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Topological solitons are relevant in several areas of physics. Recently, these configurations have been
investigated in contexts as diverse as hydrodynamics, Bose-Einstein condensates, ferromagnetism, knotted
light and non-Abelian gauge theories. In this paper we address the issue of wave propagation about a static
Hopf soliton in the context of the Nicole model. Working within the geometrical optics limit, we show that
several nontrivial lensing effects emerge due to nonlinear interactions as long as the theory remains
hyperbolic. We conclude that similar effects are very likely to occur in effective field theories characterized
by a topological invariant such as the Skyrme model of pions.
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I. INTRODUCTION

Start with a rectangular rubber sheet and draw a
collection of nonintersecting horizontal lines on it.
Make sure you use a thin tip so as to fill the material
with as many lines as possible. Glue the top edge of the
rectangle to its bottom and give a full twist to the
cylinder before you paste its left- and right-hand sides to
form a torus. Now take the toroid structure and look at
the original lines. Somehow they became linked. Repeat
this recipe with slightly bigger (and also smaller) rec-
tangles and try to assemble the resulting torii one inside
the other, very much in the same way as matryoshka
nested dolls are constructed. If you are patient enough to
perform this continuously, you’ll end up with a fibered
structure filling most of R3 which captures the essence of
the Hopf fibration [1].

In mathematics, the Hopf fibration [2] describes the
3-sphere S3 in terms of a disjoint union of circles S1 and an
ordinary 2-sphere S2, with fiber structure

S1 ↪ S3→
π
S2; ð1Þ

π denoting the projection map. In one of its simpler forms,
π may be defined as follows. Identify S3 with the subset
ðz0; z1Þ ∈ C2, such that jz0j2 þ jz1j2 ¼ 1, and S2 with the
subset ðz; xÞ ∈ C ×R, such that jzj2 þ x2 ¼ 1. Then the
projection map reads

πðz0; z1Þ ¼ ð2z0z�1; jz0j2 − jz1j2Þ: ð2Þ

It turns out that a point ðw0; w1Þ ¼ ðλz0; λz1Þ, with λ ∈ C,
will be mapped to the same point of S2 if and only if
jλj2 ¼ 1, thus generating the structure of circular fibers
embedded in S3. The remarkable structure of R3 filled with
nested torii made of linked circles described above appears
when we compose π with stereographic projection of S3

onto R3. It can be shown [3] that such stereographic
projection maps the Hopf fibers to linked circles in R3,
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the only exception being the Hopf circle containing the
projection point which is mapped to a straight line in R3, a
“circle through infinity”.
This paper deals with wave propagation in a non-

linear field theory—the so called Nicole model [4,5]—
determining nontrivial fibrations of R3 of the Hopf type
induced by exact finite-energy solutions to the equations of
motion. For the Nicole model, the projection map emerges
as the critical point of a Lorentz invariant Lagrangian
theory of maps from flat space-time into the 2-sphere, or
equivalently into SUð2Þ=Uð1Þ.1 The Lagrangian is a simple
nonpolynomial generalization of theOð3Þ σ model [8], and
the associated Euler-Lagrange equations are given by a
system of second order quasilinear partial differential
equation (PDE’s) for the map; see equation (12) below.
Nicole’s motivation was to improve earlier attempts [9] at
constructing extended solutions of the “twisted ring” type
in three spatial dimensions. In order to achieve this, Nicole
modified the action appearing in [8] in an exotic fashion so
as to give a scaling neutral theory [10], very much in the
same way as was done before by Deser et al. in [11].
Nowadays, similar solutions are often discussed in the
literature in various contexts ranging from the models of
condensed matter physics [12,13] to high energy physics
and cosmology [14–17].
The main question we address here is the following:

How do small perturbations about a given Hopf map
propagate in space-time, according to Nicole’s equations?
Working within the geometrical optics limit we shall show
that several lensing effects emerge, yielding an exotic
causal replacement governing the kinematics of perturba-
tions. Using the effective metric technique (see, for
instance, [18]), we work out numerically several interesting
situations and discuss how the topological charge may
affect the behavior of rays. In this sense, the present work is
a natural generalization of previous results sketched in [19].

II. THE MODEL

A. Kinematics

We write ðM; gÞ for the 1þ 3 dimensional Minkowski
spacetime with metric signature ð−;þ;þ;þÞ and ðS2; hÞ
for the unit 2-sphere with metric h. Inspired by the classical
paper [20], we are interested in surjective maps

φ∶ ðM; gÞ → ðS2; hÞ; ð3Þ

see also the interesting review [21]. If xa (a ¼ 0, 1, 2, 3)
and yα (α ¼ 1, 2) denote local coordinates in the base and
target spaces, respectively, the map φ reads

yα ¼ φαðxaÞ: ð4Þ

The differential of φ at x ∈ M is the best linear approxi-
mation of φ near x

dφx∶ TxM → TφðxÞS2; ð5Þ

and we use it to pull back tensors living on S2 to the
spacetime M. In particular, we write

ðφ�hÞab ≡ Lab ¼ hαβ∂aφ
α∂bφ

β ð6Þ

and

ðφ�ϵÞab ≡ Fab ¼ ϵαβ∂aφ
α∂bφ

β; ð7Þ

with hαβ and ϵαβ denoting the metric and area 2-form to the
unit sphere, respectively. We shall call φ�h the strain for the
map φ and φ�ϵ the Hopf curvature.
In physical applications, it is natural to consider con-

figurations such that the field tends to a single value as
spatial infinity is approached in any direction. We choose
this “constant state” such that “infinity” corresponds to the
north poleN on the 2-sphere. This procedure is effectively
equivalent to a one-point compactification of R3, which we
denote by R3

