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We analytically study the linear response of a near-extremal Kerr black hole to external scalar,
electromagnetic, and gravitational field perturbations. We show that the energy density, electromagnetic
field strength, and tidal force experienced by infalling observers exhibit transient growth near the horizon.
The growth lasts arbitrarily long in the extremal limit, reproducing the horizon instability of extremal Kerr.
We explain these results in terms of near-horizon geometry and discuss potential astrophysical
implications.
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I. INTRODUCTION

Black holes play a central role in modern theoretical
physics and astrophysics. A special case of considerable
interest is the “extremal” limit of vanishing surface gravity.
Higher-dimensional extremal black holes play an important
role in string theory [1]. For the Kerr black holes of our
Universe, extremal means maximally spinning. There has
been much recent interest in rapidly spinning, near-
extremal black holes in light of their enhanced symmetries
[2,3], conjectured holographic duality [3], unusual dynam-
ics [4], analytic tractability [5–15], and unique observa-
tional signatures [16–20].
In 2010 Aretakis discovered that extremal black holes

are unstable [21–23]. He showed that sufficiently high-
order derivatives on the event horizon grow unboundedly
with time. Since no physical object can be exactly extremal,
the physical implications of the instability rest on gener-
alization to near-extremal black holes. This was done for
spherically symmetric nonlinear perturbations of charged
(Reissner-Nordström) black holes in beautiful numerical
work by Murata, Reall, and Tanahashi [24], who found
transient growth on the horizon. This growth lasts arbi-
trarily long in the extremal limit, recovering the unbounded
growth of the extremal instability.
We provide similar results for the astrophysical Kerr

black hole. Our calculations are limited to linearized theory,
but have the advantages of being both analytical and
covering the nonaxisymmetric modes, which dominate
the extremal instability [25]. We show that the instability
is associated with a family of “zero damped” quasinormal
modes [18,26,27], which we call near-horizon modes.
Generic initial data produces a coherent excitation that
gives rise to transient growth near the horizon. Increasing
the spin shrinks the region of growth while lengthening
the growth time, recovering the Aretakis instability—
unbounded growth only precisely on the horizon—in the
extremal limit.

The above discussion implicitly assumes that the
extremal limit is taken in one of the usual coordinate
systems (such ingoing Kerr coordinates), which produces
the metric known as extremal Kerr. An alternative extremal
limit adapted to near-horizon observers produces a different
metric known as near-horizon extremal Kerr (NHEK) [2].
The singular relationship between the limits means that
near-horizon excitations are singular to far-horizon observ-
ers (and vice versa). The instability is in effect the statement
that near and far dynamics do not completely decouple in
the extremal limit, making singular behavior unavoidable.
Among the physical quantities that grow in response to

external perturbations are energy densities, electromagnetic
field strengths, and tidal forces measured by infalling
observers. The large observed energy density is analogous
to the high-energy particle collisions that can be produced
with finely tuned initial data [28,29], except that here no
tuning is required. The growth of electromagnetic fields
means that rapidly spinning black holes act to amplify
generic external fields, a fact with potential observational
consequences for radiation from charged particles.
Perturbing tidal forces provide a small enhancement of
the black hole’s own tidal fields, and this amplification may
encourage the development of gravitational turbulence [4].
Further study is required to explore these potential conse-
quences of the transient instability.
In what follows we derive the transient instability,

discuss it in terms of near-horizon geometry, and elaborate
on the physical implications. Geometric units G ¼ c ¼ 1
are used throughout.

II. NEAR-HORIZON QUASINORMAL
MODE RESPONSE

We investigate the perturbations of Kerr black holes
using ingoing Kerr coordinates xμ ¼ ðv; r; θ;φÞ [30]
around a black hole of mass M and spin parameter a.
The outer and inner horizons lie at r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2
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respectively, and the outer horizon rotates at the horizon
frequency ΩH ¼ a=ð2MrþÞ.

