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The strong equivalence principle (SEP) states that the description of a physical system in a gravitational
field is indistinguishable from the description of the same system at rest in an accelerating frame. While this
statement holds true in both general relativity and ordinary quantum mechanics, one expects it to fail when
quantum gravity corrections are taken into account. In this paper we investigate the possible failure of the
SEP in two quantum gravity inspired modifications of quantum mechanics—polymer quantum mechanics
and deformed Heisenberg algebra. We find that the SEP fails to hold in both these theories. We estimate the
deviation from SEP and find in both cases that it is too small to be measured in present day experiments.
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I. INTRODUCTION

The strong equivalence principle (SEP) is the statement
that locally, the physics in a uniform gravitational field is
identical to the physics in a uniformly accelerated frame.
Put differently, SEP says that in the presence of a
gravitational field, no matter how strong, locally one can
always find a co-ordinate transformation which “undoes”
the gravitational field. The strong equivalence principle is
one of the pillars of general relativity and also holds true in
ordinary quantum mechanics.
Can it however hold true when quantum gravity effects

are incorporated? One would expect that the answer to be in
the negative—quantum gravitational effects should not be
undone simply through a coordinate transformation. For
instance if space is indeed discrete, the particle should
“see” this discrete structure when in the presence of a
sufficiently strong gravitational field. Such a particle
should not be able to “unsee” this underlying lattice simply
by going to a different frame. Thus one would expect that in
the presence of quantum gravity corrections the strong
equivalence principle can hold only approximately.
So it is interesting to ask how the SEP may be modified

in the presence of quantum gravitational effects? As we
have argued above, we do expect to see a violation of the
SEP. On the other hand, the predicted violation should be
small enough to be consistent with the current experimental
results, where no violation has been detected [1–8]. In
this paper, we ask this question for two different mod-
ifications of quantum mechanics studied in quantum
gravity literature—polymer quantum mechanics and quan-
tum mechanics with deformed Heisenberg algebra.
Polymer quantum mechanics was introduced in [9] as a

toy model to test features of the quantization technique
employed in loop quantum gravity [10,11] in a simple
setting (The same quantization had been previously

introduced in a different context in [12]. It may also be
regarded as a physical theory in itself, a theory which
incorporates quantum gravity effects such as spatial dis-
creteness. In this interpretation, various aspects of polymer
quantum mechanics have been explored and contrasted
with the usual Schrodinger quantum mechanics. There
have been studies of polymer corrections to the dynamics
[13–17] or thermodynamics [18–21] in different quantum
systems as well comparison with regards to general features
such as implementation of symmetries [22].
It is expected on general grounds (See [23] and references

therein) that incorporation of quantum gravity effects
implies a minimal length of resolution and a modification
of the uncertainty principle, leading to generalized uncer-
tainty principles (GUP). The most straightforward and
popular quantum mechanical framework for incorporating
GUPs is through the modification of the Heisenberg algebra
of position and momentum operators [24]. Implications of
deformed Heisenberg Algebra have been studied exten-
sively in the literature (see [25] and references therein).The
gravitational potential in a non relativistic context has been
studied in [26–28]. However, while the weak equivalence
principle has been investigated in this approach [29,30],
there has been no exploration of the SEP till date.
We will show that for both polymer quantum mechanics

and modified Heisenberg algebra, SEP is violated but the
deviation is well within experimental bounds. We will see
that SEP is violated in polymer quantum mechanics in both
the A-polymer and B-polymer representations, as well as in
quantum mechanics with deformed Heisenberg algebra
However such violations become negligible in scales where
quantum gravity effects can be neglected, thus reproducing
the result of ordinary quantummechanics. Thus we obtain a
concrete idea about how the SEP, which is one of the
cornerstones of general relativity, is modified in the
presence of quantum gravity effects. This result may have
important implications for the unification of quantum
theory with general relativity.*nirmalya@physics.iitm.ac.in
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The plan of the paper is as follows. In the next section we
present a discussion of the principle of equivalence in
nonrelativistic quantum mechanics. In the second section, a
derivation of the strong equivalence principle in ordinary
quantum mechanics using extended Galilean transforma-
tions is given. In the third section we first briefly recall
polymer quantum mechanics and then proceed to inves-
tigate SEP in these theories. The investigation of SEP in
QM with modified Heisenberg algebra is presented in the
fourth section. The final section summarizes our results.

