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We discuss a possible extension of calculations of the bending angle of light in a static, spherically
symmetric and asymptotically flat spacetime to a nonasymptotically flat case. We examine a relation
between the bending angle of light and the Gauss-Bonnet theorem by using the optical metric.
A correspondence between the deflection angle of light and the surface integral of the Gaussian curvature
may allow us to take account of the finite distance from a lens object to a light source and a receiver. Using
this relation, we propose a method for calculating the bending angle of light for such cases. Finally, this
method is applied to two examples of the nonasymptotically flat spacetimes to suggest finite-distance
corrections: the Kottler (Schwarzschild–de Sitter) solution to the Einstein equation and an exact solution
in Weyl conformal gravity.
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I. INTRODUCTION

The gravitational bending of light by mass led to the first
experimental confirmations of the theory of general rela-
tivity. In modern astronomy and cosmology, the gravita-
tional lensing is widely used as one of the important tools
for probing extrasolar planets, dark matter and dark energy.
The light bending is also of theoretical importance,

especially for studying a null structure of a spacetime.
A rigorous form of the bending angle plays an important
role in understanding properly a strong gravitational field
[1–8]. For example, strong gravitational lensing in a
Schwarzschild black hole was considered by Frittelli et al.
[1], by Virbhadra and Ellis [2] and more comprehensively
by Virbhadra [3]; Virbhadra et al. [4] studied distinctive
lensing features of naked singularities. Virbhadra and Ellis
[5] and Virbhadra and Keeton [6] later described the strong
gravitational lensing by naked singularities; DeAndrea and
Alexander [9] discussed the lensing by naked singularities
to test the cosmic censorship hypothesis; Eiroa et al. [7]
treated Reissner-Nordström black hole lensing; Perlick [8]
discussed the lensing by a Barriola-Vilenkin monopole and
also that by an Ellis wormhole. Kitamura et al. proposed a
lens model whose gravitational potential declines as 1=rn

[10] in order to study the gravitational lensing by exotic
matter (or energy) [11–14] that might follow a nonstandard
equation of state. See Tsukamoto et al. [15] for its possible
connection to the Tangherlini solution to the higher-
dimensional Einstein equation.
Some recent papers give the expressions for the deflec-

tion of light for the Kottler (often called Schwarzschild–de
Sitter) spacetime [16–23] and for the spherical, static and
vacuum exact solution in Weyl conformal gravity [24–28].
However, their results are not in agreement with each other
and hence they are controversial. The apparent inconsis-
tency among the previous works might be caused, because

the spacetimes are not asymptotically flat and their methods
are no longer appropriate for treating such a nonasymptoti-
cally flat spacetime. In the nonasymptotically flat space-
time, we can never assume that the source of light is located
at infinite distance from a gravitational lens object. The
main purpose of this paper is to discuss a possible extension
of calculations of the bending angle of light in a static,
spherically symmetric and asymptotically flat spacetime,
particularly in order to find finite-distance corrections.
For this purpose, we shall examine a relation between the

bending angle of light and the Gauss-Bonnet theorem in
differential geometry. In this sense, the present paper may
discuss a possible extension of Gibbons and Werner [29].
They considered two different domains: one (say, D)
bounded by two light rays, to exhibit the connection
between topology and multiple images, and the other
(say, D0) bounded by one light ray and a nongeodesic
circular arc, to compute the asymptotic deflection angle.
They suggested that the asymptotic deflection angle of light
can be written as the surface integral of the Gaussian
curvature over the domain D0. They did integrate only for
the asymptotic case, for which they assumed the observer
and source are in the asymptotically Euclidean region.
Namely, the angles at the location of the observer and
source are defined only in Euclidean space [29].
Throughout this paper, we use the unit of G ¼ c ¼ 1.

In the following, the observer may be called the receiver
in order to avoid a confusion between rO and r0 by
using rR.

