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We derive a theoretical model of mass and angular momentum scaling in type-II critical collapse with
rotation. We focus on the case where the critical solution has precisely one, spherically symmetric, unstable
mode. We demonstrate agreement with numerical results for critical collapse of a rotating radiation fluid,
which falls into this case.

DOI: 10.1103/PhysRevD.94.084012

I. INTRODUCTION

Critical collapse in general relativity refers to phenom-
ena that occur at the threshold, in the space of initial data,
between data that lead to black hole formation (collapse)
and those that do not. Regular initial data can be classified
as supercritical or subcritical according to whether or not
they form a black hole. We refer to the boundary between
supercritical and subcritical data as the black-hole thresh-
old, or the critical surface. In type-II critical collapse, the
black-hole mass formed by supercritical data becomes
arbitrarily small as the threshold is approached, and scales
as a universal power of distance from this threshold. The
exponent in these power laws is referred to as the critical
exponent. Critical collapse was first reported in the seminal
work of Choptuik [1], who performed numerical time
evolutions of a massless scalar field in spherical symmetry.
Soon afterwards, similar results were reported for a
radiation fluid, i.e., a perfect fluid with the ultrarelativistic
equation of state P ¼ ρ=3 [2] (whereP is the pressure and ρ
the total energy density), and for axisymmetric gravita-
tional waves in vacuum [3]. The literature on numerous
further numerical experiments as well as theoretical der-
ivations of the scaling laws is reviewed in [4].
In [5], one of us (C. G.) showed that the spherically

symmetric, continuously self-similar critical solution for
perfect fluid collapse with the equation of state P ¼ κρ has
only a single (l ¼ 0) unstable mode for the range
1=9 < κ ≲ 0.49, which includes radiation fluids with
κ ¼ 1=3. Based on this, and the more general theory given
in [6], C. G. predicted power-law scaling for the black-hole
mass and angular momentum for initial data with small
deviations from spherical symmetry, and computed numeri-
cal values for the critical exponents.
In [7], the other author (T. W. B.), together with Montero,

carried out the first critical collapse simulations of a
radiation fluid in the absence of spherical symmetry.
More recently, we generalized these simulations to study
critical collapse with angular momentum [8]. Specifically,

we considered a two-parameter family of initial data
describing rotating radiation fluids, with one parameter η
controlling the strength of the initial data and a second
parameter Ω their angular momentum. These simulations
confirmed the critical exponents found in [6] and provided
evidence for their universality.
In Sec. II we provide a self-contained derivation of the

scaling laws in rotating critical collapse, and in Sec. III we
demonstrate agreement with the numerical results of [8] for
radiation fluids with κ ¼ 1=3. Section IV contains a
summary and discussion of our results.

II. SCALING LAWS FOR ROTATING
CRITICAL COLLAPSE

Consider an analytic family of regular initial data para-
metrized by two parameters p and q. We assume that, if
these data evolve to form a black hole, the black-hole mass
M and angular momentum J obey the symmetries

Mðp;−qÞ ¼ Mðp;qÞ; ð1aÞ

Jðp;−qÞ ¼ −Jðp;qÞ: ð1bÞ

A sufficient condition for these two assumptions to hold is
that q → −q corresponds to a spatial reflection of the initial
data. The assumption (1b) implies that initial data with
q ¼ 0 form a nonspinning black hole, but not that they
are necessarily spherically symmetric. In the following, for
simplicity of notation, we restrict to axisymmetry, so that q
and J become numbers.
The black hole threshold within such a two-parameter

family is a curve in the ðp; qÞ-plane that is symmetric under
q → −q. We can fine-tune the initial data to the black hole
threshold, in practice by bisection along any smooth one-
parameter family of initial data that crosses it.
The general theory of type-II critical collapse [4] is based

on the assumption that the solution first evolves towards an
intermediate regime, during which it is approximated by a
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universal critical solution that contracts in a self-similar
fashion. The critical solution has at least one unstable
mode, however, which ultimately drives the evolution
either towards black-hole formation or dispersal. In the
following we discuss these different stages of the time
evolution separately.

