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We show that certain solutions to the linearized Einstein equation can—by the application of a particular
type of linearized gauge transformation—be straightforwardly transformed into solutions of the exact
Einstein equation. In cases with nontrivial matter content, the exact stress-energy tensor of the transformed
metric has the same eigenvalues and eigenvectors as the linearized stress-energy tensor of the initial
approximation. When our gauge exists, the tensorial structure of transformed metric perturbations
identically eliminates all nonlinearities in Einstein’s equation. As examples, we derive the exact Kerr
and gravitational plane wave metrics from standard harmonic-gauge approximations.
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I. INTRODUCTION

Perturbation theory in general relativity has by now
reached an impressive degree of development. The context
in which it is perhaps most mature is the post-Newtonian
approximation, which assumes small perturbations to a
Minkowski metric, weak stresses, and slow motion—at
least in regions exterior to any compact bodies which may
be present [1–3]. With these assumptions, one essentially.1

has a systematic algorithm which can be used to generate as
many terms as desired in approximate solutions to
Einstein’s equation. While considerable calculational effort
is required to obtain each new term, many of the underlying
conceptual issues have now been resolved. Despite this,
there are various senses in which the resulting approx-
imations might not be optimal: They may fail to incorporate
all available information, the chosen variables might be
poorly adapted to the physical degrees of freedom, and so
on. Similar comments apply, of course, to perturbative
methods used in almost every branch of physics.
For these reasons and others, it can be useful to apply

“convergence acceleration” or “resummation” techniques,
which attempt to improve the overall quality of an
approximation by combining information from one or
more systematic expansions together with physically moti-
vated guesses for the behavior of the higher-order terms.
Some such techniques—Richardson extrapolation, Shanks

transforms, Borel summation, Padé approximants, and so
on—adopt a generic approach, taking into account mainly
the mathematical structure of whichever partial sums
happen to be available [5,6]. Whether or not any of these
techniques might be useful in a particular problem can
depend on the presence and locations of poles, whether the
higher-order coefficients are monotonic or oscillatory, or
other qualitative features. They do not, however, depend on
details of the underlying physics. As a consequence, these
types of techniques can improve approximations in a wide
range of physically dissimilar problems.
Other resummation techniques are more specialized,

attempting to directly take advantage of the detailed
physical or mathematical features specific to the problem
at hand. Perhaps the most developed of these techniques in
general relativity are incorporated into the effective-one-
body approach [7,8], which uses some of the afore-
mentioned generic resummation techniques, physical
arguments, and information from the extreme-mass-ratio
and post-Newtonian approximations to motivate a scaffold
upon which a “complete” solution to the black hole two-
body problem might be built. One finds, e.g., that at least at
low orders, the post-Newtonian Hamiltonians which
describe the conservative dynamics of two black holes
simplify considerably after applying the resummations and
variable redefinitions associated with the effective-one-
body approach.
These results and others provide strong evidence that

existing systematic approximation schemes in general
relativity can be improved. While various techniques have
already been applied in different contexts, it is mostly
unclear why or when any of these techniques work. A
systematic understanding is severely lacking, and progress
is made largely by ad hoc experimentation. It appears
useful at this stage to consolidate what has been learned,
and to attempt a more systematic approach in which
improved approximation techniques are obtained directly
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1Nonsystematic aspects remain if one insists on using point

particles in the post-Newtonian approximation. These objects do
not make sense in any generic way in standard general relativity
[4], and forcing them into the approximation is accomplished in
practice [1] by supplementing the theory with additional struc-
ture, namely regularization procedures. While there are often
physical motivations for these procedures, ambiguities remain
and a systematic understanding from first principles is lacking.
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from the underlying theory. The goal of this paper is to
present one new result which might eventually be incorpo-
rated into the development of just such a formalism.
Our discussion can be interpreted in the context of

gauge choice. Existing approaches to perturbation theory
in general relativity adopt particular gauges mainly to
simplify calculations or to provide more transparent physi-
cal interpretations, but not to improve accuracy; gauges are
typically viewed as having no true physical content. While
this is indeed true for exact solutions, it is not necessarily so
in perturbation theory. Two approximations which are
gauge-equivalent at a given perturbative order might have
higher-order errors which are quite different. It would
clearly be advantageous to identify a gauge which system-
atically minimizes these higher-order errors.
This paper provides just such a gauge, at least for a

certain class of metrics. More precisely, we show that when
it exists, the application of a particular first-order gauge
transformation eliminates all higher-order errors; first-order
approximations are transformed into exact solutions to
Einstein’s equation. While the technique applies only to
very special metrics, it does so for some of the most
important examples which are known. In particular, it
works for Kerr black holes. It does not apply directly
for the more complicated example of a black hole binary,
although much of the strong-field region in such a system is
“close” to Kerr, and one might expect that the majority of
the strong-field behavior—which is otherwise difficult to
capture in perturbation theory—might be taken into
account via a scheme inspired by the one described here.
Interpreted somewhat differently, our result draws atten-

tion to the fact that small parameters are not the only
structures which can simplify approximations in general
relativity; the details of a perturbation’s tensorial structure
can also be essential. The Lorentzian nature of relativistic
metrics allows, for example, the presence of nontrivial
perturbations which square to zero. These behave much
more simply in Einstein’s equation than more general
perturbations, and are precisely the cases highlighted here.
It appears fortuitous that perturbations with this mathemati-
cal structure arise not merely as curiosities, but also as
descriptions for some of the most physically important
spacetimes which are known.
Section II reviews linearized perturbation theory in

general relativity, while Sec. III recalls several results
essential to our discussion regarding the so-called Kerr-
Schild class of metrics [9,10]. Section IV then describes
how to generate exact solutions by applying gauge trans-
formations to approximate solutions, how the matter
content in the approximate and transformed metrics is
related, and how conservation laws work in this context.
Section V provides some simple examples of this tech-
nique, generating the exact Kerr and gravitational plane
wave solutions, as well as static, spherically-symmetric
metrics. Lastly, Sec. VI speculates on how our results might

be incorporated into a more general perturbative formalism
which is no longer restricted to special types of
perturbations.
Our sign and index conventions follow those of Wald

[11]. We use, for example, a; b;… for abstract indices,
μ; ν;… for spacetimes coordinate indices, and i; j;… for
spatial coordinate indices. Riemann tensors are defined
such that 2∇½a∇b�ωc ¼ Rabc

dωd for any 1-form ωa. We
often work with two or more metrics, but raise and lower
indices only using background metrics. Also note that
although many of our results are easily generalized, we
restrict for concreteness only to four-dimensional
spacetimes.

II. LINEARIZED GENERAL RELATIVITY

Our first step is to review perturbation theory in general
relativity in its simplest, linearized form. Consider some
well-behaved background metric gab, and the 1-parameter
family of deformations

gðϵÞab ¼ gab þ ϵhab; ð1Þ

where hab is fixed and ϵ ≥ 0 is an arbitrary parameter

which is assumed to be sufficiently close to zero that gðϵÞab
remains invertible in all regions of interest. We now allow
for a (possibly vanishing) cosmological constant Λ and use
Einstein’s equation

RðϵÞ
ab −

1

2
gðϵÞabR

ðϵÞ þ ΛgðϵÞab ¼ 8πTðϵÞ
ab ð2Þ

to associate a 1-parameter family of stress-energy tensors

TðϵÞ
ab with the 1-parameter family of metrics gðϵÞab . A

linearized stress-energy perturbation for this family may
be defined by

T ab ≡ ∂ϵT
ðϵÞ
ab jϵ¼0; ð3Þ

and a standard computation shows that

16πT ab ¼
�
δcaδ

d
b −

1

2
gabgcd

�
½∇fð2∇ðchdÞf −∇fhcdÞ

−∇c∇dhff� þ gabhcdRcd þ ð2Λ − RÞhab; ð4Þ

where Rab ¼ Rð0Þ
ab , R ¼ gabRab, and indices have been

raised and lowered using the background metric. For any
pair ðgab; habÞ, the right-hand side of this expression can be
used to find TðϵÞ

ab ¼ Tab þ ϵT ab þ… up to terms which are
quadratic and higher order in ϵ.
In the context of this paper, it is more useful to consider

the mixed-index stress-energy tensor, the linearization of
which we denote by
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Tb
a½h�≡ ∂ϵðTðϵÞ

ac gbcðϵÞÞjϵ¼0
¼ T acgbc − Tachbc: ð5Þ

The notation on the left-hand side of this equation suggests
that Tb

a½h� is to be viewed as a linear operator acting on
arbitrary rank-2 symmetric tensor fields hab. Using (4), it is

16πTb
a ¼

�
δcagbd −

1

2
δbagcd

�
½∇fð2∇ðchdÞf −∇fhcdÞ

−∇c∇dhff� þ ðδbahcd − 2δcahbdÞRcd; ð6Þ

which depends on Λ only implicitly via Rab.
One may of course continue to higher orders in pertur-

bation theory by considering more derivatives in ϵ, in
which case one would typically add ϵ2uab þ ϵ3vab þ… to
the right-hand side of (1). It is nevertheless sufficient for
our discussion to restrict attention only to first-order
perturbations.