II. LIGHT PROPAGATION, OPTICAL METRIC
AND GAUSS-BONNET THEOREM

A. Static and spherically symmetric spacetime

We consider a static and spherically symmetric (SSS)
spacetime. The SSS spacetime can be described as
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ds2 ¼ gμνdxμdxν

¼ gttðrÞdt2 þ grrðrÞdr2 þ r2dΩ2; ð1Þ

where the origin of the spatial coordinates is chosen as the
location of a lens object, μ and ν run from 0 to 3, and
dΩ2 ≡ dθ2 þ sin2θdϕ2. By introducing two functions as
AðrÞ≡ −gtt and BðrÞ≡ grr, Eq. (1) is rewritten as

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2dΩ2: ð2Þ

B. Optical metric

Light rays satisfy the null condition as ds2 ¼ 0, which is
rearranged via Eq. (2) as

dt2 ¼ γijdxidxj

¼ BðrÞ
AðrÞ dr

2 þ r2

AðrÞ dΩ
2; ð3Þ

where i and j denote 1, 2 and 3, and γij is often called the
optical metric [30]. The optical metric defines a three-
dimensional Riemannian space (denoted asMopt), in which
the light ray is expressed as a spatial curve.
For the spherically symmetric spacetime, without the

loss of generality, we can choose the photon orbital plane as
the equatorial plane (θ ¼ π=2). The two-dimensional coor-
dinates on the equatorial plane are denoted as xI (I ¼ 1, 2),
where I may mean r, ϕ particularly in the polar coordinates.
The nonvanishing components of the optical metric are

γrr ¼
BðrÞ
AðrÞ ; ð4Þ

γϕϕ ¼ r2

AðrÞ : ð5Þ

Let us suppose the tangent vector field along the light
ray. The unit tangential vector along the light ray in Mopt

can be defined as

KI ≡ dxI

dt
: ð6Þ

This is a spatial vector. Note that KI is defined in terms of
γIJ but not gIJ, because we consider light rays.

C. Impact parameter

In the SSS spacetime, there are two constants of motion
for a massless particle such as a photon. They are the
specific energy and the specific angular momentum as

E ¼ AðrÞ dt
dλ

; ð7Þ

L ¼ r2
dϕ
dλ

; ð8Þ

where λ denotes the affine parameter along the light ray.
As usual, we define the impact parameter of the light
ray as

b≡ L
E

¼ r2

AðrÞ
dϕ
dt

: ð9Þ

In terms of the impact parameter and the metric
components at the position of the massless particle, the
components of KI can be expressed as

ðKr; KϕÞ ¼ bAðrÞ
r2

�
dr
dϕ

; 1

�
: ð10Þ

Here, the unity of the vector KI leads to the orbit
equation as

�
dr
dϕ

�
2

þ r2

BðrÞ ¼
r4

b2AðrÞBðrÞ : ð11Þ

This can be also derived directly from ds2 ¼ 0.
Is it safe for us to call what is defined as b the impact

parameter of light? Let us briefly mention this. If there were
no lens objects, then the spacetime would be Minkowskian,
namely AðrÞ ¼ 1 and BðrÞ ¼ 1 in the polar coordinates,
and b would thus be equal to the closest distance according
to Eq. (11). Therefore, b can be safely called the impact
parameter of the orbit.

D. Angles

We can define the dyad as

eIrad ¼
�

1ffiffiffiffiffiffi
γrr

p ; 0

�
; ð12Þ

eIang ¼
�
0;

1ffiffiffiffiffiffiffi
γϕϕ

p
�
; ð13Þ

which correspond to the unit vector along the radial
direction from the center of the lens object and that along
the angular direction, respectively.
LetΨ denote the angle of the light ray measured from the

radial direction. It can be defined by

cosΨ≡ γIJeIradK
J; ð14Þ

where we used that eIrad and KJ are unit vectors.
This expression is rewritten more explicitly as

cosΨ ¼ γrrerradK
r

¼
ffiffiffiffiffiffi
γrr

p
bAðrÞ
r2

dr
dϕ

: ð15Þ

This leads to
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sinΨ ¼ b
ffiffiffiffiffiffiffiffiffi
AðrÞp
r