A. From the initial data to the intermediate
self-similar regime

According to our assumption, initial data sufficiently
close to the black-hole threshold evolve to an intermediate
regime during which the solution Z is given by a critical
solution Z� plus linear perturbations. Here Z denotes a set
of first-order-in-time dynamical variables and ðx; τÞ a set of
3þ 1 coordinates, such that Zðx; τÞ ¼ ZðxÞ if and only if
the spacetime is continuously self-similar (homothetic).
Variables and coordinates Zðx; τÞ can be constructed as

follows. If we write the physical spacetime metric gab in the
adapted coordinates ðx; τÞ as

gμνðx; τÞ ¼ e−2τḡμνðx; τÞ; ð2Þ

then the spacetime is continuously self-similar with the
homothetic vector ∂=∂τ if and only if all components of the
conformal metric ḡμνðx; τÞ are independent of τ. If we now
choose the surfaces of constant τ to be spacelike, then τ is
both a time coordinate and the logarithm of overall
spacetime scale. In spherical symmetry or axisymmetry,
a natural choice for the remaining coordinates would be a
rescaled radius x ¼ eτr, where r is, for example, an areal
radius, plus two angles. We could then carry out the usual
3þ 1 split of ḡμν. Assuming for simplicity that the lapse
and shift are evolved using first-order-in-time coordinate
conditions, and that the matter is a perfect fluid with the
simple linear (ultrarelativistic) equation of state P ¼ κρ (as
is the case for our simulations in [8]), we could choose the
variables Z to be the first-order metric variables ḡij, K̄ij, ᾱ,
β̄i, the fluid 3-velocity vi, and ρ̄ ≔ e2τρ. The initial data
Zðx; τ0Þ for the barred quantities define the solution only
up to an overall scale. This scale is given by e−τ0. (More
precisely, it is Le−τ0 , where L is an arbitrary constant of
dimension length, in units where c ¼ G ¼ 1, but for
simplicity of notation we choose units where L ¼ 1.)
Note that we do not need to use these coordinates in
numerical time evolutions.
Using this notation, we can now write the intermediate,

approximately self-similar regime as

Zðx; τÞ≃ Z�ðxÞ þ Pðp; qÞeλ0τZ0ðxÞ
þQðp; qÞeλ1τZ1ðxÞ
þ decaying perturbations: ð3Þ

Here, Z�ðxÞ is the critical solution, which, in perfect fluid
critical collapse, is both continuously self-similar and

spherically symmetric.1 Z0 is the unique growing spherical
mode (l ¼ 0), and so λ0 > 0. The amplitude of this mode,
Pðp; qÞ, depends on the parameters p and q of the initial
data. Z1 is an l ¼ 1 axial mode, namely either the unique
growing one (in which case we have λ1 > 0), or the least
damped one (λ1 ≤ 0). Its amplitude Qðq; pÞ again depends
on the initial data. We normalize Z0 and Z1 later. When
there are two growing modes, we single out both in the
analysis because they dominate the dynamics. When only
Z0 is growing, we still need to keep track of Z1 because it is
closely linked to black hole angular momentum: Kerr is an
axial l ¼ 1 perturbation of Schwarzschild to linear order in
J=M2 [6].
We now define the specific moment of time

τ� ≔ −
1

λ0
ln jPj; ð4Þ

which we assume to be in the intermediate self-similar
regime. At τ ¼ τ�, the length scale of the solution is then
given by

e−τ� ¼ jPj1=λ0 ; ð5Þ

and, since jPjeλ0τ� ¼ 1, we have the intermediate Cauchy
data

Zðx; τ�Þ≃ Z�ðxÞ � Z0ðxÞ þ δZ1ðxÞ
þ decaying perturbations: ð6Þ

Here the sign in front of Z0 is that of P; it appears because
of the absolute value taken in the definition (4). We have
also defined

