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The gravitational wave observations GW150914 and GW151226 by Advanced LIGO provide the first
opportunity to learn about physics in the extreme gravity environment of coalescing binary black holes. The
LIGO Scientific Collaboration and the Virgo Collaboration have verified that this observation is consistent
with Einstein’s theory of general relativity, constraining the presence of certain parametric anomalies in the
signal. This paper expands their analysis to a larger class of anomalies, highlighting the inferences that can be
drawn on nonstandard theoretical physics mechanisms that could otherwise have affected the observed
signals. We find that these gravitational wave events constrain a plethora of mechanisms associated with the
generation and propagation of gravitational waves, including the activation of scalar fields, gravitational
leakage into large extra dimensions, the variability of Newton’s constant, the speed of gravity, a modified
dispersion relation, gravitational Lorentz violation and the strong equivalence principle. Though other
observations limit many of thesemechanisms already,GW150914 andGW151226 are unique in that they are
direct probes of dynamical strong-field gravity and of gravitational wave propagation. We also show that
GW150914 constrains inferred properties of exotic compact object alternatives to Kerr black holes. We
argue, however, that the true potential for GW150914 to both rule out exotic objects and constrain physics
beyond general relativity is severely limited by the lack of understanding of the coalescence regime in almost
all relevant modified gravity theories. This event thus significantly raises the bar that these theories have to
pass, both in terms of having a sound theoretical underpinning and reaching theminimal level of being able to
solve the equations of motion for binary merger events. We conclude with a discussion of the additional
inferences that can be drawn if the lower-confidence observation of an electromagnetic counterpart to
GW150914 holds true, or such a coincidence is observed with future events; this would provide dramatic
constraints on the speed of gravity and gravitational Lorentz violation.
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I. INTRODUCTION

The Laser Interferometer Gravitational-Wave Observatory
(LIGO) Scientific Collaboration and the Virgo Collaboration
(LVC) recently announced the first direct detection of
gravitational waves (GWs) [1,2]. With signal-to-noise ratios
(SNRs) of 24 and 13, respectively, for GW150914 [1] and
GW151226 [2], and associated statistical σ > 5 for both,
there is little doubt that these are true GWobservations. The
details of the signals indicate the GWs were produced during
the late quasicircular inspiral, merger and ringdown of binary
black-hole (BH) systems. The loudness of GW150914 is
due to a combination of Advanced LIGO’s (aLIGO’s) [3]
remarkable sensitivity (dimensionless strains of h ∼ 10−21),
the source’s proximity to Earth (420þ150

−180 Mpc [4,5]) and
how massive the binary was [source-frame component
masses ðm1; m2Þ ¼ ð36þ5

−4 ; 29
þ4
−4ÞM⊙ [4,5]], the latter

property fortuitously leading to the intrinsically loudest
part of the signal lying in aLIGO’s most sensitive
frequency band. GW151226 occurred at a similar distance
(440þ180

−190 Mpc [2,5]) though with lower source-framemasses

of ðm1; m2Þ ¼ ð14þ8
−4 ; 8

þ2
−2ÞM⊙ [2,5], resulting in a weaker

overall signal but with many more GW cycles in band
compared to GW150914. These events are thus ideal to learn
about theoretical physics in extreme gravity.
The social scientist and epistemologist Popper argued

that scientists can never truly “prove” that a theory is
correct, but rather all we can do is disprove, or more
accurately constrain, alternative hypotheses [6]. The theory
that remains and cannot be disproven by observations
becomes the status quo. Indeed, this was the case for
Newtonian gravity before the 1900s, and it is the case today
for Einstein’s theory of general relativity (GR). The latter
has been subjected to a battery of tests through Solar
System [7], binary pulsar [8,9] and cosmological observa-
tions [10–14], with no signs of failure.1 These tests,

1Some have argued dark matter [15–17] or dark energy
[10,13,14] could be explained by modified gravity theories,
though the observational evidence does not favor this over a
simple cosmological constant or as-of-yet-undiscovered dark
matter particles.
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however, cannot effectively probe the extreme gravity
regime: where the gravitational field is strong and dynami-
cal, where the curvature of spacetime is large, and where
characteristic velocities are comparable to the speed of
light [18].
The events GW150914 and GW151226 allow for just

that. The putative BHs that generated these GWs are
intrinsically strong-field sources, they reached speeds
∼0.5 times the speed of light prior to merger, and the
GW luminosities peaked at ∼1056 ergs=s, within 3 orders
of magnitude of the Planck luminosity. Consequently, the
gravitational fields were not only immense, but they
changed violently and rapidly during the less than 1 s
observable durations of these events.
The LVC began to test extreme gravity with GW150914

by first showing that the residual, i.e. the signal after
subtracting the best-fit GR model, is consistent with noise
[19]. Moreover, the Collaboration searched for the presence
of certain anomalies, i.e. features in the signal that deviate
from the GR prediction, using a parameterized model and
found no evidence for any. GW151226 was also shown to
pass the latter test, but its SNR was too low to give a
meaningful result from the residual test [2,5].
Having established GR as the status quo in the extreme

gravity regime, we here follow Popper and study the
theoretical physics implications of these detections. More
specifically, we examine what the verification of GR and
absence of anomalies in the data imply for theoretical
physics (see [7,18,20–22] for reviews on modified theories
of gravity and testing them in the extreme gravity regime
with GWs). For example, GW150914 and GW151226
constrain new radiative channels, such as dipole scalar field
emission or GW polarizations beyond the plus and cross
polarizations predicted by GR, BH mass leakage into extra
dimensions, and temporal variability of Newton’s gravita-
tional constant during the coalescence. These implications
affect the viability of physical mechanisms that play an
important role in quantumgravitational phenomenology and
high-energy model building [23].
Before summarizing our results, let us first discuss what

is perhaps one of the most important consequences of these
detections for testing GR, in particular with GW150914:
our ability to use this exquisite piece of data to probe
extreme gravity is today limited by our woeful lack of
understanding of how gravity can differ from GR in this
regime. Most2 of the existing studies of compact binary
coalescences that are alternatives to binary BH mergers in
GR are limited to two regimes:

(i) the early inspiral where post-Newtonian (PN) ex-
pansions3 (to some order) have been computed, or

(ii) isolated stationary compact object alternatives to
BHs in GR, where their quasinormal mode (QNM)
structure is putatively relevant to the late-time
dynamics of the postmerger remnant.

Prior to GW150914 the mainstream consensus was that
the binary BH mergers aLIGO would likely hear would
be lower mass [29,30]; hence, a significant portion of the
earlier inspiral would contribute to the SNR where the
perturbative calculations in (i) have more discriminating
power, and the plunge-merger regime is less crucial.4

Similarly, the calculations in (ii) are adequate for electro-
magnetic wave tests [31–34] with e.g. the Event Horizon
Telescope [35] and with future space-based measurements
of the ringdown phase of supermassive BH mergers
[36,37]. GW150914 has now presented us with data we
did not anticipate (at least not immediately), where most of
the SNR is coming from a regime where the applicability of
calculations based solely on (i) and (ii) to describe GWs are
questionable at best.
One striking feature of the GW150914 signal in par-

ticular serves to highlight all of this: after reaching peak
amplitude, the GW emission drops to below the noise
threshold within the light-crossing time of the length scale
implied by the total mass of the binary. This is of course
entirely as expected in vacuum GR, though the physics
within the brief transition is extremely rich:
(a) Cosmic censorship [38] is respected, and hence, the

no-bifurcation theorem requires the horizons merge
into a single structure [39].

(b) The BH uniqueness (“no-hair”) results [40–43] to-
gether with the apparent stability of the Kerr family of
solutions [44] implies the end state must be a
Kerr BH.5

(c) Numerical solutions show that the time it takes from
formation of a common dynamical horizon to when
the spacetime settles down to a linearly perturbed Kerr
solution is remarkably short [46].

The fact that it has taken over half a century of dedicated
research by the GR community to allow us to make this
short itemized summary of the physics of a BH merger is a
testament to how nontrivial this feature of the GW150914
signal is. On the flip side, it also highlights how poor our
understanding is with regards to the nature of conceivable
theories of gravity in this regime.