0. Since the compactified three-dimensional
Euclidean space R3

0 is topologically equivalent to a topo-
logical three-sphere S3 we have, at any given time, a
function

φt∶ R3
0 ≅ S3 → S2: ð8Þ

Now, as the third homotopy group of the target space is
π3ðS2Þ ∈ Z, there is an associated integer topological
charge Q called the Hopf charge. As a consequence, the
possible mappings (3) fall into different homotopy classes,
and a Hopf soliton is a configuration that is a critical point
for an energy functional (see Sec. II B) within a fixed
homotopy class.2

Whitehead first showed in Ref. [27] that it is possible to
express the Hopf charge Q as an integral of the form

Q ¼ 1

16π2

Z
R3

Fab

�
Catbd3x; ð9Þ

in which Fab

� ≡ 1
2
ηabcdFcd is the dual tensor to the Hopf

curvature, tb is a normalized timelike vector field
(tata ¼ −1) orthogonal to the space slices, and (using that
Fab is a closed 2-form) we define Ca locally via
Fab ¼ ∂ ½aCb�. Roughly speaking, Q will remain invariant
under arbitrarily smooth deformations of the map and, in
particular, under time evolution. Interestingly, for a given

1In order to distinguish between the former Hopf map π and its
spacetime version considered here, we shall denote the latter by
φ∶R1þ3 → S2 and, following Refs. [6,7], call it a Hopf map as
well. 2See references [22–26] for further details.
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time t, the preimage φ−1
t of a point P ∈ S2 will be, in

general, a closed loop in R3
0 ≅ S3. Heuristically, we can

compute Q by counting the linking number between two
such preimage curves. We define the position of the Hopf
soliton as the preimage of the south pole S ∈ S2, as it
corresponds to the position in S2 which is the most distant
to the vacuum.

B. Dynamics

Nicole’s model [4] consists of maps which are stationary
points of the action

S½φ� ¼
Z
M
σ3=21 dvg; ð10Þ

where dvg is the volume element determined by g and
σ1 ¼ Lc

c is the first elementary symmetric polynomial
constructed with the pulled-back metric φ�h. For the sake
of conciseness we write henceforth L for the Lagrangian
density, L1 ¼ ∂L=∂σ1 and L11 ¼ ∂2L=∂σ21. With these
conventions, the Euler-Lagrange equations become

traceg½DðL1dφÞ� ¼ 0; ð11Þ

with D the linear connection in the associated vector
bundle E ¼ T�M ⊗ φ−1TS2 over M (see [28]). Written
in a local chart, Eq. (11) becomes

1ffiffiffiffiffiffi−gp ∂að
ffiffiffiffiffiffi
−g

p
L1gab∂bφ

αÞ þ Γα
βγL1∂aφβ∂aφ

γ ¼ 0; ð12Þ

where sum over repeated indices is understood, and Γα
βγ

denotes the Christoffel symbols of the Levi-Civita con-
nection on S2.
It is clear from (12) that the dynamics is given by a

2-dimensional system of quasilinear PDE’s for the map (3).
Equation (12) becomes, after some simple manipulations,

Mab
αβðφ; ∂φÞ∂a∂bφ

β þ Jαðφ; ∂φÞ ¼ 0; ð13Þ

where Jα stands for semilinear terms in φ and Mab
αβ is the

principal part of the system. As it is well known, the
highest-order terms in derivatives almost completely
control the qualitative behavior of solutions of a partial
differential equation [29]. We obtain

Mab
αβ ¼ gabhαβ þ ξhαμhβν∂ðaφμ∂bÞφν; ð14Þ

where ξ≡ 2L11=L1 and ða; bÞ ¼ ðabþ baÞ=2.

III. REGULAR HYPERBOLICITY

A key issue to elucidate about systems of the form (12) is
whether they admit a well-posed Cauchy problem. In other
words, we wish to determine the map φðxaÞ—at least for

some finite interval of time T—if initial data φjΣ, ∂φjΣ are
given in a noncharacteristic hypersurface Σ ⊆ M. In order
to guarantee well posedness for the Nicole model, it is
convenient to work in the framework of regular hyper-
bolicity introduced by Christodoulou [30] (see also [31]
for a short review of Christodoulou’s work, and [32]
for a geometric approach to classical hyperbolicity).
Roughly speaking, hyperbolicity is an algebraic property
of the principal part Mab

αβ given by (14), entailing the
existence of solutions for arbitrary smooth initial data,
and uniqueness and continuous dependence on the initial
data.
If we are given φ and ∂φ at a spacetime point x we

can evaluate the principal part (14) corresponding to
that point. Formally, we have the map between the fiber
bundles

Mab
αβðxÞ∶ T�

xM ⊗ T�
xM → T�

φðxÞS
2 ⊗ T�

φðxÞS
2:

For the sake of conciseness we use the notation

Mαβðx; ηÞ ≔ Mab
αβðxÞηaηb; ð15Þ

for an arbitrary covector η ∈ T�
xM. This object is called the

principal symbol and, according to Christodoulou [30], the
system will be regular hyperbolic if

(i) there exists a scalar function tðxÞ such that
Mαβðx; dtÞ is negative definite;

(ii) there exists XaðxÞ such that Mαβðx; ηÞ is positive
definite for all η satisfying Xaηa ¼ 0.