δ ≔ QjPj−ϵ; ð7Þ

with

ϵ ≔
λ1
λ0

: ð8Þ

For any two-parameter family of initial data with
parameters ðp; qÞ that obey the symmetries (1) we define
the black hole threshold, i.e. the critical curve separating
supercritical data from subcritical data, by ðp; qÞ ¼
ðp�; q�Þ ¼ ðpcritðq�Þ; q�Þ. We also define p�0 ≔ pcritð0Þ,
and shall refer to ðp; qÞ ¼ ðp�0; 0Þ as the critical point.
From the symmetry (1b), pcritðqÞ ¼ pcritð−qÞ. To fix the
coordinate freedom on the space of initial data to first order

1For scalar fields, Z� is discretely self-similar and spherically
symmetric, and for vacuum gravity it is believed to be discretely
self-similar and axisymmetric. These symmetries are more
complicated on a technical level, but the basic ideas presented
here are unchanged.
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about the critical point [by linear transformations of p and q
that respect (1)], we define the “reduced parameters”

p̄ ≔ C0ðp − p�0Þ; q̄ ≔ C1q; ð9Þ

whereC0 andC1 are family-dependent constants. They will
be fixed later.
If Pðp; qÞ and Qðp; qÞ are analytic (because the initial

data are analytic), we can expand them in powers of p̄ and
q̄. By definition P vanishes at the critical point p̄ ¼ q̄ ¼ 0.
Moreover, from the symmetry (1a), P must be even in q̄.
This suggests that we treat p̄ and q̄2 as the same order of
smallness when expanding about the critical point. From
the symmetry (1b), Q must be odd in q̄. We may therefore
expand

P ¼ p̄ − Kq̄2 þOðp̄2; p̄q̄2; q̄4Þ; ð10aÞ

Q ¼ q̄þOðq̄3; p̄ q̄Þ; ð10bÞ

where we have now fixed the family-dependent constants
C0 and C1 so that the leading-order terms in these
expansions have coefficients of unity.
The coefficient K, and the coefficients of the higher-

order terms that we have not written out here, also
depend on the two-parameter family of initial data
because they depend on the nonlinear and nonuniversal
evolution from generic initial data to the universal
intermediate regime (3). We have inserted the minus
sign in (10a) as we anticipate that K will then be
positive: spin should resist collapse. Since the critical
surface corresponds to P ¼ 0, the expansion (10a) also
implies that, to leading order, the critical surface forms a
parabola in the ðp; qÞ-plane.

B. From the intermediate self-similar regime
to the final black hole

The key observation for scaling is the following. As
discussed above, initial data sufficiently close to the black
hole threshold pass through an intermediate self-similar
phase. During this phase, we can identify the intermediate
Cauchy data (6) at τ ¼ τ�. These constitute two universal
one-parameter families of scale-invariant intermediate ini-
tial data, parametrized by the sign� of P and the parameter
δ. The scale-invariant data are completed by the overall
length scale e−τ� .
Because the evolution equations are scale invariant, e−τ�

translates into an overall length and time scale of the
solution at all subsequent times. This means that if a feature
of the subsequent spacetime evolution has dimension Ln

(where L denotes length, in units where c ¼ G ¼ 1), then
this feature must be proportional to e−nτ� .
In particular, M must be proportional to the overall

scale e−τ� ¼ jPj1=λ0 of the Cauchy data (6). Moreover, the

constant of proportionality can depend only on the sign �
of P and the dimensionless number δ. We may therefore
express it in terms of two functions F�

MðδÞ. Similarly, J
must be proportional to e−2τ� ¼ jPj2=λ0 , and again the
constant of proportionality can be expressed in terms of
two functions of F�

J ðδÞ. With

γM ≔
1

λ0
ð11Þ

we therefore have [9]

Mðp; qÞ≃ jPjγMF�
MðδÞ; ð12aÞ

Jðp; qÞ≃jPj2γMF�
J ðδÞ: ð12bÞ

We note that the dimensionless quantity J=M2 can only
depend on the sign � and δ. Numerical evidence also
shows that collapse actually happens only for P > 0, and so
in the following we ignore the functions F−