2The only exception is a particular class of scalar-tensor
theories, when one or both of the compact objects are neutron
stars (NSs) [24–26], or when both are BHs but embedded in a
prescribed scalar field background [27,28].

3This approximation solves the field equations using an
expansion in small velocities (relative to the speed of light) and
weak gravitational fields. A term proportional to ðv=cÞ2N
relative to its leading-order expression is said to be of NPN
order.

4This is even more so for binary NS mergers, another primary
target for aLIGO [30], which are expected to have lower masses
than BHs and thus merge at even higher frequencies.

5The nonlinear stability of Kerr has not yet been proven in a
strict mathematical sense (see e.g. [45] and the discussion
therein).
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Another very important consequence of the use of LVC
observations to test GR is that “exotic” compact object
alternatives to BHs within GR, such as boson stars,
gravastars, or traversable wormholes, can no longer claim
viability based only on (i) the demonstration of the
existence of stationary solutions and (ii) consistency with
the properties of x-ray binary systems harboring one of
these putative objects. In fact, certain exotic objects do not
even have theories that describe how they form, let alone
their dynamics in the highly nonlinear, violent regime of a
collision (of those listed above, boson stars are the only
exception), which is why the LVC did not attempt to
constrain such exotica [19]. To be consistent with the LVC
observations then, one must assume not only that such
theories exist, but also that when solved, the nonlinear,
matter oscillations inevitably excited during the collision
will damp on the remnant’s light-crossing time.
Does such a damping naturally occur during the collision

of nonvacuum compact objects in GR? Certainly not, as
shown in the merger of binary NSs. Here we know that the
remnant either promptly collapses to a BH, or a hyper-
massive NS is formed with a highly nonspherical, time-
dependent structure that emits strong GWs for a long time
relative to light crossing (see [47–53] for some recent
studies). Therefore, if NS mergers offer any guidance as to
what one might expect in the collision of exotica, it is that,
immediately following merger, the stationary, isolated
compact object solution does not provide a good starting
point to understand what this phase of the signal looks like.
Thus, the LVC observations have significantly raised the
bar that exotic matter alternatives to BHs within GR must
pass to still be considered viable: their merger dynamics
must be well understood and shown to be consistent with
the signals.
With these observations in mind, the main goal of this

paper is to study what GW150914 and GW151226 imply
about the theoretical nature of extreme gravity. Even
though earlier experiments and observations in the weak
field have placed bounds on mechanisms we will discuss,
and in some cases these will be stronger than what we
extract from the GWevents at present, the latter bounds are
for the very first time coming directly from the extreme
(dynamical and strong-field) gravity regime. Moreover,
many existing bounds are plagued by systematics associ-
ated with models of nongravitational physics required to
interpret observations. For GW150914 and GW151226 the
errors in the analytic and numerical GR waveforms used to
interpret the aLIGO signal (the GR “mismodeling error”
[54]) are a small part of the error budget [4]. In fact, we will
show in this paper that mismodeling error does not affect
the bounds on non-GR effects derived here for events with
SNR comparable to (or less than) that of GW150914 and
GW151226.
As this paper is quite long, a road map is in order to

guide a wide audience with different interests. In the

remainder of the introduction we summarize all key results,
breaking them down into four categories: implications on
emission mechanisms, implications on propagation effects,
implications on the nature of the compact objects involved
in the merger, and more speculative conclusions associated
with electromagnetic counterparts. The rest of the paper is
then split following similar categories:

(I) a review of the extreme gravity properties of the
GW150914 and GW151226 signals and waveform
modeling (Sec. II),

(II) GW150914 and GW151226 constraints on mecha-
nisms that affect the generation and propagation of
GWs (Sec. III),

(III) generic properties of the remnant and inferences on
the existence of exotic alternatives to BHs as inferred
from the GW150914 signal (Sec. IV), and

(IV) inferences that can be drawn from the more specu-
lative coincidence of GW150914 with a short
gamma-ray burst (GRB) [55] (Sec. V).

Readers familiar with (I) may wish to skip Sec. II, but those
who are not familiar with waveform modeling in non-GR
theories may find Secs. II B 2 and II B 3 useful. The most
important parts of (II) are Secs. III A 1 and III A 2, and III
B. The first two deal with constraints on generation effects,
with the first mapping them to bounds on specific modified
theories and the second relating them to model-independent
bounds on modifications to the binding energy and energy
flux. Section III A 2 also discusses constraints on effects
that suddenly activate or deactivate during the late inspiral.
Section III B concludes the discussion of constraints by
focusing on propagation effects and mapping these to
bounds on specific modified theories. These results are
shown to be robust to mismodeling bias in Appendix A,
which studies constraints with two different phenomeno-
logical inspiral-merger-ringdown GW models, and in
Appendix B, which deals with the effect of higher-PN-
order terms.

A. Summary of key results

1. GW150914 and GW151226 constrain a plethora of
emission mechanisms beyond GR radiation reaction

The first half of Table I (up to the row “Time-varying G”
and above) presents a summary of the GW emission or
generationmechanisms that can be constrained. In particular,
the GW events constrain the presence of (i) dipole radiation
in the signal due to e.g. the activation or growth of a scalar
field, (ii) BH mass leakage due to large extra dimensions,
(iii) a time-varying gravitational constant due to e.g. the
existence of a time-varying scalar field, and (iv) Lorentz-
violating effects in the production of GWs. We also derived
bounds on the sudden activation of a scalar field, as predicted
e.g. through dynamical scalarization in certain scalar-tensor
theories (for nonvacuum spacetimes) [24–26,56–58], which
can be constrained most strongly when the sudden
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scalarization occurs in band. Taking a more agnostic
approach to particular causes of deviations, GW150914
and GW151226 place constraints on generic deviations from
the GR prediction of the evolution of the binding energy and

radiated flux during a binary merger. These constraints can
be used to bound generic scalar hair around BHs [59].
We arrive at these conclusions through a Fisher param-

eter estimation study, which we show agrees with the

TABLE I. Theoreticalmechanisms (first column) that arise inmodified theories of gravity and how they violate fundamental pillars ofGR
(second column). The numbers in boldface show the approximate, 90%-confidence upper bounds placed byGW150914 andGW151226on
ppE parameters (fourth and fifth columns) and on parameters (seventh and eighth columns) representing specific theoretical mechanisms
realized in a set of gravitational theories (sixth column) that enter at different PN order (third column) relative to GR; prior constraints on
these example theories are shown in the last column.The top section of the table shows constraints onmodifications toGWgeneration,while
the bottom corresponds to constraints on GW propagation. Constraints on scalar field activation, which violates the strong equivalence
principle (SEP) or gravitational parity invariance (PI), are exemplified by realizations in Einstein-dilaton Gauss-Bonnet (EdGB) gravity,
dynamical Chern-Simons (dCS) gravity and scalar-tensor theories, controlled by the coupling constants αEdGB, αdCS and the scalar field
growth rate _ϕ, respectively. The GWevents cannot constrain these theories from the leading-PN-order correction to the waveform phase
within the small-coupling approximation, which assumes that the deformation away from GR is small. Constraints on the activation of
vector fields, which violates LI and SEP by breaking LPI and LLI, are exemplified in Einstein-Æther (EA) theory with dimensionless
coupling constants ðcþ; c−Þ and khronometric theory with ðβKG; λKGÞ. A constraint on BH mass leakage into extra dimensions is
exemplified by a realization of a Randall-Sundrum (RS)-II braneworld model, where l is the size of the large extra dimension. Constraints
on the time variation of the gravitational constant, which also violates SEP by breaking LPI, are characterized by limits on _G. Constraints on
massive gravity are exemplified by kinematical constructions that modify theGWdispersion relation, whosemagnitude is controlled by the
gravitonmassmg.We also present constraints on themodified dispersion relation of the graviton in five different well-motivated cases, with
some of them normalized by the Planck length LPl. For comparison, we present the constraint on violations of gravitational LI from the
arrival time delay of GWs between Hanford and Livingston detectors (last row, seventh and eighth columns).