III. KERR-SCHILD METRICS

Einstein’s equation is in general nonlinear, meaning that
the linearized mixed-index stress-energy operator Tb

a½h�
generically describes stress-energy tensors associated with
gab þ ϵhab only through first order in ϵ. Nevertheless, there
exist nontrivial perturbations for which all higher-order
corrections vanish identically. One class in which this is
known to occur (in several senses) is for Kerr-Schild
perturbations [12–16]. A generalized2 Kerr-Schild pertur-
bation is one with the form

hKSab ≡ Vlalb; ð7Þ

where V is some scalar and the 1-form la must be null with
respect to the background gab. This latter condition implies

that la must also be null with respect to gðϵÞab ¼ gab þ ϵhKSab ,

gabðϵÞlalb ¼ gablalb ¼ 0: ð8Þ

Before describing how Kerr-Schild perturbations linearize
Einstein’s equation, we first remark on their physical and
geometrical interpretations.
Geometrically, Kerr-Schild perturbations deform the light

cones of gðϵÞab with respect to those of gab. Fixing any event p
on the manifoldM, the two sets of light cones in the tangent
space TpM coincide along the ray proportional to
laðpÞ≡ gabðϵÞlb ¼ gablb. Unless hKSab ðpÞ ¼ 0, the light

cones associated with the twometrics are otherwise distinct;
see Fig. 1. Given an arbitrary vector va ∈ TpM, note that

gðϵÞabv
avb ¼ gabvavb þ ϵVðlavaÞ2: ð9Þ

If va is causal with respect to the background (i.e., if
gabvavb ≤ 0), it is guaranteed to remain causal with respect
to the perturbed metric whenever VðpÞ ≤ 0. Similarly, all
vectors which are spacelike with respect to the background
remain spacelike whenever VðpÞ ≥ 0. Note, however, that
these conditions are sufficient, not necessary.
Another geometric property of Kerr-Schild perturbations

is that they identify points in the perturbed and unperturbed
spacetimes in such a way that volume elements are exactly
preserved:

ϵabcd ¼ ϵabcd: ð10Þ

Moreover, the inverse gabðϵÞ of a Kerr-Schild metric is given
by its linearization. Without approximation,

gabðϵÞ ¼ gab − ϵVlalb: ð11Þ

These features follow from the fact that every hKSab is
trace-free and also a “square root of zero:”

gabhKSab ¼ gbchKSab h
KS
cd ¼ 0: ð12Þ

It is the Lorentzian signature of spacetime which allows for
nontrivial 1-forms la that square to zero, and nontrivial
metric perturbations hKSab that do the same.
Regardless, once gab is fixed, varying la and V allows

for only three degrees of freedom. It is therefore clear that
not all spacetimes can be put into Kerr-Schild form. This
may be seen more concretely by noting that under mild
assumptions, la must be a repeated principal null direction
for the perturbed metric [9], which can exist only for a
small set of spacetimes. Although Kerr-Schild metrics
describe only a small class of spacetimes in any particular
background, those that they do describe can nevertheless be
physically important. If the background is flat, Kerr-Schild
perturbations can be used to generate Kerr-Newman black
holes, pp-waves—which include gravitational plane waves
as special cases—Vaidya’s collapsing shells, Kinnersley’s

FIG. 1. Light cones in a tangent space TpM associated with ḡab
and gðϵÞab ¼ ḡab þ ϵVlalb. They coincide along the ray generated
by laðpÞ, but otherwise differ when Vla ≠ 0. The cone
associated with ḡab is the inner one when VðpÞ < 0 or the outer
one when VðpÞ > 0.

2The original Kerr-Schild ansatz considered metrics with the
form ηab þ ϵVlalb, where ηab is flat [10]. The metrics which
result when replacing ηab by a more general background ḡab are
often described as being of generalized Kerr-Schild type [9,17].
We mostly ignore this distinction.
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photon rocket, (anti) de Sitter spacetimes, and more [9,18].
Incidentally, the Kerr-Schild structure has also been used to
find “universal metrics” which are solutions not only in
general relativity, but also in a wide class of modified
theories of gravity [19,20].
Without specifying any particular gab, we now evaluate

the exact Einstein equation for the 1-parameter family of

Kerr-Schild metrics gðϵÞab . This first requires the difference

Cc
ab ¼

1

2
gcdð2∇ðagbÞd −∇dgabÞ ð13Þ

between the connections associated with gab and gðϵÞab ,
which is defined, e.g., so that ∇aωb ¼ ∇aωb − Cc

abωc
for any 1-form ωa. Applying (7), one finds that

gcdCd
ab ¼ ϵ

�
∇ðahKSbÞc −

1

2
∇chKSab

�
; ð14Þ

which is only linear in ϵ. Additionally,

Cb
ab ¼ Cc

ablalb ¼ Cc
ablclb ¼ 0: ð15Þ

These equations imply that the acceleration, expansion, and
twist of the null congruence defined by la are independent
of ϵ. Using ∇a and ∇a to denote the covariant derivatives

respectively associated with gab and gðϵÞab ,

lb∇bla ¼ lb∇bla; ∇ala ¼ ∇ala; ð16Þ

∇½alb� ¼ ∇½alb�: ð17Þ

The first of these equations implies that if the orbits of la

are (null) geodesics in the background metric, then they are
also null geodesics in the deformed metric. The two metrics
can therefore share light rays. Indeed, this occurs in all
cases we consider in detail; see (22) below.
Given the deformed connectionCc

ab, the deformed Ricci
tensor now follows from

Rab ¼ Rab þ∇cCc
ab − Cd

bcCc
ad; ð18Þ

where (15) has been used to eliminate terms involving
Cb

ab. Substituting (14) into this equation results in an
expression which is at most cubic in ϵ. Although this is
already relatively simple, the cubic component may be
eliminated by raising one index. Applying Einstein’s
equation, the stress-energy tensors of the background
and deformed spacetimes are exactly related by

TðϵÞ
ac gbc ¼ Tacgbc þ ϵTb

a½hKS� þ ϵ2Sb
a½hKS� ð19Þ

for Kerr-Schild perturbations, where Tb
a½h� is given by (6)

and

8πSb
a½h�≡

�
δbcδ

d
a −

1

2
δbaδ

d
c

��
∇fðhk½f∇khc�dÞ

þ 1

2
∇fhck∇dhkf

�
: ð20Þ

Note that Sb
a½h� returns the correct second-order stress-

energy tensor only for perturbations with Kerr-Schild form.
The analogous operator for more general perturbations
involves additional terms.
Continuing, (19) implies that Einstein’s equation is at

worst quadratic in hKSab for general Kerr-Schild perturba-
tions with arbitrary matter content. Linearity may be
achieved by supposing that

Tb
a½hKS�lalb ¼ 0; ð21Þ

which implies that Vðla∇alcÞðlb∇blcÞ ¼ 0. If V ≠ 0, it
follows that the orbits of la must be geodesic in the sense
that there exists a scalar field ϕ such that

lb∇bla ¼ lb∇bla ¼ ϕla: ð22Þ

Assuming this, a direct calculation using (20) shows that

Sb
a½hKS� ¼ 0: ð23Þ

The mixed-index stress-energy tensor therefore linearizes
for Kerr-Schild perturbations constructed from geodesic
null congruences. This result was originally found in flat
backgrounds by Gürses and Gürsey [13], and was later
generalized by Gergely [12]. From a slightly different
logical perspective, Xanthopoulos [14] has shown that for
(not a priori geodesic) vacuum Kerr-Schild deformations
of vacuum backgrounds, the geodesic condition is implied
and linearity is again achieved. Other variations of this have
been discussed as well [15,16]. In all nonvacuum cases,
simple results occur only for the mixed-index form of
Einstein’s equation. Advantages of this circumstance are
explained in Sec. IVA below.