M;J, and write
FM;J short for Fþ

M;J.
Because of the symmetries (1), FMðδÞ is even in δ and

FJðδÞ is odd. We can now normalize Z0 and Z1 in such a
way that, to leading order, as δ → 0, we have

FMðδÞ ¼ 1þOðδ2Þ; FJðδÞ ¼ δþOðδ3Þ: ð13Þ

In particular, Eqs. (12) then imply that

J=M2 ¼ δþOðδ3Þ: ð14Þ

Inserting the leading-order expressions (13) together
with the definitions (7) and (8) into (12) yields

M ≃ PγM ; ð15aÞ

J ≃ PγJQ; ð15bÞ

where we have also defined

γJ ≔
2 − λ1
λ0

: ð16Þ

In geometric terms, P and Q are locally smooth scalar
functions on the manifold of smooth initial data, such that
P ¼ 0 gives the critical surface, andM and J given by (15)
are nonsmooth at the critical surface precisely because of
the noninteger powers γM and γJ. A related observation is
that the power-law scalings of M and J at the collapse
threshold show the same powers for any one-parameter
family of initial data that crosses the threshold, independ-
ently of the angle at which the threshold is crossed
(compare Table I in [8]). If we further use the lowest-order
approximations for P and Q, Eqs. (10), we obtain
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M ≃ ðp̄ − Kq̄2ÞγM ; ð17aÞ

J≃ðp̄ − Kq̄2ÞγJ q̄: ð17bÞ

Whether or not the leading-order expressions (13) are an
adequate approximation for the scaling functions FJ;M

depends on whether the critical solution has one or two
growing modes. In the case of one growing mode, Eq. (8)
gives ϵ < 0 and so from (7) δ → 0 as the black hole
threshold P ¼ 0 is approached. In the case of two growing
modes, however, we have ϵ > 0, so that we expect large
values of δ to be explored close to the black hole threshold.

III. COMPARISON WITH NUMERICAL
EXPERIMENTS

The expressions (17) are the main result of this paper
for the case where the critical solution has only one
growing mode. In the following we compare these pre-
dictions with results from numerical time evolutions for
rotating radiation fluids, i.e. a perfect fluid with equation of
state P ¼ κρ and κ ¼ 1=3, for which there is only a single
growing mode.

A. Numerical setup

We consider the two-parameter family of initial data
previously presented in [8]. Specifically, the initial density
distribution ρ is a Gaussian. The overall strength of this
density distribution is parametrized by η, and its angular
momentum scales with Ω [see Eqs. (6) and (7) in [8]]. For
Ω ¼ 0 our initial data reduce to those considered in [2]. The
parameters η and Ω are instances of the generic parameters
p and q in Sec. II. We evolve these data with a code that has
been described in [7,10,11]. Briefly summarized, we solve
the Baumgarte-Shapiro-Shibata-Nakamura formulation of
Einstein’s equations [12–14] in spherical polar coordinates,
using moving-puncture gauge conditions. Details of our
numerical specifications can be found in [7,8].
For initial data that form a black hole we locate a

marginally outermost trapped surface, or apparent horizon,
using the technique described in [15], and measure its
irreducible mass Mirr and angular momentum J as in [16].
Both mass and angular momentum increase a little after an
apparent horizon is first formed, as the black hole accretes
some more material from the surrounding fluid, but they
soon settle down to equilibrium values. Assuming that the
new black hole is a Kerr black hole, we then compute the
Kerr mass M ¼ Mirrð1þ ðJ=M2

irrÞ2=4Þ1=2 from the equi-
librium values of Mirr and J. Note that our theoretical
derivation of the scaling laws applies equally toMirr andM.