Functions tðxÞ are called time functions while vectors
XaðxÞ are called observer fields. The existence of these
quantities is sufficient to construct algorithmically a com-
patible energy current JaðX;φ; ∂φ;…; ∂kφÞ in order to
apply the energy estimates. The latter imply that solutions
exist and depend continuously on the data given in a level
set Σt of M. Furthermore, one can also guarantee that the
evolution of small disturbances (linearized waves) about
some given smooth data is properly posed for the corre-
sponding linearized equations.
In order to check the existence of tðxÞ and XaðxÞ for the

symbol (14) we use the mixed tensor M ≔ hαγMγβ. Its
eigenvalues satisfy the second order algebraic equation

λ2 − TrMλþ detM ¼ 0; ð16Þ

at each x ∈ M. Interestingly, for the symbol (14), the trace
and the determinant are real-valued functions of x and η
which are always given in terms of two quadratic forms in
the cotangent bundle T�M

TrM ¼ P1ðx; ηÞ þ P2ðx; ηÞ; ð17Þ

detM ¼ P1ðx; ηÞP2ðx; ηÞ; ð18Þ
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with

P1ðx; ηÞ ¼ gabðxÞηaηb; ð19Þ

P2ðx; ηÞ ¼ ðm−1ÞcdðφðxÞÞηcηd; ð20Þ

and

ðm−1Þab ≔ gab þ ξLab: ð21Þ
Moreover, a closer inspection of (16) gives

λ�ðx; ηÞ ¼
P1 þ P2

2
� jP1 − P2j

2
: ð22Þ

In what follows we shall use the terminology reciprocal
effective metric for the quantity m−1 defined in (21).
The system will be regular hyperbolic if the reciprocal

effective metric satisfies some algebraic conditions. An
inescapable (necessary) condition for the system to be well
posed is that m−1 constitutes a nondegenerate semidefinite
tensor field with a Lorentzian signature. Sincem−1 depends
explicitly on the solution to (12) we are considering, we
naturally expect these conditions to imply that not all initial
data are admissible for the model, as we now show.
Following Manton [33] we suppose that Lab can be

diagonalized relative to gab in a given point. The eigen-
values of Lab are necessarily non-negative and due to rank
considerations two of them must vanish identically. We
write

Lab ¼ ðλ20; λ21; λ22; λ23Þ: ð23Þ

It follows

ðm−1Þ00 ¼ 2λ20 − λ21 − λ22 − λ23
−λ20 þ λ21 þ λ22 þ λ23

;

ðm−1Þ11 ¼ −λ20 þ 2λ21 þ λ22 þ λ23
−λ20 þ λ21 þ λ22 þ λ23

;

ðm−1Þ22 ¼ −λ20 þ λ21 þ 2λ22 þ λ23
−λ20 þ λ21 þ λ22 þ λ23

;

ðm−1Þ33 ¼ −λ20 þ λ21 þ λ22 þ 2λ23
−λ20 þ λ21 þ λ22 þ λ23

:

We then conclude that the reciprocal effective metric is
Lorentzian if its eigenvalues satisfy the inequality

λ20 <
λ21 þ λ22 þ λ23

2
: ð24Þ

In particular, that will be true if λ20 ¼ 0, as is the case for all
static solitonic solutions. As we are mainly interested in
wave propagation about these solutions, we assume hence-
forth that m−1 is Lorentzian.

IV. CAUSAL REPLACEMENTS

By a causal replacement we mean the fact that linearized
waves propagating about a smooth background solution φ0

do not travel with the velocity of light. For the Nicole
model, as for quasilinear hyperbolic field theories in
general, wave propagation depends on the particular
solution, direction of propagation and “wave polarization”
as explained, for instance, in Ref. [34]. Accordingly, in
order to analyze the causal replacement of our model, we
recall the notion of characteristics. Physically, they can be
identified with the infinite-momentum limit of the eikonal
approximation [35] (or, equivalently, with the surfaces of
discontinuity obtained via Hadamard’s method).
A hypersurface Σ ⊆ M, given by fðxaÞ ¼ const, is

called characteristic if

Pðx; kÞ ≔ jMαβðφ0ðxÞ; kÞj ¼ 0; ð25Þ

with ka ≔ ∂af. The set

C�x ≔ fk ∈ T�
xMjPðx; kÞ ¼ 0; k ≠ 0g ð26Þ

is called the characteristic set and it consists of the locus of
normal covectors k to the characteristic surfaces at x.
Roughly, the existence of characteristics in a region implies
that linearized waves have a well-behaved, finite velocity
about the background solution.
Using (17), we obtain

Pðx; kÞ ¼ detðhABÞP1ðx; kÞP2ðx; kÞ; ð27Þ

with P1 and P2 given by (19) and (20). As a consequence,
the wave normals covectors k satisfying (26) are deter-
mined by the vanishing sets of a multivariate polynomial of
fourth order in ka ∈ T�

xM. Thus, the resulting algebraic
variety is always given by a product of quadrics, one of
which changes from point to point in a way completely
prescribed by the background solution φ0ðxÞ and the
nonlinearities present in the Nicole model (P2 ¼ 0).
As we assume that ðm−1Þab is nondegenerate, we can

always define its inverse mab i.e., ðm−1Þacmcb ¼ δab. The
theory of PDE’s then proceeds by telling us that the
characteristic surfaces themselves are given by the zeros
of a dual polynomial in the tangent space TxM which also
factorizes, i.e.