jβj Example theory constraints

Theoretical mechanism GR pillar PN GW150914 GW151226 Repr. parameters GW150914 GW151226 Current bounds

Scalar field activation SEP −1 1.6 × 10−4 4.4 × 10−5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffijαEdGBj

p
[km] � � � � � � 107 [60], 2 [61–63]

j _ϕj [1= sec] � � � � � � 10−6 [64]

Scalar field activation SEP, PI þ2 1.3 × 101 4.1
ffiffiffiffiffiffiffiffiffiffiffiffijαdCSj

p
[km] � � � � � � 108 [65,66]

Vector field activation SEP, LI 0 7.2 × 10−3 3.4 × 10−3 ðcþ; c−Þ (0.9; 2.1) (0.8; 1.1) (0.03,0.003) [67,68]
ðβKG; λKGÞ ð0.42;−Þ ð0.40;−Þ (0.005,0.1) [67,68]

Extra dimensions 4D −4 9.1 × 10−9 9.1 × 10−11 l [μm] 5.4 × 1010 2.0 × 109 10–103 [69–73]
Time-varying G SEP −4 9.1 × 10−9 9.1 × 10−11 j _Gj [10−12=yr] 5.4 × 1018 1.7 × 1017 0.1–1 [74–78]
Massive graviton mg ¼ 0 þ1 1.3 × 10−1 8.9 × 10−2 mg [eV] 10−22 [19] 10−22 [5] 10−29–10−18 [79–83]
Mod. disp. rel. LI þ4.75 1.1 × 102 2.6 × 102 E−1� [eV−1] (time) 5.8 × 10−27 3.3 × 10−26 � � �
(multifractional) E−1� [eV−1] (space) 1.0 × 10−26 5.7 × 10−26 3.9 × 10−53 [84]

Mod. disp. rel. LI þ5.5 1.4 × 102 4.3 × 102 ηdsrt=LPl > 0 1.3 × 1022 3.8 × 1022 � � �
(modified special rel.) ηdsrt=LPl < 0 2.1 × 10−7 [84]

Mod. disp. rel. 4D þ7 5.3 × 102 2.4 × 103 αedt=L2
Pl > 0 5.5 × 1062 2.5 × 1063 2.7 × 102 [84]

(extra dim.) αedt=L2
Pl < 0 � � �

þ4 � � � � � � k
∘ ð4Þ
ðIÞ > 0

� � � � � � 6.1 × 10−17 [84,85]

k
∘ ð4Þ
ðIÞ < 0

0.64 19 � � �
Mod. disp. rel. LI þ5.5 1.4 × 102 4.3 × 102 k

∘ ð5Þ
ðVÞ > 0 [cm] 1.7 × 10−12 [86] 3.1 × 10−11 1.7 × 10−40 [84,85]

(standard model ext.) k
∘ ð5Þ
ðVÞ < 0 [cm] � � �

þ7 5.3 × 102 2.4 × 103 k
∘ ð6Þ
ðIÞ > 0 [cm2] 7.2 × 10−4 3.3 × 10−3 3.5 × 10−64 [84,85]

k
∘ ð6Þ
ðIÞ < 0 [cm2] � � �

Mod. disp. rel. LI þ7 5.3 × 102 2.4 × 103 κ4hlμ
2
hl [1=eV

2] 1.5 × 106 6.9 × 106 � � �
(Hořava-Lifshitz)

Mod. disp. rel. LI þ4 � � � � � � cþ 0.7 [87] 0.998 0.03 [67,68]

(Lorentz violation)
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Bayesian analysis of [5,19] to 30%–50%, wherever we can
compare our results (i.e. for corrections at positive PN
orders). We use the same (parametrically deformed) inspi-
ral-merger-ringdown waveform model (so-called gIMR)
employed by the LVC [5,19], but without precession. As
there seems to be some confusion in the literature about
the scope of these models, we mathematically show in
Sec. II B 2 that gIMR is a subset of the parameterized post-
Einsteinian (ppE) framework of [88] when the baseline GR
waveform is taken to be the phenomenological waveform
model of [89–93].
We also illustrate that ignorance of the higher-order PN

corrections to the inspiral waveform in modified gravity
does not necessarily weaken the constraints and inferences
on the leading-order physics obtained with a model that
only uses the corresponding leading-order PN deforma-
tion.6 Specifically, using BD theory [94–99] as the test case,
we estimate that a higher-PN-order modified waveform
model would only correct the constraints by Oð10%Þ at
most.7 On the other hand, unlike in BD theory, if the system
parameters conspire to suppress the coefficients of the
leading-PN-order term, the next-to-leading-order term will
become dominant and the bounds on non-GR effects
modeled with the leading-PN-order correction become
conservative; i.e. including higher-PN-order corrections
would make the bounds stronger. Indeed, such a suppres-
sion of the leading PN effect is precisely why GW150914
and GW151226 cannot place meaningful constraints on
EdGB gravity. We present this material in Appendix B.
The fact that the gIMR model is a subset of the ppE

framework allows us to use the many years of work on ppE
and modified gravity theory to draw theoretical physics
implications from the absence of ppE-like anomalies in the
GW150914 and GW151226 data. In particular, each ppE
exponent (or equivalently, the relative PN order shown in
the third column of Table I) describing how the frequency
response of a chirping binary is altered can be related to a
set of physical mechanisms that are responsible for the
effect. This allows us to test some of the fundamental pillars
of GR, which typically are related to tests of the SEP [7]:
(A) The trajectories of freely falling test bodies, includ-

ing self-gravitating ones, are independent of their
internal structure and composition [the weak equiv-
alence principle (WEP) extended to self-gravitating
bodies].

(B) Results of any local experiment, including gravita-
tional experiments, are independent of when and
where they are performed [local position invariance

(LPI)] and of the velocity of the experimental
apparatus [local Lorentz invariance (LLI)].

Dipole gravitational radiation due to the activation of
additional dynamical fields can violate item (A). Time
variation of Newton’s gravitational constant would violate
LPI. The presence of Lorentz-violating effects due to, for
example, the presence of dynamical vector fields breaks
both LPI and LLI. GW150914 and GW151226 are there-
fore much more than a probe of the structure of spacetime
of a binary BH merger; it also allows for the verification of
some of the most important pillars of Einstein’s theory.

2. GW150914 and GW151226 constrain a number of
theoretical mechanisms that modify GW propagation

The second half of Table I (from the row “Massive
graviton” and below) presents a summary of the propagation
mechanisms that can be constrained. The LVC observations
not only constrains the mass of the graviton [5,19], but they
more generically constrain the dispersion relation of GWs,
both super- and subluminal GW propagation, and the
presence of Lorentz violation in their propagation.
As with effects active during the generation of GWs, we

arrive at these conclusions with a Fisher analysis, which we
have also checked is consistent with the Bayesian study of
[5,19] wherever possible. For example, we have verified
that the Fisher constraint on the graviton mass mg with a
simple massive graviton dispersion relation is consistent
with the Bayesian bound of [5,19], both of which are a few
times more stringent than the current Solar System bound
[79]. All of the inferences on the propagation of GWs from
GW150914 and GW151226 come from information on the
phasing of the GW, a much more powerful tool than
information derived solely from the difference in GW time
of arrival between the Hanford and Livingston detectors. In
particular, the bound presented here and in [5,19] is 20
orders of magnitude stronger than that based only on a time
delay argument [87], except when the graviton propagation
speed acquires a frequency-independent correction (since
then the GW phase modification becomes degenerate with
the time of coalescence).
However, unlike in the GW generation case, the con-

straints on GW propagation mechanisms are often signifi-
cantly stronger than other current constraints from binary
pulsar and Solar System observations. In particular, the GW
constraints on (A > 0) superluminal propagation and on
sub- or superluminal GW propagation entering at low PN
order (see Fig. 7) are the best found to date. The GW
constraints on the mass of the graviton are also the best to
date, except for constraints coming from observations of
galaxy clusters [81]. Although theories that predict mod-
ifications to GW propagation also typically modify the GW
generation mechanism, we show here that the former
typically dominate the latter. This is because modifications
to GW propagation accumulate over the propagation time
(i.e. the distance), while modifications to GW generation

6The inclusion of modifications in the merger phase would also
not weaken the constraints presented here; more likely they
would improve them somewhat.