B. Self-similarity

We start by presenting evidence of the underlying
assumption of Sec. II, namely that sufficiently close to
the black hole threshold the evolution passes through an

intermediate self-similar phase. The evolution during the
self-similar phase is governed by only one length scale. On
dimensional grounds the density ρ at the center of sym-
metry must therefore scale with

ρ≃ cρðt� − tÞ−2; ð18Þ

where t is theproper timemeasuredbyanobserver at thecenter
and t� is the accumulation time of the self-similar solution.
In Fig. 1 we plot ρ versus t� − t for several members of

our family’s initial data with Ω ¼ 0.3, for which the critical
value of η is approximately η� ≃ 1.0505635. We include
(18) with cρ ¼ 0.65 and t� ¼ 2.6395 as a fit for the critical
solution. All evolutions start in the lower right, and evolve
towards the top left. By coincidence, the evolutions start
from a point that is close to the dotted line marking the
critical solution, but then move away before joining it for
real at t� − t≃ 0.5. After that, evolutions with initial data
closer to the threshold remain close to the critical solution
for a longer time. In Fig. 1 solid lines mark supercritical
evolutions, for which the density ultimately diverges as a
black hole is formed, while dashed lines mark subcritical
evolutions, for which the density ultimately drops to zero
as the fluid disperses to infinity. The evolutions for
η ¼ 1.050563 and 1.050564 bracket the critical solution,
and follow the central density as given by (18) over more
than two orders of magnitude. However, even for relatively
small deviations of η from the critical value, e.g. η ¼
1.0501 or 1.0509 in Fig. 1, the solution does not appear to
go through a phase of self-similar contraction at all.

C. Power-law scalings

We start our analysis by considering the same one-
parameter families of data that we previously considered in

FIG. 1. The central density ρ versus t� − t for several evolutions
with Ω ¼ 0.3. Here t is the proper time as measured by an
observer at the center, and t� is the accumulation time. Super-
critical evolutions are marked by sold lines, and subcritical
evolutions by dashed lines. The dotted line marks the expression
(18) with cρ ¼ 0.65 and t� ¼ 2.6395 for the critical solution.
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[8], namely sequences for Ω ¼ 0, 0.05, 0.1 and 0.3, as well
as for η ¼ 1.02, 1.035 and 1.0505. All families cross the
critical curve; locating these intersections provides points
ðη�;Ω�Þ on the collapse threshold. Our initial observation is
that the location of these six points is well approximated by
a parabola, as expected from (10a); see Fig. 1 of [8].
For supercritical data we can plot the logarithm of the

black hole masses M and angular momenta J versus the
logarithm of the distance from the critical parameter (see
Fig. 2 in [8]). Measuring the slope of the resulting straight
lines then provides a numerical estimate of the critical
exponents γM and γJ. Numerical data can be found in
Table I of [8]. For all sequences considered the numerical
values are within a few percent of the analytical values

γM ≃ 0.3558; γJ ¼
5

2
γM ≃ 0.8895 ð19Þ

for κ ¼ 1=3, as computed by [17,18] and [5], respectively.
The fact that these exponents are independent of where and
at what angle the sequence crosses the critical curve is a
consequence of the scaling laws derived in Sec. II.
Before the predictions (17) can be compared with the

numerical data, including all constant factors, we need to
determine the family-dependent parameters η�0, C0, C1 in
(9) and K in (10a). We first consider the Ω ¼ 0 sequence,
for which (17a) reduces to

M ≃ η̄γM ¼ CγM
0 ðη − η�0ÞγM : ð20Þ

Fitting this expression to numerical data then yields the
parameters η�0 ¼ 1.0183772 (in agreement with [2]) and
C0 ≃ 0.28. Fitting to one of the rotating families, for
example the Ω ¼ 0.05 sequence, then yields C1 ≃ 4.5 in
a similar fashion. Finally, we insert (9) togetherwith the now
known coefficients C0 and C1 into (10a), set P ¼ 0, and fit
the resulting relation between η and Ω to the parabola
describing the critical curve (η�, Ω�) to obtain K ≃ 0.0046.
We will use these parameters in all of the following plots,
which makes them heavily overdetermined.
In Figs. 2 and 3 we plot the theoretical predictions for

black-hole masses M and angular momenta J in our two-
dimensional parameter space. Specifically, we plotM and J
as functions of η and Ω as given by (17), based on the
parameters determined above. Figure 2 contains the data
already used in [8], while Fig. 3 contains additional data
further away from the critical point. Figure 2 already
suggests good agreement between the theoretical predic-
tions and the numerical data not too far from the critical
point, but for a clearer quantitative comparison between
model and data we also plot one-parameter families of
either constant Ω or η.
For one-parameter families at constant Ω̄ ¼ Ω̄� (which

appear as vertical lines in Fig. 1 of [8]) the scaling laws (17)
can be written as