II. EQUIVALENCE PRINCIPLES IN
NONRELATIVISTIC QUANTUM MECHANICS

As the principle of equivalence is generally associated
with general relativity, its appearance in the context of
nonrelativistic quantum mechanics can seem a bit confus-
ing. Another source of confusion may be that there are two
different equivalence principles—the strong equivalence
principle and the weak equivalence principle—with inequi-
valent status in quantum mechanics. In this brief section we
clarify these issues.
We start by noting that the statements of both strong and

weak equivalence principles are quite independent of
relativity. The weak equivalence essentially states that
the motion of a particle in a gravitational field can be
described without the use of any parameters. In particular,
the mass parameter should drop out of the description [31].
On the other hand the strong equivalence principle states
that the description of motion of a particle in a gravitational
system is indistinguishable from the description of a system
at rest in an accelerating frame.
Note that both statements are quite independent of

relativity and can be made for nonrelativistic quantum
mechanics. Indeed the equivalence principles have been
studied in the context of nonrelativistic quantum mechanics
[31–37]. It is found that the weak equivalence principle
fails in nonrelativistic quantum mechanics (see for instance
[32]). We will not discuss the weak equivalence principle
any further in this paper.
The general statement of the strong equivalence principle

given above implies, in the context of nonrelativistic
quantum mechanics, the following statement: in the
Schrodinger equation, if one makes a change of coordinates
to a frame with acceleration a, the only effect will be to add
a term equal to ax to the potential. That is, it is indis-
tinguishable from the case where the same quantum
mechanical system is being subjected to a constant gravi-
tational force = a. This statement can be shown to hold in
nonrelativistic quantum mechanics [31,33]. We present a
proof in the next section.

III. SEP IN ORDINARY QUANTUM MECHANICS

To prove SEP in ordinary quantum mechanics we will
make use of extendedGalileo transformations. This strategy

was used in [31,33]. However the derivation presented in
these references was based on Schrodinger’s equation and is
not applicable for polymer quantum mechanics, where a
differential equation does not appear. Therefore we will
present a different derivation based on the action of extended
Galileo transformations on operators, which can be
extended to the polymer framework. The transformation
of operators under Galileo boosts in PQM was first pre-
sented in [38]—we will extend this treatment to the case of
extended Galileo transformations.
We will confine ourselves to extended Galileo trans-

formations between two frames A and A0 moving with
constant acceleration a with respect to each other. A and A0
are assumed to have been coincident as well as moving at
the same speed at t ¼ 0. For simplicity we will consider
only 1 spatial dimension.
The action of these extended Galileo transformations on

position and momentum operators are

B̂†ða; tÞx̂ B̂ða; tÞ ¼ x̂þ 1

2
at2; ð1Þ

B̂†ða; tÞp̂ B̂ða; tÞ ¼ p̂þmat: ð2Þ

Here m is the mass of the particle and t is treated as a
parameter.
We may write B as an exponential of its generator:

B̂ða; tÞ ¼ e−iaĉðtÞ: ð3Þ

Then from (1) and (2) it follows that:

i
ℏ
½Ĉ; x̂� ¼ 1

2
t2

i
ℏ
½Ĉ; p̂� ¼ mt: ð4Þ

It follows that

B̂ða; tÞ ¼ e
i
ℏ½−t2

2
ap̂þmax̂t�: ð5Þ

Now we will use this definition to prove the equivalence
principle. The statement of SEP is the following: The state
of a system accelerated from a frame A to a frame A0 at time
t1 and then evolved till time t2 is the same as the state of a
system evolved in frame A from t1 to t2, but in the presence
of an additional constant gravitational field and then
accelerated at time t2 to the frame A0. That is,

B̂ða; t2ÞÛA;aðt2; t1Þjψi ¼ Û0
Aðt2; t1ÞB̂ða; t1Þjψi ð6Þ

where Û denotes the time evolution operator.Û0
A is the time

evolution operator in the frame A0 and ˆUA;a denotes the
time evolution operator in the frame A in the presence of an
additional constant gravitational acceleration a. The various
Hamiltonians involved in this case are
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ĤA ¼ p̂2

2m
þ Vðx̂Þ; ð7Þ

Ĥ0
A ¼ p̂2

2m
þ V

� ˆ
x −

1

2
at2

�
; ð8Þ

ĤA;a ¼
p̂2

2m
þ Vðx̂Þ þmax̂: ð9Þ

Taking time derivative with respect to t1 on both sides of
(6) we have:

B̂ða; t2ÞÛA;gĤA;g ¼ ĤA
0Û0

A B̂ða; t1Þ
d
dt1

B̂ða; t1Þ: ð10Þ

Now

d
dt

B̂ða; tÞ ¼ d
dt

e
i
ℏ½−t2

2
ap̂þmax̂t� ¼ i

ℏ
½−tap̂þmax̂�B̂ða; tÞ:

ð11Þ

Then substituting (11) in (10) and finally using (6) we
have:

ĤA;g ¼ B̂†ða; t1ÞĤ0
AB̂ða; t1Þ − t1ap̂þmax̂: ð12Þ

But from (1) and (2) we know

B̂†ða; t1ÞĤ0
AB̂ða; t1Þ ¼ Ĥ0

Ajx̂→x̂þ1
2
at2

1
;p̂→p̂þmat1: ð13Þ

Then we finally have the following statement of the SEP
in quantum mechanics:

ĤA;g ¼ Ĥ0
Ajx̂→x̂þ1

2
at2

1
;p̂→p̂þmat1 − t1ap̂þmax̂: ð14Þ

Clearly the Hamiltonians given by (8) and (9) satisfy (14)
[39]. Thus we have proven that the strong equivalence
principle holds in usual quantum mechanics, at least for all
Hamiltonians which have the form (7). Now we turn to the
case of SEP in polymer quantum mechanics.

IV. SEP IN POLYMER QUANTUM MECHANICS

A. Polymer quantum mechanics

Let us very briefly recall the basics of polymer
representations.
In the Schrodinger as well as Polymer quantizations, the

Hilbert space carries a representation of the Weyl algebra.

Wðζ1ÞWðζ2Þ ¼ e
i
2
Imζ2 ζ̄2Wðζ1 þ ζ2Þ ð15Þ

ðW½ζ�Þ⋆ ¼ W½−ζ� ð16Þ

where ζ ∈ C.

To present these representations we first introduce a
length scale d such that

ζ ¼ μdþ i
λ

d
:

The Schrodinger representation of Weyl algebra is then
given by:

ŴðμdÞjxi ¼ e
i
ℏμx ð17Þ

Ŵ
�
i
λ

d

�
jxi ¼ jxþ λi ð18Þ

where the representation is continuous in μ and λ. This
continuity property allows us to define position and
momentum operators in the Schrodinger representation.
Polymer representations are also representations of Weyl

algebra with one crucial difference—they are discontinuous
representations. A representation of Weyl algebra may be
discontinuous in either μ or λ. The two possibilities lead to
two different representations, known in the literature as
a-polymer and b-polymer representations, or simply a and b
representations [40].
The a-polymer representation is one where the repre-

sentation of the Weyl algebra is discontinuous in the real
part of the argument, μ.

Ŵ
�
i
λ

d

�
jpi ¼ eiλpjpi

⇒ p̂jpi ¼ pjpi ð19Þ

ŴðμdÞjpi ¼ jpþ μi ð20Þ

Because of the discontinuity in μ, a position operator
cannot be defined in the a-polymer representation.
An approximate position operator can be defined by

introducing a scale μ0.

x̂μ0 ¼
Ŵðμ0dÞ − Ŵð−μ0dÞ

2μ0i
: ð21Þ

On the other hand, in the b-polymer representation the
discontinuity is in the imaginary part of the argument, λ and
it is momentum which cannot be well defined.

ŴðμdÞjxi ¼ e
i
ℏμx ð22Þ

⇒ x̂jxi ¼ jxi ð23Þ

Ŵ
�iλ
d

�
jxi ¼ jxþ λi: ð24Þ

Again an approximate momentum operator can be
defined by introducing a scale λ0.
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p̂λ0 ¼
Ŵðiλ0d Þ − Ŵð− iλ0

d Þ
2iλ0

: ð25Þ

Thus both the representations introduce a fundamental
length. The difference is that the b-representation closely
approximates usual quantum mechanics when the corre-
sponding fundamental length λ is taken to be very small,
while for the a-representation a close approximation is
achieved when the relevant fundamental length λ is taken to
be very large.
Thus the b-polymer representation may be thought to be

introducing fundamental lattice spacing (or UV cutoff) λ
analogous to the area quantization in LQG [41].
Correspondingly, the a-polymer representation seems to
introduce a maximum length (or IR cutoff) μ−1. This has no
analogue in usual LQG, but a maximum bound on the area
does appear in q-deformed LQG [42].
Interestingly, there is a sense in which two representa-

tions are dual to one another [40]. This duality bears some
resemblance to UV/IR duality of string theory.
Now we come to extended Galileo transformations in

polymer quantum mechanics. In the previous section we
saw that the unitary transformation corresponding to an
extended Galileo boost was given by:

B̂ða; tÞ ¼ e
i
ℏ½−t2

2
ap̂þmax̂t� ð26Þ

¼ Ŵ

�
matd
ℏ

−
iat2

2d

�
: ð27Þ

As this operator is well defined in polymer quantum
mechanics and one may think that we use this as the
definition of an extended Galileo boost in the polymer
representations. But note that in (10) we differentiated the
operator B̂ða; tÞ with respect to t. But Ŵ above is
discontinuous with respect to t, in both polymer represen-
tations. This presents a challenge for defining extended
Galileo boosts in polymer quantum mechanics. In fact the
same issue arises in defining ordinary Galileo boosts in
polymer quantum mechanics, though only in the b repre-
sentation [38]. To resolve this, one needs to regularize the
extended Galileo boosts appropriately for each representa-
tion. In fact the same issue arises for ordinary Galileo
boosts, though only for the b representation. An adequate
regularization had been given in that case in [38]. In this
work we will use the same regularization to defined
extended Galileo boosts in the b-representation and adopt
a similar regularization for the a-representation.

B. SEP in a-polymer representation

We have stated earlier that we expect the SEP to fail
when quantum gravity effects are taken into account.
However the way the SEP fails is expected to differ in
the a and b representations owing to the different ways a

fundamental length scale enters the two theories. In case of
the a representation, the fundamental length is a maximal
length (alternately a lattice spacing in momentum space).
The presence of such an IR cutoff means that it now matters
where one chooses the origin to be. The physics given by
the a representation would start differing significantly from
usual quantum mechanics at large distances from the
origin. So one would expect that the SEP would be
approximately true for a wave function which is localized
near the origin and fail for wave functions which are either
localized or spread to points far away (at distances of the
order μ−10 ) from the origin. We will see that this expectation
is borne out.
As noted in the last section, we will need to define

extended Galileo boosts with some regularization. We use
the following regularization:

B̂μ0ða; tÞ ¼ e
i
ℏ½x̂μ0þfmat�Ŵ

�½mat�d
ℏ

−
iat2

2d

�
ð28Þ

where ½mat� ¼ max fnμ0ℏ=mjn ∈ Z; nμ0ℏ=m ≤ matg and
the remainder gmat ¼ mat − ½mat�.
With this regularization we have:

dB̂μ0

dt
ða; tÞ ¼ i

ℏ
½max̂μ0 − atp̂�B̂μ0 ; ð29Þ

which is the same as in (11), except with x̂ replaced with
x̂μ0 , which is appropriate for this representation.
Under this regularized boost, the position and momen-

tum transform as follows:

B̂†
μ0ða; tÞx̂μ0B̂μ0ða; tÞ

¼ e
iμ0at

2

2 Ŵðμ0dÞ − e−
iμ0at

2

2 Ŵð−μ0dÞ
2μ0i

ð30Þ

B̂†
μ0ða; tÞp̂B̂μ0ða; tÞ ¼ p̂þ ½mat� þ gmatα̂μ0 ð31Þ

where

α̂μ0 ¼
Ŵðμ0dÞ þ Ŵð−μ0dÞ

2
:

With this regularization the deviation of
Now let us see the extent to which the strong equivalence

principle holds in the a-polymer representation. Following
the same steps as in Sec. II and using (29), (30) and (31) we
have the following statement of SEP in a-polymer quantum
mechanics:
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p̂2