7Such a correction would be important if one is attempting to
characterize a measured anomaly but is less of an issue when
constraining its existence, as explained e.g. in [100].
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accumulate while the system is generating GWs in band.
The latter will never be comparable to the former for
aLIGO sources, unless the binary happens to coalesce in
the Solar System.

3. GW150914 allows for inferences to be made regarding
the validity of the Kerr hypothesis, and likewise it
constrains properties of exotic compact object

alternatives to Kerr BHs

GW150914 was a golden event [101], which allows a
measurement of the amount of energy and angular momen-
tum carried away by GWs during coalescence [19]. This
information can, in turn, be used to infer properties of the
geometry of the compact objects, such as the location of the
innermost-stable circular orbit (ISCO) of the remnant (for a
“test particle” moving in such a spacetime). Such an
inference is made by using the relation between the spin
of the final BH, the spin of the individual BHs before
merger and the location of the ISCO of the remnant in an
effective-one-body treatment as a null test, which was
established in GR using numerical relativity simulations
[102]. Inferences about the location of the ISCO can then
be used to constrain string-inspired BH solutions [66,103]
and parametrically deformed Kerr metrics [104]. The
observed energy loss could also be used to limit the amount
of exotic “hair” (e.g. [105,106]) the BHs in this event have.
If a sizable fraction of the initial mass of each BH is
attributable to such hair, presumably a correspondingly
large fraction could be radiated during merger (exactly how
much would need to be calculated via numerical simu-
lations). Although the SNR of GW150914 is not high
enough to allow for interesting constraints on the above
spacetimes, future louder signals would allow for tighter
bounds via this analysis.
As discussed earlier in the introduction, the dramatic

drop in the observed signal within ∼4 ms after reaching
peak amplitude is consistent with the rapid hair loss
experienced by the Kerr remnant in GR. On the flip side,
this observation places a severe constraint on the properties
of hypothesized exotic matter alternatives to Kerr BHs.
Assuming the collision excites matter oscillations in the
remnant that emit observable GWs, we can place bounds on
an effective viscosity that the exotic matter must have to be
consistent with the observed signal. Alternatively, lack of
observed damped normal-mode oscillations of such exotic
matter can be used to place restrictions on the initial
amplitude and damping time scales of these putative
modes.

4. If the Fermi Gamma-ray Burst Monitor (GBM) signal
is an actual counterpart to GW150914, this observation
places more stringent constraints on GW propagation

mechanisms than GW150914 alone

If the GBM signal [55] was a short GRB counterpart to
GW150914, then the speed ofGWscould be constrained in a

model-independent fashion. The strength of this constraint
depends on the intrinsic time delay between the gamma-ray
and GWemission [107], which is currently uncertain due to
ignorance of the gamma-ray emission mechanism. If one
assumes that the Fermi event was a prompt emission
counterpart to GW150914 and GWs do not propagate
subluminally, the speed of GWs can be constrained to be
equal to the speed of light to one part in 1017 [108–110].
This, in turn, would impose dramatic constraints on gravi-
tational Lorentz violation [111–114], restricting the latter 10
orders of magnitude more stringently than current binary
pulsar bounds [67,68], as predicted in [115]. However these
conclusions are premature at this stage, given the low
confidence of the GBM event.
The remainder of this paper presents the details of the

calculations that led to the above conclusions. All through-
out, we follow the conventions of Misner, Thorne and
Wheeler [116], and unless otherwise stated use geometric
units where G ¼ 1 ¼ c. In particular, note that we do not
employ Planck units, and thus ℏ ≠ 1. Conversion between
geometric units and SI units can be achieved by noting
that 1M⊙ ¼ 1.476 km ¼ 4.925 × 10−6 Hz.

II. BH COALESCENCE AS A PROBE OF
EXTREME GRAVITY

This section begins by describing the different phases of
the GW events in detail, and how they can probe extreme
gravity. We then describe the GW models used in GR to
describe the phases of coalescence, as well as the para-
metric models that capture deformations from GR. When
discussing the latter, we show that the parametrically
deformed model used by the LVC in [19] is an imple-
mentation of the ppE framework [88] for a particular GR
model. This implies that one can work in the ppE
framework to interpret constraints on departures from
GR as constraints on different physical mechanisms, whose
mappings are summarized at the end of this section.

A. Description of coalescence

The coalescence of a comparable mass binary system can
be roughly divided into three phases [117–119]:

(i) Inspiral.—The compact objects are well separated
with respect to the total mass (r12=m ≫ 1), the
characteristic orbital velocity is much smaller than
the speed of light (v=c ≪ 1), and the inspiral rate is
slow relative to the time scale of the orbit.

(ii) Plunge and merger.—The compact objects are so
close to each other that GW emission has reached a
level at which the inspiral time scale is comparable
to the orbital time scale. The evolution of the orbit
then transitions from an inspiral to a plunge at
velocities approaching the speed of light, and the
two objects coalesce.
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(iii) Ringdown.—The highly distorted remnant formed
after merger oscillates, radiating away any deforma-
tions and relaxes to a stationary state.

Even though this classification is clean in concept, in reality
the transition from one phase to another is not abrupt, and
there is no stark demarcation in the waveform when one
ends and the next begins. However, keeping this picture in
mind is helpful to better understand how the two aLIGO
detections, and GW150914 in particular, informs us about
extreme gravity.
Both events entered the aLIGO sensitivity band when the

compact objects were already quite close. The left panel of
Fig. 1 shows the orbital velocity as a function of GW
frequency, estimated here via v12 ¼ ðπmfÞ1=3, with m the
total mass and f the GW frequency. For example, at 10 Hz,
the two compact objects that produced GW150194 were
already traveling at v12=c ∼ 0.2 and with orbital separation8

of about r12 ∼ 20m, or approximately 1960 km. When the
frequency reached 132 Hz, the binary’s orbital velocity was
roughly v12=c ∼ 0.4 and the orbital separation approached
r12 ∼ 3m ∼ 300 km; the latter is close to the light ring of a
test particle in the Schwarzschild spacetime of a BH with
mass equal to the binary’s total mass. Beyond 132 Hz, the
binary rapidly plunged, merging at approximately 230 Hz
as the orbital separation decreased to r12 ∼ 2m, where two
Schwarzschild BHs would have “touched.” This frequency
also roughly coincides with the start of the ringdown, as the
Fourier amplitude of the GW150194 signal shows a break
at around this frequency (see the right panel of Fig. 1). Due
to its smaller component masses, the signal for GW151226

entered the aLIGO band at 10 Hz with v12=c ∼ 0.15 and a
corresponding separation of r12 ∼ 40m ¼ 1280 km. The
separation reached r12 ∼ 3m ∼ 100 km at f ¼ 410 Hz,
with merger happening at roughly 800 Hz.
The binary BH coalescences that generated these two

GW events are solidly in the extreme gravity regime.
Further ways to quantify this are to compute the character-
istic curvature R ¼ M=L3 and the characteristic gravita-
tional potential Φ ¼ M=L, where M and L are the
characteristic mass and size, respectively, of the system.
Following [31,122], Fig. 2 shows these quantities evaluated
from f ¼ 20 Hz to merger for events GW150914 and
GW151226, taking L ¼ r12 and M ¼ m. For comparison,
we also show the curvature and the gravitational potential
for the LAGEOS [123] and Cassini [124] satellites, the
Earth-Moon system used in lunar laser ranging [125], the
Mercury-Sun system used in perihelion precession obser-
vations, pulsar timing observations [126], and the double
binary pulsar [127–129]; the mass and length scale of each
system is summarized in Table II.
Both GW150914 and GW15226 land in the far top right

corner of the phase space of Fig. 2, precisely where gravity
is strong. What is not clearly depicted in this figure is how
dynamical the gravitational field for each observation is.
Some of this can be inferred from the fact that the GW
events in Fig. 2 are shown as lines instead of points. A
better illustration of the time variation of spacetime is
shown in the left panel of Fig. 3, which is similar to Fig. 2,
except that the abscissa is now the radiation-reaction time
scale sampled by each observation. We model this via
jTj ¼ jEb= _Ebj, where Eb is the characteristic gravitational
binding energy and _Eb is the rate of change of this energy,
which for a binary system we approximate as the GW
energy flux at spatial infinity, i.e. jTj ¼ ð5=64Þðm=ηÞv−812 ,
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FIG. 1. (Left) Third-order PN estimates of the orbital separation (top) and velocity (bottom) as a function of the GW frequency (see
also Fig. 2 of [1]). (Right) An estimate of the square root of the spectral noise density curve of aLIGO when GW150914 was detected (as
interpolated from the data made publicly available by the LVC [121] as described in Appendix C), and two models (PhenomB [90] and
PhenomD [92,93]) of the amplitude of the GW Fourier spectrum of GW150914 (GW151226) multiplied by twice the square root of the
frequency and scaled to SNR 24 (13).