M ≃ ðη̄ − η̄�ÞγM ; ð21aÞ

J≃ðη̄ − η̄�ÞγJ Ω̄�; ð21bÞ

where we have used η̄� ¼ KΩ̄2�. Inserting the expressions
(9) for the reduced parameters we may then define the
dimensionless expressions

MΩ ≔
M

ðC0η�ÞγM
≃

�
η

η�
− 1

�
γM
; ð22aÞ

FIG. 2. The theoretical predictions (17) (continuous surface and
curves) for black hole masses M (top) and angular momenta J
(bottom), together with numerical data from six one-parameter
families for Ω ¼ 0, 0.05 and 0.1 (black, blue, green) and
η ¼ 1.02, 0.1035 and 1.0505 (purple, red, orange).
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JΩ ≔
J

C1Ω�ðC0η�ÞγJ
≃

�
η

η�
− 1

�
γJ ð22bÞ

for sequences of constant Ω.
Similarly, for one-parameter families at constant η̄ ¼ η̄�

(which appear as horizontal lines in Fig. 1 of [8]) the
scaling laws (17) can be written as

M ≃
�
η̄�

�
1 −

Ω̄2

Ω̄2�

��
γM
; ð23aÞ

J ≃
�
η̄�

�
1 −

Ω̄2

Ω̄2�

��
γJ
Ω̄: ð23bÞ

For sequences of constant η we then define

Mη ≔
M

Mmax
≃

�
1 −

Ω2

Ω2�

�
γM
; ð24aÞ

Jη ≔
J

Jmax
≃ 1

CJ

�
1 −

Ω2

Ω2�

�
γJ Ω
Ω�

ð24bÞ

[these are Eqs. (9) and (10) of [8]], where we have
abbreviated

Mmax ¼ ½C0ðη� − η�0Þ�γM ; ð25aÞ

Jmax ¼ CJC1Ω�½C0ðη� − η�0Þ�γJ : ð25bÞ

To leading order, these quantities are the maximum mass
and angular momentum along the sequence of constant η,

FIG. 3. A zoom-out from the previous figure, showing the
previous families of initial data, and in addition η ¼ 1.2, 1.3 and
1.4 (all in cyan). These additional data show increasing deviations
from the theoretical model further away from the critical point, as
is in fact required to maintain jJj=M2 < 1.

10 6 10 5 10 4
0.001 0.01 0.1

1

0.01

0.02

0.05

0.10

0.20

0.50

M

10 5 10 4
0.001 0.01 0.1

1

10 4

0.001

0.01

0.1

J

FIG. 4. Verification of (22a) for M (top) and (22b) for J
(bottom). The continuous curves are the analytic expressions on
the right-hand sides of these equations, plotted against
ðη=η�Þ − 1. The dots are numerical values for the left-hand sides,
for the three one-parameter families of initial data at constant
Ω ¼ 0, 0.05, 0.1 (black, blue, green, as for the same data in
Fig. 2). The critical surface is at an infinite distance to the bottom
left in this log-log plot. There is obviously no J plot for theΩ ¼ 0
family.
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and CJ ≃ 0.4025 is the maximum of xð1 − x2ÞγJ on the
interval [0, 1].
In Fig. 4 we plot the masses and angular momenta of

black holes formed from supercritical data in families of
constant Ω, and in Fig. 5 for families of constant η. In these
graphs, the solid lines represent the right-hand sides of
Eqs. (22) and (24), while the points mark the numerical
data, rescaled as on the left-hand sides of (22) and (24).
These rescaling factors include the parameters C0, C1 and
η�0 as determined above for the entire two-parameter family
of initial data; i.e. these parameters are not fitted separately
to the individual one-parameter families shown in the
figures. In addition, the rescaling factors include the critical
values η� or Ω� for each one-parameter family. In principle,
these could be computed by setting P ¼ 0 in (10a), which
yields