; ð16Þ

where we used Eq. (11).
When we want to obtain Ψ at a point in Mopt, sinΨ by

Eq. (16) is more convenient than cosΨ by Eq. (15), because
b

ffiffiffiffiffiffiffiffiffi
AðrÞp

=r can be immediately calculated but cosΨ
includes dr=dϕ that requires a more lengthy calculation.
LetΨR andΨS denote the angles that are measured at the

receiver position and the source position, respectively.
Moreover, let ϕR and ϕS denote the longitudes of the
receiver and the source, respectively [31]. Let ϕRS ≡ ϕR −
ϕS denote the coordinate separation angle between the
receiver and source. From the three anglesΨR,ΨS and ϕRS,
let us define

α≡ΨR −ΨS þ ϕRS: ð17Þ
This is a key equation in the present paper.
Every two points among the three points of the receiver

(R), the source (S) and the lens center (L) are connected by
the geodesics in the spaceMopt. Hence, the three points in a
non-Euclidean space constitute an embedded triangle
(denoted as R▽S

L). The above definition of α depends on
the three angles. Therefore, we might be dissatisfied with
the definition of α, because the comparison of the scalars at
spatially distinct points such as R and S is quite unclear and
even questionable. Let us examine whether α is well
defined.
First, we focus on the triangle R▽S

L. Let ΨL denote the
interior angle at the vertex L. The angle ΨS is the exterior
angle at the vertex S and ΨR is the opposite angle of the
interior angle at the vertex R by definition. Let us define

αΨ ≡ΨR −ΨS þΨL: ð18Þ

Note that ΨR is the same as the interior angle at R. See
Fig. 1. Consequently, Eq. (18) is rearranged as

αΨ ¼
X3
a¼1

εa − π; ð19Þ

where εa (a ¼ 1, 2 and 3) mean the interior angles in the
triangle R▽S

L.
If the space Mopt is flat, it follows that αΨ ¼ 0. Hence,

this might allow us to interpret αΨ as a measure of the
deviation from Euclidean space. We shall apply Gauss-
Bonnet theorem to the triangle R▽S

L below.

E. Gauss-Bonnet theorem

Suppose that T is a two-dimensional orientable surface
with boundaries ∂Ta (a ¼ 1; 2;…; N) that are differentia-
ble curves (see Fig. 2). Let the jump angles between the
curves be θa (a ¼ 1; 2;…; N). Then, the Gauss-Bonnet
theorem can be expressed as [32]

Z Z
T
KdSþ

XN
a¼1

Z
∂Ta

κgdlþ
XN
a¼1

θa ¼ 2π; ð20Þ

where K denotes the Gaussian curvature of the surface T,
dS is the area element of the surface, κg means the geodesic
curvature of ∂Ta, and l is the line element along the
boundary. The sign of the line element is chosen such that it
is compatible with the orientation of the surface.
By using the Gauss-Bonnet theorem for the N ¼ 3 case,

Eq. (19) is rewritten as

αΨ ¼
Z Z

R▽S
L

KdSþ
Z

S

L
κgdlþ

Z
R

S
κgdlþ

Z
L

R
κgdl;

ð21Þ

where we use εaþθa¼π at each point (a¼1;…;N¼3).
For our case, κg ¼ 0 along the boundary curves [33].

FIG. 1. Top: Triangle embedded in a curved space. αΨ does not
always vanish. Bottom: Triangle in Euclidean space. It follows
that αΨ ¼ 0.

FIG. 2. Schematic figure for the Gauss-Bonnet theorem.
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Therefore, we obtain

αΨ ¼
Z Z

R▽S
L

KdS: ð22Þ

Equation (22) shows clearly that αΨ is invariant in
differential geometry. The definition by Eq. (18) is thus
justified [34]. The Gaussian curvature can be related
with the Riemannian tensor. See e.g. Werner for this
relation [35,36].
However, it seems impossible to defineΨL for a case of a

black hole, because L is the singularity. On the other hand,
ϕRS seems preferred for practical calculations in order to
avoid such a problem associated with ΨL, because ϕRS can
be defined outside the horizon for a black hole case.
We begin by considering another embedded triangle,

which consists of a circular arc segment Cr of coordinate
radius rC centered at the lens which intersects the radial
geodesic through the receiver or the source. See Fig. 3, in
which we assume the asymptotically flat spacetime and a
sufficiently large rC, for which the embedded triangle is
denoted by ∞▽∞

L . Then, κg → 1=rC and dl → rCdϕ as
rC → ∞ (see e.g. [29]). Hence, we obtain

R
Cr
κgdl → ϕRS.