8The mapping between orbital separation and frequency
r12 ¼ r12ðfÞ is gauge dependent, but for estimation purposes
we use the 3PN accurate relation reviewed in [120].
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where η ¼ m1m2=m2 is the symmetric mass ratio. For a
binary system, this quantity is exactly the same as Φ= _Φ and
(up to factors of order unity)R= _R. Thus, T is a measure of
how long it takes the system, and in particular the
gravitational field and the curvature, to change appreciably.
GW150914 and GW151226 land in the top left region of
the left panel of Fig. 3, at least 4 orders of magnitude away
from the double binary pulsar. The Shapiro time delay and
Cassini observation do not appear in this figure, as they do
not sample the dynamical sector of GR. For the GWevents,
how rapidly the curvature and the potential sweep through
the detector’s sensitivity band is shown on the right panel
of Fig. 3.

B. GW model in GR and outside GR

1. IMRPhenom model in GR

The LVC employed two main waveform models (both
calculated within GR) to reconstruct the signal [4,134].
One of these, the so-called IMRPhenom model [89–93],
was heavily used to validate GR in [5,19]. In particular,
the LVC employed the most recent IMRPhenom model
(PhenomPv2), which is a modified version of PhenomD
[92,93] that includes precession by rotating a spin-aligned
waveform to a precessing frame [135]. In this paper, we

will use the PhenomD model and ignore precession
effects.9 The differences in the constraints on non-GR
effects obtained with an older version of the IMRPhenom
model (PhenomB [90]) and PhenomD waveforms are
discussed in Appendix A. This Appendix also provides
a rough estimate of the impact of mismodeling error in tests
of GR, showing that this error does not affect tests for the
modified gravity effects considered here using events
GW150914 and GW151226.
Let us then briefly summarize the PhenomD model of

[93]. This phenomenological approach models the Fourier
transform of the response function as a piecewise function
with three distinct pieces or phases, where each phase i
takes the following form:

~hiðfÞ ¼ AiðfÞeiΦiðfÞ: ð1Þ

The three phases that are distinguished are the inspiral, an
intermediate phase and the merger-ringdown phase. In the
inspiral phase, the waveform is modeled as follows. The
amplitude is treated in PN theory, including terms up to
3PN order that are known analytically, and higher-order
functionals (up to 4.5PN order) fitted to numerical simu-
lations. In particular, the early-inspiral part of the phase is
simply given by
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FIG. 2. Schematic diagram of the curvature-potential phase
space sampled by various experiments that test GR. The vertical
axis shows the inverse of the characteristic curvature length scale,
while the horizontal axis shows the characteristic gravitational
potential, based on Table II. GW150914 and GW151226 sample
a regime where the curvature and the potential are both simulta-
neously large and dynamical, indicated here by the finite range
the curves sweep in the figure. The finite area of pulsar timing
arrays is due to the range in the GW frequency and the total mass
of supermassive BH binaries that such arrays may detect in the
future. Figure 3 is a companion plot that illustrates the dynamical
aspects of gravity probed by these experiments; the lighter (blue)
dots here are to indicate that the Shapiro time delay from binary
pulsars and the Cassini satellite do not give information on the
dynamical regime.

TABLE II. The characteristic mass and length scale chosen to
compute the characteristic curvature and potential in Fig. 2. For
GW150914, GW151226 and pulsar timing arrays, we extract the
length scale from the observed frequency via L ¼ ½M=ðπfÞ2�1=3,
where for the former two we choose f ¼ 20 Hz up to contact,
while for the latter we choose f ¼ 3 × 10−9–5 × 10−7 Hz. The
length scale for the binary pulsar Shapiro delay corresponds to the
sum of the minimum impact parameter with an inclination of
89.3° (∼9800 km) and the effect of lensing (∼600 km) of the
double binary pulsar PSR J0737-3039 [130].

M L

GW150914 [1,4,5] 65.3M⊙ 190–1300 km
GW151226 [2,5] 21.7M⊙ 64–900 km
Pulsar timing arrays [131] 106–109M⊙ 109.6–1012 km
Bin. pulsar (Shapiro delay) [130] 1.34M⊙ 1.04×104 km
Bin. pulsar (orbital decay) [129] 2.59M⊙ 8.7 × 105km
LAGEOS [123] 1M⊕ 1.9R⊕

Lunar laser ranging [132] 1M⊕ 3.8×105 km
Cassini [124] 1M⊙ 1.6R⊙
Pericenter precession of Mercury
[7,133]

1M⊙ 5.8×107 km

9The LVC was unable to precisely extract the individual spin
components of each BH binary prior to coalescence for either
event nor the spin parameter combination that characterizes the
amount of precession [2,4,5,136].
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ΦEIðfÞ

¼ 2πftc − ϕc −
π

4
þ 3

128η
ðπmfÞ−5=3

X7
i¼0

ϕiðπmfÞi=3:

ð2Þ

The early inspiral parameters ðtc;ϕcÞ correspond to a
constant time and phase offset, and the ϕi coefficients
are functions of the component masses and the component
spins (see e.g. Appendix A in [93]).

2. Parametrically deformed models

The IMRPhenom model is constructed within GR,
and thus, it must be generalized in order to account for
modified gravity effects. The LVC decided to introduce
a generalized IMRPhenom (gIMR) model through the
substitution rule

~p → ~pð1þ δpÞ; ð3Þ

where ~p denotes parameters for either the early
inspiral (ϕi), the late inspiral (σi), the intermediate
phase (βi) or the merger-ringdown (αi). For example,
when the modification is introduced in the early
inspiral, then ϕi → ϕið1þ δϕiÞ and the gIMR model is
schematically

~hgIMRðfÞ ¼

8>><
>>:

AIðfÞeiΦIðfÞeiδΦI;gIMR f ≤ fInt;

AIntðfÞeiΦIntðfÞ fInt ≤ f ≤ fMR;

AMRðfÞeiΦMRðfÞ fMR ≤ f;

ð4Þ

where we have defined

δΦI;gIMR ¼ 3

128η

X7
i¼0

ϕiδϕiðπmfÞði−5Þ=3 ð5Þ

and where fInt and fMR are the frequencies where the
waveforms transition from the inspiral to the intermediate
phase and from the intermediate to the merger-ringdown
phase, respectively.10 The phases (including the above
correction δΦI;gIMR in the inspiral) are forced to be
continuous and smooth at the transitions. The term propor-
tional to δϕ1 is absent if we follow the definition in Eq. (3)
as ϕ1 ¼ 0 in GR; rather, δϕ1 is taken to be the absolute
correction at 0.5PN order, which corresponds to setting
ϕ1 ¼ 1 in Eq. (5). In principle, there could also be GR
modifications that are proportional to ln f in Eq. (5), but in
practice, there are no known theories that predict such a
behavior; nonetheless, the arguments we present below
continue to hold for such high-PN-order modifications if
the ppE framework is also extended to higher-PN
order [137].
As we now show mathematically, the gIMR model is an

implementation of the ppE framework [88] applied to the
IMRPhenom waveform. This may seem obvious, though
there has been some debate in the literature as to the overlap
of the various methods of deforming GR waveforms; we
thus thought it would be instructive to describe this in more
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FIG. 3. (Left) Schematic diagram of the curvature-radiation reaction time-scale phase space sampled by relevant experiments shown in
Fig. 2. As is evident, GW150914 and GW151226 sample a regime of dynamic gravity where the radiation-reaction time scale is the
shortest by many orders of magnitude. (Right) Characteristic curvature and strength of the Newtonian gravitational potential as a
function of GW frequency.

