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The study of generic, nonlinear, deformations of special relativity parametrized by a high-energy scale
M, which was carried out at first order in 1=M in J. M. Carmona, J. L. Cortés, and F. Mercati, Phys. Rev. D
86, 084032 (2012), is extended to second order. This can be done systematically through a (“generalized”)
change of variables from momentum variables that transform linearly. We discuss the different perspectives
on the meaning of the change of variables, obtain the coefficients of modified composition laws and
Lorentz transformations at second order, and work out how κ-Poincaré, the most commonly used example
in the literature, is reproduced as a particular case of the generic framework exposed here.
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I. INTRODUCTION

The possibility to extend the usual Lorentz symmetry to
a new relativistic invariance characterized by an observer-
independent mass scale (or length scale) M has been
investigated for some time now in connection with a
quantum theory of gravity, for which this mass (or length)
scale would be the Planck mass, mP ≈ 1.2 × 1019 eV=c2

(or Planck length, lP ≈ 1.6 × 10−35 m). This research has
been mostly made in the context of the so-called DSR (for
doubly or deformed special relativity) models (see Ref. [1]
for a review), initially formulated as relativistic theories
with nonlinear, M-dependent, deformations of the usual
boosts of special relativity (SR) in momentum space. DSR
was later interpreted geometrically as corresponding to a
curved momentum space, which resulted in an observer-
dependent notion of locality, named as the “principle of
relative locality” [2,3]. In fact, it was shown that the
“quantum deformation” of the Poincaré group known as
κ-Poincaré,1 an algebraic structure proposed by mathema-
ticians years ago to describe the symmetries of a non-
commutative space [4], can be interpreted in the framework
of curved momentum spaces leading to relative locality [5].
In particular, the coproduct of the momentum and the
coproduct of boosts in κ-Poincaré (which can be seen as
operators acting in the tensor product of two momentum
spaces) have direct interpretations in the DSR language, in
terms of the composition of momenta (which is necessarily
nonlinear, since a conservation law based on the linear
addition of momenta would not be invariant under non-
linear boosts) and the Lorentz transformations of momenta
in a two-particle system (that, for a generic composition
law of momenta, will be different from the Lorentz trans-
formation in the one-particle sector), respectively.

There exists then a correspondence between the
deformed Casimir of the algebra, the deformed Poincaré
commutators, and the coproduct structure as a Hopf algebra
on one side, and the modified dispersion relation, modified
(one-particle) Lorentz transformations, and the two-particle
sector (boosts and composition law) of DSR on the other
[6]. However, the coassociativity axiom of Hopf algebras
implies a restriction on the momentum composition rule,
which must be associative [5], so that one can say that the
Hopf algebra framework is more restrictive than a general
DSR or relative locality theory.
The original examples of DSR theories [7,8] as mod-

ifications of the transformation rules between different
inertial observers were explored in leading order of the
deformation (Planck-scale related) observer-independent
scale. Later on, the connection between DSR and Hopf
algebras referred to above made it possible to get all-order
results [9,10], and several examples of “exact” DSR
theories (named as DSR1, DSR2, or DSR3) were formu-
lated [11–13]. However, the general form of a DSR theory,
as well as the classification of all the possible deformations
of the Poincaré Hopf algebra, is still an open problem [14].
A way to sort out all the possible DSR theories is the

study of the mathematical relations that the relativity
principle imposes among the coefficients of the deformed
dispersion relation, the deformed Lorentz transformations,
and the nonlinear composition law. An exploratory study
was initiated in Ref. [15] at first order in the deformation
scale, and then carried out systematically at the same order
in Ref. [16] (both type of studies were generalized, also
at first order, to the case of nonuniversal kinematics, in
Refs. [17] and [18], respectively). All the authors of these
works restricted their studies to general deformations of
special relativity at first order in 1=M compatible with
standard rotational invariance.
Reference [16] contained also a short discussion on the

outcome of a change of variables in momentum space. In
fact, since the initial development of DSR, some authors
have expressed their concern that DSR might be nothing
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but classical SR in a nonlinear disguise, since one can
always make a change of variables to new momentum
variables that transform linearly [19,20]. However, these
remarks usually forget about the nontrivial multiparticle
sector of DSR theories [8,11]. From the algebraic point of
view, a change of variables in momentum space corre-
sponds to a change of basis, and indeed there exists the so-
called “classical basis” of κ-Poincaré, in which the boost-
momentum commutators, together with the Lorentz
sector, form the classical Poincaré algebra; however, it is
clear that κ-Poincaré is not equivalent to the standard
Poincaré algebra, since the classical basis referred to above
has a nontrivial co-algebra structure [21].
From the point of view of DSR, it is normally assumed

that the momentum variables that transform nonlinearly
would be somehow distinguished by the dynamics as the
“physical”momentum variables, and even different basis of
κ-Poincaré (which are mathematically equivalent, although
their physical equivalence is a subject of debate [21]) would
correspond to different physical theories. The DSR point of
view of a change of variables is, therefore, not completely
equivalent to the algebraic point of view.
Moreover, in Ref. [16] it was shown that such a change

of variables is able to reduce the (first-order) modified
kinematics (including its multiparticle sector) to that of SR
if and only if the momentum composition law is commu-
tative. In the geometric interpretation of relative locality, a
commutative composition law corresponds to a torsionless
momentum space [2], and a change of momentum variables
is just a change of coordinates in momentum space, with no
relevance in its geometric properties. Therefore, the pre-
vious result corresponds to saying that at first order in 1=M
(when one is not sensitive to the curvature of momentum
space, which enters only atM−2, [2]), the momentum space
is Minkowski if the torsion is zero [16]. From the point of
view of DSR, deformations of SR at leading order with
commutative composition laws are different from SR;
from the algebraic (Hopf algebras) and geometric (relative
locality) points of view they would be equivalent to SR,
since in these frameworks the change of variables that
reduce the theory to SR can be interpreted as a change of
basis or a change of coordinates, respectively.2

Independently of the adopted point of view, geometric,
algebraic, or DSR, one could take the change of variables as
a mere mathematical tool that simplifies the problem of
finding the different theories which are compatible with a
relativity principle, that is, a deformed theory that results
from SR from a change of variables is automatically a
relativistic theory, since a change of variables cannot alter
this fact. From this perspective, one could consider even

more general changes of variables than those of nonlinear
mappings between momentum variables of a single par-
ticle. In order to generate a nontrivial multiparticle sector,
one could make a change of variables that mix the momenta
of a number N of momentum variables. Since in the case
of a modified kinematics at first order, the composition of
two momenta determines the composition of an arbitrary
number of momenta, at this order it suffices to make this
“generalized” change of variables involving the momenta
of just two particles (N ¼ 2). In Sec. II of this paper, we
will show that such a “generalized” change of momentum
variables is able to reduce any modified kinematics (with
arbitrary composition law) to the SR kinematics at first
order. In particular, this means that one could have obtained
the results of Refs. [15,16] (the relations among the
coefficients of the composition law, boosts, and dispersion
relation in a modified relativistic theory at first order) just
by starting from standard SR and applying a generalized
change of momentum variables, which is simpler than
trying to impose the relativity principle itself in a generic
deformed theory.
This mathematical trick can be indeed of real help for the

next step in the task of finding all possible DSR theories,
which is considering second-order corrections in the modi-
fied kinematics, something much more involved (it contains
many more coefficients) than in the first-order case. Generic
kinematics at second order have been much less considered
in the literature, not only for their mathematical complexity,
but also because of their (generally assumed in the literature)
less relevance in the phenomenological analysis of present
and near-future experiments if first-order corrections are also
present [22]. This however could well be not the case: recent
analyses of possible photon delays coming from gamma-ray
bursts and blazars [23] seem to suggest the absence of first-
order corrections as the leading quantumgravity effects (they
constrain them, pushing the scale of M to values larger
than the Planck mass); also, the possible dropoff in the
cosmological neutrino spectra observed by IceCube could be
explained in terms of second-order, but not first-order,
Planck-scale physics [24]. These phenomenological indica-
tions, though still far from full confirmation, give the study
of DSR theories at second order more relevance than that of
an issue of simple academic interest.
In Sec. III of the paper we will make use of a generalized

change of momentum variables in order to study relativistic
kinematics beyond SR at second order, and determine the
relations between coefficients of the modified kinematics.
Since the expressions are quite involved, we have found it
convenient to use a covariant notation, with a change of
variables depending on the components of a fixed four-
vector. As we will explicitly check in Sec. II, choosing
afterwards this four-vector as a timelike vector, one
recovers the results for rotational invariant deformations
of SR. We will also discuss the arbitrariness in the
assignation of momentum variables to the particles

2It should be noted that κ-Poincaré is an example of a Hopf
algebra whose coproduct of momentum (that is, the momentum
composition law) is not commutative; that is why the classical
basis of κ-Poincaré is not completely trivial, as mentioned before,
and κ-Poincaré is not equivalent to SR, even at first order in κ.
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participating in a process. For this purpose it will be
relevant to see the difference between an ordinary compo-
sition law and a covariant one with respect to their
properties related to a change of variables.
Then, in Sec. IV we will make explicit the correspon-

dence between our notation and the algebraic language of
Hopf algebras. This will allow us to see how κ-Poincaré is
in fact an example of the generic deformations considered
here. Finally, we will return to the discussion on the
physical meaning of the momentum variables and some
proposals to be developed in future work.