A. Mode decomposition

Teukolsky [31] showed that in suitable tetrads on Kerr
certain perturbed Newman-Penrose [32] scalars obey
decoupled, separable equations. These scalars contain
all the radiative information about the corresponding
perturbations [33–36]. We work with the scalars Ωs
defined in [5] for s ¼ 0;�1;�2 corresponding to scalar,

electromagnetic, and gravitational fields, respectively (see
Appendix A for details). For source-free perturbations
these obey a second-order linear partial differential
equation Ls½Ωs� ¼ 0. We consider the Green function
G for this operator,

Ls½G� ¼ δð4Þðxμ − xμ0Þ: ð1Þ

The equation separates under mode decomposition and a
Laplace transform,

Gðxμ; xμ0Þ ¼ 1

2π

X∞
l¼jsj

Xl
m¼−l

eimðφ−φ0Þ
Z

∞þic

−∞þic
e−iωðv−v0ÞsSlmωðθÞsS�lmωðθ0Þ~glmωðr; r0Þdω; ð2Þ

where sSlmωðθÞ are spin-weighted spheroidal harmonics
[31] and c is a positive constant. The radial function ~glmω

satisfies the ordinary differential equation (A1) of [5] with
δðr − r0Þ on the right-hand side. The causal solution is
constructed from homogeneous solutions Rin with no
incoming radiation from the horizon and Rup with no
incoming radiation from infinity via

~glmωðr; r0Þ ¼
Rinðr<ÞRupðr>Þ

W
; ð3Þ

where r> ¼ maxðr; r0Þ, r< ¼ minðr; r0Þ. Here W¼
Δsþ1e−2iωr� ðRin∂rRup−Rup∂rRinÞ with Δ¼ðr−r−Þðr−rþÞ
and where r� is the tortoise coordinate [31]. We restrict to
nonaxisymmetric modes,m ≠ 0.1 With a convenient choice
of overall normalization, the up solution satisfies [5]

RupðrÞ ∼ e2iωr�

r
; r → ∞: ð4Þ

Similarly, we normalize the in solution such that [5]

Rin ∼
�
Zoutr−1e2iωr� þ Zinr−2s−1 r → ∞
1 r → rþ

; ð5Þ

where Zin and Zout may be determined by solving the radial
equation. In terms of these definitions we have

W ¼ 2iωZin: ð6Þ

B. Near-extremal case

To study the near-extremal regime we now introduce
dimensionless quantities

σ ¼ rþ − r−
rþ

; x ¼ r − rþ
rþ

; ð7Þ

defined so that x ¼ 0 is the horizon and σ → 0 is the extremal
limit. Teukolsky and Press [5] used matched asymptotic
expansions to find analytic solutions valid for frequencies
near the superradiant bound ðω −mΩHÞrþ ≪ 1 in the near-
extremal regime σ ≪ 1.
The results needed here are the in solution near the

horizon (x ≪ 1),

RinðxÞ ¼ 2F1ðαþ; α−; 1þ s − 2iω̄;−x=σÞ; ð8Þ

and the incident wave amplitude,

Zin ¼ ð−imÞ−1=2−sþiδ−imΓð−2iδÞΓð1 − 2iδÞ
Γðα−ÞΓð1=2 − s − iδ − imÞ

×
Γð1þ s − 2iω̄Þ

Γð1=2 − iδþ im − 2iω̄Þ σ
αþ þ ðδ → −δÞ: ð9Þ

The notation ðδ → −δÞmeans to repeat the same terms with
the sign of δ reversed. Here we have defined

α� ¼ 1=2þ s� iδ − im; ð10Þ

ω̄ ¼ 2Mðω −mΩHÞ
σ

ð11Þ

with

δ2 ¼ 7m2

4
− ðsþ 1=2Þ2 − sAlm: ð12Þ

Here sAlm is the eigenvalue sAlmω of [31] evaluated at
a ¼ M and ω ¼ 1=ð2MÞ.2 Equation (12) defines δ only up

1It is possible, but cumbersome, to treat axisymmetric and
nonaxisymmetric modes in a unified notation [25]. We are
confident that the nonaxisymmetric modes are dominant since
these dominate the extremal instability [25].

2The eigenvalue sAlmω is related to the eigenvalue sKlmω of
[6,7,11,12,25] by sKlmω ¼ sAlmω þ sðsþ 1Þ þ a2ω2.
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to sign, with (8) and (9) invariant under δ → −δ. We choose
the convention δ ¼

ffiffiffiffiffi
δ2

p
; i.e. δ is positive when real and has

positive imaginary part when imaginary.
The cases δ2 > 0 and δ2 < 0 generally give rise to

qualitatively different behavior [12,18,27,37]. We name
these cases “principal” and “supplementary” following
terminology used in the representation theory of
SLð2;RÞ [38,39], a group that appears as part of the
near-horizon isometry group (Appendix B). For each l and
m one can determine whether the mode is principal or
supplementary by computing the eigenvalue sAlm and
checking the sign of (12). These occur for larger and
smaller values of m=l, respectively, with the transition at
m=l ≈ 0.74 [37,40] for all values of s in the large-l limit.
The principal modes are also connected to the near-horizon
photon orbits of Kerr via the geometric correspondence
between the large-l quasinormal modes (QNMs) and
unstable null orbits [18,37,41]. In another common nota-
tion [6,7,11,12,25] the principal and supplementary modes
correspond to complex and real conformal weight h,
respectively. Table I summarizes the properties of and
conventions for these modes.