Cx ≔ fq ∈ TxMjP#ðx; qÞ ¼ 0; q ≠ 0g; ð28Þ

with

P#ðx; qÞ ¼ P#
1ðx; qÞP#

2ðx; qÞ; ð29Þ

and P#
1ðx; qÞ ¼ gabðxÞqaqb, P#

2ðx; qÞ ¼ mabðφ0ðxÞÞqaqb.
Thus, the model supports two types of waves: one is
governed by the background metric gab while the other is
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governed by the effective metric mabðφ0ðxÞÞ. Note, how-
ever, that, since the background solutions carry a topo-
logical index Q given by (9), the effective metric will also
depend implicitly on Q.
It is well known that whenmab is Lorentzian, the vectors

qa such that P#
2ðx; qÞ ¼ 0 (in a region of spacetime) satisfy

the equation of null geodesics with respect to the effective
metric, see [36], i.e.

qajjbq
b ¼ 0; ð30Þ

where jj denotes covariant differentiation with respect to
mab (see, however, [37] for a case where this property fails).
Conversely, we are led to investigate spacetime trajectories
such that the effective line element vanishes, i.e.

dŝ2 ¼ mabðφ0ðxÞÞdxadxb ¼ 0: ð31Þ

Interestingly, if the map (3) is independent of time, the
problem of finding null geodesics in the effective space-
time reduces to that of finding geodesics in an effective
Riemannian manifold of lower dimension. Indeed, choos-
ing a coordinate system xa ¼ ðt; xiÞ, i ¼ 1, 2, 3, such that
g0i ¼ 0 and ∂tφ

α ¼ 0 one reduces (30) and (31) to the
equations

ẍi þ Γ̂i
jk _xj _xk ¼ 0 ð32Þ

mijðφ0ðxÞÞ_xi _xj ¼ 1; ð33Þ

with _xi ≔ dxi
dt and Γ̂i

jk the Christoffel symbols associated
with the spatial part of the effective metric. Therefore, we
can qualitatively describe the interaction between back-
ground Hopfions and rays by computing the geodesics of
an effective three-dimensional manifold (see [38] for a
discussion in the context of the Schwarzschild solution).

V. STATIC HOPF SOLITONS

We briefly review here how solutions of Eq. (12) with a
nonvanishing Hopf index emerge in the simpler case of
static maps (see [7] for more details). We start by
introducing toroidal coordinates ðη; θ;ψÞ in R3:

x ¼ q−1 sinh η cosψ ;

y ¼ q−1 sinh η sinψ ;

z ¼ q−1 sin θ;

with q ≔ cosh η − cos θ, η ∈ ½0;∞Þ, θ ∈ ½0; 2πÞ, and
ψ ∈ ½0; 2πÞ. Note that surfaces of constant η are given
by nonintersecting toroids of different radii:

x2 þ y2 þ z2 þ 1 ¼ 2 coth ηðx2 þ y2Þ1=2: ð34Þ

In particular, as η → ∞ the tori asymptotically approach
the ring z ¼ 0, x2 þ y2 ¼ 1. Conversely, as η → 0 the tori
become infinitely large, approaching asymptotically the
line through the origin x2 þ y2 ¼ 0. In these coordinates,
the space-time line element has the form

ds2 ¼ −dt2 þ q−2ðdη2 þ dθ2 þ sinh2ηdψ2Þ:

Now we consider the target manifold ðS2; hÞ.
Calculations become easier if we use coordinates
ðR;ΦÞ in S2, which can be identified via stereographic
projection from the south pole S to the equatorial plane.
In these coordinates, the curves ðR ¼ const1Þ describe
lines of constant latitude (also called parallels) on the
sphere while the curves ðΦ ¼ const2Þ describe its meri-
dians. Particularly, const1 ¼ 0 corresponds to N while
const1 → ∞ corresponds to S. The line element has the
simple form

dl2 ¼ 4

ð1þ R2Þ2 ðdR
2 þ R2dΦ2Þ;

and the nonvanishing Chirstoffel symbols are

ΓR
RR ¼ −

2R
ðR2 þ 1Þ ;

ΓR
ΦΦ ¼ RðR2 − 1Þ

ðR2 þ 1Þ ;

ΓΦ
RΦ ¼ −

ðR2 − 1Þ
RðR2 þ 1Þ :

We now assume the following ansatz for the map
φðη; θ;ψÞ ¼ ðRðη; θ;ψÞ;Φðη; θ;ψÞÞ:

R ¼ fðηÞ; Φ ¼ aθ þ bψ ; ð35Þ

a; b ∈ Z being associated with angular windings around
the two generating circles of the torus. Roughly, this
implies that each torus in R3 is mapped into a parallel in
S2. Additionally, in order to match the appropriate
boundary conditions we require that fð0Þ ¼ 0 (meaning
that spatial infinity i.e. the “vacuum” is actually mapped
into N ) and fð∞Þ ¼ ∞ (meaning that the soliton
position is mapped into S).
Now we note that the preimage of a given point in S2 is

given by the equations

η ¼ const1 aθ þ bψ ¼ const2; ð36Þ

which define nonintersecting closed loops winding
around each torus. As is well known, see [39], the
linking number between two of such arbitrary preimage
curves is given by Q ¼ ab and uniquely determines
the Hopf invariant for the solutions. Given Q, the
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collection of all preimage curves define a nontrivial
fibration of R3 within the corresponding homotopy
class. In terms of the above quantities, we get, for
the first symmetric polynomial,