Applying this result to the Gauss-Bonnet theorem for ∞▽∞
L

leads to

ΨL ¼ ϕRS þ
Z Z

∞▽∞
L

KdS: ð23Þ

By substituting Eq. (23) into ΨL in αΨ of Eq. (22), we
obtain

α ¼ ΨR −ΨS þ ϕRS

¼ −
Z Z

∞
R □∞

S

KdS; ð24Þ

where we use Eq. (17) and ∞
R □

∞
S denotes an oriented area

of ∞▽∞
L subtracted by R▽S

L. Equation (24) shows that α is

invariant in differential geometry. Moreover, it follows that
α ¼ 0 in Euclidean space.
Both α and αΨ are geometrically invariant. The integra-

tion domain for αΨ includes the lens position. Therefore,
αΨ might not be suitable for a black hole case.
On the other hand, it is likely that α can avoid such a

problem. Furthermore, in the next section, we shall see that
(1) α by Eq. (17) recovers the known formula of the
bending angle for the asymptotic receiver and source and
(2) it can be done in practice to calculate α without
encountering an infinitely large term for a nonasymptoti-
cally flat model, though the justification of α by Eq. (24) is
currently limited within an asymptotically flat case.

III. METHOD OF CALCULATING THE
BENDING ANGLE OF LIGHT

There are two ways of calculating α, because Eq. (17)
always agrees with Eq. (24). One method is to use Eq. (17).
For this method, all we have to do is to calculate the three
angles of ΨR, ΨS and ϕRS. The other method is to use
Eq. (24), where we first calculate the Gaussian curvature K
by using the optical metric and next we integrate K over the
quadrilateral ∞R □

∞
S . Note that the integration domain ∞

R □
∞
S ,

especially an expression of the geodesic curve from S to R,
is unknown a priori and hence it must be looked for, though
the calculation must be straightforward but tedious. Let us
suppose an asymptotic receiver and source of light in the
Schwarzschild spacetime for instance. Even in this case, it
is a quite elaborate task to calculate the surface integral to
recover the known formula α ¼ 4M=b. See Gibbons and
Werner [29]. As a result, it is likely that the first method is
much easier than the second one.

A. Asymptotically flat case

Let us consider the case of the asymptotic flatness. Then,
we can assume AðrÞ → 1 and BðrÞ → 1 as r → ∞. As
usual, we assume also that the source and receiver are
located at null infinity. Namely, we assume rR → ∞ and
rS → ∞. Then, let us examine whether Eq. (17) can recover
the textbook formula for the deflection angle of light. For
this purpose, we assume ΨR ¼ 0 and ΨS ¼ π, because we
keep b constant with rR → ∞ and rS → ∞.
Hence, we obtain

α ¼ ϕRS − π: ð25Þ
All we have to do is to compute ϕRS.
The orbit equation for the light ray in the SSS spacetime

is in a general form as�
du
dϕ

�
2

¼ FðuÞ; ð26Þ

where u denotes the inverse of r. Please see Eq. (11) for
more detail.