C. Overtone sum

In order to calculate the Green function in the time
domain, we must resolve the inverse Laplace transform in
Eq. (2). Doing so results in three terms: the contribution
from the arcs at large jωj, a contribution from a branch cut
extending from ω ¼ 0 along the negative imaginary axis,
and a sum over the poles of the Green function. We focus
on this last term, which is the contribution to the response
from the decaying resonances of the black hole, known as
the QNMs [42,43], which dominate the response at
intermediate times following the initial signal propagating
on the light cone [44].
The QNM frequencies are the poles of ~glmω, which by

(3) and (6) occur when Zin vanishes. From Eq. (9) the QNM
resonance condition for near-horizon modes [26,45] is thus

ð−imσÞ−2iδ Γð2iδÞ2Γðα−Þ
Γð−2iδÞ2ΓðαþÞ

Γð1=2 − iδþ im − 2iω̄Þ
Γð1=2þ iδþ im − 2iω̄Þ

×
Γð1=2 − s − iδ − imÞ
Γð1=2 − sþ iδ − imÞ ¼ 1: ð13Þ

For supplementary modes δ2 < 0, the quantity
ð−imσÞ−2iδ ¼ Oðσ2jδjÞ is perturbatively small in σ and

must be compensated by a divergence in the multiplying
factors in order to satisfy (13). Noting that the gamma
function has simple poles at negative integers (and zero),
the solutions ω̄n to (13) are 2ω̄n ¼ m − δ − iðnþ 1=2Þ þ
Oðσ2jδjÞ for non-negative integers n. For the principal
modes this argument no longer holds, but the QNMs turn
out to take a similar form. We quantify the error with a shift
parameter η, writing [26]

ω̄n ¼
1

2

�
m − δ − i

�
nþ 1

2

�
þ η

�
; ð14Þ

where n is a non-negative integer. Numerical solutions of
(13) and direct searches for QNM frequencies at near-
extremal spins show that jηj is generally small (≲10−3)
[18,46]. An analytic approximation is given in [18]. Here
we treat η as a parameter and work to leading order.
Since the Green function diverges like 1=Zin near

a pole, the associated residue is proportional to ∂ωZin ¼
ð2M=σÞ∂ω̄Zin evaluated at ω̄ ¼ ω̄n. Using (9), (14) and the
expansion 1=Γð−n − iηÞ ¼ −iηð−1Þnn!þOðη2Þ, we find

dZin

dω̄

����
ω̄n

¼ 2Cσαþð−1Þnn!Γðαþ − nÞ þOðηÞ; ð15Þ

with

C ¼ −ið−imÞ−1=2−sþiδ−im

×
Γð1 − 2iδÞΓð−2iδÞ

Γð1=2 − s − iδ − imÞΓð1=2þ s − iδ − imÞ : ð16Þ

Using the large-r0 form of Rup (4) for simplicity3 and
dropping the OðηÞ error terms, we combine Eqs. (3) and
(15) with our expressions for the homogeneous solutions to
compute the sum over residues

GNHM ¼ −
1

4r0
X
lm

σ1−αþ sSlmðθÞsS�lmðθ0Þ
mC

× eimðφ−φ0−VÞeiδσV=2−σV=4S; ð17Þ

where sSlmðθÞ is the spin-weighted spheroidal harmonic
sSlmωðθÞ evaluated at a ¼ M andω ¼ 1=ð2MÞ. Here NHM
stands for near-horizon modes. We have introduced the
dimensionless time coordinate

V ¼ v − v0 − 2r0�
2M

; ð18Þ

TABLE I. Properties of nonaxisymmetric near-extremal modes
and the relationships between the δ notation used here (and in [5])
and the h notation used in [6,7,11,12,25].