σ1 ¼
4f2q2

ð1þ f2Þ2 Δ
2; ð37Þ

Δ≡ ½ðf0=fÞ2 þ ða2 þ b2 sinh−2 ηÞ�1=2; ð38Þ

where f0 ≡ ∂ηf. With these assumptions, it is an easy
task to see that Eq. (12) is identically satisfied for Φ
(i.e., φ2 in that equation) while the equation for f ( i.e.,
φ1) becomes the nonlinear ODE:

ð1þ f2Þ
Δ sinh ηf2

�
Δ sinh ηff0

ð1þ f2Þ
�0

¼ 2f02 þ ð1 − f2Þða2 þ b2sinh−2ηÞ: ð39Þ

Finally, for the ansatz provided by Eqs. (35) we get,
using Eq. (21), the reciprocal effective metric:

ðm−1Þij ¼ q2

2
64
0
B@

1 0 0

0 1 0

0 0 sinh−2η

1
CA

þ 1

Δ2

0
B@

ðf0=fÞ2 0 0

0 a2 absinh−2η

0 absinh−2η b2sinh−4η

1
CA
3
75

ð40Þ

VI. GEODESICS ABOUT A Q= 1 HOPFION

In this section we present the results of numerical
computations in the simpler case Q ¼ 1. In this case, it
is possible to obtain the exact solution fðηÞ ¼ sinhðηÞ for
the “profile function” F determined by (39); see [6], which
uniquely determines the effective geometry. Equipped with
this solution, we study geodesic motion in this geometric
approach by considering the system (32) and (33). We
integrate this coupled system with a classical Runge-Kutta
method with automatic step-size control for a large number
of geodesics emerging from different regions in three-
space. For computational reasons, we work here with
Cartesian coordinates ðx; y; zÞ. The reciprocal effective
metric then becomes (see the Appendix for the complete
geodesic equations)

ðm−1Þij ¼

0
BBB@

3
2
− 2ðy−xzÞ2

ð1þr2Þ2
2ðy−xzÞðxþyzÞ

ð1þr2Þ2 − ðy−xzÞðx2þy2−z2−1Þ
ð1þr2Þ2

2ðy−xzÞðxþyzÞ
ð1þr2Þ2

3
2
− 2ðxþyzÞ2

ð1þr2Þ2
ðxþyzÞðx2þy2−z2−1Þ

ð1þr2Þ2

− ðy−xzÞðx2þy2−z2−1Þ
ð1þr2Þ2

ðxþyzÞðx2þy2−z2−1Þ
ð1þr2Þ2

x4þ2x2ðy2þ2z2þ2Þþy4þ4y2ðz2þ1Þþðz2þ1Þ2
ð1þr2Þ2

1
CCCA

in which r ¼ ffiffiðp
x2 þ y2 þ z2Þ.

It can be checked that ðm−1Þij is positive definite for all
values of ðx; y; zÞ and is invariant under rotations about the
z axis. This last result is a direct consequence of the
azymuthal symmetry of the underlying fibration. The fact
that this metric is curved may be easily confirmed by
calculating its Ricci scalar. Surprisingly, we obtain the
simple result

R ¼ −
4x2 þ 4y2 − 8z2 þ 2

ðx2 þ y2 þ z2 þ 1Þ2 ; ð41Þ

which is bounded and well behaved everywhere.
Interestingly, there are two nonconnected surfaces in
3-space on which R vanishes. They work as boundaries
in three-dimensional space separating two qualitatively
different regions, i.e. R < 0 and R > 0. Close to the core
of the fibration (x2 þ y2 ¼ 1; z ¼ 0), R is negative and

FIG. 1. Level sets of the Ricci scalar for the Q ¼ 1 static
Hopfion. Depicted in blue we have surfaces withR < 0, while in
red withR > 0. Surfaces in Green represent the separatrix region
with R ¼ 0. We have removed a wedge in order to reveal the
internal structure of the sets.
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spheres have an excess of area compared to Euclidean
spheres. Conversely, as one travels along the z axis, R
becomes positive at some point and spheres appear to have
a deficit of area compared to Euclidean spheres. A direct
calculation shows that two global maxima exist for the
points ð0; 0;� ffiffiffiffiffiffiffiffi

3=2
p Þ while a global minima exists for the

point (0,0,0). In Fig. 1 it is depicted the level sets of
the Ricci scalar, the core of the fibration (ring) and the
preimage of the north pole (z axis).
Also, the static Hopfion scatter the rays nontrivially. The

closer to the Hopfion, the greater the bending of rays—just
like using denser materials to make optical lenses results in
a greater amount of refraction. However, there is a striking
novelty here: as the soliton carry a topological invariant,
the effective metric also carries this number implicitly,
“warping space” in a qualitatively different way for differ-
ent values of Q. In this sense, different fibrations corre-
sponding to different values of Q will act as different

nontrivial gravitational lenses for magnifying, distorting
and refocusing distant “objects” (sources).
Let us investigate how effective geodesics behave in

some specific situations. Starting with a “source” located at
the point (3,0,0) we have analyzed several emanating
geodesics with initial tangent vectors lying in the plane
z ¼ 0 at time t ¼ 0. Solving the system (32) and (33)
numerically for n ¼ 314 geodesics with 0 < t < 8 we
obtained the “disk” represented in Fig. 2. We see that,
for sufficiently small times, the disk is nearly flat and
tangent to the plane. The same is valid for geodesics
traveling in the opposite direction of the Hopfion. However,
when geodesics approach the core of the fibration, drastic
distortions emerge, scattering some of them upwards and

FIG. 2. Geodesic disks centered at the point (3,0,0). The
captured process was made using the Runge-Kutta method, with
time interval 0 < t < 8. Colors represent disks of different radii
associated with the values of the parameter t.