IV. GENERATING EXACT SOLUTIONS FROM
APPROXIMATE ONES

Now that we have reviewed the linearization of
Einstein’s equation which occurs for (geodesic) Kerr-
Schild perturbations, it would seem natural to use that
linearity to solve Einstein’s equation3 As they stand,
however, results (19) and (23) are considerably less power-
ful than they might initially appear. They do not imply that,
e.g., that Kerr metrics with different origins can be added in

3A great deal is already known regarding vacuum Kerr-Schild
metrics [9,10,21,22]. Nevertheless, our interest here is not in the
details of these solutions, but rather in methods which might
generalize even for geometries which are not exactly Kerr-Schild.
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a Minkowski background. This is because the sum of two
nontrivial Kerr-Schild perturbations hKSab ¼ Vlalb and
h0KSab ¼ V 0l0

al0
b is not itself Kerr-Schild unless la ∝ l0

a.
The null 1-forms associated with two separated Kerr black
holes are not proportional, so linearity results cannot be
applied. Nevertheless, there are a few interesting cases in
which the relevant 1-forms are proportional. One can, for
example, use linearity to explain why there is a sense in
which vacuum pp-waves propagating in the same direction
satisfy exact linear superposition. As a special case, this
predicts the known result [23] that parallel (but not
antiparallel) beams of light do not attract. Also,
Minkowski perturbations generating de Sitter and
Schwarzschild metrics may be added to recover the exact
Schwarzschild-de Sitter spacetime.
These results are rather special. The simplicity associated

with the linearized Einstein equation is strongly tempered
by the nontrivial algebraic constraints imposed by demand-
ing that metric perturbations be in the Kerr-Schild form (7).
Indeed, the vast majority of detailed calculations in the
literature which involve Kerr-Schild metrics have been
performed using the rather different set of tools associated
with Newman-Penrose or related formalisms. Stated some-
what differently, the “gauge” implied by requiring that a
metric perturbation be of Kerr-Schild type is not a par-
ticularly convenient one. It would be significantly simpler
to obtain a linearized perturbation in a gauge which is
(i) “unconstrained” in a reasonable sense, and (ii) for which
systematic computational methods are known. We now
show that in some cases, the errors introduced by working
in a convenient gauge can at the end of a calculation be
eliminated merely by applying an appropriate gauge
transformation.
Consider some particular, not necessarily Kerr-Schild

hab which satisfies the linearized Einstein equation in the
sense that

Tb
a½h� ¼ tba ð24Þ

for fixed tba. Also suppose that there exists a gauge vector
ξa which transforms the metric to Kerr-Schild form:

hab þ Lξgab ¼ hKSab ¼ Vlalb: ð25Þ

We now show that the full, nonlinear matter content

associated with the gauge-transformed metrics gðϵÞab ¼ gab þ
ϵhKSab is essentially identical to the linearized matter content
of the (arbitrary-gauge) metrics gab þ ϵhab.
Again regarding Tb

a½h� as a linear map on symmetric,
rank-2 tensor fields, we may consider its behavior under
general first-order gauge transformations hab → habþ
LΞgab. Using (6), one finds that for any Ξa,

Tb
a½hþ LΞg� ¼ Tb

a½h� þ LΞðTacgbcÞ: ð26Þ

It follows that as usual in perturbation theory [24], tba is
invariant with respect to all first-order gauge transforma-
tions whenever the background stress-energy Tacgbc has
the form ðconstantÞ × δba. Even if tba does depend on
gauge, it nevertheless follows from (19), (21), (23), and
(26) that if

½tba þ LξðTacgbcÞ�lalb ¼ 0 ð27Þ

for some gauge vector ξa which satisfies (25), the exact
mixed-index stress-energy tensor of the gauge-transformed

metric gðϵÞab ¼ gab þ ϵVlalb is equal to

TðϵÞ
ac gbcðϵÞ ¼ ½Tacgbc þ ϵLξðTacgbcÞ� þ ϵtba: ð28Þ

This is our main result. We now consider some of its
consequences.
Equation (28) is most easily interpreted if hab is a

vacuum perturbation to a vacuum background, in which
case tba ¼ Tab ¼ 0. All terms on the right-hand side then

vanish, implying that the gauge-transformed metric gðϵÞab
satisfies the exact vacuum Einstein equation. Even though
gab þ ϵhab is necessarily vacuum only through first order in
ϵ, the errors in this metric exactly cancel those in the first-
order approximation hab → hab þ Lξgab to a “true” gauge
transformation. Section V provides explicit examples
which illustrate how this result can be used to obtain exact
vacuum solutions from approximate ones.
The class of “well-behaved” Kerr-Schild spacetimes

which are vacuum, asymptotically-flat perturbations on
Minkowksi spacetime are unfortunately quite small—
essentially just the Kerr solutions [25]. A somewhat wider
class of interesting applications arise with the consideration
of nontrivial matter fields. Suppose then that Tab ¼ 0, but
allow for nontrivial matter content in the perturbation. If
tbalalb ¼ 0, we then have that

TðϵÞ
ac gbcðϵÞ ¼ ϵtba; ð29Þ

so the mixed-index matter content of the gauge-
transformed metrics gab þ ϵVlalb is exactly equal to the
linearized matter content of the approximate metrics
gab þ ϵhab.
One slight generalization which can sometimes be useful

is to assume

Tab ¼ λgab ð30Þ

for some constant λ, which may be interpreted as allowing
for nontrivial dark energy in the background metric, or
alternatively for different cosmological constants in the
background and perturbed spacetimes. Regardless, (27) and
(28) imply that if tbalalb ¼ 0,
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TðϵÞ
ac gbcðϵÞ ¼ λδba þ ϵtba: ð31Þ

In each of these cases, our ability to obtain exact
solutions from approximate ones crucially depends on
the existence of some vector field ξa which solves (25).
The aforementioned speciality of Kerr-Schild metrics
implies that such vector fields cannot exist generically.
Nevertheless, there are interesting cases in which appro-
priate gauge vectors may indeed be found.

A. Matter properties

The mixed-index form of results such as (29) provides a
remarkably direct interpretation for the matter fields asso-
ciated with the seed metrics gab þ ϵhab and their gauge-
transformed analogs: At least in vacuum backgrounds, all
eigenvalues and eigenvectors associated with the exact and
linearized stress-energy tensors are identical. Somewhat
more generally, suppose that (31) holds and that there exists
some eigenvalue κ and an associated eigenvector va which
is associated with the linearized, arbitrary-gauge stress-
energy in the sense that

tbava ¼ κvb: ð32Þ

Then

TðϵÞ
ac gbcðϵÞv

a ¼ ðλþ ϵκÞva; ð33Þ

implying that the same eigenvector is also associated with
the transformed metric. The corresponding eigenvalues are
also identical (up to a factor of ϵ) if the background metric
is vacuum, i.e. if λ ¼ 0. Note that in the absence of a unique
metric, it does not make sense to compare eigenvectors
associated with stress-energy tensors whose indices are
both lowered or both raised; these would map vectors into
1-forms, and there is no canonical way to say whether or
not such objects might be “the same.” It is therefore
essential that our result is in a mixed-index form which
avoids any need to identify tangent and cotangent spaces.
Results involving the eigenvectors and eigenvalues of a

stress-energy tensor directly describe its physical properties.
In many cases, eigenvalues can be interpreted as energy
densities and principal pressures, while the corresponding
eigenvectors can describe the rest frame 4-velocities and the
directions associated with the principal pressures. These
interpretations must be applied with caution, however, as
eigenvectors which are, e.g., timelike in the background may
no longer be timelike in the perturbed spacetime.
It follows from (6), (30), and tbalalb ¼ 0 that the la

associated with the Kerr-Schild structure is always an
eigenvector:

ðTðϵÞ
ac gbcðϵÞÞla ∝ lb: ð34Þ

That this eigenvector must be null implies that the matter
content of the spacetime, if nontrivial, must be somewhat
exotic.
Another remark which may be made about our “Kerr-

Schild gauge” is that it provides additional benefits beyond
the ability to solve Einstein’s equation. One of these is that
it can allow for self-consistent discussions of singular
matter sources. While it is often useful to work with
pointlike or stringlike stress-energy tensors in the linearized
theory, doing so in full general relativity is generically
meaningless [4], at least within the context of ordinary
linear distribution theory. Nevertheless, there is a sense in
which exact distributional stress-energy tensors are known
to be consistent within the Kerr-Schild class of metrics [26].
This is essentially a corollary of the linearity result:
Suppose again that hab is some given perturbation—not
necessarily in Kerr-Schild form—and that tba ¼ Tb

a½h� is
distributional. Also suppose that (27) holds, and that there
exists a gauge vector ξa which solves (25). The remapped
metric may then be assigned an exact distributional stress-
energy tensor via (28). Note however that this provides a

well-defined distribution for TðϵÞ
ac gbcðϵÞ, treated as one object,

but not to TðϵÞ
ac alone.

As an example of this, consider the exact Schwarzschild
metrics with masses ϵm as Kerr-Schild perturbations gðϵÞab ¼
ηab þ ϵVlalb to the flat metric ηab. In appropriate
Minkowski coordinates xμ ¼ ðt; xiÞ, the perturbation is
explicitly

V ¼ 2m
r

; lμdxμ ¼ −ðdtþ n̂ · dxÞ; ð35Þ

where n̂≡ x=r and r≡ jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δijxixj

q
. A direct calculation

shows that this perturbation is sourced, without approxima-
tion, by the “expected” point mass expression [27]

TðϵÞ
μρ g

νρ
ðϵÞ ¼ −ϵmδ3ðxÞδtμδνt : ð36Þ

Distributional stress-energy tensors have in fact been
computed for generic members of the Kerr (-Newman)
family of spacetimes [28,29], and these in general involve
singular sources which are extended with respect to the flat
background structure.

B. Conservation laws

Another benefit of the Kerr-Schild structure is that it
provides particularly simple relations between conservation
laws in the full spacetime and conservation laws in the
background.
We first note that as an integrability condition on the full

Einstein equation, the Bianchi identity implies that

∇bðTðϵÞ
ac gbcðϵÞÞ ¼ 0, at least for nonsingular stress-energy

tensors. Rewriting this in terms of the background deriva-
tive operator using (14),
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∇bðTðϵÞ
ac gbcðϵÞÞ ¼

1

2
ϵðTðϵÞ

df g
bdgcfÞ∇ahKSbc : ð37Þ

If la is an eigenvector of the stress-energy tensor, as is
implied by the assumptions stated immediately above (34),
the right-hand side here vanishes and

∇bðTðϵÞ
ac gbcðϵÞÞ ¼ 0: ð38Þ

It follows that at least when the background metric satisfies
(30) and when tbalalb ¼ 0, stress-energy conservation
holds with respect to both the deformed and background
metrics. This result is easily extended to apply also for
distributional stress-energy tensors by directly computing
from (6) that ∇bTb

a½h� ¼ 0 whenever Rab ¼ ðconstantÞ×
gab. Similarly, test matter with stress-energy tab ¼ tðabÞ
which satisfies ∇bðtacgbcðϵÞÞ ¼ 0 and for which la is an

eigenvector also satisfy ∇bðtacgbcðϵÞÞ ¼ 0.

It is well known that if there exists a Killing field
associated with some metric, stress-energy conservation
with respect to that metric implies the existence of a
conserved current which is linear in the stress-energy
tensor. This result is not necessarily very useful, as there
may not be many Killing fields in the deformed spacetime.
Equation (38) nevertheless implies that there are cases in
which background Killing fields may also be used to
generate conserved currents. We first note from (6) that if
the background stress-energy satisfies (30), ga½bTc�

a½h� ¼ 0

for all hab. Additionally assuming that tbalalb ¼ 0, it
follows from (31) that

ðTðϵÞ
cd g

c½a
ðϵÞ Þgb�d ¼ 0: ð39Þ

The current

jaψ ≡ ðTðϵÞ
bc g

ca
ðϵÞÞψb ð40Þ

is therefore conserved for every ψa satisfying Lψgab ¼ 0.
Moreover, it is conserved with respect to the background
and perturbed metrics:

∇ajaψ ¼ ∇ajaψ ¼ 0: ð41Þ

If the background is flat—or more generally maximally-
symmetric—this provides ten conservation laws for the
stress-energy associated with a Kerr-Schild spacetime. It is
clear for example that the Schwarzschild stress-energy (36)
satisfies all ten special-relativistic conservation laws; it has
the interpretation of a point particle at rest in the flat
background. Similar conservation laws also hold for test
stress-energy tensors on Kerr-Schild spacetimes for which
la is an eigenvector.

V. EXAMPLES

We now describe some simple examples which illustrate
how gauge transformations can be used to generate exact
solutions from approximations. All examples here use a
flat background, gab ¼ ηab, and we shall often use coor-
dinates ðt; xiÞ which are Minkowski with respect to this
background.

A. Spherical symmetry

One standard approximation for a (not necessarily
spherical) metric is the post-Newtonian expansion, and
the lowest-order version of this—the Newtonian metric—
can be written as [3,11]

hab ¼ −2ϕðηab þ 2∇at∇btÞ ð42Þ

in terms of the Newtonian potential ϕ. If time derivatives
are neglected, this satisfies the Lorenz gauge condition

∇b
�
hab −

1

2
ηabhcc

�
¼ 0: ð43Þ

We now restrict for simplicity to spherical, time-inde-
pendent Newtonian perturbations, in which case ϕ ¼ ϕðrÞ
for an appropriate radial coordinate r ¼ jxj. Our discussion
in Sec. IV implies that the corresponding approximation
can be improved if there exists a gauge vector ξa which
transforms hab into Kerr-Schild form. More specifically, we
seek some triple ðξa; V;laÞ which is a solution to (25). It
suffices here to consider the radially ingoing null 1-form in
(35), a static, spherically symmetric Kerr-Schild potential
V ¼ VðrÞ, and a gauge vector with the form ξμ∂μ ¼
ξ0ðrÞ∂t þ ξrðrÞ∂r. The various components of the gauge
transformation equation then imply the equalities

V ¼ −2ϕ ¼ −
dξ0

dr
¼ −2ξr=r ¼ 2

�
dξr

dr
−
ξr

r

�
: ð44Þ

Eliminating ξr from these equations in favor of V, it follows
as a necessary condition for the existence of an appropriate
gauge transformation that the Kerr-Schild potential must
satisfy

dV
dr

þ V=r ¼ 0; ð45Þ

the only solutions of which are

V ¼ −2ϕ ¼ 2m
r

ð46Þ

for some constant m. We have thus recovered the exact
Schwarzschild solution (35) from the Newtonian, harmonic-
gauge approximation to the metric sourced by a point
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particle4 with mass m. It can be generated by the explicit
gauge vector