Principal δ2 > 0 h ∈ C h ¼ 1
2
þ iδ m≳ 0.74l

Supplementary δ2 < 0 h ∈ R h ¼ 1
2
− iδ m≲ 0.74l

3If r0 is instead any point in the far zone ðr0 − rþ ≫ rþσÞ, then
we have Rup ¼ e2iωr�fðω; 1=r0Þ for f smooth near ðm=2; 0Þ. [See
e.g. (A5) in [5], which can be expanded using (13.7.2) of [47].]
The result (17) is modified by replacing the 1=r0 in front with a
more complicated function of r0.
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and the overtone sum

S ¼
X∞
n¼0

ð−1Þne−nσV=22F1ðαþ; α−; αþ − n;−x=σÞ
n!Γðαþ − nÞ : ð19Þ

Remarkably, the sum can be evaluated in terms of elemen-
tary functions. Taylor expanding the 2F1 hypergeometric
function, computing the sum over n for each coefficient,
and resumming gives

S ¼ ð1 − e−σV=2Þαþ−1
ΓðαþÞ

�
1þ x

σ
ð1 − e−σV=2Þ

�
−α−

: ð20Þ

This completes the calculation of the near-horizon mode
response (17).
The l ¼ m ¼ s ¼ 2 case is plotted in Fig. 1. To under-

stand the QNM response in more detail we consider the
early and late time behavior. At late times we have
ΓðαþÞS → 1, and the factor e−σV=4 in (17) sets the decay
rate for all modes. At early times we have

S≈
1

ΓðαþÞ
�
σV
2

�
αþ−1

�
1þxV

2

�
−α−

; V≪ 1=σ: ð21Þ

For very early times (V → 0) we cannot expect the near-
horizon modes to dominate the signal, since the initial pulse
of radiation arrives around V ¼ 0 [44]. The value of
Eq. (21) is that it reveals whether the QNM response
initially grows or decays. For s ≤ 0 (21) diverges at V ¼ 0,
corresponding to power-law decay at a rate of V−1=2þs. This
divergence is the usual very-early-time behavior of QNM
overtone sums, which is expected to be canceled by a
contribution from the branch cut [44,48–50]. For s > 0 and
δ2 > 0, however, we have the qualitatively new behavior of
QNM growth following the arrival of the signal.
The growth lasts until a time of order 1=σ, with GNHM

reaching a maximum amplitude of order σ1=2−s. From the
xV dependence of (21) we see that each higher x-derivative
grows faster by one power of V.4 The whole approximation
is valid for x ∼ σ, which shrinks to the single point x ¼ 0 in
the extremal limit. Thus we recover the main features of the
instability: unbounded growth on the event horizon, occur-
ring faster for higher derivatives. The growth rates agree in
detail with the extremal horizon instability [25,51]. While it
should also be possible to match the full Green function
(i.e. including the numerical coefficient) in a suitable limit,
the details are subtle because of the way in which all of
x ∼ σ becomes compressed to x ¼ 0.

III. NEAR-HORIZON INTERPRETATION

The main result of the previous section is the portion
GNHM of the near-extremal Green function due to the near-
horizon modes, which is given by Eqs. (17), (16), and (20).
Careful inspection reveals that the answer takes the form

GNHM ¼
X
lm

σ1=2−s−iδþimGlmðx̄μ; xμ0Þ; ð22Þ

where the barred coordinates x̄μ are given by5

x̄¼ x=σ; V̄ ¼ σV; θ̄ ¼ θ; φ̄¼ φ−V: ð23Þ

The appearance of these coordinates is no accident: the
special combinations of xμ and σ in (23) are precisely what
must be held fixed to produce a second regular extremal
limit, the near-horizon extremal limit which produces the
NHEK metric [2,52,53].
In Appendix B we review these limits with the attitude

that neither is fundamentally preferred. The far limit
(σ → 0, fixing xμ) represents physics to distant observers
and the probes they drop into a near-extremal black hole,
while the near limit (σ → 0, fixing x̄μ) represents a class of
near-horizon observers and their probes. The singular
relationship (23) between the limits ensures that inter-
actions are singular. For example, if far probes collide with
near probes, the collision energy is unbounded in the
extremal limit [13,28,29,54].
The field analog of this statement is that fields smooth

in one limit are singular in the other. For example, a

FIG. 1. Plot of the magnitude of the Hartle-Hawking tetrad
Weyl scalar Ψ4 associated with near-horizon quasinormal modes
excited by a distant pulse of l ¼ m ¼ 2 initial data. [That is, we
plot the l ¼ m ¼ 2 term of Eq. (17) with s ¼ 2.] We normalize
Ψ4 by the maximum value it attains on the horizon, jΨH

4 j. The
gravitational perturbations grow for a time V ∼ 1=σ, and overall
Ψ4 ∼ σ−3=2, as determined by the scaling in Eq. (17).