FIG. 3. Embedded triangle ∞▽∞
L . It consists of a circular arc

segment Cr of coordinate radius rC centered at the lens with
taking rC → ∞, and two radial geodesics through either the
receiver or the source. One can determine ΨL at the point L from
this figure by using the Gauss-Bonnet theorem. See Eq. (23).
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Integrating Eq. (26) leads to the angle ϕRS as

ϕRS ¼ 2

Z
u0

0

duffiffiffiffiffiffiffiffiffiffi
FðuÞp ; ð27Þ

where u0 is the inverse of the closest approach (often
denoted as r0). Therefore, substituting this into Eq. (17)
gives

α ¼ 2

Z
u0

0

duffiffiffiffiffiffiffiffiffiffi
FðuÞp − π: ð28Þ

This is exactly the deflection angle of light in the
literature. Therefore, α may be interpreted as the deflection
angle of light. See also Fig. 4 for the thin lens approxi-
mation. One can see that α is likely to correspond to αthin,
where αthin denotes the deflection angle of light in the thin
lens approximation.

B. Finite-distance cases

In practice, the thin lens approximation works well for
most cases in astronomy so far. This approximation is
almost the same as an assumption that a light source and a
receiver are nearly at null infinity in the asymptotically flat
case. To be more specific, the present paper assumes that
the distance from the source to the receiver is finite because
every observed star and galaxy is located at a finite distance
from us (e.g., at finite redshift in cosmology) and the
distance is much larger than the size of the lens. Hence, we
keep rR and rS finite. Then, let uR and uS denote the inverse
of rR and rS, respectively. Equation (17) becomes

α ¼
Z

u0

uR

duffiffiffiffiffiffiffiffiffiffi
FðuÞp þ

Z
u0

uS

duffiffiffiffiffiffiffiffiffiffi
FðuÞp þΨR −ΨS: ð29Þ

Equation (28) is thus corrected.
Equations (17), (24) and (29) are equivalent to each

other. They are different from the deflection angle that is
often used (or argued) in the recent papers [37].
For the Schwarzschild spacetime, the line element

becomes

ds2 ¼ −
�
1 −

rg
r

�
dt2 þ dr2

1 − rg
r

þ r2ðdθ2 þ sin2θdϕ2Þ: ð30Þ

Then, FðuÞ is

FðuÞ ¼ 1

b2
− u2 þ rgu3: ð31Þ

By using Eq. (16), ΨR −ΨS in the Schwarzschild
spacetime is expanded in a power series in rg as

ΨSch
R −ΨSch

S ≡ ½arcsinðbuRÞ þ arcsinðbuSÞ − π�

−
1

2
brg

�
u2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2u2R
p þ u2Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2u2S
p

�

þOðbr2gu3S; br2gu3RÞ: ð32Þ

It follows that ΨR −ΨS for the Schwarzschild case
approaches π as uS → 0 and uR → 0.

IV. NONASYMPTOTICALLY FLAT CASES

Finally, we consider a nonasymptotically flat spacetime
such as the Kottler solution to the Einstein equation and an
exact solution in the Weyl conformal gravity. For such
cases, we cannot assume the source at the past null infinity
(rS → ∞) or the receiver at the future null infinity
(rR → ∞), because AðrÞ diverges or does not exist as
r → ∞. Hence, we should keep the source and the receiver
at a finite distance from the lens object. It is Eq. (29) that we
can use for such a case. As mentioned already, Eq. (16) is
more convenient for calculating ΨR and ΨS than Eq. (14),
since Eq. (16) needs a local quantity but not any derivatives.
For the two cases, the explicit expressions are as follows.

A. Kottler case

For the Kottler spacetime [16], the line element is

ds2 ¼ −
�
1 −

rg
r
−
Λ
3
r2
�
dt2 þ dr2

1 − rg
r −

Λ
3
r2

þ r2ðdθ2 þ sin2θdϕ2Þ; ð33Þ

where Λ denotes the cosmological constant.