ξμ∂μ ¼ −mðln r2∂t þ n̂i∂iÞ: ð47Þ

Note that even though hab and hKSab both decay at large
distances, ξa does not; indeed it grows logarithmically.
It is also worth remarking that the constraint (45) on V

was not obtained from Einstein’s equation. It appears
instead as a consistency condition required by the ability
to transform spherical, Lorenz-gauge Newtonian perturba-
tions into Kerr-Schild perturbations. As such, the only
static, spherically symmetric Newtonian spacetime for
which our result applies, with a flat background, is
Schwarzschild.
Some (rather exotic) “stellar interiors” may be obtained

by considering static, spherically-symmetric perturbations
with the form

hab ¼ ψðηab þ 2∇ar∇brÞ − 2ϕNðηab þ 2∇at∇btÞ
þ ζηab; ð48Þ

where ϕ, ψ , and ζ are all assumed to depend only on r. This
satisfies the Lorenz gauge condition whenever

dζ
dr

¼ 4ψ=r: ð49Þ

For any potentials, the linearized stress-energy tba ¼
Tb

a½h� admits four eigenvectors corresponding to the
spherical coordinate directions ∂t, ∂r, ∂θ, and ∂φ. The
principal pressures p⊥ associated with the two angular
directions are equal and are given by

p⊥ ¼ 1

8π

�
d2ψ
dr2

þ 4

r
dψ
dr

�
; ð50Þ

while the eigenvalues associated with the temporal and
radial directions are in general different. If hab can be
transformed into Kerr-Schild form, it follows from (29) and
(34) that la must be an eigenvector for tba. It is therefore
necessary that we consider potentials in which the temporal
and radial eigenvalues coincide with one another (but not
necessarily with p⊥).
This may be seen by explicitly writing down the various

relations implied by the gauge transformation equation (25).
One consequence of that equation is

dV
dr

þ V=r ¼ −
2

r3
d
dr

ðr3ψÞ; ð51Þ

which generalizes (45). For fixed ψ , this determines the
Kerr-Schild potential up to the addition of a Schwarzschild-
like term proportional to 1=r. The constant is fixed (when
possible) by an additional consequence of (25), namely

V ¼ −2ϕ − ðψ þ ζÞ: ð52Þ

The combination of this equation with (51) may also be
viewed as a consistency relation on the allowable seed
perturbations hab. It implies, for example, that the poten-
tials must satisfy

∇2ϕ ¼ 4πρN ¼ 1

2

�
d2ψ
dr2

þ 2

r
dψ
dr

− 4ψ=r2
�
: ð53Þ

The radial and temporal eigenvalues of tba then coincide, as
claimed, and are equal to

p∥ ¼ −ρ ¼ 1

4πr4
d
dr

ðr3ψÞ: ð54Þ

Reintroducing the constant ϵ, the transverse and longi-
tudinal pressures ϵp⊥, ϵp∥, as well as the energy density ϵρ,
are the exact eigenvalues for the stress-energy tensor
associated with the gauge-transformed Kerr-Schild metrics

gðϵÞab ¼ ηab þ ϵVlalb.
In the vacuum case where p∥ ¼ p⊥ ¼ 0, the most

general solution for ψ must be proportional to 1=r3, but
it is clear from (51) that solutions of this type can only
generate Schwarzschild solutions; they are no more general
than seed perturbations for which ψ ¼ 0. In non-vacuum
cases, (51) and (54) may be combined to directly relate the
Kerr-Schild potential V to the physical parameter p∥. If the
metric is Schwarzschild with mass m for all r > rsurf ,

VðrÞ ¼ 2

r

�
m − 4π

Z
rsurf

r
ρðrÞr2dr

�
: ð55Þ

Even in a nonvacuum region, V therefore has the
form 2 × ðenclosed massÞ=r.
Unfortunately, even these solutions are not particularly

general. It is however known that all static, spherically-
symmetric metrics can be put into Kerr-Schild form with a
background which is conformally flat [30]. One might
therefore attempt to generalize our above results by still
setting gab ¼ ηab, but now allowing for an additional,
conformal degree of freedom: Suppose that there exists
some gauge vector ξa satisfying

hab þ Lξηab ¼ Ωηab þ Vlalb; ð56Þ

which reduces to (25) when ω ¼ 0, and corresponds to the
mapping

ηab þ ϵhab ↦ gðϵÞab ¼ ð1þ ϵΩÞηab þ ϵVlalb: ð57Þ

4The Newtonian mass density associated with this ϕ is
ρN ¼ ð4πÞ−1∇̄2ϕ ¼ mδ3ðxÞ. The Newtonian mass in the seed
potential is exactly equal to the ADM mass in the gauge-
transformed metric.

ABRAHAM I. HARTE and JUSTIN VINES PHYSICAL REVIEW D 94, 084009 (2016)

084009-8



Returning for simplicity to the Newtonian perturbations
(42), the transformed metric may be shown to be deter-
mined by

dV
dr

− V=r ¼ −4
dϕ
dr

; Ω ¼ V þ 2ϕ ð58Þ

in terms of the seed potential ϕ. The correspondence rules
between perturbed and gauge-transformed metrics which
are derived in Sec. IV do not hold with this additional
conformal degree of freedom, so we cannot immediately
conclude anything about the matter content of the trans-
formed spacetime. It is nevertheless interesting to inves-
tigate this directly.
The first point which may be noted is that the trans-

formed metric is not unique for a given perturbation. The
integration constant which arises when solving (58) instead
returns a two-parameter family of transformed metrics (one
parameter being the perturbation amplitude ϵ). Even a
point-particle ϕ ¼ −m=r seed results in V ¼ 2m=rþ γr
and Ω ¼ γr for any constant γ, which corresponds to the
exact Schwarzschild solution only if γ ¼ 0. We therefore
see that, e.g., seed metrics which are vacuum through linear
order do not necessarily map into metrics which are
vacuum to all orders. Nevertheless, the eigenvalues of
the linearized and exact stress-energy tensors are related.
For any ϕ,

ð1þ ϵΩÞ2
�
ρðϵÞ þ

X
i

pi
ðϵÞ

�
¼ ϵρN; ð59Þ

where ρðϵÞ is the energy density associated with T
ðϵÞ
ac gbcðϵÞ, the

pi
ðϵÞ are its three principal pressures, and ρN is the

Newtonian mass density associated with ϕ. The factor of
ð1þ ϵΩÞ2 on the left-hand side corresponds to the pro-
portionality factor

ϵabcd ¼ ð1þ ϵΩÞ2ϵabcd ð60Þ

between the volume elements associated with the deformed
and background metrics. Its presence in (59) suggests that
the seed and transformed metrics have identical volume-
weighted notions of ρþP

ip
i. This was also remarked

upon in [31], although no details were given there. We
present it here as a curiosity which might provide some
insight into generalizing the (better justified but more
specialized) nonconformal Kerr-Schild procedure dis-
cussed above. It suggests that weakening some assump-
tions may result in parts of Einstein’s equation still being
solved exactly by appropriate transformations of conven-
ient approximations. Imposing selection criteria on the
relevant integration constants may improve this correspon-
dence even further.

As one final comment on generalizations, it can some-
times be useful to also incorporate information from
higher-order perturbation theory. Consider for example a
family of spherically symmetric bodies with masses ϵm and
electric charges ϵq. The stress-energy tensors associated
with these systems are quadratic in the electromagnetic
field, and therefore quadratic in ϵ. It follows that first-order
perturbations to flat spacetime must be independent of q,
implying that we may adopt the uncharged point-mass
perturbation hab which is given by combining (42) and
(46). Nonzero charge can be incorporated by also including
the second-order metric perturbation

uab ¼
1

2r2
½ð3m2 − q2Þηab − ðm2 þ 3q2Þ∇at∇bt�: ð61Þ

As we have already discussed, applying the first-order
gauge transformation Lξηab which is generated by (47)
transforms hab into the Kerr-Schild perturbation associated
with the exact Schwarzschild metric. Now consider instead
a second-order gauge transformation which places both hab
and uab into Kerr-Schild form. This requires a second-order
gauge vector χa which satisfies

uab þ Lχηab þ Lξ

�
hab þ

1

2
Lξηab

�
¼ Ulalb ð62Þ

for some U, where la is the radially-ingoing null 1-form
given in (35). All solutions require that U ¼ −q2=r2, and
one possible gauge vector is explicitly

χμ∂μ ¼
1

r

�
ð3m2 − q2Þ∂t −

1

4
ðm2 − q2Þn̂i∂i

�
: ð63Þ

Applying the corresponding gauge transformation to the
approximate metrics ηab þ ϵhab þ ϵ2uab now recovers the
exact Reissner-Nordström metrics with masses ϵm and
charges ϵq:

gðϵÞab ¼ ηab þ ϵðhab þ LξηabÞ þ ϵ2
�
uab þ Lχηab

þ Lξ

�
hab þ

1

2
Lξηab

��

¼ ηab þ
�
2ϵm
r

−
ϵ2q2

r2

�
lalb: ð64Þ

We make no further attempt to discuss higher-order
perturbations in this paper.