II. BEYOND SR AT FIRST ORDER

A. A summary of previous results

Let us first remind the reader of the results that were
obtained in Ref. [16]. A generic deformation of SR at order
1=M, with the restriction of being polynomical in the
components of the four-momentum ðp0; piÞ, and rotationally
invariant, will have a modified dispersion relation (MDR)
parametrized by two adimensional coefficients α1, α2:

CðpÞ ¼ p2
0 − ~p2 þ α1

M
p3
0 þ

α2
M

p0 ~p2 ¼ m2; ð1Þ

and amodified composition law (MCL) parametrized by five
adimensional coefficients β1, β2, γ1, γ2, γ3:

½p ⊕ q�0 ¼ p0 þ q0 þ
β1
M

p0q0 þ
β2
M

~p · ~q

½p ⊕ q�i ¼ pi þ qi þ
γ1
M

p0qi þ
γ2
M

piq0 þ
γ3
M

ϵijkpjqk

ð2Þ
where ϵijk is the Levi-Civita symbol, a totally antisymmetric
tensor, and the following condition is implemented:

ðp ⊕ qÞjq¼0 ¼ p; ðp ⊕ qÞjp¼0 ¼ q: ð3Þ

In a theory with a relativity principle, the αi coefficients
of the MDR and the ðβi; γiÞ coefficients of the MCL are in
fact related by the so-called “golden rules”

α1 ¼ −β1; α2 ¼ γ1 þ γ2 − β2: ð4Þ
This is so because both the parameters of the dispersion
relation and the parameters of the modified composition
law can be written as combinations of the coefficients that
appear in the nonlinear Lorentz transformations, in a way
completely determined by the relativity principle. In
Ref. [16] the following result was obtained:

α1 ¼ −2ðλ1 þ λ2 þ 2λ3Þ; α2 ¼ 2ðλ1 þ 2λ2 þ 3λ3Þ;
ð5Þ

β1 ¼ 2ðλ1 þ λ2 þ 2λ3Þ; β2 ¼ −2λ3 − ηL1 − ηR1 ; ð6Þ

γ1 ¼ λ1 þ 2λ2 þ 2λ3 − ηL1 ; γ2 ¼ λ1 þ 2λ2 þ 2λ3 − ηR1 ;

γ3 ¼ ηL2 − ηR2 ; ð7Þ

where the λi are coefficients of the one-particle boost, and
ηLi , η

R
i are coefficients appearing in a boost transformation

of the two-particle system. Specifically, the notation is as
follows. In the one-particle system, the momentum p
transforms under an infinitesimal boost by means of a
deformed Lorentz transformation p → TðpÞ:

½TðpÞ�0 ¼ p0 þ ð~p · ~ξÞ þ λ1
M

p0ð~p · ~ξÞ;

½TðpÞ�i ¼ pi þ p0ξi þ
λ2
M

p2
0ξi þ

λ3
M

~p2ξi

þ ðλ1 þ 2λ2 þ 2λ3Þ
M

pið~p · ~ξÞ; ð8Þ

where ~ξ is the vector parameter of the boost, and the λi are
dimensionless coefficients. The form of Eq. (8) is obtained
after one imposes the condition that the modified boosts
must reproduce the Lorentz algebra, i.e., that the commu-
tator of two boosts corresponds to a rotation [16], and the
invariance of the dispersion relation under this boost,
CðTðpÞÞ ¼ CðpÞ, leads to Eq. (5).
The transformation law of a two-particle system is non-

trivial. Since the nonlinear terms of theMCL Eq. (2) mix the
components of the momenta which are being composed and,
for a generic MCL, the order of the momenta is relevant, a
boost transformation onp and qwill alsomix bothmomenta
in an order-dependent way. When one of the momenta is
zero, however, the boost transformation of the other momen-
tum is determined by Eq. (8), that is, under a boost, ðp; qÞ →
ðTL

q ðpÞ; TR
pðqÞÞ such that

TL
q ðpÞ ¼ TðpÞ þ T̄L

q ðpÞ; TR
pðqÞ ¼ TðqÞ þ T̄R

pðqÞ;
ð9Þ

and rotational invariance gives the generic expressions

½T̄L
q ðpÞ�0 ¼

ηL1
M

q0ð~p · ~ξÞ þ σL1
M

p0ð~q · ~ξÞ þ ηL2
M

ð~p ∧ ~qÞ · ~ξ;

½T̄L
q ðpÞ�i ¼

ηL3
M

qið~p · ~ξÞ þ σL2
M

pið~q · ~ξÞ þ ηL4
M

q0ϵijkpjξk

þ σL3
M

ð~p · ~qÞξi þ
σL4
M

p0ϵijkqjξk þ
σL5
M

p0q0ξi;

½T̄R
pðqÞ�0 ¼

ηR1
M

p0ð~q · ~ξÞ þ σR1
M

q0ð~p · ~ξÞ þ ηR2
M

ð~q ∧ ~pÞ · ~ξ;

½T̄R
pðqÞ�i ¼

ηR3
M

pið~q · ~ξÞ þ σR2
M

qið~p · ~ξÞ þ ηR4
M

p0ϵijkqjξk

þ σR3
M

ð~q · ~pÞξi þ
σR4
M

q0ϵijkpjξk þ
σR5
M

q0p0ξi:

ð10Þ
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After imposing that the transformations must satisfy the
Lorentz algebra, one gets the following relations between the
previous coefficients:

ηL2 ¼ σL4 ¼ −ηL4 ;

ηL1 − ηL3 þ σL3 þ σL5 ¼ σL1 − σL2 þ σL3 þ σL5 ¼ 0;

ηR2 ¼ σR4 ¼ −ηR4 ;

ηR1 − ηR3 þ σR3 þ σR5 ¼ σR1 − σR2 þ σR3 þ σR5 ¼ 0: ð11Þ
It turns out that, with such a generic two-particle trans-
formation, the function CðTL

q ðpÞÞ, as well as CðTR
pðqÞÞ, is

not equal to CðpÞ, and in fact, both of the functions
CðTL

q ðpÞÞ and CðTR
pðqÞÞ depend on both p and q, unless

the transformation satisfies the additional restriction

σL2 ¼ 0; σL3 ¼ −ηL3 ; σL5 ¼ ηL1 ;

σR2 ¼ 0; σR3 ¼ −ηR3 ; σR5 ¼ ηR1 : ð12Þ
This is a necessary restriction in an extension of the SR
kinematics based on the same two ingredients that are used
when analyzing the kinematics of a process in SR: a
conservation law derived from a (modified) composition
law, and a (modified) dispersion relation for each of the
particles participating in the process, where, by definition,
the dispersion relation of a particle is a function of the
momentum of that particle. Algebraically, this means that we
ask that the Casimir of the Lorentz algebra in the one-particle
system must be also a Casimir in the two-particle system. In
this sense we have a nonlinear representation of the Lorentz
algebra in amomentum space that is consistently extended to
the tensor product of momentum spaces. As we will see in
Sec. IV, this condition is automatically satisfied in the
formalism of Hopf algebras.
Relations (12) and (11) imply that a generic boost in the

two-particle system has only four free parameters, that can
be chosen as ηL1 , η

L
2 , η

R
1 , and ηR2 , since the rest of the

coefficients in Eq. (10) are expressible in terms of them as

σL;R1 ¼ 0; σL;R2 ¼ 0; σL;R3 ¼ −ηL;R1 ;

σL;R4 ¼ ηL;R2 ; σL;R5 ¼ ηL;R1 ; ηL;R3 ¼ ηL;R1 ;

ηL;R4 ¼ −ηL;R2 : ð13Þ

Finally, the relativity principle imposed as the invariance of
the composition of momenta for different inertial observers,
that is,

Tðp ⊕ qÞ ¼ TL
q ðpÞ ⊕ TR

pðqÞ; ð14Þ

leads, after some tedious algebra, to Eqs. (6) and (7).

B. Change of variables and change of basis

In this section we are going to show that the final result
Eqs. (5)–(7) can be obtained in a much easier way with the

help of a mathematical trick: a change of variables in the
two-particle system.
In Ref. [16] we already showed that a generic (again,

rotational invariant) change of energy-momentum variables
ðp0; ~pÞ → ðP0; ~PÞ of the form

p0 ¼ P0 þ
δ1
M

P2
0 þ

δ2
M

~P2 ≡ B0ðP0; ~PÞ≡ B0ðPÞ;

pi ¼ Pi þ
δ3
M

P0Pi ≡ BiðPÞ ð15Þ

is able to change the coefficients β1, β2 and (γ1 þ γ2) of the
MCL Eq. (2) (the only parameters in a commutative MCL
at first order) as a function of the parameters δ1, δ2 and δ3.
Following the mathematical language of Hopf algebras
(see Sec. IV), we will refer to Eq. (15) as a change of basis
in momentum space. That is, a change of basis is a change
of momentum variables that is the same for all particles in a
process. In the geometric language of relative locality, a
change of basis would be just a choice of coordinates in
momentum space. As we explained in the Introduction, a
change of basis does not have any algebraic or geometric
content in both formalisms. From the point of view of
DSR, however, the momentum variables which are changed
under a change of basis are physically inequivalent,
although it is difficult to give a physical meaning to these
variables in the absence of a dynamical theory or of a
theory of space-time (see more comments on this in
Sec. V). For the moment, in Ref. [16] we just stated that
a change of basis can relate a generic commutative MCL at
first order with the additive composition law of SR.
There is a technical point that was not made clear enough

in Ref. [16]. If ðP0; ~PÞ are energy-momentum variables that
compose additively, which is the modified composition law
for ðp0; ~pÞ that is derived from the change of basis (15)?
The simple definition ðp ⊕ qÞμ ≡ ðPþQÞμ does not
work, since, using the inverse of the change of basis

P0 ¼ p0 −
δ1
M

p2
0 −

δ2
M

~p2 ≡ B−1
0 ðpÞ;

Pi ¼ pi −
δ3
M

p0pi ≡ B−1
i ðpÞ; ð16Þ

we see that

ðPþQÞ0 ¼ P0 þQ0 ¼ B−1
0 ðpÞ þ B−1

0 ðqÞ

¼ p0 þ q0 −
δ1
M

ðp2
0 þ q20Þ −

δ2
M

ð~p2 þ ~q2Þ; ð17Þ

and this cannot be used to define ðp ⊕ qÞ0, since the
previous expression does not satisfy the condition given by
Eq. (3). Condition (3) is, however, automatically guaran-
teed if we define the MCL as

ðp ⊕ qÞμ ≡ BμðB−1ðpÞ þ B−1ðqÞÞ: ð18Þ
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This is indeed what has been done in the literature when
discussing the so-called “auxiliary variables” in the DSR
framework [25]. In this case, one gets

ðp ⊕ qÞ0 ¼ p0 þ q0 þ
2δ1
M

p0q0 þ
2δ2
M

~p · ~q; ð19Þ

ðp ⊕ qÞi ¼ pi þ qi þ
δ3
M

p0qi þ
δ3
M

q0pi: ð20Þ

Comparing with Eq. (2), we see that the composition
law obtained by applying a change of basis to energy-
momentum variables that compose additively is such that
β1 ¼ 2δ1, β2 ¼ 2δ2, γ1 ¼ γ2 ¼ δ3, and γ3 ¼ 0.
A change of basis does also change the transformation

law of the energy-momentum variables. If ðP0; ~PÞ trans-

form linearly under Lorentz boosts, P0
0 ¼ P0 þ ~P · ~ξ,

~P0 ¼ ~Pþ P0
~ξ, then

½TðpÞ�0 ≡ B0ðP0Þ ¼ P0 þ ~P · ~ξþ δ1
M

ðp0 þ ~p · ~ξÞ2

þ δ2
M

ð~pþ p0
~ξÞ2

¼ p0 þ
ð2δ1 þ 2δ2 − δ3Þ

M
p0 ~p · ~ξ; ð21Þ

½TðpÞ�i ≡BiðP0Þ ¼ Pi þP0ξi þ
δ3
M

ðp0 þ ~p · ~ξÞðpi þp0ξiÞ

¼ piþp0ξiþ
ðδ3 − δ1Þ

M
p2
0ξi −

δ2
M

~p2ξiþ
δ3
M

pi~p · ~ξ;

ð22Þ
so that, comparing with Eq. (8),

λ1 ¼ 2δ1 þ 2δ2 − δ3; λ2 ¼ δ3 − δ1; λ3 ¼ −δ2:

ð23Þ

The variables ðp0; ~pÞ, therefore, transform nonlinearly.
Accordingly, the dispersion relation in terms of these
variables will be

CðpÞ≡ P2
0 − ~P2 ¼ p2

0 − ~p2 −
2δ1
M

p3
0

þ 2ðδ3 − δ2Þ
M

p0~p2 ¼ m2; ð24Þ

and, comparing with Eq. (1),

α1 ¼ −2δ1 ¼ −β1; α2 ¼ 2ðδ3 − δ2Þ ¼ γ1 þ γ2 − β2:

ð25Þ

This agrees both with Eqs. (23) and (5), and with the golden
rules Eq. (4).