2m
þ Vðx̂μ0Þ þmax̂μ0

¼ 1

2m
ðp̂þ ½mat� þ gmatα̂μ0Þ2 þmax̂μ0 − atp̂

þ V

�
e
iμ0at

2

2 Ŵðμ0dÞ − e−
iμ0at

2

2 Ŵð−μ0dÞ
2μ0i

�
: ð32Þ

Clearly the two sides do not match and SEP does not
hold exactly in the a representation of polymer quantum
mechanics. Now let us estimate the extent of SEP’s failure
in this case.
The right-hand side can be rewritten as (leaving out a

constant term):

p̂2

2m
þ 2

�
p̂
2m

þmat

�
ð1− α̂μ0Þgmatþ ðmatα̂μ0Þ2

þV

�
x̂μ0 þ

1

2μ0
Oðμ30a3t6Þ

�
þmax̂μ0

¼ p̂2

2m
þVðx̂μ0Þ þmax̂μ0 þ

�
ℏk
2m

þmat

�
ℏμ0Oð½μ0x0�2Þ

þ ∂V
∂x

1

μ0
Oðμ30a3t6Þ ð33Þ

where x0 represents the mean position of the particle and k
represents the mean momentum.
Thus we see that the two sides are approximately equal

when x0 ≪ μ−10 and at2 ≪ μ−10 —which says that (1) the
particle wave function has its mean position near the origin
and (2) the wave function has only spread distances much
smaller than μ−10 .
This shows that SEP fails in the a-polymer representation

of polymer quantum mechanics, but as expected it holds to
a good approximation at length scales much smaller than
the fundamental maximal length given by μ−10 .

C. SEP in b-polymer representation

In the b representation, quantum gravity effects show up
through the length scale λ0 which acts as a minimal length.
This scale acts as a UV cutoff. Therefore deviation from
standard results would be expected at very small distances
(of the order of λ0).
In this case we regularize the extended Boost operator as

follows:

B̂λ0ða; tÞ ¼ e−
ip̂λ0

at

ℏ Ŵ

�
matd
ℏ

−
i
2d

½at2�
�

ð34Þ

where ½at2� ¼ max fnλ0jn ∈ Z; nλ0 ≤ at2g and the

remainder fat2 ¼ at2 − ½at2�

Then

dB̂λ0

dt
ða; tÞ ¼ i

ℏ
½max̂ − atp̂λ0 �B̂λ0 ; ð35Þ

which is the same as in (11), except with x̂ replaced with
x̂μ0 , which is appropriate for the b representation.
And the transformations are

B̂†
λ0
ða; tÞx̂B̂λ0ða; tÞ ¼ x̂þ 1

2
½at2� þ 1

2
fat2β̂λ0 ð36Þ

B̂†
λ0
ða; tÞp̂λ0B̂λ0ða; tÞ

¼ e
iλ0mat

ℏ Ŵðiλ0d Þ − e−
iλ0mat

ℏ Ŵð− iλ0
d Þ

2λ0i
ð37Þ

where

β̂λ0 ¼
Ŵðiλ0d Þ þ Ŵð− iλ0

d Þ
2

:

Now let us see the extent to which the strong equivalence
principle holds in the b-polymer representation. Using (35),
(36) and (37) we have the following statement of SEP in
b-polymer quantum mechanics:

p̂2
λ0

2m
þ Vðx̂Þ þmax̂

¼ 1

2m

�
e
iλ0mat

ℏ Ŵðiλ0d Þ − e−
iλ0mat

ℏ Ŵð− iλ0
d Þ

2λ0i

�2

þ V

�
x̂þ 1

2
½at2� þ 1

2
fat2β̂λ0

�
þmax̂ − atp̂λ0 : ð38Þ

Once again the two sides of the equation disagree and
SEP does not hold. Again let us estimate the scales at which
the deviation is negligible.
Proceeding as before, it is straightforward to check that

the RHS can be written as

p̂2
λ0

2m
þ Vðx̂Þ þmax̂þOð½mλ0at�3Þ þ λ0

∂V
∂x Oð½kλ0�2Þ:

ð39Þ

So the deviations from SEP will be negligible when
mλ0at ≪ 1 and kλ0 ≪ 1. Thus the SEP is expected to hold
to a good approximation as long as the momentum scale is
much less than ℏλ−10 (alternately at length scales much
larger that λ0).
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V. DEFORMED HEISENBERG
ALGEBRA AND THE SEP

A. Quantum mechanics with modified
Heisenberg algebra

In this section we briefly recall the basics of quantum
mechanics with modified commutation relations. In this
paper we consider the following deformation of the
Heisenberg algebra [24]