FIG. 4. Thin lens approximation. In this approximation, the
light ray deflects only at the lens plane. Namely, we assume that
the spacetime is flat except for the location of the thin lens, so that
ΨL in this figure can be identified with ϕRS. Let αthin denote
the deflection angle of light in the thin lens approximation.
The dotted straight lines are tangential to the light ray at the
receiver or at the source. For the quadrilateral in Euclidean space,
αthin ¼ ΨR −ΨS þ ϕRS, because the sum of the inner angles
is 2π.
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By using Eq. (16), ΨR −ΨS is expanded in terms of rg
and Λ as

ΨR−ΨS ¼ΨSch
R −ΨSch

S −
bΛ

6uR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−b2u2R

p −
bΛ

6uS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−b2u2S

p

þbuRð−1þ2b2u2RÞ
8ð1−b2u2RÞ3=2

�
r2gu2Rþ

2rgΛ

3uR
þ Λ2

9u4R

�

þbuSð−1þ2b2u2SÞ
8ð1−b2u2SÞ3=2

�
r2gu2Sþ

2rgΛ

3uS
þ Λ2

9u4S

�

þOðr3g;r2gΛ;rgΛ2;Λ3Þ; ð34Þ

where ΨSch
R −ΨSch

S is a part existing in Schwarzschild
spacetime. Note that the above expansion of ΨR −ΨS is
divergent as uS → 0 and uR → 0. This is because the
spacetime is not asymptotically flat and hence it does
not allow the limit of uS → 0 and uR → 0. Hence, the
power series form by Eq. (34) must be used within a certain
finite radius of convergence.
For the Kottler case, FðuÞ becomes

FðuÞ ¼ 1

b2
− u2 þ rgu3 þ

Λ
3
: ð35Þ

Hence, we obtain

ϕRS ¼ π − arcsinðbuRÞ − arcsinðbuSÞ

þ rg
b

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2u2R
p

�
1 −

1

2
b2u2R

�

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

p
�
1 −

1

2
b2u2S

��

þ Λb3

6

�
uRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2u2R
p þ uSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2u2S
p

�

þ rgΛb

12

�
2 − 3b2u2R
ð1 − b2u2RÞ32

þ 2 − 3b2u2S
ð1 − b2u2SÞ

3
2

�
þOðr2g;Λ2Þ:

ð36Þ

By using Eqs. (34) and (36), we obtain the correct
deflection angle of light as

α ¼ rg
b

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2R

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

q i

−
Λb
6

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2R

p
uR

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

p
uS

�

þ rgΛb

12

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2u2R
p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2u2S
p

�
þOðr2g;Λ2Þ:

ð37Þ

Some terms in this expression may apparently diverge in
the limit as both buR → 0 and buS → 0. Note that this limit

has no relevance with astronomical observations in the
Kottler spacetime. Therefore, the apparent divergence does
not matter.
Aghili et al. have recently discussed the numerical

effects of a slowly varying Hubble parameter on the
gravitational lensing [38]. It is left as a future work to
examine an application of the present approach to such a
cosmological model with a slowly varying Hubble
parameter.

B. Weyl conformal gravity case

Weyl conformal gravity introduces three independent
parameters (often denoted as β, γ and k) into the spherical
solution, for which Birkhoff’s theorem was proven in
conformal gravity [25]. The line element with the three
parameters is [24]

ds2 ¼ −AðrÞdt2 þ 1

AðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ;

AðrÞ ¼ 1 − 3mγ −
2m
r

þ γr − kr2; ð38Þ

where we defined m≡ βð2 − 3βγÞ=2. The term with
the coefficient k makes the same contribution as the
cosmological constant in the Kottler spacetime that has
been studied above. Henceforth, we omit the r2 term for
brevity.
By using Eq. (16), ΨR −ΨS is expanded in a power

series in β and γ as

ΨR −ΨS ≡ΨSch
R −ΨSch

S

þ bγ
2

�
uRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2u2R
p þ uSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2u2S
p

�

−
mγ

2

�
buRð2 − b2u2RÞ
ð1 − b2u2RÞ3=2

þ buSð2 − b2u2SÞ
ð1 − b2u2SÞ3=2

�

þOðm2; γ2Þ: ð39Þ

Note that this series expansion of ΨR −ΨS is divergent as
uS → 0 and uR → 0. This is because the nonasymptotic
flatness of the spacetime does not allow the limit of uS → 0
and uR → 0. Hence, we must use Eq. (39) within its certain
radius of convergence.
For the conformal gravity case with k ¼ 0, FðuÞ

becomes

FðuÞ ¼ 1

b2
− u2 þ 2mu3 þ Γu2 − γu: ð40Þ

Then, ϕRS is obtained as
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ϕRS ¼ ½π − arcsinðbuRÞ − arcsinðbuSÞ�

þm
b

�
2 − b2u2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2R

p þ 2 − b2u2Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

p
�

−
γ

2

�
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2u2R
p þ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2u2R
p

�

þmγ

2

�
b3u3R

ð1 − b2u2RÞ3=2
þ b3u3S
ð1 − b2u2SÞ3=2

�

þOðm2; γ2Þ: ð41Þ

In total, we obtain α for the Weyl conformal gravity
case as

α ¼ 2m
b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2R

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

q �

−mγ

�
buRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2u2R
p þ buSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2u2S
p

�
þOðm2; γ2Þ:

ð42Þ
The terms linear in γ cancel out in the expression for the
deflection angle of light. Hence, this might correct the
results in previous papers [26–28] that reported nonzero
contributions from γ.

C. Far source and receiver

Finally, let us consider an asymptotic case as buS ≪ 1 and
buR ≪ 1, which means that both the source and the receiver
are very far from the lens object. Note that buS → 0 and
buR → 0 might cause the divergent terms in the deflection
angle. Hence,we focus on the dominant part of each term in a
series expansion without taking the limit. Let us write down
approximate expressions for the deflection of light.
(1) Kottler case:

It follows that the expression for ϕRS in the far
approximation coincides with the seventh and eighth
terms of Eq. (5) in [20], the third and fifth terms of
Eq. (15) in [21], and the second term of Eq. (14) in
[23]. However, they [20,21,23] did not consider
ΨR −ΨS. Equation (37) becomes

α ∼
2rg
b

−
1

6
Λb

�
1

uR
þ 1

uS

�
þ 1

6
rgΛb: ð43Þ

This might give a correction to the previous results
[20,21,23]. For instance, Sereno [20] considered
only ϕRS. See [37] for a more subtle case associated
with Rindler and Ishak’s approach.

(2) Weyl conformal gravity case:
For the Weyl conformal gravity, the deflection

angle of light in the far approximation becomes

α ∼
4m
b

þOðm2; γ2Þ: ð44Þ

Note that mγ parts from ΨR −ΨS and from ψRS
cancel out. See Eqs. (39) and (41).

Before closing this section, we briefly mention another
light path (path 2 in Fig. 5). The bending angle for this path
is computable if we take account of the orientation of path 2
(see Fig. 5).

V. CONCLUSION

In this paper, we studied a connection between the
bending angle of light and the Gauss-Bonnet theorem by
using the optical metric in the SSS spacetimes. A corre-
spondence of the deflection angle of light to the surface
integral of Gaussian curvature may allow us to take account
of the finite distance of a light source and a receiver from a
lens object.
The proposed approach of calculating the deflection

angle of light by Eq. (17) was applied to two examples of
the nonasymptotically flat spacetimes: the Kottler solution
to the Einstein equation and an exact solution in Weyl
conformal gravity. For both cases, we suggested finite-
distance corrections to the deflection angle of light without
encountering an infinitely large term, as a conjecture,
because the justification of α by Eq. (24) cannot be applied
to such a nonasymptotically flat case as it is. It would be
interesting to examine whether or not the justification of
Eq. (17) is extended to a nonasymptotically flat case. If it is
not, we may find new corrections to the deflection angle of
light. It would be interesting to study along this direction.
Moreover, let us suppose that the light ray passes near a

relativistic compact object. For this case, the deflection
angle of light may exceed 2π to produce the relativistic
images. For such a large deflection case, the orbit has
the winding number W that may be unity or more.
Equations (17) and (22) still work, because the light ray
lives on a single plane inMopt [39]. Further study along the
direction of the relativistic strong lensing by using the
present approach is left for future work.

FIG. 5. Two light paths. In the present paper, we focus on the
path 1 in this figure, because it corresponds to the brightest lensed
image and it plays a crucial role in astronomy. There is another
possible path (path 2 in this figure). The two light paths are
denoted by dotted lines.
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