4The functional form vpfðxvÞ is the most general scalar that is
self-similar under the NHEK dilation v∂v − x∂x, and hence the
Aretakis behavior could have been predicted based on the
principle that fields become self-similar near the horizon of
extreme Kerr [13].

5We remind the reader that V (18) is ingoing Kerr time in units
of 2M and shifted to place the relevant dynamics near V ¼ 0.
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pulse of radiation sent towards the black hole from afar
is represented by a function smooth in xμ. But this
appears highly blueshifted to near-horizon observers
since ∂V̄ ¼ σ−1ð2M∂v þ ∂φÞ. Similarly, perturbations
made by near-horizon observers appear to have rapid
spatial variation (∂x ¼ σ−1∂ x̄) to a far-horizon probe
falling into the black hole. Of course, the distinction
between space x and time V is artificial: in each case
there are regular observers who measure arbitrarily large
energies.
Since both limits give rise to a regular limiting metric,

it is natural to expect terms of the form Gðx̄; x̄0Þ and
Gðx; x0Þ in the near-extremal Green function, representing
decoupled dynamics in the two different metrics. The
transient instability (22) is a kind of cross-talk Gðx̄; x0Þ,
showing that far-horizon initial data can excite near-horizon
modes, which are then seen as singular to infalling far-
horizon observers. In effect, the field dynamics prevents the
naive decoupling of the metrics, which manifests in the far
region as an instability at small x.6

From this point of view, the horizon instability of
precisely extremal Kerr is nature’s way of telling us that
both extremal limits are always required for near-extremal
perturbation theory.

IV. PHYSICAL CONSEQUENCES

We have shown that a generic external perturbation
excites a response of order G ∼ σ1=2−s near the horizon
(x ∼ σ) at times of order V ∼ 1=σ following the initial
arrival of the signal at V ¼ 0. For simplicity we imagine
that some distant source acts continuously to perturb the
field, so that the response is continuously of order σ1=2−s.
Noting that the x-dependence comes only through x=σ, we
may write

ð∂xÞdGNHM ∼ σ1=2−s−d for x ∼ σ: ð24Þ

For positive s this response is an amplification of the
external perturbation, while for any s amplification occurs
for sufficiently high-order derivatives.7

In the scalar case s ¼ 0 the Green function G refers to a
massless scalar field Φ propagating on the Kerr back-
ground.8 Thus the field values (d ¼ 0) are modest
(Φ ∼ σ1=2), but the first derivative becomes large
(∂xΦ ∼ σ−1=2). The stress-energy tensor Tμν is quadratic
in first derivatives, and infalling observers uμ generically
see large energy densities,9

Eobs ¼ Tμνuμuν ∼ σ−1 → ∞: ð25Þ

This is analogous to the high-energy particle collisions [29]
that can occur in the near-horizon region with sufficient
fine-tuning (see Appendix B). Here, on the other hand, any
generic external perturbation excites near-horizon modes so
that a generic particle sent in experiences a high-energy
“collision” (25) with the field.
If an infalling observer carried some scalar charge, then

in addition to large energies (25) she would also experience
large forces ∂xΦ ∼ 1=

ffiffiffi
σ

p
. Of course, she may pass through

the small region x ∼ σ too quickly to notice any significant
change in her trajectory. Similarly, Eq. (25) represents an
energy density, and the effect on an observer over the region
x ∼ σ may in fact be finite. Resolving these questions
would require a definite calculation within some scalar
model.
In the electromagnetic case s ¼ �1, the Green function

G corresponds to ingoing Kerr components of the field
strength tensor Fμν (see Appendix A for details). The
growing case s ¼ 1 corresponds by Eq. (A5) to the Hartle-
Hawking scalar ϕ2, which contains Frv, Frθ, and Frφ. By
(24) we have ϕ2 ∼ 1=

ffiffiffi
σ

p
. The stress-energy is quadratic in

F so again large energies (25) are generically observed by
infalling observers. For extremely rapidly spinning black
holes this could in principle allow an astrophysical probe of
high-field quantum electrodynamics by infalling charged
particles.
More likely to have an interesting astrophysical effect are

the large Lorentz forces Fμνuν ∼ 1=
ffiffiffi
σ

p
. In effect, rapidly

spinning black holes amplify external electromagnetic
perturbations by a factor of 1=

ffiffiffi
σ

p
. Free charges moving

toward the black hole would have their bulk motion and
synchrotron spectra suitably modified by the enhanced field
near the horizon. This provides a promising avenue for
astrophysical signatures of the instability, especially if

6It would be interesting to explore the reciprocal case: Does
near-horizon initial data give rise to far-horizon modes that
manifest in the near region as a transient instability at large x̄?
Is there a corresponding instability of the NHEK spacetime? This
would be a linear instability, distinct from the nonlinear back-
reaction effects discussed in [55,56].