B. Axisymmetry and Kerr

We now derive the exact Kerr solution from its first-order
post-Minkowskian approximation. It is necessary that one
be somewhat precise about what this means: One cannot,
for example, consider the “Newtonian limit” of Kerr—that
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would return the Schwarzschild result discussed above.
Neither can one obtain the desired result by adding the
linear-in-spin correction to the Newtonian approximation.
The multipole structure of a linearized solution is gauge-
invariant, and so the relevant seed solution must incorporate
the full, infinite set of nonvanishing multipole moments
associated with the exact Kerr solution. We must therefore
start with the first post-Minkowski (and not post-
Newtonian) approximation.
Assuming Λ ¼ 0, all asymptotically-flat solutions out-

side of compact sources are known for the vacuum Einstein
equation linearized about Minkowski spacetime [1,32,33].
Specializing to a regime which is stationary with respect to
some Minkowksi time coordinate t, these solutions can be
written as5

hab ¼
X∞
l¼0

ð−1Þl
l!

∇L

�
2IL

r

�
ðηab þ 2∇at∇btÞ

þ 4ϵðacdf∇bÞt∇ct
X∞
l¼1

ð−1Þl
l!

∇d∇L−1

�
JfL−1

r

�
ð65Þ

up to first-order gauge transformations, where r is an
ordinary radial coordinate and L is a multi-index of length l
(so, e.g., ∇L ¼ ∇a1 � � �∇al ). The rank-l tensors IL and JL

which appear here are the mass and current multipole
moments, respectively, all of which are symmetric, trace-
free, and spatial. If the perturbation is axisymmetric about
an axis parallel to a constant unit vector ẑa, there exist
scalar coefficients Il and Jl such that

IL ¼ IlẑhLi; JL ¼ JlẑhLi; ð66Þ

where ẑhLi denotes the symmetric, trace-free component of
ẑa1 � � � ẑal . The spherical Newtonian limit described by (42)
and (46) corresponds in this context to setting all moments
to zero except for I0 ¼ m.
We now generalize this by considering a 2-parameter

family of linearized, axisymmetric perturbations whose
moments satisfy

Il þ iJl ¼ mðiaÞl ð67Þ

in terms of the mass6 m ¼ I0 and the angular momentum
per unit mass a ¼ J1=m. They are the multipole moments
known to characterize the exact Kerr solution [34]. Using
them, the two series in (65) may be summed explicitly.

Combining (65), (66), and (67) while defining a≡ aẑ,
the series in hab involving the mass moments can be
reduced to

h00 ¼ cosða · ∇Þ
�
2m
r

�

¼ m

�
1

jxþ iaj þ
1

jx − iaj
�
; ð68Þ

where the second equality has used that the cosine may be
split into a pair of complex exponentials expð�ia · ∇Þ, each
of which acts as a translation operator on 2m=r. The result
may be interpreted as the (real) Newtonian potential in
between two point masses which have an imaginary offset
between them.
We now turn to the second series in (65), involving the

current moments JL. Again using (66) and (67), it may be
written as

h0i ¼ −ϵijk∇j

�
aksincða · ∇Þ

�
2m
r

��
; ð69Þ

where sincy≡ sin y=y and ϵijk ≡ ϵ0ijk. The right-hand side
is implicitly still an infinite series, although it may be
summed by noting that

ða · ∇Þ lnðr� zÞ ¼ � a
r
; ð70Þ

in terms of z≡ ẑ · x. Substituting this identity into (69)
results in an expression involving ½sincða · ∇Þ�ða · ∇Þ ¼
sinða · ∇Þ, which may in turn be expressed as a difference
between two exponential operators. Effecting the associated
translations finally results in

h0i ¼ mϵi
jkẑj∇k

�
sinða · ∇Þ ln

�
rþ z
r − z

��

¼ im

�
ϵijkxjẑk

r2 − z2

��
z − ia
jx − iaj −

zþ ia
jxþ iaj

�
: ð71Þ

This can be made more intuitive by introducing coor-
dinates which are better adapted to the system. It is clear
from the discussion thus far that complex translations play
an important role, which suggests that it may be useful to
define the complex-translated radial coordinate

~r≡ cosða · ∇Þr ¼ 1

2
ðjxþ iaj þ jx − iajÞ: ð72Þ

It is also useful to define an angular coordinate ~θ via

cos ~θ≡ z=~r; ð73Þ

which reduces to the ordinary polar angle when a ¼ 0.
More generally, ~r and ~θ are known as oblate spheroidal
coordinates. In terms of them,

5The current moments JL which appear here are normalized to
match Hansen’s definition [34], which differs by a factor of
2l=ðlþ 1Þ [35] from the more common normalizations used by
Thorne [33] and by Blanchet and Damour [32].

6This is really a normalized mass parameter. The perturbation
ηab þ ϵhab has linearized mass ϵm and linearized angular
momentum ϵma.
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jx� iaj ¼ ~r� ia cos ~θ; ð74Þ

which allows (65), (68), and (71) to be summarized by

hab ¼
2m~r

~r2 þ a2cos2 ~θ

�
ðηab þ 2∇at∇btÞ

þ 2xdafϵðacdf∇bÞt∇ct

~r2 þ a2

�
: ð75Þ

The metrics ηab þ ϵhab describe linearized, first post-
Minkowskian, Lorenz-gauge metrics with the same multi-
pole structure as exact Kerr solutions having masses ϵm and
angular momenta ϵma. We emphasize however that these
metrics are not exact solutions to Einstein’s equation; their
Ricci tensors are nonzero and of order ϵ2.
Our next step is to use this approximation to derive the

exact Kerr metric. The discussion in Sec. IV guarantees that
this is possible if there exists a gauge vector ξa which
satisfies (25) for some Kerr-Schild potential V and some null
1-form la. There is no loss of generality in demanding that
the time component of this 1-form is normalized such that

la∇at ¼ 1; ð76Þ

in which case the time-time component of the gauge
transformation equation immediately shows that

V ¼ cosða · ∇Þ
�
2m
r

�
¼ 2m~r

~r2 þ a2cos2 ~θ
: ð77Þ

The second equality here reexpresses (68) in terms of the
oblate spheroidal coordinates defined by (72) and (73).
If an appropriate gauge vector exists and (76) is assumed,

the generated Kerr-Schild potential must be equal to (77).
Our next step is to find the spatial components li of the
Kerr-Schild 1-form. Equation (71) and the time-space
components of (25) show that this must satisfy

Vli ¼ V

�
ϵijkajxk

~r2 þ a2

�
þ∇iξ

0; ð78Þ

which acts as a Helmholtz decomposition for Vli. If we
assume that ξ0 is axisymmetric, the norm of this equation
may be used together with the requirement that lili ¼ 1 to
deduce both ξ0 and li. Evaluating that norm and noting
from (72) that

j∇ ~r j2 ¼ ~r2 þ a2

~r2 þ a2cos2 ~θ
; ð79Þ

one finds that it is sufficient to suppose that ξ0 depends only
on ~r. The condition that li have unit length then reduces to
the ordinary differential equation

dξ0

d~r
¼ −

2m~r
~r2 þ a2

; ð80Þ

which is easily solved to yield

ξ0 ¼ −m lnð~r2 þ a2Þ: ð81Þ

Substituting this back into (78) finally shows that

li ¼
1

~r2 þ a2
½ϵijkajxk − ð~r2 þ a2cos2 ~θÞ∇i ~r�: ð82Þ

Some geometrical interpretation for this vector field may
be gained by differentiating,