C0ðη� − η�0Þ≃ KðC1Ω�Þ2: ð26Þ

Using this expression would result in a small error in the
critical parameters but a diverging relative error for M and

J at the collapse threshold, thus hiding the physically
correct scaling law. This is already familiar elsewhere in the
numerical study of critical phenomena: numerical values
of, say, a critical exponent or the critical parameter of a one-
parameter family converge to a continuum limit with
increasing numerical resolution, but data at a given reso-
lution will show critical scaling only for the critical
parameters obtained for that resolution, rather than
higher-resolution values. For a similar reason, we fit η�
or Ω� for the individual one-parameter families, rather than
using (26), so that the data reveal critical scaling even close
to the black hole threshold.
For data sufficiently close to the critical point, there is

good agreement between the prediction and numerical
values. This is shown in Fig. 2. The differences increase
further away from the critical point, where we expect
increasing deviations between the leading-order scaling
laws and nonlinear numerical evolutions. In particular, the
maxima of jδj with respect to Ω̄ at constant η̄ lie on the
parabola

∂
∂Ω̄ δðη̄; Ω̄Þ ¼ 0 ⇒ η̄≃ ð1 − 2ϵÞKΩ̄2: ð27Þ

Along this curve, parametrized by η̄, our model predicts

max
Ω̄

J
M2

ðη̄; Ω̄Þ≃ K−1
2ð−2ϵÞ−ϵð1 − 2ϵÞϵ−1

2η̄
1
2
−ϵ; ð28Þ

which increases monotonically with η̄. Hence we expect
our model to break down well before it predicts
jJj=M2 > 1. Indeed, we find that further away from the
critical point the numerically found masses are larger than
predicted, and the angular momenta smaller than predicted,
such that J=M2 increases but never goes beyond unity.
These observations are demonstrated in Fig. 3.
We would like to emphasize a difference between Figs. 4

and 5 and the scaling plots of [8]. In Fig. 2 of [8] we fitted
power laws to individual one-parameter families, whereas
here we compare the numerical data with predictions for the
entire two-parameter family, given the constants C0, C1 and
η�0. Similarly, for Fig. 4 of [8], which shows the same data
as Fig. 5 here, we computedMmax and Jmax in (24) from the
numerical data (which did not require knowledge of the
constants C0, C1 and η�0), whereas here we compute Mmax
and Jmax from (25), using the constants C0, C1 and η�0. The
agreement found here is therefore a more stringent com-
parison between theoretical predictions and numerical data
than that presented in [8].

IV. SUMMARY AND DISCUSSION

We have extended arguments previously presented in
[5,6,9] to derive new closed-form scaling laws for critical
collapse with angular momentum. The main result,
Eq. (12), in principle involves scaling functions FM;J that
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FIG. 5. Verification of (24a) for M (top) and (24b) for J
(bottom). The continuous curves are the analytic expressions on
the right-hand sides of these equations, plotted against
1 − ðΩ=Ω�Þ2. The dots are numerical values for the left-hand
sides, for the three one-parameter families of initial data at
constant η ¼ 1.02, 0.1035, 1.0505 (purple, red, orange, as for the
same data in Fig. 2). The critical surface is at an infinite distance
to the bottom left in this log-log plot.Ω ¼ 0 is at the right edge of
the plot, and the falloff there represents J ∼ Ω for small Ω in this
log-log plot.
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need to be determined numerically, but adopting the lowest-
order expansions (13) of these scaling functions yields the
predictions (17). We have compared these predictions with
numerical simulations for rotating radiation fluids and find
excellent agreement. We believe that the agreement
between theory and numerics for the mass and angular
momentum scaling, even so far from critical collapse that
there is no clear sign of an intermediate self-similar regime,
is another example of the “unreasonable effectiveness of
perturbation theory,” similar to post-Newtonian approxi-
mations [19] and the close-limit approximation [20] for
binary black hole mergers.
This paper also demonstrates the necessary interplay