7The dependence of the growth/decay rate on s can be
understood in terms of the projection of the Weyl tensor onto
the null tetrad (A1): Ψ4 involves contractions onto nμ, which
means that Ψ4 contains directional derivatives along nμ ∼ ð∂xÞμ,
which enhance the amplitude when acting on functions of
x̄ ¼ x=σ. Meanwhile, Ψ0 contains directional derivatives along
the direction lμ ∼ ð∂vÞμ þ σxM−1ð∂xÞμ þ ð2MÞ−1ð∂ϕÞμ, and
these derivatives do not provide enhancements when acting on
functions of x̄μ.

8Note that if the factors of m are replaced with 2rþω in (10),
(12) and (15), and we express ω in terms of ΩH and ω̄, our results
carry over to scalar fields in near-extremal Kerr-Newman back-
grounds (but not for electromagnetic or gravitational fields). See
e.g. [57].

9Equation (25) also holds for generic observers near the black
hole (x ∼ σ) whose four-velocity has a smooth far-horizon limit,
but we specifically think of observers dropped from a large radius
(without any fine-tuning). These observers pass through all
values of x and hence experience large energy densities at some
period in their journey.
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coupled with a transient behavior while the field ramps up
over times of order 1=σ. However, while we can expect
distinctive features near the horizon, these may be washed
out as the radiation climbs out of the gravitational potential
well. Detailed calculation is required to determine a precise
astrophysical signature.
In the gravitational case, s ¼ �2, the Green function G

refers to ingoing Kerr components of the Weyl tensor
Cμνρσ (see Appendix A for details). The growing case
s ¼ 2 corresponds by Eq. (A7) to the Hartle-Hawking
scalar Ψ4, which contains components with two appear-
ances of r (e.g. Cvrvr). By (24) we have Ψ4 ∼ σ−3=2. This
represents a relative enhancement of the tidal forces felt
by an infalling observer compared to what she would feel
near a comparable modestly spinning black hole.
However, for astrophysically reasonable parameters the
forces would be swamped by those of the black hole
itself.
A more promising route to an astrophysical signature

of the transient gravitational instability is through its
contribution to a nonlinear parametric resonance that may
drive gravitational turbulence [4]. This resonance occurs
because the near-horizon modes have approximately
integer-separated frequencies from the far-zone perspec-
tive, ωNHM ¼ m=2þOðσÞ. The authors of Ref. [4]
calculated a criterion for the onset of turbulence assuming
that the driving perturbation h is due to the single lowest
overtone. Our results indicate that coherent excitation
gives rise to power-law decay or growth of near-zone
perturbations. Accounting for this could modify the
criterion for the onset of turbulence, likely enhancing
the effect.
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APPENDIX A: TETRAD

The field variable we employ, Ωs, is defined in a time-
reversed version of the Kinnersley tetrad which is regular
on the future horizon. A more common tetrad, which is also
regular on the horizon, is the Hartle-Hawking (HH) tetrad
[5]. Here we relate Ωs to physical quantities in the HH
tetrad.
The HH tetrad is obtained from the Kinnersley

tetrad by the type-III null transformation lμ → Λlμ,
nμ → Λ−1nμ,mμ → eiχmμ, with χ ¼ 0 and boost parameter
Λ ¼ Δ=½2ðr2 þ a2Þ�. The HH tetrad has ingoing Kerr
components

lμ ¼
�
1;

Δ
2ðr2 þ a2Þ ; 0;

a
r2 þ a2

�
; ðA1Þ

nμ ¼
�
0;−

r2 þ a2

r2 þ a2cos2θ
; 0; 0

�
; ðA2Þ

mμ ¼ 1ffiffiffi
2

p ðrþ ia cos θÞ

�
ia sin θ; 0; 1;

i
sin θ

�
: ðA3Þ

The leg lμ is tangent to the horizon, while nμ is
transverse.
The scalar Ωs is related to the HH field scalar, ϒHH

s , by
Ωs ¼ ðr2 þ a2ÞsϒHH

−s [5]. The electromagnetic scalars Ω�1,
which correspond to the jsj ¼ 1 Green function derived
in II, are related to the HH scalars ϕ0 ¼ Fαβlαmβ and
ϕ2 ¼ Fαβm̄αnβ via