∇ilj ¼
−~rðδij − liljÞ þ a cos ~θϵijklk

~r2 þ a2cos2 ~θ
; ð83Þ

from which it follows that li is geodesic and shear-free on
the Euclidean t ¼ const hypersurfaces. It is tangent to a
congruence of straight lines lying within the one-sheeted
hyperboloids ~θ ¼ constant. The lines form kinks across the
disk defined by z ¼ 0 and r ≤ a, where they meet their
z → −z mirror images; this arises from a reversal between
the two possible “winding directions” for straight lines
embedded into hyperboloids. The congruence is smooth
everywhere off of the disk.
Together with (76) and (77), the li given by (82)

completely describes the Kerr-Schild metric perturbation
which must arise if an appropriate gauge transformation is
possible. The last remaining step to showing that such a
gauge transformation is indeed possible is to find some ξi
which satisfies the purely spatial components of (25),

Vðδij − liljÞ þ 2∇ðiξjÞ ¼ 0: ð84Þ

Comparison with (83) immediately reveals that ξi ¼ mli is
a solution. Thus, a full gauge vector which transforms the
Lorenz-gauge hab into Kerr-Schild form is

ξμ∂μ ¼ −m½lnð~r2 þ a2Þ∂t − li∂i�: ð85Þ

Applying this to the approximate metrics ηab þ ϵhab results

in gðϵÞab ¼ ηab þ ϵVlalb, where V is explicitly given by
(77), and la by (76) and (82). These are exact Kerr metrics,
in Kerr-Schild form, with masses ϵm and angular momenta
ϵma. While there are now many derivations of the Kerr
metric [10,36–38], ours has a rather different character
from the others: It is much more closely connected to the
general-purpose tools commonly used in perturbation
theory.
Geometrically, the orbits of the Kerr-Schild la are null

geodesics with respect to both the background and Kerr
geometries, so “background light rays” which fall into a
Kerr black hole with the appropriate a-dependent “offset”
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compatible with (76) and (82) are also physical light rays
which can exist in Kerr; they are unaffected by the
geometry change. It is also interesting to note that the
Kerr-Schild quantities are almost identical to those asso-
ciated with the Schwarzschild solution characterized by
(35). The Kerr potential V can, e.g., be obtained via a pair
of complex translations acting on the Schwarzschild
potential. Similar comments regarding complex transla-
tions in the Kerr spacetime now have a long history;
see [38–40].

C. Gravitational waves

For our final example, we consider a nonstationary
system, namely a gravitational plane wave. Nearly every
textbook on general relativity derives the first-order metric
perturbations associated with gravitational waves propa-
gating on a flat background [3,11]. In transverse-traceless
gauge and using background Minkowski coordinates
ðt; xiÞ ¼ ðt; x; y; zÞ, a vacuum wave traveling in the þz
direction can be associated with

hμνdxμdxν ¼ AþðuÞðdx2 − dy2Þ þ 2A×ðuÞdxdy; ð86Þ

where u≡ t − z is a null phase coordinate and AþðuÞ and
A×ðuÞ are arbitrary waveforms associated with theþ and ×
polarization states. As in our other examples, the metrics
ηab þ ϵhab satisfy the vacuum, Λ ¼ 0 Einstein equation
only through OðϵÞ. They are not exact solutions.
It is straightforward in this case to correctly guess that

the Kerr-Schild 1-form can be taken to be

la ¼ −∇au; ð87Þ

the orbits of which may be interpreted as the rays of the
gravitational wave. This is clearly geodesic and tangent to
the t ¼ z null hyperplanes. It is also constant. Given this, all
that remains to deriving exact gravitational wave solutions
is to solve (25) for an appropriate gauge vector ξa and a
Kerr-Schild potential V.
This is considerably simpler than in the Kerr problem

discussed above, and a solution can be obtained almost by
inspection. The result is that

ξμ∂μ ¼ −
1

8
½ðx2 − y2Þ∂uAþ þ 2xy∂uA×�lμdxμ

−
1

2
½ðx∂x − y∂yÞAþ þ ðx∂y þ y∂xÞ�A×� ð88Þ

is one possible gauge vector, and that the associated
Kerr-Schild potential is

V ¼ 1

8
½ðx2 − y2Þ∂2

uAþ þ 2xy∂2
uA×�: ð89Þ

These relations generate the metrics

gðϵÞab ¼ ηab þ
ϵ

8
½ðx2 − y2Þ∂2

uAþ þ 2xy∂2
uA×�∇au∇au; ð90Þ

which are exact solutions to the vacuum Einstein equation
for all ϵ and for all seed waveforms Aþ;×ðuÞ. These
metrics were originally obtained in a completely different
context [41], and required several decades before being
correctly interpreted as globally well-behaved gravitational
plane waves [42]. Our derivation, starting from the text-
book transverse-traceless approximation, makes its inter-
pretation especially clear. The reverse procedure, deriving
(86) as an approximation to (90), is discussed in detail
in [43].
Besides being exact, it is also noteworthy that the Kerr-

Schild gauge provides a potential V which is more directly
physical than the transverse-traceless one. The exact
Riemann tensor is directly proportional to V, but not to
Aþ;×. At linear order, coordinate transformations which
amount to different choices of coordinate-fixed geodesics
can be used to freely alter both of the transverse-traceless
waveforms by arbitrary, linearly-growing terms. Generali-
zing the transverse-traceless gauge beyond linear order
introduces even more complicated ambiguities [43]. The
Kerr-Schild potential is instead simple to all orders and has
a direct physical interpretation.

VI. DISCUSSION

We have shown that if an exact solution to the linearized
Einstein equation is available—obtained in any gauge—
and if there exists a linearized gauge transformation which
converts this to Kerr-Schild form, the resulting metric will
be an exact solution to the fully nonlinear Einstein
equation. This result was used in Sec. V to derive the
exact Kerr and plane wave metrics from their linearized,
Lorenz-gauge approximations.
Our result suggests that gauge choice can play a

significant role in perturbation theory not only as some-
thing to be exploited for calculational or interpretational
convenience, but also as something which can strongly
affect the accuracy of a given approximation. In effect, we
have advocated for the “Kerr-Schild gauge,” in which
metric perturbations can be written in the form Vlalb
for some null la. This can be characterized in various ways,
for example by the existence of a null 1-form la such that
hKSa½blc� ¼ 0. The Kerr-Schild gauge also satisfies (12), and

can be viewed as a special kind of radiation gauge in the
sense that

hKSab l
b ¼ gabhKSab ¼ 0: ð91Þ

It is not however Lorenz: ∇ahKSab ≠ 0 in general.
Achieving the Kerr-Schild gauge is unfortunately impos-

sible in generic systems, so the interesting question for
future work is if the simplifications derived here can be
generalized in some systematic way. It is unlikely that exact
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solutions can be easily generated in much more general
settings, but perhaps errors can be significantly reduced at
least for some generic class of physically-relevant systems.
One possible approach is to allow for more degrees of
freedom in the final gauge while also preserving the Kerr-
Schild structure when it exists. This occurs naturally in the
metric decomposition

gab ¼ ω2ðgab þ 2VlðakbÞÞ; ð92Þ

where la and ka are both null. It was shown in [44] that
generic metrics can be placed into this form with gab flat,
and it was argued in [31] that doing so eliminates much of
the nonlinearity from Einstein’s equation. This also reduces
to an ordinary Kerr-Schild decomposition if ω → 1 and
ka → la. We briefly discussed a simple version of this
generalization in Sec. VA, and showed that simplifications
still occur at least in spherical symmetry. How far these can
be extended is yet is to be determined.

[1] L. Blanchet, Living Rev. Relativ. 17, 2 (2014).
[2] T. Futamase and Y. Itoh, Living Rev. Relativ. 10, 2 (2007).
[3] E. Poisson and C. M. Will, Gravity: Newtonian, Post-

Newtonian, Relativistic (Cambridge University Press,
Cambridge, England, 2014).

[4] R. Geroch and J. Traschen, Phys. Rev. D 36, 1017 (1987).
[5] C. M. Bender and S. A. Orszag, Advanced Mathematical

Methods for Scientists and Engineers (Springer, New York,
1999).