between theory and numerical experiment in critical
collapse. In the previous treatment [5,6,9] C. G. implicitly
truncated the expansion (10a) as P ¼ p̄, which renders the
black hole threshold as a straight line. The numerical results
of [8] showed that the resulting picture is qualitatively
incorrect. In hindsight, Oðp̄Þ ¼ Oðq̄2Þ, so that the con-
sistent lowest-order truncation of the coefficients P and Q
is (10), and the black hole threshold is a parabola. For the
case of one unstable mode, C. G. correctly predicted the
scaling behavior (15) for small q̄, but by implicitly setting
K ¼ 0 (in the notation of this paper) he missed the equally
interesting behavior of (17) for finite q̄, in particular (23).
The formal prediction of nontrivial universal scaling
functions (II B) for the mass and angular momentum has
not changed, but δ is now given in terms of P and Q, not p̄
and q̄, with the lowest-order consistent truncation given
by Eq. (10).2

In Sec. III we compared the theory with numerical results
for perfect fluids with the equation of state P ¼ κρ where
κ ¼ 1=3 (the radiation fluid). As discussed in the
Introduction, for 1=9 < κ ≲ 0.49 the critical solution has
only one unstable mode, so that ϵ < 0 in particular for
κ ¼ 1=3. Equation (7) then implies δ → 0 as the black hole
threshold P ¼ 0 is approached, which, by (14), implies
J=M2 → 0, in agreement with our numerical findings.
It is precisely the fact that δ → 0 at the black hole

threshold that allows us to use the simple expansions (13)
for the scaling functions in (15). For κ < 1=9, on the other
hand, we expect two unstable modes, so that ϵ > 0, in
which case (7) suggests that δ grows without bound as
P → 0. In this case, therefore, use of the expansions (13)

can no longer be justified. We plan to explore this regime in
the future.
We would like to stress that the derivation of (17) relies

on at least four logically independent perturbation approx-
imations: (i) Sufficiently near the collapse threshold the
time evolution actually goes through a phase where it can
be described by the critical solution plus linear perturba-
tions. (ii) In at least part of this phase, all decaying linear
perturbations, except possibly for Z1, can be neglected.
(iii) The scaling functions can be approximated by their
leading orders (13). (iv) The amplitudes P and Q can be
approximated by their leading orders (10).
It is hard to know which of these approximations causes

the most significant deviations from (17) as we move away
from the critical point. One might consider adding higher
powers of p̄ and q̄ to the expressions for P and Q as
indicated in (10) to control (iv). However, as Mðp; qÞ and
Jðp; qÞ are smooth functions away from the critical surface,
we can always make our model fit the data precisely by
fitting Pðp; qÞ andQðp; qÞ, and so this fit has no additional
predictive power.
One might also consider extending (13) to a power series

in δ to control (iii). However, we can already fit the model
to the numerics perfectly by fitting P and Q, even if we set
FM ¼ 1 and FJ ¼ δ, and so we cannot determine these
universal functions by such a fit. They could, however, be
defined directly by the time evolution of the two one-
parameter families of universal intermediate initial data (6).
The scaling functions will play a nontrivial role when there
are two unstable modes, as δ → 0 is then still realized as
q̄ → 0 but δ → ∞ is realized as q̄ → q̄�ðp̄Þ.
We note in closing that Aguilar-Martinez [21] has

presented preliminary numerical results for the critical
collapse, in Newtonian gravity, of an axisymmetric rotating
fluid with equation of state P ∝ ρΓ0 (where ρ0 is the rest
mass density) with Γ ¼ 10−5. The critical solution appears
to have two unstable modes in this case. Aguilar-Martinez
gives theoretical values of λ0 ≃ 9.4643 and λ1 ¼ 1=3,
implying ϵ≃ 0.3522. The black hole threshold found in
his simulations appears to be well approximated by a
parabola. Interestingly, Mðp; qÞ and Jðp; qÞ also approach
zero at the black hole threshold even though there are two
unstable modes. It will be interesting to compare the case of
two unstable modes in general relativity.
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