We will now define what we will call a change of
variables as opposed to simply a change of basis. By
definition, a change of variables ðP;QÞ → ðp; qÞ will mix
momenta of the two-particle system, in such a way that
when one of the momenta is equalled to zero, then the
change of variables is just the identity function:

ðP;QÞ → ðp; qÞ ¼ ðFLðP;QÞ;FRðP;QÞÞ
such that FLðP; 0Þ ¼ P;FLð0; QÞ ¼ 0 and

FRð0; QÞ ¼ Q;FRðP; 0Þ ¼ 0: ð26Þ

Such a transformation has not a simple interpretation in
the algebraic or geometric languages, unlike the case of a
change of basis. We will use it, however, as a mathematical
trick to generate a modified relativistic kinematics from
variables that transform linearly in the two-particle momen-
tum space; in fact, we will see that any relativistic
kinematics at first order can be generated from a change
of variables and a change of basis applied to the standard
variables of SR, so that one can use this procedure to get the
results of Sec. II A in a much easier way.
Let us first take ðP;QÞ variables that transform linearly

and compose additively (that is, they are the standard
variables of SR). Then, although the momentum variables
ðp; qÞ transform nonlinearly in the two-particle system
[TL

q ðpÞ and TR
pðqÞ are not linear], TðpÞ is a linear trans-

formation, since when q ¼ 0, p ¼ P. In the notation used
above, this means that the λi are equal to zero. Since we can
generate λi ≠ 0 from a change of basis, we will say that
the λi are zero in the classical basis of momentum space
(this is a nomenclature inherited from the Hopf algebras
framework; see Sec. IV). A change of variables from SR
variables, therefore, will generate a relativistic kinematics
beyond SR for momentum variables in the classical basis.
It is easy to check that a change of variables generate a

modified composition law and transformation laws that are
compatible with the relativity principle. To see this, first
note that the natural definition

p ⊕ q≡ PþQ ð27Þ

is indeed a good definition of a modified composition law,
since it satisfies the property Eq. (3). For example,

ðp ⊕ qÞjq¼0 ¼ ½ðF−1ÞLðp; qÞ þ ðF−1ÞRðp; qÞ�q¼0

¼ pþ 0 ¼ p; ð28Þ

where we have made use of the inverse of the change of
variables, P ¼ ðF−1ÞLðp; qÞ, Q ¼ ðF−1ÞRðp; qÞ and the
properties indicated in Eq. (26), which express that
when Q¼ 0⇒p¼P, q ¼ 0; that is, ðF−1ÞLðp; 0Þ ¼ p,
ðF−1ÞRðp; 0Þ ¼ 0. Note that from Eq. (27), it is evident
that p ⊕ q transform linearly, that is, as a single momen-
tum does.
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Secondly, the transformations properties of ðp; qÞ are
defined from

TL
q ðpÞ≡ FLðP0; Q0Þ; TR

pðqÞ≡ FRðP0; Q0Þ; ð29Þ

where P0, Q0, denote the usual linear Lorentz transforma-
tions. Then,

TL
q ðpÞ ⊕ TR

pðqÞ ¼ FLðP0; Q0Þ ⊕ FRðP0; Q0Þ ¼ P0 þQ0

¼ ðPþQÞ0 ¼ Tðp ⊕ qÞ; ð30Þ

where we have used Eq. (29), the fact that P and Q
transform linearly, and the definition Eq. (27). Condition
(14) is, therefore, automatically guaranteed by a change of
variables.
Finally, since TðpÞ is the linear Lorentz transformation,

the Casimir is just the usual one, CðpÞ ¼ p2
0 − ~p2 ¼ m2

(this is of course a property of the classical basis). As
explained in Sec. II A, we must make sure that this is also
the Casimir of the two-particle system. In terms of the

change of variables, we must impose that P2
0 − ~P2 ¼

p2
0 − ~p2, Q2

0 − ~Q2 ¼ q20 − ~q2. A generic (rotational invari-
ant) change of variables that satisfies this condition has four
parameters at first order in 1=M:

P0 ¼ p0 þ
vL1
M

~p:~q; Pi ¼ pi þ
vL1
M

p0qi þ
vL2
M

ϵijkpjqk;

Q0 ¼ q0 þ
vR1
M

~p:~q; Qi ¼ qi þ
vR1
M

q0pi þ
vR2
M

ϵijkqjpk:

ð31Þ

The composition law in these variables is

½p ⊕ q�0 ¼ P0 þQ0 ¼ p0 þ q0 þ
vL1 þ vR1

M
~p:~q;

½p ⊕ q�i ¼ Pi þQi ¼ pi þ qi þ
vL1
M

p0qi þ
vR1
M

q0pi

þ vL2 − vR2
M

ϵijkpjqk ð32Þ

so that comparison with Eq. (2) gives

β1 ¼ 0; β2 ¼ vL1 þ vR1 ; γ1 ¼ vL1 ; γ2 ¼ vR1 ;

γ3 ¼ vL2 − vR2 : ð33Þ

This is in fact the general solution of the golden rules
Eq. (4) when α1 ¼ α2 ¼ 0 (classical basis). We can then
redefine the golden rules as a set of relations that the
coefficients of the composition law must satisfy when
working in the classical basis:

β1 ¼ 0; β2 ¼ γ1 þ γ2: ð34Þ

For the transformation law one obtains

ηL;R1 ¼ −vL;R1 ; ηL;R2 ¼ vL;R2 : ð35Þ

Equations (6) and (7) are then immediately obtained for the
case λ1 ¼ λ2 ¼ λ3 ¼ 0. One can get the full relations by
combining a change of variables with a change of basis.
We observe that there is a one to one correspondence

between the parameters of the change of variables (31) and
the η parameters of a nonlinear boost in the two-particle
system, on the one hand, and the parameters of the change
of basis (15) and the λ parameters of a nonlinear boost in
the one-particle system, on the other hand. A change of
variables and a change of basis from linear variables (that
is, from variables that transform as in SR), therefore,
produce the most generic relativistic kinematics beyond
SR at first order. We will assume that this property is true
at every order, so that generic relativistic kinematics at
arbitrary order can be easily analyzed by this mathematical
procedure.3

C. Covariant notation

It is convenient to introduce a covariant notation that
will simplify the calculations at second order. We consider
again a change of variables in the two-particle system,
ðP;QÞ → ðp; qÞ, from linear variables ðP;QÞ to nonlinear
variables ðp; qÞ, which, as explained in the previous
section, must satisfy

ðP; 0Þ → ðP; 0Þ; ð0; QÞ → ð0; QÞ;
P2 ¼ p2; Q2 ¼ q2: ð36Þ

The condition that the Casimir in the one-particle system
has to be also a Casimir in the two-particle system, or
equivalently, that the dispersion relation does not mix the p,
q variables when applying the change of variables to the

standard dispersion relation, P2
0 − ~P2 ¼ m2, corresponds to

the fact that the terms in the power expansion proportional
to ð1=MÞmust be orthogonal to p in the expression of P, or
to q in the expression of Q, in order to have p2 ¼ P2,
q2 ¼ Q2 at first order. A general change of variables in
covariant notation is then of the form

3We do not have a proof of this assumption. However, even if
this were not the case, the richness of the relativistic theories that
can be obtained by this procedure merits a study on its own. In
fact, one should extend the change of variables presented in this
section to a change of variables of a number N of momenta when
studying relativistic theories beyond SR at order (N − 1), but in
order to reduce the complexity of the study, we will make the
additional simplification of considering the change of variables
just in the two-particle system, which has a consequence on the
type of modified composition laws that can be generated; see
Secs. II D and III.
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Pμ ¼ pμ þ
vL1
M

½qμðn · pÞ − nμðp · qÞ� þ vL2
M

ϵμνρσpνqρnσ;

ð37Þ

Qμ ¼ qμ þ
vR1
M

½pμðn · qÞ − nμðp · qÞ� þ vR2
M

ϵμνρσqνpρnσ;

ð38Þ

where we have made the change of variables depend on a
fixed dimensionless vector n, which breaks Lorentz invari-
ance, and ϵ0123 ¼ −1. The rotational invariant change of
variables (31) is then obtained when nμ ¼ ð1; 0; 0; 0Þ.4
The change of variables modifies the composition law

of the ðP;QÞ variables, which is additive, ½P⊕Q�μ ¼
Pμ þQμ, to a nonadditive composition law for the ðp; qÞ
variables, ðp ⊕ qÞ, such that

ðp⊕ qÞμ ≡ ½P⊕Q�μ ¼ Pμ þQμ

¼ pμ þ qμ þ
vL1
M

ðn ·pÞqμ þ
vR1
M

ðn · qÞpμ

−
ðvL1 þ vR1 Þ

M
nμðp · qÞ þ ðvL2 − vR2 Þ

M
ϵμνρσpνqρnσ:

ð39Þ

If we take nμ ¼ ð1; 0; 0; 0Þ in the previous expression, then
we have

½p ⊕ q�0 ¼ p0 þ q0 þ
ðvL1 þ vR1 Þ

M
~p · ~q;