½X;P� ¼ ið1þ βP2Þ: ð40Þ

It was shown in [24] that this leads to a minimal length of
resolution:

ΔX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hX2i − hXi2

q
≥

ffiffiffi
β

p
:

Thus the relevant length scale is
ffiffiffi
β

p
. We would expect

quantum gravitational effects to disappear when β is small
compared to the relevant length scale of the experiment.
The deformed commutation relations (40) result in

the following state dependent generalized uncertainty
relations:

ΔXΔP ≥
ℏ
2
ð1þ βðΔPÞ2 þ γÞ; ð41Þ

where γ ¼ βhpi2.
The Schrodinger equation is likewise modified. For a

Hamiltonian of the form H ¼ P2

2m þ VðxÞ, the Schrodinger
equation now becomes a fourth order equation

−
1

2m
∂2ψðxÞ
∂x2 þ β

1

3m
∂4ψðxÞ
∂x4 þ VðxÞψðxÞ ¼ EψðxÞ: ð42Þ

This completes our brief overview of QM with deformed
Heisenberg algebra. In the next section we will investigate
the validity of the SEP with the deformed algebra (40). One
could consider more general deformations, but from our
derivation it will be easy to see that similar results would
hold for those cases.

B. Investigating SEP in deformed Heisenberg algebra

As in Sec. III we start with the definition of extended
Galileo transformations.

B̂†
βða; tÞx̂B̂βða; tÞ ¼ x̂þ 1

2
at2; ð43Þ

B̂†
βða; tÞp̂B̂βða; tÞ ¼ p̂þmat: ð44Þ

Once again writing Bβ as

B̂βða; tÞ ¼ e−iaĉβðtÞ ð45Þ

we have

i
ℏ
½Ĉβ; x̂� ¼

1

2
t2

i
ℏ
½Ĉβ; p̂� ¼ mt: ð46Þ

But as the commutation relations between position and
momentum operators has been deformed (5) no longer
holds—

B̂βða; tÞ ≠ e
i
ℏ½−t2

2
ap̂þmax̂t�: ð47Þ

How do we define the extended Galileo boosts in terms of
the basic operators? To do this, we note that if we define an
operator P̂ such that

p̂ ¼ P̂

�
1þ 1

3
βP̂2

�
; ð48Þ

then we will have

½x̂; P̂� ¼ i; ð49Þ
½p̂; P̂� ¼ 0: ð50Þ

We then arrive at the following formula for the extended
Galilean boost:

B̂βða; tÞ ¼ e
i
ℏ½−t2

2
aP̂þmax̂t�: ð51Þ

It is then straightforward to follow the steps given in
Sec. III. We then arrive at the conclusion that if SEP were to
hold in this case the following equation should hold:

ĤA;g ¼ Ĥ0
Ajx̂→x̂þ1

2
at2

1
;p̂→p̂þmat1 − t1aP̂þmax̂ ð52Þ

where as before

ĤA ¼ p̂2

2m
þ Vðx̂Þ; ð53Þ

Ĥ0
A ¼ p̂2

2m
þ V

� ˆ
x −

1

2
at2

�
; ð54Þ

ĤA;a ¼
p̂2

2m
þ Vðx̂Þ þmax̂: ð55Þ

Note that (52) differs from (14) only in that p̂ which
appeared in (14) has been replaced by P̂ in (52).Thus the
left and right hand side of (52) do not match—the SEP fails
to hold.
It is easy to estimate the failure of SEP. The two sides of

(52) differ by a factor of at1ðp̂ − P̂Þ ¼ 1
3
at1βP̂

2.
This shows that although the SEP fails to be strictly true

the deviations can be neglected as long as at1β is small. So,
as long as the scale of the experiment is large compared to
the deformation scale β, we do not expect to observe
violation of the SEP.
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VI. SUMMARY

In this paper we have investigated how the strong
equivalence principle gets modified in the presence of
quantum gravity corrections. We considered two different
frameworks—polymer quantum mechanics and deformed
Heisenberg algebra. In both cases we found that the strong
equivalence principle is violated, but the violations are of

the order of appropriate length scales. In case of polymer
quantum mechanics, the violation is of the order of the
polymer scale (μ0 or λ0). In case of deformed Heisenberg
algebra the violation is of the order of the scale of
deformation β. This suggests that the existing tests of
the strong equivalence principle should put lower bounds
on the values of μ0, λ0 and β.
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