FIG. 3. Defocusing of geodesics in the region with R < 1 and
separatrix (green) with R ¼ 0.

FIG. 4. Scattering of incoming geodesics emanating from an
extended unidimensional source of Euclidean length 10. The
captured process was made using the Runge-Kutta method, with
time interval for 0 < t < 15.

FIG. 5. Scattering of incoming geodesics emanating from an
extended unidimensional source. The captured process was made
using the Runge-Kutta method for 0 < t < 15.
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others downwards. This is in contrast with gravitational
lensing in general relativity due to a spherically symmetric
static mass. In the latter case, null geodesics initially lying
in the plane stay in the plane forever.
Geometrically speaking, the disks presented in Fig. 2 all

have an excess of area (and perimeter) as compared to
Euclidean disks with the same radii. This result is expected
since they live in the region R < 0 which tends to defocus
geodesic in the average; see Fig. 3.
We have tested this defocusing effect for an extended

unidimensional source characterized by x ¼ 5;−5 < y < 5;

z ¼ 0. For this case the number of geodesics is n ¼ 200
while 0 < t < 15. According to Fig. 4 similar results occur.
Another interesting example is the extended unidimen-
sional source characterized by x ¼ 5; y ¼ 0;−5 < z < 5.
This is effectively the same as rotating by π=2 our last
“experiment.” Here, the initial geodesics lie in the plane
y ¼ 0 and are initially parallel. A subset of these geodesics
are shown in Fig. 5.
Let us finally consider geodesics emanating from the

region R > 0. In this region, the curvature of three-
dimensional space due to the Hopfion tends to focus the
curves instead. Starting with geodesics emanating from the
point (0,0,5) and initially making an Euclidean angle of π=4
with the z axis we see that they first converge, diverge for a
while and converge again to meet at the point ð0; 0;−5Þ; see
Fig. 6. Note that for these curves, the Hopfion behaves as a
convergent lens for the effective geodesics.
As a last example we consider a pencil of geodesics

initially parallel to the z axis. Interestingly, they pass
through the core of the fibration yielding the pattern shown
in Fig. 7.

VII. CONCLUSIONS

The net result of this paper is the derivation of an
effective metric description of wavy disturbances in the
Nicole model. As is well known, this model is a non-
polynomial generalization of the Oð3Þ σ model and
supports a Hopf-type fibration as an exact finite-energy
solution to the nonlinear equations of motion. In Sec. III,
we have discussed the hyperbolicity properties of the model
and showed, in particular, that the evolution of high-
frequency excitations about all possible static solutions
is well behaved. Roughly, this means that, as long as the
background solutions are static, the linearized equations
will entail a definite speed of propagation independently of
spacetime position or direction of propagation. Section IV
discusses the causal replacement of the model and shows
that it is governed by a fouth-order Fresnel-like dispersion
relation given by (27). Interestingly, this algebraic equation
factorizes and gives rise to two pseudo-Riemannian effec-
tive metrics. One of these metrics is given in terms of the
background map and depends implicitly on the topological
invariant (Hopf index). This last result gives rise to an
exotic structure for the causal replacement associated with
the model. In order to explore our results further we have
studied the behavior of several effective geodesics about the
exact Hopf fibration and showed that they behave in a quite
unexpected way. As the mathematical structure of several
theories supporting topological solitons is basically the
same as that of the Nicole model, our results strongly
suggest that similar effects are very likely to occur in
effective field theories such as the Skyrme model of pions.
It would be interesting to have any deeper insight into this
last problem.

FIG. 6. Pencil of 12 effective geodesics being focused by the
Hopfion. Here we have considered geodesics emerging from the
point (0,0,5) and having an initial angle of π=4 with the z axis.

FIG. 7. Illustration of 12 effective geodesics being focused by
the Hopfion in an exotic way. Note that two distinct focal points
emerge.
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APPENDIX EFFECTIVE GEODESICS

Here we give explicit formulas for the geodesic equations and briefly summarize the Runge-Kutta method. In Cartesian
coordinates, mij is given by the matrix

0
BBBBB@

2ðx4þ2x2ðy2þ2z2þ1Þ−4xyzþy4þ2y2ðz2þ2Þþðz2þ1Þ2Þ
3ðx2þy2þz2þ1Þ2 − 4ðy−xzÞðxþyzÞ

3ðx2þy2þz2þ1Þ2
2ðy−xzÞðx2þy2−z2−1Þ

3ðx2þy2þz2þ1Þ2

− 4ðy−xzÞðxþyzÞ
3ðx2þy2þz2þ1Þ2

2ðx4þ2x2ðy2þz2þ2Þþ4xyzþy4þy2ð4z2þ2Þþðz2þ1Þ2Þ
3ðx2þy2þz2þ1Þ2 − 2ðxþyzÞðx2þy2−z2−1Þ