[6] E. Caliceti, M. Meyer-Hermann, P. Ribeca, A. Surzhykov,
and U. D. Jentschura, Phys. Rep. 446, 1 (2007).

[7] A. Buonanno and T. Damour, Phys. Rev. D 59, 084006
(1999).

[8] T. Damour and A. Nagar, Lect. Notes Phys. 905, 273
(2016).

[9] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers,
and E. Herlt, Exact Solutions of Einstein’s Field Equations,
2nd ed. (Cambridge University Press, Cambridge, England,
2003).

[10] R. P. Kerr and A. Schild, Gen. Relativ. Gravit. 41, 2485
(2009).

[11] R. M. Wald, General Relativity (University of Chicago
Press, Chicago, 1984).

[12] L. Á. Gergely, Classical Quantum Gravity 19, 2515
(2002).

[13] M. Gürses and F. Gürsey, J. Math. Phys. (N.Y.) 16, 2385
(1975).

[14] B. C. Xanthopoulos, J. Math. Phys. (N.Y.) 19, 1607
(1978).

[15] B. C. Xanthopoulos, Classical Quantum Gravity 3, 157
(1986).

[16] K. E. Mastronikola and B. C. Xanthopoulos, Classical
Quantum Gravity 6, 1613 (1989).

[17] A. H. Taub, Ann. Phys. (N.Y.) 134, 326 (1981).
[18] W. Chen and H. Lü, Phys. Lett. B 658, 158 (2008).
[19] M. Gürses, T. C. Şişman, and B. Tekin, arXiv:1603.06524.
[20] M. Gürses, T. C. Şişman, and B. Tekin, Phys. Rev. D 94,

044042 (2016).

[21] G. C. Debney, R. P. Kerr, and A. Schild, J. Math. Phys.
(N.Y.) 10, 1842 (1969).

[22] L. A. Gergely and Z. Perjés, J. Math. Phys. (N.Y.) 35, 2448
(1994).

[23] W. B. Bonnor, Commun. Math. Phys. 13, 163 (1969).
[24] J. M. Stewart and M. Walker, Proc. R. Soc. A 341, 49

(1974).
[25] R. P. Kerr and W. B. Wilson, Gen. Relativ. Gravit. 10, 273

(1979).
[26] R. Steinbauer and J. A. Vickers, Classical Quantum Gravity

23, R91 (2006).
[27] J. M. Heinzle and R. Steinbauer, J. Math. Phys. (N.Y.) 43,

1493 (2002).
[28] H. Balasin and H. Nachbagauer, Classical Quantum Gravity

11, 1453 (1994).
[29] D. McManus, Classical Quantum Gravity 8, 863 (1991).
[30] N. V. Mitskievich and J. Horský, Classical Quantum Gravity

13, 2603 (1996).
[31] A. I. Harte, Phys. Rev. Lett. 113, 261103 (2014).
[32] L. Blanchet and T. Damour, Phil. Trans. R. Soc. A 320, 379

(1986).
[33] K. S. Thorne, Rev. Mod. Phys. 52, 299 (1980).
[34] R. O. Hansen, J. Math. Phys. (N.Y.) 15, 46 (1974).
[35] Y. Gürsel, Gen. Relativ. Gravit. 15, 737 (1983).
[36] D. Bini, A. Geralico, and R. P. Kerr, Int. J. Geom. Methods

Mod. Phys. 07, 693 (2010).
[37] E. Ayón, M. Hassaïne, and D. Higuita-Borja, Phys. Rev. D

94, 064073 (2016).
[38] E. T. Newman and A. I. Janis, J. Math. Phys. (N.Y.) 6, 915

(1965).
[39] E. T. Newman, J. Math. Phys. (N.Y.) 14, 774 (1973).
[40] D. Nawarajan and M. Visser, arXiv:1601.03532.
[41] H.W. Brinkmann, Math. Ann. 94, 119 (1925).
[42] H. Bondi, F. A. E. Pirani, and I. Robinson, Proc. R. Soc. A

251, 519 (1959).
[43] A. I. Harte, Classical Quantum Gravity 32, 175017 (2015).
[44] J. Llosa and J. Carot, Classical Quantum Gravity 26, 055013

(2009).

GENERATING EXACT SOLUTIONS TO EINSTEIN’S … PHYSICAL REVIEW D 94, 084009 (2016)

084009-13

http://dx.doi.org/10.12942/lrr-2014-2
http://dx.doi.org/10.12942/lrr-2007-2
http://dx.doi.org/10.1103/PhysRevD.36.1017
http://dx.doi.org/10.1016/j.physrep.2007.03.003
http://dx.doi.org/10.1103/PhysRevD.59.084006
http://dx.doi.org/10.1103/PhysRevD.59.084006
http://dx.doi.org/10.1007/978-3-319-19416-5
http://dx.doi.org/10.1007/978-3-319-19416-5
http://dx.doi.org/10.1007/s10714-009-0857-z
http://dx.doi.org/10.1007/s10714-009-0857-z
http://dx.doi.org/10.1088/0264-9381/19/9/313
http://dx.doi.org/10.1088/0264-9381/19/9/313
http://dx.doi.org/10.1063/1.522480
http://dx.doi.org/10.1063/1.522480
http://dx.doi.org/10.1063/1.523851
http://dx.doi.org/10.1063/1.523851
http://dx.doi.org/10.1088/0264-9381/3/2/009
http://dx.doi.org/10.1088/0264-9381/3/2/009
http://dx.doi.org/10.1088/0264-9381/6/11/015
http://dx.doi.org/10.1088/0264-9381/6/11/015
http://dx.doi.org/10.1016/0003-4916(81)90213-X
http://dx.doi.org/10.1016/j.physletb.2007.09.066
http://arXiv.org/abs/1603.06524
http://dx.doi.org/10.1103/PhysRevD.94.044042
http://dx.doi.org/10.1103/PhysRevD.94.044042
http://dx.doi.org/10.1063/1.1664769
http://dx.doi.org/10.1063/1.1664769
http://dx.doi.org/10.1063/1.530516
http://dx.doi.org/10.1063/1.530516
http://dx.doi.org/10.1007/BF01645484
http://dx.doi.org/10.1098/rspa.1974.0172
http://dx.doi.org/10.1098/rspa.1974.0172
http://dx.doi.org/10.1007/BF00759485
http://dx.doi.org/10.1007/BF00759485
http://dx.doi.org/10.1088/0264-9381/23/10/R01
http://dx.doi.org/10.1088/0264-9381/23/10/R01
http://dx.doi.org/10.1063/1.1448684
http://dx.doi.org/10.1063/1.1448684
http://dx.doi.org/10.1088/0264-9381/11/6/010
http://dx.doi.org/10.1088/0264-9381/11/6/010
http://dx.doi.org/10.1088/0264-9381/8/5/011
http://dx.doi.org/10.1088/0264-9381/13/9/023
http://dx.doi.org/10.1088/0264-9381/13/9/023
http://dx.doi.org/10.1103/PhysRevLett.113.261103
http://dx.doi.org/10.1098/rsta.1986.0125
http://dx.doi.org/10.1098/rsta.1986.0125
http://dx.doi.org/10.1103/RevModPhys.52.299
http://dx.doi.org/10.1063/1.1666501
http://dx.doi.org/10.1007/BF01031881
http://dx.doi.org/10.1142/S0219887810004518
http://dx.doi.org/10.1142/S0219887810004518
http://dx.doi.org/10.1103/PhysRevD.94.064073
http://dx.doi.org/10.1103/PhysRevD.94.064073
http://dx.doi.org/10.1063/1.1704350
http://dx.doi.org/10.1063/1.1704350
http://dx.doi.org/10.1063/1.1666393
http://arXiv.org/abs/1601.03532
http://dx.doi.org/10.1007/BF01208647
http://dx.doi.org/10.1098/rspa.1959.0124
http://dx.doi.org/10.1098/rspa.1959.0124
http://dx.doi.org/10.1088/0264-9381/32/17/175017
http://dx.doi.org/10.1088/0264-9381/26/5/055013
http://dx.doi.org/10.1088/0264-9381/26/5/055013