10The PhenomB waveform model [90] can be expressed as a
piecewise function as in Eq. (4). Such a waveform was upgraded
to PhenomC in [91] and then to PhenomD in [92,93]. The gIMR
model is based on PhenomD, which cannot technically be written
as such a three-part piecewise function because the transition
frequencies for the amplitudes and phases are not exactly the
same. Nonetheless, the arguments we present next continue to
hold if one considers each phase of the coalescence (inspiral,
intermediate, merger-ringdown) separately.
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detail here. The ppE framework was devised to capture how
theoretical mechanisms that deviate from GR impact the
waveform. The general idea was to introduce amplitude and
phase deformations to the best GR waveform model
available. At the time [88] was written, the IMRPhenom
model had not yet been developed, so [88] used its
predecessor [138] to model the GR waveform. Thus, one
of the first (and simplest because of the use of a single ppE
phase deformation) IMR ppE model proposed in [88] [see
Eq. (1) in that paper] was

~hppEðfÞ ¼

8>><
>>:

AIðfÞeiΦIðfÞeiδΦI;ppE f ≤ fInt;

AIntðfÞeiΦIntðfÞ fInt ≤ f ≤ fMR;

AMRðfÞeiΦMRðfÞ fMR ≤ f;

ð6Þ

where back then the amplitudes did not include PN
corrections and the ringdown was modeled with a
Lorentzian, following the PhenomB model (i.e. the prede-
cessor of the PhenomD model). Neglecting negative PN
terms which were included in [88], the ppE inspiral phase
deformation takes the form [see Eq. (45) of [88]]

δΦI;ppEðfÞ ¼
3

128
ðπMfÞ−5=3

X7
i¼0

ϕppE
i ðπMfÞi=3; ð7Þ

where the coefficients ϕppE
i are ppE parameters and

M ¼ η3=5m is the chirp mass. We recognize immediately
that the gIMR phase deformation in Eqs. (4) and (5) is
mathematically identical to the ppE phase deformation in
Eqs. (6) and (7) with the mapping ϕppE

i ¼ ϕiδϕiη
−i=5.

One can of course introduce ppE parameters at every PN
order, thus greatly enlarging the parameter space, but amuch
more informative test is to consider one deformation at a
time. Indeed, [137] first showed and [19] verified that using
many GR deformations in the phase greatly dilutes the
amount of information that can be extracted from the signal,
without a noticeable gain in the ability to detect an anomaly.
Furthermore, there is no reason to expect an alternative
theory will follow the GR PN sequence of rational expo-
nents, and limiting to these thus weakens the scope of the
test. Considering then a single deformation at a time, the
inspiral ppE phase takes the form [see Eq. (1) in [88]]

δΦI;ppEðfÞ ¼ βðπMfÞb=3; ð8Þ

where β is called the amplitude coefficient and b is the
exponent coefficient. The former controls the magnitude of
the deformation to GR, while the latter controls the type of
physical mechanism that is responsible for the modification.
If one considers the gIMR model with only a single PN
coefficient modification that enters at ðn=2Þ-PN order with
n ∈ N (as also done in [5,19]), then the mapping between
gIMR and ppE is simply

b ¼ n − 5 ð9Þ

and

β ¼ 3

128
ϕnδϕnη

−n=5; if ϕn ≠ 0; ð10Þ

or

β ¼ 3

128
δϕnη

−n=5; if ϕn ¼ 0 ð11Þ

(no summed implied over n in these equations). Evaluating
the first few terms, for example,

β ¼ 3

128
δϕ0; at 0PNorder; ð12Þ

β ¼ 3

128
δϕ1η

−1=5; at 0.5PNorder; ð13Þ

β ¼ 3

128
ϕ2δϕ2η

−2=5; at 1PNorder; ð14Þ

where we used ϕ0 ¼ 1 in Eq. (12), ϕ2 ¼ 3715=756þ
ð55=9Þη, and the other inspiral phase coefficients of GR
can be found in Appendix A of [93].
The gIMR waveforms are then a restricted subset of the

ppE waveforms presented in [88]. We say subset because
the gIMR waveforms only consider positive-PN-order
deformations to the waveform phase and no deformations
to the amplitude. The ppE framework allows for both of
these, and the negative-PN-order deformations are particu-
larly important when extracting information about certain
physical effects, as discussed in the introduction.

3. From parametric deformations to
theoretical physics

Now that we have established that the gIMR model is a
subset of the ppE framework applied to the IMRPhenom
waveform family, we can use all of the machinery of the
ppE formalism to connect GR deformations to specific
theoretical mechanisms. The latter can be classified into
generation mechanisms and propagation mechanisms. The
mapping between these mechanisms and ppE parameters β
(or δϕi) has been developed over the past several years in
[58,66,88,100,115,139–151] and it is summarized in the
review paper [18]. For completeness, we present this
mapping here, correcting a few typos that appeared in
the literature and updating the mapping with recent results.

Generation mechanisms.—Generation mechanisms refer to
those that are active close to the binary system, where the
GWs are being generated. Typically, one refers to this
region as the near zone in the PN formalism and the inner
zone in BH perturbation theory. One can think of
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generation mechanisms as modification to the Poisson
equation in the weak-field limit of the Einstein equations,
i.e. modifications to the structure of the fields in terms of the
source multipole moments. Such modifications then propa-
gate into corrections to the binding energy and angular
momentum of a binary and thus to the equations of motion.
Generation mechanisms also affect the equations of motion
viamodifications to the energy and angularmomentum flux.
The character of the modification depends sensitively on the
particular mechanism that activates. For example, when a
scalar field activates in the near zone, it typically leads to
dipolar energy loss from the binary system and a faster rate
of orbital decay than predicted in GR.
Table III summarizes the theoretical effects and mech-

anisms in the generation of GWs that can be constrained
from GWs emitted in the coalescence of a BH binary. By
“theoretical effect” we mean the type of modification that is
induced on the GW observable, while “theoretical mecha-
nism” refers to the process that produces the aforemen-
tioned modification. The table also provides examples of
theories where these effects and mechanisms arise, together
with the relative PN order at which they first enter the
Fourier GW phase and the mapping between the ppE
coefficient β (or alternatively δϕi) and the system param-
eters and coupling constants that control the magnitude of
the modification. We have not included in the table any
effect or mechanism that can only be constrained with
binary systems when at least one component is required to
be a NS (for those mappings refer to the review paper [18]).
Example theories in Table III that modify GW generation

mechanisms are as follows:
(i) EdGB gravity.—BHs have scalar monopole charge (a

measure of the dependence of the BH mass on the
scalar field) as sourced by the Kretchmann curvature.
Such charges induce scalar dipole radiation, which

then speeds up the rate at which the binary inspirals.
The magnitude of this modification is proportional
to the dimensionless EdGB coupling parameter
ζEdGB ≡ 16πα2EdGB=m

4. The mapping between β
and the system and coupling parameters is given
by [143]

βEdGB ¼ −
5

7168
ζEdGB

ðm2
1s

EdGB
2 −m2

2s
EdGB
1 Þ2

m4η18=5
:

ð15Þ

Here, sEdGBA are the spin-dependent factors of the BH
scalar charges in EdGB gravity, which are given by
sEdGBA ≡ 2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2A

p
− 1þ χ2AÞ=χ2A [174], with χA the

magnitude of the spin angular momentum of the Ath
body normalized by its mass squared.