½p ⊕ q�i ¼ pi þ qi þ
vL1
M

p0qi þ
vR1
M

q0pi

þ ðvL2 − vR2 Þ
M

ϵijkpjqk; ð40Þ

which is the result given in Eq. (32).
Let us consider now the Lorentz transformations. We

will simplify the notation of Secs. II A and II B and, instead
of using TL

q ðpÞ or TR
pðqÞ we will denote by ðp0; q0Þ or

ðP0; Q0Þ to the transformed momenta of ðp; qÞ or ðP;QÞ,
independently of whether the transformation is linear or not
(but remember that in the case of a nonlinear transforma-
tion, p0 and q0 depend on both p and q). We also introduce
the notation ~Xμ ≡ Λ ν

μXν, where the Λ ν
μ are the standard

Lorentz transformation matrices. Then we have

p0
μ þ

vL1
M

½q0μðn · p0Þ − nμðp0:q0Þ� þ vL2
M

ϵμνρσp0νq0ρnσ

≡ P0
μ ¼ Λ ν

μPν ¼ ~pμ þ
vL1
M

½ ~qμð ~n · ~pÞ − ~nμð ~p · ~qÞ�

þ vL2
M

ϵμνρσ ~pν ~qρ ~nσ: ð41Þ

This relation is telling us that p0 is equal to ~p up to terms
proportional to ð1=MÞ5; then we have to first order

p0
μ ¼ ~pμ þ

vL1
M

½ ~qμðð ~n − nÞ · ~pÞ − ð ~nμ − nμÞð ~p · ~qÞ�

þ vL2
M

ϵμνρσ ~pν ~qρð ~nσ − nσÞ: ð42Þ

If we consider an infinitesimal Lorentz transformation,
then

~Xμ ¼ Xμ þ ωαβημαXβ; ð43Þ

where ωαβ ¼ −ωβα are the parameters of the infinitesimal
transformation, and one has

p0
μ ¼ ~pμ þ ωαβnβ

�
vL1
M

ðqμpα − ημαðp · qÞÞ þ vL2
M

ϵμανρpνqρ
�
:

ð44Þ

For the second variable q, similar arguments lead to

q0μ ¼ ~qμ þ ωαβnβ

�
vR1
M

ðpμqα − ημαðp · qÞÞ þ vR2
M

ϵμανρqνpρ

�

ð45Þ

that, together with (44), gives the nonlinear Lorentz trans-
formation of the variables ðp; qÞ at first order. When
nμ ¼ ð1; 0; 0; 0Þ one has

ω0βnβ ¼ 0; ωiβnβ ¼ ωi0 ¼ ξi ¼ −ξi; ð46Þ

and the Lorentz transformation at first order (44), (45)
becomes

4When one has a formally covariant expression (it would be
really covariant if n were a vector transforming linearly under
Lorentz transformations instead of a fixed vector) with an
arbitrary fixed vector n, then the change of variables is covariant
under the subgroup of Lorentz transformations that leaves the
direction of n invariant.

5This is just an obvious consequence of the fact that the
nonlinear Lorentz transformations of the new variables is due to
the change of variables.
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p0
0 ¼ p0þð~p · ~ξÞ−vL1

M
q0ð~p · ~ξÞþvL2

M
ð~p∧ ~qÞ · ~ξ;

p0
i ¼ piþp0ξi −

vL1
M

ðqið~p · ~ξÞ− ðp ·qÞξiÞ−
vL2
M

ðq0ð~p∧ ~ξÞi
−p0ð~q∧ ~ξÞiÞ;

q00 ¼ q0þð~q · ~ξÞ−vR1
M

p0ð~q · ~ξÞþ
vR2
M

ð~q∧ ~pÞ · ~ξ;

q0i ¼ qiþq0ξi −
vR1
M

ðpið~q · ~ξÞ− ðp ·qÞξiÞ−
vR2
M

ðp0ð~q∧ ~ξÞi
−q0ð~p∧ ~ξÞiÞ; ð47Þ

which gives again Eq. (35).
This completes the discussion of a change of variables

from linear variables at first order in covariant notation. As
remarked, under the change of variables, the dispersion
relation of p and q are the standard ones. If one wants to
consider a modified dispersion relation, then it is necessary
to introduce a change of basis

Xμ ¼ X̂μ þ
b1
M

X̂μðn · X̂Þ þ b2
M

nμX̂
2 þ b3

M
nμðn · X̂Þ2 ð48Þ

(where X stands for p or q), so that one has a first-order
dispersion relation

m2 ¼ p2 ¼ p̂2 þ 2ðb1 þ b2Þ
M

p̂2ðn · p̂Þ þ 2b3
M

ðn · p̂Þ3;
ð49Þ

and a new composition law at first order p̂ ⊕̂ q̂ that follows
from Eqs. (18) and (48), that is,

½p ⊕ q�μ ¼ ½p̂ ⊕̂ q̂�μ þ
b1
M

ðp̂þ q̂Þμðn · ðp̂þ q̂ÞÞ

þ b2
M

nμðp̂þ q̂Þ2 þ b3
M

nμðn · ðp̂þ q̂ÞÞ2: ð50Þ

The final result for the new composition law is

½p̂ ⊕̂ q̂�μ ¼ p̂μ þ q̂μþ
vL1 − b1

M
ðn · p̂Þq̂μþ

vR1 − b1
M

ðn · q̂Þp̂μ

−
ðvL1 þ vR1 Þ þ 2b2

M
nμðp̂ · q̂Þ

−
2b3
M

nμðn · p̂Þðn · q̂Þ þ
ðvL2 − vR2 Þ

M
ϵμνρσp̂νq̂ρnσ:

ð51Þ

If we choose nμ ¼ ð1; 0; 0; 0Þ in Eqs. (49) and (51),
we get

m2 ¼ p̂2 þ 2ðb1 þ b2Þ
M

p̂2p̂0 þ
2b3
M

ðp̂0Þ3

¼ p̂2
0 − ~̂p2 þ 2ðb1 þ b2 þ b3Þ

M
ðp̂0Þ3

−
2ðb1 þ b2Þ

M
p̂0

~̂p2; ð52Þ

to be compared with the general expression Eq. (1), and

½p̂ ⊕̂ q̂�0 ¼ p̂0 þ q̂0 −
2ðb1 þ b2 þ b3Þ

M
p̂0q̂0

þ ðvL1 þ vR1 Þ þ 2b2
M

~̂p · ~̂q;

½p̂ ⊕̂ q̂�i ¼ p̂i þ q̂i þ
vL1 − b1

M
p̂0q̂i þ

vR1 − b1
M

q̂0p̂i

þ ðvL2 − vR2 Þ
M

ϵijkp̂jq̂k; ð53Þ

to be compared with Eq. (2), so that, indeed, the golden
rules Eq. (4) are satisfied, and we reproduce the results
described in Sec. II A for a general first-order modification
of the dispersion relation and composition law compatible
with the relativity principle, with a linear implementation of
rotational symmetry.

D. Specific features at first order

Before embarking on the analysis of second-order
kinematics beyond SR, let us remark on some points that
are specific to first-order kinematics and that do not
necessarily extend trivially to second order.
(1) At first order, the modified composition law of an

arbitrary number of particles is obtained from the
MCL of two particles, whose generic form is given
by Eq. (2). This is a consequence of the natural
requirement that a MCL of N particles has to reduce
to the MCL of N − 1 particles if one of the momenta
is made zero, and the fact that at first order all the
nonlinear terms are quadratic in momenta. For
example, at second order a new term will appear
in the composition of three momenta proportional to
all three momenta which does not appear in the
composition law of two momenta. One can never-
theless restrict the study of a relativistic kinematics
to those cases in which the MCL for N momenta is
determined by the MCL of two momenta at order
higher than one. This is a simplification that allows
one to confine the change of variables to the two-
particle system, exactly as at first order. Since,
besides being simpler, it is an important case from
the point of view of the algebraic formalism (where
the main structure is the coproduct of the Hopf
algebra, equivalent to the composition law of two
momenta) and the geometric formalism (the com-
position law of two momenta defines the curvature
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of momentum space), we will stick to it in the
analysis of the kinematics at second order.

(2) At first order, the MCL is associative. This can be
easily proved in the covariant notation introduced in
the previous section. Writing generically

ðp ⊕ qÞμ ¼ pμ þ qμ þ
1

M
B νρ
μ pνqρ; ð54Þ

we have

½ðp ⊕ qÞ ⊕ k�μ ¼ ðp ⊕ qÞμþ kμþ
1

M
B νρ
μ ðpþqÞνkρ

¼ pμ þ qμ þ kμ

þ 1

M
B νρ
μ ðpνqρ þ pνkρ þ qνkρÞ

≡ ðp ⊕ q ⊕ kÞμ ¼ ½p ⊕ ðq ⊕ kÞ�μ
ð55Þ

where the definition of (p ⊕ q ⊕ k) is a conse-
quence of the requirement mentioned in the previous
item, that is, ðp ⊕ q ⊕ kÞjk¼0 ¼ ðp ⊕ qÞ (and the
equivalent conditions when one makes zero p or q).
At higher orders, however, a generic MCL is not
associative.

(3) Given a momentum k, a MCL defines its (left-
handed, k̂L, or right-handed, k̂R) antipode, such that
k̂L ⊕ k ¼ k ⊕ k̂R ¼ 0. At first order in 1=M,
k̂L ¼ k̂R ≡ k̂. Working again in covariant notation:

ðk̂ ⊕ kÞμ ¼ 0 ⇒ k̂μ ¼ −kμþ
1

M
B νρ
μ kνkρ⇒ðk ⊕ k̂Þμ

¼ 0: ð56Þ

At higher order, however, k̂L ≠ k̂R in general.
(4) At first order, theMCLdefines the conservation lawof

a process. For example, in the disintegration of a
particle of momentum k into two other particles,
of momenta p and q, AðkÞ → BðpÞ þ CðqÞ, two
possible conservation laws are k ¼ p ⊕ q and
k̂ ⊕ p ⊕ q ¼ 0. If the variables of the modified
kinematics are obtained from a change of variables
of SR momenta, both conservation laws are relativis-
tically invariant: since the composition p ⊕ q ¼ Pþ
Q transforms linearly, the first conservation law is the
equality between two four-vectors that transform
linearly, and since the composition k̂ ⊕ p ⊕ q ¼ 0 ¼
−K þ PþQ also transforms linearly, the second
conservation law is the equality between a quantity
that transforms linearly and zero, which is a relativ-
istically invariant assertion. Both of the conservation
laws generalize the SR conservation law, that can be
written as K ¼ PþQ or −K þ PþQ ¼ 0, and it is

immediate to see that both conservation laws are
equivalent at first order in 1=M:

k̂ ⊕ p ⊕ q ¼ k̂ ⊕ ðp ⊕ qÞ ¼ 0⇔k ¼ p ⊕ q;

ð57Þ

where we have used the associativity of the compo-
sition law and the definition of antipode. The two
conservation laws, however, are not equivalent beyond
first order in 1=M. In the present paper we will be
discussing the modified Lorentz transformations and
modified composition laws; wewill not discuss which
is the most appropriate form of the conservation law,
which will certainly be associated with the dynamical
theory (probably a modified form of relativistic field
theory) behind the considered extensionofSR.We just
note that the second form of the conservation law has
some inherent ambiguities which are absent in the first
conservation law: the definition of the antipode (which
can be “left” or “right”) and the choice of which
antipodes are present in the conservation law, those of
the momenta of the initial state, or those of the
momenta of the final state.