Ω−1 ¼ ðr2 þ a2Þ−1ϕ0; ðA4Þ

Ω1 ¼ ðr2 þ a2Þðr − ia cos θÞ2ϕ2; ðA5Þ

where the overbar indicates complex conjugation. The
remaining components, ϕ1 ¼ 1

2
Fαβðlαnβ þ m̄αmβÞ, may

be obtained either by solving a first-order partial differ-
ential equation [31], or by performing a field reconstruction
such as that outlined in [58]. Similarly, the gravita-
tional scalars Ω�2 derived in the text are related to
the radiative components of the gravitational field,
Ψ4 ¼ Cαμβνnαm̄μnβm̄ν and Ψ0 ¼ Cαμβνlαmμlβmν, via

Ω−2 ¼ ðr2 þ a2Þ−2Ψ0; ðA6Þ

Ω2 ¼ ðr2 þ a2Þ2ðr − ia cos θÞ4Ψ4: ðA7Þ

APPENDIX B: EXTREMAL LIMITS

The near-horizon coordinates (23) that capture the
essential properties of the instability have a rather mys-
terious origin in the calculations of [5] and this paper. We
now give a discussion of near-extremal physics that leads
naturally to these coordinates and their associated near-
horizon extremal limit. As in the text, we use ingoing Kerr
coordinates xμ ¼ ðv; r; θ;φÞ, together with the useful
definitions [repeated from (7)]

σ ¼ rþ − r−
rþ

; x ¼ r − rþ
rþ

: ðB1Þ

We begin with an analysis of equatorial orbits. For any
nonextremal Kerr black hole there are three particularly
interesting prograde circular orbits [59], located to leading
order in σ at

xISCO ¼ 21=3σ2=3 ðB2aÞ
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xIBCO ¼ ð
ffiffiffi
2

p
− 1Þσ ðB2bÞ

xICO ¼ ð2=
ffiffiffi
3

p
− 1Þσ: ðB2cÞ

The innermost stable circular orbit (ISCO) is a margin-
ally stable orbit separating the stable orbits at larger radii
from the unstable orbits at smaller radii. The innermost
bound circular orbit (IBCO) similarly separates bound
orbits from unbound orbits.10 The innermost circular orbit
(ICO) is a null orbit inside of which there are no circular
orbits at all. Note that xICO < xIBCO < xISCO for all σ > 0.
These orbits are important for various physical proc-

esses in Kerr. For example, accretion disks terminate
somewhere between the ISCO and the IBCO [60],
depending on the thickness of the disk. A near-equatorial
compact object inspiraling into the black hole (a prom-
ising source of gravitational radiation [61]) would sim-
ilarly end its journey by orbiting many times in this
region before plunging in [62]. The ICO is important for
photon propagation, determining, among other things,
the size and shape of the shadow [63] cast by a black
hole, which the Event Horizon Telescope [64] hopes to
measure.
The need for a second extremal limit can be seen

from the way the standard (far zone) one completely
muddles these important orbits, making them all
coincide [(B2) as σ → 0]. In fact the situation is worse,
since they approach the horizon x ¼ 0 of extremal Kerr
and hence become null. This manifests as a blowing up
of the four-velocity of the timelike orbits. In particular,
for the IBCO we have

uIBCO ¼
ffiffiffi
8

p

σ

�
∂v þ

1

2M
∂φ

�
−
�
∂v þ

2

M
∂φ

�
þOðσÞ:

ðB3Þ

Every circular orbit inside the ISCO suffers a similar
fate. Clearly, the usual extremal limit drastically distorts
the near-horizon physics.
To preserve the near-horizon physics we should take a

different limit where the critical orbits stay distinct. It is
clear from (B2) that the IBCO and ICO stay at finite
coordinate radius if we use x=σ instead of x. To preserve the
timelike character of the IBCO, we must stop the blowup in
(B3) by finding new time and angular coordinates such that
ð∂v þ ð2MÞ−1∂φÞ=σ is finite. This can be accomplished by
rescaling v and shifting φ, making the complete set11