(ii) dCS gravity.—Similar to EdGB gravity, BHs have
scalar dipole charge sourced by the Pontryagin
invariant that induces scalar quadrupolar radiation.
The magnitude of the correction to the rate at which
the binary inspirals is proportional to the dimension-
less dCS coupling parameter ζdCS ≡ 16πα2dCS=m

4.
The mapping for β is given by [149]

βdCS ¼
1549225

11812864

ζdCS
η14=5

��
1 −

231808

61969
η

�
χ2s

þ
�
1 −

16068

61969
η

�
χ2a − 2δmχsχa

�
; ð16Þ

where we introduced the symmetric and
antisymmetric dimensionless spin combinations11

TABLE III. Theoretical effects introduced into the GW observable due to various theoretical mechanisms, together with example
theories where such mechanisms arise. For each effect and mechanism, we specify the ppE exponent which would signal its appearance,
the relative PN order at which these effects first enter the Fourier GW phase, and the mapping to the ppE magnitude coefficient β.

Theoretical effect Theoretical mechanism Theories ppE b Order Mapping

Scalar dipolar radiation Scalar monopole activation EdGB [143,145,152,153] −7 −1PN βEdGB [143]
BH hair growth Scalar-tensor theories [64,154] −7 −1PN βST [64,154]

Anomalous acceleration Extra dim. mass leakage RS-II braneworld [155,156] −13 −4PN βED [144]
Time variation of G Phenomenological [140,157] −13 −4PN β _G [140]

Scalar quadrupolar radiation
Scalar dipole force
Quadrupole moment deformation

Scalar dipole activation
due to grav. parity violation

dCS [143,158] −1 þ2PN βdCS [149]

Scalar/vector dipolar radiation Vector field activation
due to Lorentz violation

EA [111,112], khronometric [113,114] −7 −1PN βð−1ÞÆ , βð−1ÞKG [115]

Modified quadrupolar radiation −5 0PN βð0ÞÆ , βð0ÞKG [115]
Modified dispersion relation GW propagation Massive gravity [159–162] −3 þ1PN

Double special relativity [163–166] þ6 þ5.5PN
Extra dim. [167], Hořava-Lifshitz [168–170] þ9 þ7PN
Gravitational SME (d ¼ 4) [86] þ3 þ4PN βMDR

Gravitational SME (d ¼ 5) [86] þ6 þ5.5PN [148,159]
Gravitational SME (d ¼ 6) [86] þ9 þ7PN
Multifractional spacetime [171–173] 3–6 4–5.5PN

11χs is different from χeff ≡ ða∥1 þ a∥2Þ=m in [4].
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χs;a ¼ ða∥1=m1 � a∥2=m2Þ=2 with a∥A representing
the projection of the (dimensional) spin vector
~aA onto the unit orbital angular momentum
vector, and the dimensionless mass difference
δm ¼ ðm1 −m2Þ=m.

(iii) Scalar-tensor (ST) theories.—A BH can acquire a
scalar charge if the scalar field is evolving in time
with a growth rate _ϕ due to e.g. a cosmological
background [28,64,154]. The mapping for β is given
by [64,154]

βST ¼ −
5

1792
_ϕ2η2=5ðm1sST1 −m2sST2 Þ2; ð17Þ

where sSTA ≡ ½1þ ð1 − χ2AÞ1=2�=2 are the spin-
dependent factor of BH scalar charges in scalar-
tensor theories with BH hair growth [64].

(iv) RS-II braneworld scenario.—The leakage of grav-
itons into extra dimensions induces an anomalous
acceleration that is proportional to the rate of leakage
into the bulk dm=dt, which in turn is proportional to
the square of the ratio of the size of the extra
dimension to the total mass. The mapping for β is
given by [144]12

βED ¼ 25

851968

�
dm
dt

�
3 − 26ηþ 34η2

η2=5ð1 − 2ηÞ : ð18Þ

The denominator never vanishes since η < 1=4.
(v) Phenomenological varying-G theories.—Phenom-

enological models where Newton’s gravitational
constant G has a small time variation also induce
an anomalous acceleration, and thus modifications
to the Fourier waveform phase scale with _G. The
mapping for β is given by [140]

β _G ¼ −
25

65536
_GM: ð19Þ

In fact, one can view the RS-II braneworld scenario
as a particular realization of these phenomenological
varying-G theories.

(vi) EA and khronometric theory.—EA theory generi-
cally predicts gravitational Lorentz violation, where
the magnitude of the latter is controlled by four
dimensionless coupling parameters; two of these are
ðcþ; c−Þ, and the remaining two, including c14, can
be expressed in terms of ðcþ; c−Þ when imposing
Solar System constraints. The mapping for β enter-
ing at 0PN order is given by [115]

βð0PNÞ
Æ

¼−
3

128

"�
1−

c14
2

� 1

wÆ
2

þ 2c14c2þ
ðcþþc− −c−cþÞ2wÆ

1

þ 3c14
2wÆ

0 ð2−c14Þ

!
−1

#
: ð20Þ

Here, wÆ
0 , w

Æ
1 and wÆ

2 are the propagation speeds of
the spin-0, spin-1 and spin-2 modes, respectively,
which depend on ðcþ; c−Þ.
A similar mapping can be found for khronometric

theory, which contains three dimensionless coupling
constants; two of these are ðβKG; λKGÞ and the
remaining one αKG is expressed in terms of βKG
when saturating Solar System bounds. The mapping
for the ppE parameter β entering at 0PN order is
given by [115]13

βð0PNÞKG ¼ −
3

128

�
ð1 − βKGÞ

�
1

wKG
2

þ 3βKG
2wKG

0 ð1 − βKGÞ
�
− 1

�
: ð21Þ

Similar to the EA case, wKG
0 and wKG

2 are the
propagation speeds of the spin-0 and spin-2 modes
that depend on ðβKG; λKGÞ.
Both βð0PNÞÆ and βð0PNÞKG should also contain terms

that depend on the BH scalar charges, which are
currently unknown; we neglect such terms in this
paper because Ref. [115] showed that they are
subdominant for NS binaries. We do not present

the ppE parameter βð−1PNÞÆ and βð−1PNÞKG that enter at
−1PN order, since they are proportional to the
square of the difference in the individual BH scalar
charges. See Sec. V for a more detailed explanation
of EA and khronometric theory.

Propagation mechanisms.—Propagation mechanisms refer
to those that activate while the wave is propagating away
from the source in a regime at least several GW wave-
lengths away from the binary’s center of mass (in the so-
called far zone, radiation zone or wave zone). One can think
of propagation mechanisms as modifications to the plane-
wave propagator in field theory, i.e. modifications to the
inverse of the wave operator. This can introduce modifi-
cations to the amplitude of the waves, such as amplitude
mixing generated by gravitational parity violation [141], or
they can introduce modifications to the phase of the waves,
due to real corrections to the wave’s dispersion relation

12This corrects a small typo (the numerical prefactor and the
dependence on η) in the review paper [18] and recasts the
constraint in terms of the rate of change of the total mass.

13In Eq. (91) in [115], the overall factor in the first term should
be 1 − αKG=2 instead of 1 − 2=βKG. We also imposed αKG ¼
2βKG to satisfy Solar System bounds.