3ðx2þy2þz2þ1Þ2
2ðy−xzÞðx2þy2−z2−1Þ

3ðx2þy2þz2þ1Þ2 − 2ðxþyzÞðx2þy2−z2−1Þ
3ðx2þy2þz2þ1Þ2 1 − 4ðz2þ1Þðx2þy2Þ

3ðx2þy2þz2þ1Þ2

1
CCCCCA

which yields the geodesic equations

dx2

dt2
−
4

3

1

ð1þ x2 þ y2 þ z2Þ4 ð−ðxzþ yÞðz3ðx2 þ 2y2 þ 2Þ − 3xyðx2 þ y2 þ 1Þ þ zð−2x4 − x2ðy2 þ 1Þ þ y4 þ 4y2 þ 1Þ

þ xyz2 þ z5ÞÞ
�
dx
dt

�
2

þ 4

3

1

ð1þ x2 þ y2 þ z2Þ4 ð−ðxzþ yÞð−2z2ðx2 þ 2y2 þ 3Þ þ 2xyzð3x2 þ 3y2 þ 5Þ

− 3ðx2 þ 1Þ2 þ 2xyz3 þ 3y4 − 3z4Þ
�
dx
dt

��
dy
dt

�
þ 4

3

1

ð1þ x2 þ y2 þ z2Þ4 ððxzþ yÞð−2xz2ðx2 þ y2 − 1Þ

− 4yzð2x2 þ 2y2 þ 1Þ þ 3xðx2 þ y2 þ 1Þ2 − xz4 − 4yz3Þ
�
dx
dt

��
dz
dt

�
þ 4

3

1

ð1þ x2 þ y2 þ z2Þ4 ðxz
4ð2x2 þ y2 − 1Þ

þ 4yz3ðx2 þ y2 þ 2Þ þ 3xðy2 − 1Þðx2 þ y2 þ 1Þ þ xz2ðx4 − ðx2 þ 5Þy2 þ x2 − 2y4 − 5Þ þ 2yzð2x4 þ x2ðy2 þ 5Þ

− y4 þ y2 þ 2Þ þ xz6 þ 4yz5Þ
�
dy
dt

�
2

−
2

3

1

ð1þ x2 þ y2 þ z2Þ4 ð3x
6 − 6x5yzþ x4ð3y2 − z2 þ 15Þ

þ 4x3yzð−3y2 þ z2 − 7Þ þ x2ð−3y4 þ 18y2ðz2 þ 1Þ þ z4 þ 10z2 þ 9Þ − 2xyzð3y4 − 2y2ðz2 − 7Þ − z4 þ 6z2 þ 7Þ

− 3y6 þ y4ð19z2 þ 3Þ þ y2ðz2 þ 1Þð11z2 þ 3Þ − 3ðz2 þ 1Þ3Þ
�
dy
dt

��
dz
dt

�

−
2

3

1

ð1þ x2 þ y2 þ z2Þ4 ð−xz
4ð7x2 þ 7y2 þ 15Þ − 4yz3ðx2 þ y2 − 3Þ

þ 3xðx2 þ y2 − 1Þðx2 þ y2 þ 1Þðx2 þ y2 þ 3Þ − xz2ð9x4 þ 2x2ð9y2 þ 5Þ þ 9y4 þ 10y2 þ 21Þ

− 2yzð9x4 þ 2x2ð9y2 þ 1Þ þ 9y4 þ 2y2 − 3Þ − 3xz6 þ 6yz5Þ
�
dz
dt

�
2

¼ 0; ðA1Þ

dy2

dt2
þ 4

3

1

ð1þ x2 þ y2 þ z2Þ4 ðyz
4ðx2 þ 2y2 − 1Þ − 4xz3ðx2 þ y2 þ 2Þ þ 3ðx2 − 1Þyðx2 þ y2 þ 1Þ

þ yz2ð−2x4 − x2ðy2 þ 5Þ þ y4 þ y2 − 5Þ þ 2xzðx4 − ðx2 þ 5Þy2 − x2 − 2y4 − 2Þ − 4xz5 þ yz6Þ
�
dx
dt

�
2

−
4

3

1

ð1þ x2 þ y2 þ z2Þ4 ððx − yzÞð3x4 − 2z2ð2x2 þ y2 þ 3Þ − 2xyzð3x2 þ 3y2 þ 5Þ − 2xyz3

− 3ðy2 þ 1Þ2 − 3z4Þ
�
dx
dt

��
dy
dt

�
−
2

3

1

ð1þ x2 þ y2 þ z2Þ4 ð3x
6 − 6x5yzþ x4ð3y2 − 19z2 − 3Þ þ 4x3yzð−3y2 þ z2 − 7Þ

− x2ð3y4 þ 18y2ðz2 þ 1Þ þ 11z4 þ 14z2 þ 3Þ − 2xyzð3y4 − 2y2ðz2 − 7Þ − z4 þ 6z2 þ 7Þ − 3y6 þ y4ðz2 − 15Þ

− y2ðz2 þ 1Þðz2 þ 9Þ þ 3ðz2 þ 1Þ3Þ
�
dx
dt

��
dz
dt

�
−
4

3

1

ð1þ x2 þ y2 þ z2Þ4 ððx − yzÞðz3ð2x2 þ y2 þ 2Þ

þ 3xyðx2 þ y2 þ 1Þ þ zðx4 − ðx2 þ 1Þy2 þ 4x2 − 2y4 þ 1Þ − xyz2 þ z5Þ
�
dy
dt

�
2
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−
4

3

1

ð1þ x2 þ y2 þ z2Þ4 ððx − yzÞð−2yz2ðx2 þ y2 − 1Þ þ 4xzð2x2 þ 2y2 þ 1Þ þ 3yðx2 þ y2 þ 1Þ2 þ 4xz3

