast with classical behavior, quantum mechanically, it
does reduce to GR for a scale invariant matter content i.e.,
radiation. This result is of utmost importance considering
the fact that Solar System experiments and various impor-
tant aspects of BD theory underlie the assumption that in
the large ω limit, BD reduces to GR.
Althoughwehavebeenworkingwith theFRWmodel, it is

a straightforward but nonetheless exciting exercise to show
that the anisotropic homogeneous Bianchi-I model exhibits
such scaling symmetry at the classical level which breaks
down at the quantum level for a region in coupling space.
Unlike FRW, Bianchi-I exhibits such binary phase structure
in bothGRandBD theories.Wewish to report on it in future.
The invariance under a ↦ λa plays a role in showing the

convergence of strongly coupled BD to GR in a quantized
version. Hence, it seems that in the generic scenario, the
strong coupling limit of the quantized BD theory yields a
space-time, whose spatial slice (upon Arnowitt-Deser-
Misner (ADM) decomposition) is conformal to the spatial
slice of space-time obtained from quantized GR. At
present, this is merely a conjecture, requiring a rigorous
proof to be established. Nonetheless, this seems quite
natural, as in the Einstein frame description of the BD
theory, the scalar field always gets decoupled. There will
possibly be a way to establish this decoupling effect in the
Jordan frame or, to be more ambitious, to prove an
equivalence between Jordan and Einstein frame descrip-
tions of the BD theory in a generic scenario.

Last but not least, we list open questions that we believe
will be interesting to explore in the future:
(1) to investigate whether the symmetry as laid out by

Faraoni breaks down quantum mechanically, in a
generic scenario, or it happens only in FRW with a
flat spatial section. One obvious choice would be to
explore FRW with a curved spatial slice.

(2) to explore the strong coupling limit of the BD
theory and issue of convergence to GR in a generic
scenario in the quantized version. One can inves-
tigate a generic scalar-tensor theory with a similar
setup.

(3) to explore whether any other model in quantized BD
exhibits such rich quantum physics like anomalous
symmetry breaking.

(4) to show (in)equivalence of Einstein and Jordan
frames with matter content.

(5) to investigate the cosmological implication of
anomalous symmetry breaking in the FRW model.

(6) for the loop quantum gravity community to test
whether the result obtained is robust enough to be
independent of the quantization scheme and to be
found in the loop quantum cosmological setup as
well even though the work above has been done in a
mini-superspace quantization scheme.
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Note added.—Recently, we became aware of [58] regarding
self-adjoint extension in Brans-Dicke has appeared, where
they arrived at a similar singular potential and found a
constraint on operator ordering to ensure self-adjointness. It
deserves mention that in the context of a singular potential,
self-adjoint extension and renormalization is intricately
related. Hence, the results of [58] can potentially be
translated in the language of renormalization and anoma-
lous breaking of scale symmetry. They obtained an inequal-
ity involving momentum of scalar field and a parameter
that depends on the operator ordering, coupling ω, which
ensures that the Hamiltonian is essentially self-adjoint. The
regime of coupling where the Hamiltonian is essentially
self-adjoint is precisely the regime where the symmetry is
preserved, whereas in the complementary regime, the
symmetry breaks anomalously.
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