(5) Equations (6) and (7) show that, at first order in
1=M, the coefficients of the composition law are
completely determined by the coefficients appearing
in the nonlinear Lorentz transformations. However,
this is no longer the case at second order. As we have
seen, the relations among the coefficients of the
modified dispersion relation, modified composition
law and modified Lorentz transformations can be
understood as a result of a change of variables and a
change of basis from momentum variables trans-
forming linearly. In the case of a modified kinemat-
ics at first order, there are four parameters in a
general change of variables and three parameters in a
general change of basis [see Eqs. (31) and (15),
respectively]. The three coefficients of the modified
Lorentz transformation in the one-particle system,
the λi, are exclusively determined by the coefficients
of the change of basis, Eq. (23), and the four
coefficients of the modified Lorentz transformation
in the two-particle system, the ηi, are completely
determined by the coefficients of the change of
variables, Eq. (35). Since the change of variables and
the change of basis modify the composition law, it
seems natural that the coefficients of the composi-
tion law be determined by the coefficients of the
nonlinear Lorentz transformations. However, there is
a subtlety here. As we will see in the next section, at
order higher than one there exist nonlinear compo-
sition laws that are compatible with linear Lorentz
transformations. This will represent a new ingredient
which is absent at first order; we will examine it
carefully in Sec. III C.
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III. BEYOND SR AT SECOND ORDER

According to what we learned in the last section, we will
generate modified kinematics at second order through a
change of variables from momenta transforming linearly. A
general kinematics can then be completed by considering a
change of basis; we will however make emphasis on the
change of variables over the change of basis because we
want to compare the results obtained here with those
appeared in the literature of Hopf algebras, where the
basis is a matter of choice. In other words, and using the

algebraic language, we will be working in the classical
basis, where the one-particle momenta transform linearly.

A. Change of variables up to second order

As in Sec. II C, we need the most general expression of a
change of variables at second order ðP;QÞ → ðp; qÞ that is
consistent with p2 ¼ P2, q2 ¼ Q2. To this purpose, we
start by considering the terms proportional to ð1=MÞ2 that
are obtained when one applies the first order change of
variables Eq. (38) to p2, q2:

P2 ¼ p2 þ vL1v
L
1

M2
½q2ðn · pÞ2 − 2ðp · qÞðn · pÞðn · qÞ þ ðp · qÞ2n2�

þ vL2v
L
2

M2
½p2q2n2 þ 2ðp · qÞðn · pÞðn · qÞ − p2ðn · qÞ2 − q2ðn · pÞ2 − ðp · qÞ2n2�;

Q2 ¼ q2 þ vR1 v
R
1

M2
½p2ðn · qÞ2 − 2ðp · qÞðn · pÞðn · qÞ þ ðp · qÞ2n2�

þ vR2 v
R
2

M2
½p2q2n2 þ 2ðp · qÞðn · pÞðn · qÞ − p2ðn · qÞ2 − q2ðn · pÞ2 − ðp · qÞ2n2�: ð58Þ

In order to have p2 ¼ P2 to second order, we need to consider a change of variables of the form

Pμ ¼ pμ þ
vL1
M

½qμðn · pÞ − nμðp · qÞ� þ vL2
M

ϵμνρσpνqρnσ −
vL1v

L
1

2M2
½nμq2ðn · pÞ − 2nμðp · qÞðn · qÞ þ qμðp · qÞn2�

−
vL2v

L
2

2M2
½pμq2n2 þ 2nμðp · qÞðn · qÞ − pμðn · qÞ2 − nμq2ðn · pÞ − qμðp · qÞn2�

þ vL3
M2

½pμðn · pÞ − nμp2�ðn · qÞ þ vL4
M2

½qμðn · pÞ − nμðp · qÞ�ðn · pÞ þ vL5
M2

½qμðn · pÞ − nμðp · qÞ�ðn · qÞ

þ vL6
M2

ðn · pÞϵμνρσpνqρnσ þ vL7
M2

ðn · qÞϵμνρσpνqρnσ: ð59Þ

For the second variable Q we have

Qμ ¼ qμ þ
vR1
M

½pμðn · qÞ − nμðp · qÞ� þ vR2
M

ϵμνρσqνpρnσ −
vR1 v

R
1

2M2
½nμp2ðn · qÞ − 2nμðp · qÞðn · pÞ þ pμðp · qÞn2�

−
vR2 v

R
2

2M2
½qμp2n2 þ 2nμðp · qÞðn · pÞ − qμðn · pÞ2 − nμp2ðn · qÞ − pμðp · qÞn2�

þ vR3
M2

½qμðn · qÞ − nμq2�ðn · pÞ þ vR4
M2

½pμðn · qÞ − nμðp · qÞ�ðn · qÞ þ vR5
M2

½pμðn · qÞ − nμðp · qÞ�ðn · pÞ

þ vR6
M2

ðn · qÞϵμνρσqνpρnσ þ vR7
M2

ðn · pÞϵμνρσqνpρnσ: ð60Þ

There are, therefore, a total of 14 parameters
ðvL1 ;…; vL7 ; v

R
1 ;…; vR7 Þ for a generic change of variables

at second order. To find the composition law for the
variables ðp; qÞ we have to apply the previous change of
variables to the composition law of the momentum vari-
ables ðP;QÞ which transform linearly. But at second order
there is a nonlinear composition law compatible with a

linear Lorentz transformation (recall the comment in the

last point of Sec. II D):

½P⊕Q�μ ¼ Pμ þQμ þ
c1
M2

PμQ2 þ c2
M2

QμP2

þ c3
M2

PμðP ·QÞ þ c4
M2

QμðP ·QÞ: ð61Þ
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It is easy to see that this composition law is invariant under
the standard Lorentz transformation, ~Xμ ¼ Λ ν

μXν, since the
ð1=M2Þ terms are covariant; we will call it a covariant
composition law (the existence of covariant composition
laws at second order was also noted in Ref. [26]). A generic

nonlinear composition law and Lorentz transformation in
the two-particle system will then be obtained by applying
the change of variables (59)–(60) to the generic covariant
composition law (61). For the new composition law, one
obtains

½p ⊕ q�μ ¼ pμ þ qμ þ
vL1
M

½qμðn · pÞ − nμðp · qÞ� þ vR1
M

½pμðn · qÞ − nμðp · qÞ� þ ðvL2 − vR2 Þ
M

ϵμνρσpνqρnσ

þ c1
M2

pμq2 þ
c2
M2

qμp2 þ c3
M2

pμðp · qÞ þ c4
M2

qμðp · qÞ

−
vL1v

L
1

2M2
½nμq2ðn · pÞ − 2nμðp · qÞðn · qÞ þ qμðp · qÞn2� − vR1 v

R
1

2M2
½nμp2ðn · qÞ − 2nμðp · qÞðn · pÞ þ pμðp · qÞn2�

−
vL2v

L
2

2M2
½pμq2n2 þ 2nμðp · qÞðn · qÞ − pμðn · qÞ2 − nμq2ðn · pÞ − qμðp · qÞn2�

−
vR2 v

R
2

2M2
½qμp2n2 þ 2nμðp · qÞðn · pÞ − qμðn · pÞ2 − nμp2ðn · qÞ − pμðp · qÞn2�

þ vL3
M2

½pμðn · pÞ − nμp2�ðn · qÞ þ vR3
M2

½qμðn · qÞ − nμq2�ðn · pÞ

þ vL4
M2

½qμðn · pÞ − nμðp · qÞ�ðn · pÞ þ vR4
M2

½pμðn · qÞ − nμðp · qÞ�ðn · qÞ

þ vL5
M2

½qμðn · pÞ − nμðp · qÞ�ðn · qÞ þ vR5
M2

½pμðn · qÞ − nμðp · qÞ�ðn · pÞ

þ ðvL6 − vR7 Þ
M2

ðn · pÞϵμνρσpνqρnσ þ ðvL7 − vR6 Þ
M2

ðn · qÞϵμνρσpνqρnσ: ð62Þ

We see that a generic composition law generated by a change of variables at second order has coefficients that depend on
16 parameters: the four parameters of the original covariant composition law, Eq. (61), and 12 combinations of the
14 parameters of the change of variables (59)–(60). In the interesting particular case of rotational invariance, we take
nμ ¼ ð1; 0; 0; 0Þ in Eq. (62) and we find

½p ⊕ q�0 ¼ p0 þ q0 þ
ðvL1 þ vR1 Þ

M
~p · ~qþ ð2c1 − vL1v

L
1 − 2vR3 Þ

2M2
p0q2 þ

ð2c2 − vR1 v
R
1 − 2vL3 Þ

2M2
q0p2

þ ð2c3 þ vR1 v
R
1 − vR2 v

R
2 − 2vL4 − 2vR5 Þ

2M2
p0ðp · qÞ þ ð2c4 þ vL1v

L
1 − vL2v

L
2 − 2vL5 − 2vR4 Þ

2M2
q0ðp · qÞ

þ ðvR2 vR2 þ 2vL3 þ 2vL4 þ 2vR5 Þ
2M2

p2
0q0 þ

ðvL2vL2 þ 2vR3 þ 2vL5 þ 2vR4 Þ
2M2

p0q20

½p ⊕ q�i ¼ pi þ qi þ
vL1
M

p0qi þ
vR1
M

q0pi þ
ðvL2 − vR2 Þ

M
ϵijkpjqk þ

ð2c1 − vL2v
L
2 Þ

2M2
piq2 þ

ð2c2 − vR2 v
R
2 Þ

2M2
qip2

þ ð2c3 − vR1v
R
1 þ vR2 v

R
2 Þ

2M2
piðp · qÞ þ ð2c4 − vL1v

L
1 þ vL2v

L
2 Þ

2M2
qiðp · qÞ þ ðvR2 vR2 þ 2vL4 Þ

2M2
p2
0qi

þ ðvL2vL2 þ 2vR4 Þ
2M2

piq20 þ
ðvL3 þ vR5 Þ

M2
pip0q0 þ

ðvR3 þ vL5 Þ
M2

qip0q0 þ
ðvL6 − vR7 Þ

M2
p0ϵijkpjqk

þ ðvL7 − vR6 Þ
M2

q0ϵijkpjqk; ð63Þ
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where we can identify as in the first order case the following adimensional coefficients:

β1 ¼ 0; β2 ¼ vL1 þ vR1 ; 2β3 ¼ 2c1 − vL1v
L
1 − 2vR3 ;

2β4 ¼ 2c2 − vR1 v
R
1 − 2vL3 ; 2β5 ¼ 2c3 þ vR1 v

R
1 − vR2v

R
2 − 2vL4 − 2vR5 ;

2β6 ¼ 2c4 þ vL1v
L
1 − vL2v

L
2 − 2vL5 − 2vR4 ;

2β7 ¼ vR2 v
R
2 þ 2vL3 þ 2vL4 þ 2vR5 ; 2β8 ¼ vL2v

L
2 þ 2vR3 þ 2vL5 þ 2vR4 ; γ1 ¼ vL1 ;

γ2 ¼ vR1 ; γ3 ¼ vL2 − vR2 ; 2γ4 ¼ 2c1 − vL2v
L
2 ;

2γ5 ¼ 2c2 − vR2 v
R
2 ; 2γ6 ¼ 2c3 − vR1 v

R
1 þ vR2v

R
2 ; 2γ7 ¼ 2c4 − vL1v

L
1 þ vL2v

L
2 ;

2γ8 ¼ vR2 v
R
2 þ 2vL4 ; 2γ9 ¼ vL2v

L
2 þ 2vR4 ; γ10 ¼ vL3 þ vR5 ;

γ11 ¼ vR3 þ vL5 ; γ12 ¼ vL6 − vR7 ; γ13 ¼ vL7 − vR6 : ð64Þ

These relations constitute the generalization to second order of Eq. (33). As in the first-order case, in the classical basis (that
is, when the dispersion relation and Lorentz transformations in the one-particle system are those of SR) the golden rules are
a set of relations among the coefficients of the composition law. From Eq. (64), we find that the first-order rules given in
Eq. (34) are generalized to second order to

β1 ¼ β2 − γ1 − γ2 ¼ 0;

β3 þ β6 − γ4 − γ7 þ γ9 þ γ11 −
γ21
2
¼ 0;

β4 þ β5 − γ5 − γ6 þ γ8 þ γ10 −
γ22
2
¼ 0;

β7 − γ8 − γ10 ¼ β8 − γ9 − γ11 ¼ 0: ð65Þ
In the case of a modified Lorentz transformation in the two-particle system, ðp; qÞ → ðp0; q0Þ, one can follow the

steps that led to Eqs. (44) and (45) in Sec. II C; in this case, one gets the following expression for the transformed
momentum p0:

p0
μ ¼ ~pμ þ ωαβnβ

�
vL1
M

pαqμ −
vL1
M

ηαμðp · qÞ − vL2
M

ϵαμνρpνqρ
�

þ ωαβnβ

�
−
vL1v

R
1

M2
ðqαpμ − ηαμðp · qÞÞðn · pÞ − vL1v

R
2

M2
ϵαμνρpνqρðn · pÞ − vL1v

L
1

M2
pαqμðn · qÞ

þ vL1v
L
2

M2
ϵανρσqμpνqρnσ þ vL1v

L
1

M2
ðpαq2 − qαðp · qÞÞnμ þ

vL1v
R
1

M2
ðqαp2 − pαðp · qÞÞnμ

−
vL2v

L
1

M2
ϵαμνρqνnρðp · qÞ þ vL2v

R
1

M2
ϵαμνρpνnρðp · qÞ þ vL2v

L
2

M2
½qαðpμðn · qÞ − qμðn · pÞÞ − ηαμððn · qÞðp · qÞ − ðn · pÞq2Þ�

−
vL2v

R
2

M2
½pαðqμðn · pÞ − pμðn · qÞÞ − ηαμððn · pÞðp · qÞ − ðn · qÞp2Þ� þ vL2v

L
2

M2
qαpμðn · qÞ

−
ðvL1vL1 − vL2v

L
2 Þ

2M2
ðpαnμ þ ηαμðn · pÞÞq2 þ ðvL1vL1 − vL2v

L
2 − vL5 Þ

M2
ðqαnμ þ ηαμðn · qÞÞðp · qÞ

þ vL3
M2

ðqαðn · pÞ þ pαðn · qÞÞpμ −
vL3
M2

ðqαnμ þ ηαμðn · qÞÞp2 þ vL4
M2

2pαqμðn · pÞ − vL4
M2

ðpαnμ þ ηαμðn · pÞÞðp · qÞ

þ vL5
M2

ðqαðn · pÞ þ pαðn · qÞÞqμ þ
vL6
M2

½pαϵμνρσpνqρnσ − ϵαμνρpνqρðn · pÞ� þ vL7
M2

½qαϵμνρσpνqρnσ − ϵαμνρpνqρðn · qÞ�
�
:

ð66Þ

The Lorentz transformation for the second momentum variable (q0) is obtained from the expression for p0 by the
interchanges p ↔ q, viL ↔ viR,
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q0μ ¼ ~qμ þ ωαβnβ

�
vR1
M

qαpμ −
vR1
M

ηαμðp · qÞ − vR2
M

ϵαμνρqνpρ

�

þ ωαβnβ

�
−
vR1 v

L
1

M2
ðpαqμ − ηαμðp · qÞÞðn · qÞ − vR1 v

L
2

M2
ϵαμνρqνpρðn · qÞ − vR1 v

R
1

M2
qαpμðn · pÞ

þ vR1 v
R
2

M2
ϵανρσpμqνpρnσ þ vR1 v

R
1

M2
ðqαp2 − pαðp · qÞÞnμ þ

vR1 v
L
1

M2
ðpαq2 − qαðp · qÞÞnμ

−
vR2v

R
1

M2
ϵαμνρpνnρðp · qÞ þ vR2 v

L
1

M2
ϵαμνρqνnρðp · qÞ þ vR2v

R
2

M2
½pαðqμðn · pÞ − pμðn · qÞÞ − ηαμððn · pÞðp · qÞ − ðn · qÞp2Þ�

−
vR2v

L
2

M2
½qαðpμðn · qÞ − qμðn · pÞÞ − ηαμððn · qÞðp · qÞ − ðn · pÞq2Þ� þ vR2 v

R
2

M2
pαqμðn · pÞ

−
ðvR1vR1 − vR2 v

R
2 Þ

2M2
ðqαnμ þ ηαμðn · qÞÞp2 þ ðvR1 vR1 − vR2v

R
2 − vR5 Þ

M2
ðpαnμ þ ηαμðn · pÞÞðp · qÞ

þ vR3
M2

ðpαðn · qÞ þ qαðn · pÞÞqμ −
vR3
M2

ðpαnμ þ ηαμðn · pÞÞq2 þ vR4
M2

2qαpμðn · qÞ − vR4
M2

ðqαnμ þ ηαμðn · qÞÞðp · qÞ

þ vR5
M2

ðpαðn · qÞ þ qαðn · pÞÞpμ þ
vR6
M2

½qαϵμνρσqνpρnσ − ϵαμνρqνpρðn · qÞ� þ vR7
M2

½pαϵμνρσqνpρnσ − ϵαμνρqνpρðn · pÞ�
�
:

ð67Þ

We see that the coefficients of the modified Lorentz transformations depend on the 14 parameters ðvLi ; vRi Þ; i ¼ 1;…7,
appearing in the change of variables, and not on the 4 parameters ci of the covariant composition law, so that, as we stated in
the last point of Sec. II D, at second order the modified Lorentz transformations do not determine a generic nonlinear
composition law.
If we choose again nμ ¼ ð1; 0; 0; 0Þ in Eqs. (66) and (67) we get

p0
0 ¼ p0 þ ~p · ~ξ −

vL1
M

q0ð~p · ~ξÞ þ vL2
M

ð~p ∧ ~qÞ · ~ξþ vL1v
L
1 − vL2v

L
2 − 2vL5

2M2
q20ð~p · ~ξÞ þ vL1v

L
1 þ vL2v

L
2

2M2
~q2ð~p · ~ξÞ

þ vL1v
R
1 − vL3
M2

~p2ð~q · ~ξÞ þ vL1v
R
1 − vL3 − vL4
M2

p0q0ð~p · ~ξÞ − vL1v
R
1 þ vL4
M2

ð~p · ~qÞð~p · ~ξÞ

−
vL2v

L
2 þ vL5
M2

ð~p · ~qÞð~q · ~ξÞ þ vL1v
R
2 þ vL6
M2

p0ð~p ∧ ~qÞ~ξþ −vL1vL2 þ vL7
M2

q0ð~p ∧ ~qÞ~ξ; ð68Þ

p0
i ¼ pi þ p0ξi −

vL1
M

½qið~p · ~ξÞ þ ðp · qÞξi� −
vL2
M2

ðq0ϵijkpjξk − p0ϵijkqjξkÞ þ
vL1v

R
1 − vL3 − vL4
M2

p2
0q0ξi

þ vL1v
L
1 − vL2v

L
2 − 2vL5

2M2
p0q20ξi þ

−vL1vR1 − vL2v
R
2 þ vL4

M2
ð~p · ~qÞp0ξi þ

−vL1vL1 þ 2vL2v
L
2 þ vL5

M2
ð~p · ~qÞq0ξi

þ vL2v
R
2 þ vL3
M2

~p2q0ξi þ
vL1v

L
1 − 3vL2v

L
2

2M2
p0~q2ξi þ

vL2v
R
2 − 2vL4
M2

p0qið~p · ~ξÞ − vL2v
R
2 þ vL3
M2

piq0ð~p · ~ξÞ

þ vL2v
L
2 − vL5
M2

p0qið~q · ~ξÞ − 2vL2v
L
2

M2
piq0ð~q · ~ξÞ þ vL1v

R
1 − vL3
M2

p0pið~q · ~ξÞ þ vL1v
L
1 − vL5
M2

q0qið~p · ~ξÞ

−
vL1v

L
2

M2
qið~p ∧ ~qÞ~ξþ vL1v

R
2 þ vL6
M2

p2
0ϵijkqjξk −

vL6
M2

ð~p · ~ξÞϵijkpjqk þ
vL7
M2

p0q0ϵijkqjξk

−
vL7
M2

ð~q · ~ξÞϵijkpjqk −
vL7
M2

q20ϵijkpjξk −
vL1v

R
2 þ vL6
M2

p0q0ϵijkpjξk þ
vL1v

L
2

M2
ðp · qÞϵijkqjξk −

vR1v
L
2

M2
ðp · qÞϵijkpjξk;