v̄¼ σv
2M

; x̄¼ x
σ
; θ̄¼ θ; φ̄¼φ−

v
2M

: ðB4Þ

If we let σ → 0 fixing barred coordinates x̄μ then the IBCO
remains timelike and distinct from the horizon,

x̄IBCO ¼
ffiffiffi
2

p
−1; uIBCO ¼

ffiffiffi
2

p

M

�
∂ v̄−

3

2
ffiffiffi
2

p ∂φ̄

�
: ðB5Þ

Here we have kept to leading order in σ at fixed x̄μ. Having
been led to the rather nontrivial scalings in (B4) by
considering the IBCO, and we may now check that these
coordinates provide a good limit for the entire metric as
well. Letting σ → 0 fixing x̄μ in the Kerr metric yields

ds2 ¼ 2M2ΓðθÞ½−x̄ðx̄þ 2Þdv̄2 þ 2dv̄dx̄þ dθ2

þ ΛðθÞ2ðdφ̄þ ðx̄þ 1Þdv̄Þ2� ðB6Þ

where ΓðθÞ¼ð1þcos2θÞ=2 and ΛðθÞ¼2sinθ=ð1þcos2θÞ.
This is the NHEK metric in coordinates adapted to the
future horizon of near-extremal Kerr.12 It has a number of
interesting properties, notably two extra Killing fields that
enhance the isometry group to SLð2;RÞ × Uð1Þ [2]. Here
we only point out that it is not asymptotically flat: the far-
horizon region has disappeared. Thus the situation is rather
symmetric, with each limit faithful to one region but not
the other.
The IBCO has been our muse, but any timelike curve in

NHEK represents the experience of some physical observer
near a rapidly rotating black hole. Formally, we may
represent an observer in near-extremal Kerr by a family
of timelike orbits, each defined on a separate nonextremal
Kerr spacetime, parametrized by σ. We call orbits with a
good near-horizon limit (four-velocity finite and nonzero)
near-horizon observers, while those with a good far-horizon
limit are called far-horizon observers. The physical ques-
tion at hand determines which observers to consider, but we
see no fundamental reason to prefer either.
An important observation is that the two kinds of

observers are at infinite relative boost in the limit [13].
This is evident from the singular relationship (B4) between
the limits. A simple example is the IBCO (a near-horizon
observer) and a generic infalling observer. From (B3) we
see that the boost factor uαIBCOuα with some far-horizon
observer u diverges like σ−1 except in the fine-tuned case
uφ ¼ 2Muv þOðσÞ. The black hole can be regarded as a
“particle accelerator” if instead of placing the first particle
on the IBCO, one drops it in from infinity with precisely the
right parameters so that it asymptotically orbits on the
IBCO [29,54]. A second particle dropped in later then10By bound we mean with ratio of energy to rest mass less than

unity. The unbound, unstable circular orbits have the property
that small perturbations directed outward cause the particle to
escape to infinity instead of settling into a bound orbit.

11These agree with the barred coordinates (23) used in the text
up to an irrelevant shift in the origin of time in (18).

12In some versions of the near-horizon limit of near-extreme
Kerr one introduces a scaling parameter λ and lets σ ¼ λσ̄. Then
the λ → 0 limit produces the metric (B6) with the numerals 2 and
1 replaced by 2σ̄ and σ̄, respectively.
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collides at high energy. In this way we can view the
existence of high-energy collisions as a consequence of the
existence of two limits at infinite relative boost [13].
The field analog of this statement is that fields with a

smooth near limit look singular in the far limit, and vice
versa. As described in detail in Sec. III, the relationship
(B4) between the two limits ensures that if fields are smooth
in one limit, then sufficiently high-order derivatives blow
up in the other. Thus one can ensure singular behavior
simply by considering a source or initial data adapted to
one limit and an observer adapted to the other. The
instability discussed here is the further statement that in
fact one cannot avoid singular behavior by avoiding

near-horizon sources, since generic far-horizon perturba-
tions excite near-horizon modes.
For completeness we now discuss the ISCO. From (B2a)

we see that this orbit scales as σ2=3 and therefore is irregular
in both the near limit (x̄ISCO → ∞) and the far limit (where
x → 0). One can take a third limit adapted to the ISCO
scaling, which produces a different coordinate patch of the
NHEK spacetime [7,12], but this limit is not particularly
useful as it covers neither the horizon nor the asymptotic
region. It seems most useful to regard marginally stable
geodesics as living at a very large radius in the near-horizon
metric, much as we would regard stationary geodesics as
living at a very large radius in the far-horizon metric.
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