− yz4Þ
�
dy
dt

��
dz
dt

�
−
1

3

1

ð1þ x2 þ y2 þ z2Þ4 ð−yz
4ð7x2 þ 7y2 þ 15Þ þ 4xz3ðx2 þ y2 − 3Þ

þ 3yðx2 þ y2 − 1Þðx2 þ y2 þ 1Þðx2 þ y2 þ 3Þ − yz2ð9x4 þ 2x2ð9y2 þ 5Þ þ 9y4 þ 10y2 þ 21Þ

þ 2xzð9x4 þ 2x2ð9y2 þ 1Þ þ 9y4 þ 2y2 − 3Þ − 6xz5 − 3yz6Þ
�
dz
dt

�
2

¼ 0; ðA2Þ

dz2

dt2
−
2

3

1

ð1þ x2 þ y2 þ z2Þ4 ðx
6zþ x4zð3y2 þ 9z2 þ 13Þ þ 4x3yðz2 þ 3Þ þ x2zð3y4 þ 10y2ðz2 þ 1Þ þ 3z4 þ 14z2 þ 11Þ

þ 4xyðy2ðz2 þ 3Þ − z4 þ 2z2 þ 3Þ þ zðy6 þ y4ðz2 − 3Þ − y2ðz2 þ 1Þðz2 þ 9Þ − ðz2 þ 1Þ3Þ
�
dx
dt

�
2

þ 8

3

1

ð1þ x2 þ y2 þ z2Þ4 ðx
4ðz2 þ 3Þ − 4x3yzðz2 þ 2Þ þ x2ð−z4 þ 2z2 þ 3Þ − 2xyzð2y2ðz2 þ 2Þ þ z4 þ 6z2 þ 5Þ

− y2ðy2ðz2 þ 3Þ − z4 þ 2z2 þ 3ÞÞ
�
dx
dt

��
dy
dt

�
þ 4

3

1

ð1þ x2 þ y2 þ z2Þ4 ððx
2 þ y2 − z2 − 1Þðxz2ð4x2 þ 4y2 þ 5Þ

þ yzðx2 þ y2 − 1Þ þ 3xðx2 þ y2 þ 1Þ þ 2xz4 − yz3Þ
�
dx
dt

��
dz
dt

�
−
2

3

1

ð1þ x2 þ y2 þ z2Þ4 ðx
6zþ x4zð3y2 þ z2 − 3Þ

− 4x3yðz2 þ 3Þ − x2zð−3y4 − 10y2ðz2 þ 1Þ þ z4 þ 10z2 þ 9Þ − 4xyðy2ðz2 þ 3Þ − z4 þ 2z2 þ 3Þ

þ zðy6 þ y4ð9z2 þ 13Þ þ y2ðz2 þ 1Þð3z2 þ 11Þ − ðz2 þ 1Þ3ÞÞ
�
dy
dt

�
2

−
4

3

1

ð1þ x2 þ y2 þ z2Þ4 ðð−1þ x2 þ y2 − z2Þð−3yð1þ x2 þ y2Þ þ xð−1þ x2 þ y2Þz

− yð5þ 4x2 þ 4y2Þz2 − xz3 − 2yz4ÞÞ
�
dy
dt

��
dz
dt

�

−
2

3

1

ð1þ x2 þ y2 þ z2Þ4 ðzðx
2 þ y2Þðx2 þ y2 − z2 − 1Þð3x2 þ 3y2 þ z2 þ 1ÞÞ

�
dz
dt

�
2

¼ 0: ðA3Þ

In order to solve these equations numerically we recall that a system of ODE of order n,

dny
dtn

¼ f

�
t; y; y0;…;

dyn−1

dt

�
; ðA4Þ

can be reduced to a first order system as follows. Let u ¼ ðu0;…; un−1Þ, with

u0 ¼ y; uj ¼
dyj

dt
; ðA5Þ

where j ¼ 1;…; n − 1. Then, (A4) takes the form

du
dt

¼ ðu1;…; un−1; fðt; u0;…; un−1ÞÞ ¼ gðt; uÞ:

If y take values in Rk, then u take values in Rkn. In our case n ¼ 2 and we have

u0ðtÞ ¼ gðt; uðtÞÞ;
uðt0Þ ¼ u0

�
; t ∈ ½t0; tf�: ðA6Þ

We then consider a partition of the interval ½t0; tf�, i.e.

t0 < t1 < … < tN ¼ tf
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and the corresponding approximations un ≈ uðtnÞ, with
n ¼ 1; 2;…; N. Then, the explicit Runge-Kutta methods of
s stages are

k1 ¼ gðtn; unÞ;
k2 ¼ gðtn þ c2hn; un þ hna21k1Þ;
k3 ¼ gðtn þ c3hn; un þ hnða31k1 þ a32k2ÞÞ;
..
. ¼ ..

.

ks ¼ gðtn þ cshn; un þ hnðas1k1 þ � � � þ as;s−1ks−1ÞÞ;
unþ1 ¼ un þ hnðb1k1 þ � � � þ bsksÞ: ðA7Þ
This method can be written as Butcher tableau

0 0

c2 a21 a32
..
. ..

. ..
. . .

.

cs as1 as2 … as;s−1

b1 b2 … bs−1 bs

In our case, we have used the classic Runge-Kutta
method, i.e.

0 0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

:
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