ð69Þ
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q00 ¼ q0 þ ~q · ~ξ −
vR1
M

p0ð~q · ~ξÞ þ vR2
M

ð~q ∧ ~pÞ · ~ξþ vR1 v
R
1 − vR2v

R
2 − 2vR5

2M2
p2
0ð~q · ~ξÞ þ vR1 v

R
1 þ vR2v

R
2

2M2
~p2ð~q · ~ξÞ

þ vL1v
R
1 − vR3
M2

~q2ð~p · ~ξÞ þ vL1v
R
1 − vR3 − vR4
M2

q0p0ð~q · ~ξÞ − vL1v
R
1 þ vR4
M2

ð~p · ~qÞð~q · ~ξÞ

−
vR2 v

R
2 þ vR5
M2

ð~p · ~qÞð~p · ~ξÞ − vR1 v
L
2 þ vR6
M2

q0ð~p ∧ ~qÞ~ξþ vR1 v
R
2 − vR7
M2

p0ð~p ∧ ~qÞ~ξ; ð70Þ

q0i ¼ qi þ q0ξi −
vR1
M

½pið~q · ~ξÞ þ ðp · qÞξi� −
vR2
M2

ðp0ϵijkqjξk − q0ϵijkpjξkÞ þ
vL1v

R
1 − vR3 − vR4
M2

q20p0ξi

þ vR1v
R
1 − vR2 v

R
2 − 2vR5

2M2
q0p2

0ξi þ
−vL1vR1 − vR2 v

L
2 þ vR4

M2
ð~p · ~qÞq0ξi þ

−vR1vR1 þ 2vR2v
R
2 þ vR5

M2
ð~p · ~qÞp0ξi

þ vL2v
R
2 þ vR3
M2

~q2p0ξi þ
vR1 v

R
1 − 3vR2 v

R
2

2M2
q0 ~p2ξi þ

vL2v
R
2 − 2vR4
M2

q0pið~q · ~ξÞ − vL2v
R
2 þ vR3
M2

qip0ð~q · ~ξÞ

þ vR2v
R
2 − vR5
M2

q0pið~p · ~ξÞ − 2vR2v
R
2

M2
qip0ð~p · ~ξÞ þ vL1v

R
1 − vR3
M2

q0qið~p · ~ξÞ þ vR1 v
R
1 − vR5
M2

p0pið~q · ~ξÞ

þ vR1v
R
2

M2
pið~p ∧ ~qÞ~ξþ vR1 v

L
2 þ vR6
M2

q20ϵijkpjξk þ
vR6
M2

ð~q · ~ξÞϵijkpjqk þ
vR7
M2

p0q0ϵijkpjξk

þ vR7
M2

ð~p · ~ξÞϵijkpjqk −
vR7
M2

p2
0ϵijkqjξk −

vR1v
L
2 þ vR6
M2

p0q0ϵijkqjξk þ
vR1 v

R
2

M2
ðp · qÞϵijkpjξk −

vL1v
R
2

M2
ðp · qÞϵijkqjξk: ð71Þ

These are the expressions that generalize Eq. (47) to order
ð1=MÞ2: they are nonlinear modifications of the Lorentz
transformations to second order in the two-particle system
that make p2 and q2 invariant, and their coefficients depend
on 14 parameters that can be identified as the parameters of
a generic change of variables in the two-particle system.
As remarked before, they can be extended by a change of
basis to make modified second-order dispersion relations
invariant. The calculations including a change of basis are
rather involved, but in the following subsection we will
consider an important case for which they are greatly
simplified. It is the case in which the corrections to SR start
directly at second order.

B. Change of variables and change of basis
starting at second order

As we saw in the Introduction, a few phenomenological
indications seem to suggest that the possible corrections in
a modified kinematics should start at second order. In
fact there exist also some theoretical arguments favoring
second-order over first-order corrections, such as thought
experiments involving the Heisenberg microscope or black
holes, which conclude quite generally that quantum gravity
generates G ∝ m−2

P corrections to, for example, the stan-
dard Heisenberg uncertainty principle [27,28], or the fact
that, from the point of view of effective field theories, and
in the context of supersymmetry, d ¼ 6 Lorentz-violating
operators (corresponding to M−2 corrections) are able to
suppress unwanted Lorentz violations at low energies
which are generated through radiative corrections, while

they are however unavoidable if d ¼ 5 Lorentz-violating
operators (M−1 corrections to SR) are present [29–31].
In this subsection, then, we consider the relevant case in

which there are no first-order corrections to SR, and we will
study the most general modification of SR at second order in
the same way as we did in Sec. II C for the first-order case.
The expressions corresponding to the modified Lorentz

transformation and composition law in the case of a change
of variables are obtained easily from Eqs. (66), (67), (62) by
making vL1 , v

R
1 , v

L
2 , v

R
2 equal to zero.

If corrections to SR start at second order it is straightfor-
ward to make a change of basis at second order

Xμ ¼ X̂μ þ
b4
M2

nμX̂
2ðn · X̂Þ þ b5

M2
X̂μðn · X̂Þ2

þ b6
M2

nμðn · X̂Þ3; ð72Þ

leading to a dispersion relation

m2 ¼ p2 ¼ p̂2 þ 2ðb4 þ b5Þ
M2

p̂2ðn · p̂Þ2 þ 2b6
M2

ðn · p̂Þ4:
ð73Þ

If we choose nμ ¼ ð1; 0; 0; 0Þ in Eq. (73), we get

m2 ¼ p̂2
0 − ~̂p2 þ α3

M2
ðp̂0Þ4 þ

α4
M2

ðp̂0Þ2 ~̂p2 ð74Þ

which is the modified dispersion relation that generalizes
Eq. (1) to the case of corrections to SR starting at second
order, and where
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α3 ¼ 2ðb4 þ b5 þ b6Þ; α4 ¼ −2ðb4 þ b5Þ: ð75Þ
The change of basis modifies the composition law so that
the second-order coefficients in Eqs. (64) become

β3 ¼ c1 − vR3 − b4; β4 ¼ c2 − vL3 − b4;

β5 ¼ c3 − vL4 − vR5 − 2b4;

β6 ¼ c4 − vL5 − vR4 − 2b4;

β7 ¼ vL3 þ vL4 þ vR5 − 3b5 − 3b6;

β8 ¼ vR3 þ vL5 þ vR4 − 3b5 − 3b6;

γ4 ¼ c1; γ5 ¼ c2; γ6 ¼ c3;

γ7 ¼ c4; γ8 ¼ vL4 − b5; γ9 ¼ vR4 − b5;

γ10 ¼ vL3 þ vR5 − 2b5; γ11 ¼ vR3 þ vL5 − 2b5;

γ12 ¼ vL6 − vR7 ; γ13 ¼ vL7 − vR6 : ð76Þ
From these expressions we can get the golden rules (the
relations between the coefficients of the modified
dispersion relation and the modified composition law) at
second order:

β3 þ β6 − γ4 − γ7 þ γ9 þ γ11 ¼ β4 þ β5 − γ5 − γ6 þ γ8 þ γ10

¼ 3

2
α4;

β7 − γ8 − γ10 ¼ β8 − γ9 − γ11 ¼ −
3

2
ðα3 þ α4Þ: ð77Þ

C. Generalized kinematics and the choice
of momentum variables

In the previous subsections we have used the change of
variables as a mathematical tool to identify the nonlinear
Lorentz transformations to second order in (1=M) that leave
invariant the set of dispersion relations in the two-particle
system.Aswe commented in the Introduction, there has been
a debate in the literature about the physical meaning of the
choice of momentum variables in extensions of SR. In the
absence of a dynamical theory, it is difficult to give a definite
answer on this question, although, as we also explained
above, from the algebraic or geometric points of view a
change of variables is qualitatively different from a change of
basis, which in those contexts is mathematically irrelevant.
Nevertheless one could ask whether every generalized

relativistic kinematics can be seen as a consequence of a
change in the (possibly nontrivial, or physically inequiva-
lent) assignation of momentum variables over the kinemat-
ics of SR. In Sec. II we showed that this was indeed the case
at first order. We will see now that this is not completely so
in the case of the generalized kinematics at second order.
As we have seen, at second order the nonlinearity of the

Lorentz transformations and the correspondent nonlinearity
in the composition law (the terms proportional to the
parameters of the change of variables vLi , v

R
i ) is due to a

choice of momentum variables. We had, however, another
relevant ingredient in this case: the covariant composition
law (61). We will see now that it is not possible to generate
an arbitrary covariant composition law by a change of
variables and a change of basis.
Let us start with a linear (additive) composition law in

the variables fP̂; Q̂g, and make from here a covariant
change of basis

~Pμ ¼ P̂μ

�
1þ b

M2
P̂2

�
ð78Þ

that leaves invariant the dispersion relation because P̂2 is an
invariant constant. Following the procedure indicated by
Eq. (18) we obtain

½ ~P ~⊕ ~Q�μ ¼ ~Pμ þ ~Qμ −
b
M2

~Pμ
~Q2 −

b
M2

~Qμ
~P2

−
2b
M2

~Pμð ~P · ~QÞ − 2b
M2

~Qμð ~P · ~QÞ: ð79Þ

Now we make a change of variables that does not mix
momenta in the dispersion relation:

~Pμ ¼ Pμ þ
vL

M2
ðQμP2 − PμðP ·QÞÞ;

~Qμ ¼ Qμ þ
vR

M2
ðPμQ2 −QμðP ·QÞÞ: ð80Þ

In this way we finally obtain a covariant composition law of
the form

½P⊕Q�μ ¼ Pμ þQμ þ
vR − b
M2

PμQ2 þ vL − b
M2

QμP2

−
vL þ 2b
M2

PμðP ·QÞ − vR þ 2b
M2

QμðP ·QÞ:
ð81Þ

If we compare Eq. (81) with Eq. (61), we see that there are
four parameters in Eq. (61), while the composition law (81)
contains only three. This means that we cannot obtain the
most general covariant composition law through a change
of variables and a change of basis.
To sum up, we see that 17 out of the 18 parameters

ðvLi ; vRi ; ciÞ correspond to a choice of momentum variables,
leaving out a combination of theci that do not correspond to a
change of variables or a change of basis. Independently of the
physical meaning of a change of variables, this result shows
that not every generalization of the relativistic kinematics of
SR can be reduced to a choice of momentum variables.

IV. RELATION WITH THE FORMALISM
OF HOPF ALGEBRAS

Having obtained the expressions for a generic modified
kinematics up to second order in a power expansion of
(1=M), we will compare our results with the most studied
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extension of the Poincaré algebra, which is the Hopf
algebra of κ-Poincaré. This is a single-parameter [κ, our
(1=M)] deformation of the commutation relations of the
ðP0; Pi; Ji; NiÞ generators of the Poincaré algebra,which has
a structure of co-algebra, and has therefore a coproduct
operation that can be put in correspondence with the
composition law or the deformed boosts of DSR in the
appropriate basis of the algebra [21]. Since our expressions of
Sec. III correspond to an extension of SR for which the
dispersion relations are those of SR, we will compare them
with κ-Poincaré in the classical basis. One can read from
Ref. [32] the coproduct of boosts and momenta in this basis:

ΔðNiÞ ¼ Ni ⊗ 1þ
�
1 −

P0

M
þ P2

0

2M2
þ

~P2

2M2

�

⊗ Ni −
1

M
ϵijkPj

�
1 −

P0

M

�
⊗ Jk; ð82Þ

ΔðP0Þ ¼ P0 ⊗
�
1þ P0

M
þ P2

0

2M2
−

~P2

2M2

�

þ
�
1 −

P0

M
þ P2

0

2M2
þ

~P2

2M2

�

⊗ P0 þ
1

M
Pm

�
1 −

P0

M

�
⊗ Pm; ð83Þ

ΔðPiÞ ¼ Pi ⊗
�
1þ P0

M
þ P2

0

2M2
−

~P2

2M2

�
þ 1 ⊗ Pi: ð84Þ

From the form of these expressions it is evident that
½ΔðNjÞ;C⊗ 1� ¼ ½ΔðNjÞ;1⊗C� ¼ 0, since C, the Casimir
of the algebra, commutes with all of the ðP0; Pi; Ji; NiÞ
generators. This means that the Casimir of the algebra is
trivially extended to the tensor product of the algebras, or,
equivalently, as was described in Sec. II A, that the dispersion
relation of every particle in the two-particle system is a
function of the momentum of that particle.
To match these algebraic expressions with the kinemati-

cal language we have used in this paper, let us consider that
the generators of the Poincaré algebra are operators acting
on the basis of the momentum operator, Pμjpi ¼ pμjpi.
The generators of boosts Nj satisfy

jp0i ¼ ð1 − iξjNj þOðξ2ÞÞjpi ð85Þ

where jp0i≡ jpi0 is the transformed state from jpi with a
boost. From the previous equation, and working up to order
Oðξ2Þ,

−iξj½Nj; Pμ�jpi ¼ −iξjðNjPμ − PμNjÞjpi
¼ pμðjp0i − jpiÞ − p0

μjp0i þ pμjpi
¼ ðp − p0Þμjp0i ¼ ðp − p0Þμjpi þOðξ2Þ:

ð86Þ

From here we get

p0
μ ¼ pμ þ iξj½fjðpÞ�μ; ð87Þ

where ½fjðpÞ�μ are the eigenvalues of ½Nj; Pμ�, which is a
function of the Pμ, that is,

fjðPμÞjpi≡ ½Nj; Pμ�jpi ¼ ½fjðpÞ�μjpi: ð88Þ

The previous relations can be generalized to the two-
particle system. In this case, we define

ðPμ ⊗ 1Þjp0;q0i ¼ p0
μjp0; q0i;

ð1 ⊗ PμÞjp0;q0i ¼ q0μjp0; q0i; ð89Þ

and the generators of coboosts, ΔðNjÞ, satisfy

jp0; q0i ¼ ð1 − iξjΔðNjÞ þOðξ2ÞÞjp; qi: ð90Þ

Then, Eq. (87) is generalized to

p0
μ ¼ pμ þ iξj½fð1Þj ðp; qÞ�μ;

q0μ ¼ qμ þ iξj½fð2Þj ðp; qÞ�μ; ð91Þ

where ½fð1Þj ðp; qÞ�μ and ½fð2Þj ðp; qÞ�μ are the eigenvalues of
½ΔðNjÞ; Pμ ⊗ 1� and ½ΔðNjÞ; 1 ⊗ Pμ�, respectively:

½ΔðNjÞ; Pμ ⊗ 1�jp; qi ¼ ½fð1Þj ðp; qÞ�μjp; qi;
½ΔðNjÞ; 1 ⊗ Pμ�jp; qi ¼ ½fð2Þj ðp; qÞ�μjp; qi: ð92Þ

Finally, the coproduct ΔðPμÞ acts in the momentum space
of the two-particle system, such that

ΔðPμÞjp; qi ¼ ðp ⊕ qÞμjp; qi: ð93Þ

Let us now make explicitly the correspondence between
our framework and that of κ-Poincaré. From Eq. (93) and
Eqs. (83) and (84), the composition law that corresponds to
κ-Poincaré in the classical basis is

ðp ⊕ qÞ0 ¼ p0 þ q0 þ
~p · ~q
M

þ p0

2M2
ðq20 − ~q2Þ

þ q0
2M2

ðp2
0 þ ~p2Þ − p0

M2
ð~p · ~qÞ;

ðp ⊕ qÞi ¼ pi þ qi þ
q0pi

M
þ pi

M2
ðq20 − ~q2Þ: ð94Þ

On the other hand, from the coproduct of the boost, Eq. (82),
and using Eqs. (91) and (92), together with the standard
commutation relations ½Ni;P0� ¼−iPj, ½Ni;Pj; � ¼ iδijP0,
½Ji; Pj� ¼ iϵijkPm (remember that we are working in the
classical basis), we get
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p0
0 ¼ p0 þ ~p · ~ξ; p0

i ¼ pi þ p0ξi;

q00 ¼ q0 þ ~q:~ξ

�
1 −

p0

M
þ p2

0

2M2
þ ~p2

2M2

�
;

q0i ¼ qi þ q0ξi

�
1 −

p0

M
þ p2

0

2M2
þ ~p2

2M2

�

þ ð~p · ~qÞξi
�
1

M
−

p0

M2

�
þ ~q · ~ξ

�
−
pi

M
þ p0pi

M2

�
: ð95Þ

Comparing Eq. (94) with Eq. (63), and Eq. (95) with
Eqs. (68)–(71), we see that our framework reproduces
κ-Poincaré in the classical basis with

vR1 ¼ 1; c1 ¼ c3 ¼
1

2
;

andwith the rest of the parameters equal to zero.As expected,
κ-Poincaré is a particular case of our general framework
that includes relativistic kinematics beyond SR at first and
second order in the power expansion of κ (1=M).

V. CONCLUSIONS

In this paper we have shown how to obtain second-order
(in an expansion on the inverse of a high energy scale M)
relativistic kinematics beyond SR.We have been able to give
a systematic procedure by using a mathematical trick: a
change of variables frommomentumvariables that transform
linearly in the two-particle momentum space and a change of
basis in the one-particlemomentum space. In fact we showed
in Sec. II that this procedure produces the most general
relativistic kinematics at first order; it allows one to arrive at
the same results that were derived in Ref. [16] by imposing
the relativity principle, and gives a simple interpretation of
the mathematical relations that the relativity principle
imposes on the coefficients of the modified dispersion
relation, the modified composition law, and the modified
Lorentz transformations: all of these coefficients are expres-
sions that involve the same parameters appearing in the
change of variables and the change of basis.
We have also related different approaches to extensions

of SR: the algebraic, the geometric, and the DSR perspec-
tives. In doing so, we have made a distinction between
two types of relativistic kinematics beyond SR: those which
come from a change of variables, and those which are
derived by a simple change of basis. This distinction may
be of help for trying to answer the nonresolved question on
the meaning of the choice of momentum variables and the
physical inequivalence between SR and these extensions.
For example, from the algebraic and the geometric points
of view, a change of basis represents just a choice of
coordinates in the algebra or in the geometry of the
momentum space, and has therefore no physical meaning.
In fact, in Ref. [21] it was suggested that the structure of
space-time could be the common ingredient to different
bases in the context of κ-Poincaré; although the coproduct
is different for every basis, when one introduces space-time

in a certain way (through a pairing compatible with the
coproduct, see Ref. [21]), one arrives to a noncommutative
(κ-Minkowski) space-time that has the same algebra
independently of the basis. A generalization of this result
to generic second-order relativistic kinematics, including
alternative ways of introducing the space-time, will be
presented elsewhere [33].
The mathematical procedure discussed above has allowed

us to construct relativistic kinematics at second order,
generalizing the formulas of modified composition laws
and modified Lorentz transformations that were obtained at
first order in Ref. [16] to much more involved expressions at
second order. Another important point was the introduction
of covariant notation, which also helped to simplify calcu-
lations. What is more, formulas in covariant notation are
valid without the simplification of rotational invariance.
Another key ingredient was the existence of covariant

composition laws, which are absent at first order. Assuming
a rotationally invariant kinematics, we have seen that up to
second order in the classical basis there are 18 parameters,
and 17 of them correspond to a choice of momentum
variables. There is a linear combination of the parameters of
the covariant composition law that cannot be reproduced by
a change of variables from the standard variables of SR. We
also saw in Sec. IV that our model contains the much
studied κ-Poincaré, which in the classical basis and up to
second order, can be reproduced with three parameters
different from zero. In this case however the model up to
second order can be seen as a choice of momentum
variables, since it is possible to reproduce the covariant
terms in κ-Poincaré by a covariant change of variables,
Eq. (81), with b ¼ vL ¼ −vR=2 ¼ −1=6.
The existence of covariant composition laws is therefore

related with the problem of the choice of momentum
variables, and makes the situation of relativistic kinematics
at first and second order very different. In the extreme case
of complete arbitrariness in the choice of momentum
variables, it suggests that the first nontriviality of nonlinear
extensions of SR appears at second order only. It is
tempting to try to relate this idea with the apparent lack
of phenomenological effects of quantum gravity at first
order in the Planck mass as mentioned in the Introduction;
however it is clear that one needs a dynamical frame
(a quantum field theory based on these kinematic exten-
sions of SR) in order to reveal the physical content of the
momentum variables and go from these speculative ideas to
specific phenomenological predictions. This has to be the
subject of future work.
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