YUNES, YAGI, and PRETORIUS PHYSICAL REVIEW D 94, 084002 (2016)

084002-12



[148]. Modifications to the dispersion relation are typically
also associated with either modifications to the Lorentz
group or to its action in real or momentum space. Thus,
such modifications are associated with gravitational
Lorentz-violating effects, which are typically found in
quantum-gravitational models, such as loop quantum
gravity [175] and string theory [176,177].
Table III also summarizes the theoretical mechanisms

that can be constrained in the propagation of GWs using
GWs from compact binaries. As in the generation case, the
table provides the mapping between the ppE coefficient β
and the system parameters and coupling constants of
particular theories with modified dispersion relation. For
a generic modified dispersion relation of the form

E2 ¼ ðpcÞ2 þ AðpcÞα; ð22Þ

the modification to the Fourier GW phase takes on the ppE
form of Eq. (8) with

βMDR ¼ π2−α

ð1 − αÞ
Dα

λ2−αA

M1−α

ð1þ zÞ1−α ; ð23Þ

b ¼ 3α − 3: ð24Þ

In these equations, E and p are the energy and momentum
of the graviton, respectively, while A is the strength of the
dispersion modification (that depends on the coupling
constants of the particular theory) and λA ≡ hA1=ðα−2Þ is
similar to a Compton wavelength. For events at small
redshift, the distance Dα is given by

Dα ¼
z

H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩM þ ΩΛ

p
�
1 −

z
4

�
3ΩM

ΩM þΩΛ
þ 2α

�
þOðz2Þ

�
;

ð25Þ

with z the redshift and H0 the current value of the Hubble
constant, while ΩM andΩΛ are the energy density of matter
and dark energy, respectively. This modification to the
Fourier phase is independent of the generation mechanism
and, in particular, independent of the particular waveform
model used for the inspiral, merger and ringdown. Thus,
one can add this modification onto any waveform model
directly.
A GW that obeys a modified dispersion relation will also

travel at a speed different from that of light. Using Eq. (22)
we can calculate the group velocity vg to find

vg
c
¼ 1

c
dω
dk

¼ 1þ ðα − 1Þ
2

AEα−2; ð26Þ

to leading order inAEα−2 ≪ 1. For α > 1 andA < 0, GWs
travel slower than the speed of light. When this is the case,
high-energy massive particles may travel faster than GWs
and emit gravitational Cherenkov radiation [178,179]. The

fact that observed high-energy cosmic ray particles have
traveled extragalactic distances without losing energy to
this type of radiation places a stringent constraint on the
magnitude of A in the A < 0 sector, in particular when
α ≥ 2 [84].
The dimensionless constant α controls the type of

dispersion modification. In the limit where E and p are
large compared to ðApαÞ1=2, but small compared to the
Planck energy Ep, this generic parameterization can capture
the following theories or phenomenological models:

(i) Double special relativity [163–166].—A ¼ ηdsrt and
α ¼ 3, where ηdsrt is a parameter that characterizes
an observer-independent length scale, commonly
taken to be the Planck length;

(ii) Extradimensional theories [167].—A ¼ −αedt and
α ¼ 4, where αedt is a constant that characterizes the
square of the Planck length in extradimensional
theories;

(iii) Hořava-Lifshitz gravity [168–170,180].—A ¼
κ4hlμ

2
hl=16 and α ¼ 4, where κhl (related to the bare

gravitational constant) and μhl (related to the defor-
mation in the “detailed balance” condition imposed
to reduce the number of coupling constants) are
constants of the theory;

(iv) Massive graviton [159–162].—A ¼ ðmgc2Þ2 and
α ¼ 0, where mg is the mass of the graviton;

(v) Multifractional spacetime theory [171–173,181].—
A ¼ 2E2−α� =ð3 − αÞ (timelike fractal spacetime)
or A ¼ −2 · 31−α=2E2−α� =ð3 − αÞ (spacelike fractal
spacetime) with α ¼ 2–3 (α ¼ 2.5 being a typical
choice), where E� is the characteristic energy scale
above which spacetime is discrete;

(vi) Gravitational standard model extension (SME)

[86].—A ¼ −2k
∘ ðdÞ
ðIÞ for even d ≥ 4 and A ¼

�2k
∘ ðdÞ
ðVÞ for odd d ≥ 5 with α ¼ d − 2 in the rota-

tion-invariant limit to linear order in k
∘ ðdÞ
ðVÞ, where k

∘ ðdÞ
ðIÞ

and k
∘ ðdÞ
ðVÞ are constant coefficients that control the

Lorentz-violation operators. The modified
dispersion relation without rotation invariance is
given by Eq. (5) in [86].

The first two theories in the above list also typically predict
a constant (massive graviton) term, but we have left this
term out of the list above. The modifications to the
dispersion relation need not automatically be Planck sup-
pressed [182,183]. This is because Planck suppression
typically arises because of Lorentz invariance; in theories
that lack this symmetry, modifications to the dispersion
relation can be dramatically enhanced upon regularization
and renormalization [184].
Theories that predict modified dispersion relations for

the graviton are also likely to modify GWs in the generation
phase, so which one dominates? Let us argue that the
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former typically dominates the latter due to the accumu-
lation of the modified gravity effect with distance, using
massive gravity as an example. Reference [80] showed that
the fractional correction to the radiated GW energy flux
from a binary in massive gravity is given by ∼1=ðλ2gf2Þ.
Therefore, the ppE parameter due to GW generation is

roughly given by βðgenÞMG ∼ ð3=128Þπ2M2=λ2g with b ¼ −11,
namely a −3PN correction. Comparing this with the ppE

parameter for the modified propagation, βðpropÞMG ∼
π2D0M=λ2g with b ¼ −3 [see Eq. (23) with α ¼ 0], one
finds

βðpropÞMG ðπMfÞ−1
βðgenÞMG ðπMfÞ−11=3

∼ 1018
�

M
28M⊙

�
5=3

×

�
D0

380 Mpc

��
f

100 Hz

�
8=3

: ð27Þ

This clearly shows that the propagation effect dominates
the generation effect, even when the former is of higher PN
order relative to the latter. Therefore, when we consider
modifications to the propagation of GWs we neglect related
modifications to GW generation.

III. THEORETICAL IMPLICATIONS OF EVENTS
GW150914 AND GW151226

This section discusses the theoretical implications of
events GW150914 and GW151226. We classify theoretical
implications into those that affect the generation of GWs
and those that affect the propagation of GWs and determine
the precise implications the LVC observations have for
each class. For both events, we relate Bayesian as well as
Fisher estimates on parameter constraints to different
physical mechanisms.
When we carry out Fisher analyses [185] in Secs. III A

and III B, the parameter vector that determines our
IMRPhenom waveform is θ ¼ ðlnMz; ln η; χs; χa; tc;
ϕc; lnA0; βÞ, where A0 is an overall amplitude factor
proportional to M5=6

z =DL, with Mz and DL the redshifted
chirp mass and luminosity distance, respectively. The
nonzero parameter values for the injections are given in
Table IV (tc ¼ ϕc ¼ β ¼ 0), except for A0 that is deter-
mined from the total (network) SNR.14 The injected ðχs; χaÞ
for GW151226 corresponds to ðχ1; χ2Þ ¼ ð0.49;−0.32Þ
and an effective dimensionless spin of 0.21, which is
consistent with the measured values as reported by the

LVC. We start the integration of the Fisher matrix Γij at
20 Hz to be consistent with the aLIGO sensitivity curve
during the O1 observation period, and we use a fit
to the spectral noise sensitivity curve during O1 (see
Appendix C). We follow [185–187] and impose a physical
Gaussian prior on χs and χa that ensures that jχsj ≤ 1
and jχaj ≤ 1; this is done by multiplying the likelihood
function (in the Fisher approximation) by a Gaussian
function of χs and χa with a standard deviation of unity.

A. Implications on the generation of GWs

1. Constraining generation mechanisms

As described in Sec. II B 3, constraints on a plethora of
mechanisms that may be active in the generation of GWs
can be captured within the ppE formalism. Therefore,
constraints on the ppE amplitude coefficients β (or δϕi)
as a function of PN order provide constraints on physical
mechanisms as well. This is one of the benefits and power
of the ppE framework.
The LVC in [5,19] performed a Bayesian analysis

of the constraints that event GW150914 places on the
ppE coefficients δϕi (at 90% credible level), using the
IMRPhenom model with precessing spins. Figure 4 plots
these constraints mapped to constraints on β as a function
of relative PN order in the Fourier GW phase (green
crosses). For example, a constraint on β at 0PN order
means a constraint on a ppE term in the Fourier GW phase
that is proportional to ðπMfÞ−5=3.
Another way to estimate constraints on β is to carry out a

Fisher analysis [189,190]. We have done this using
IMRPhenom waveforms without precessing spins (as these
have a minimal effect on the waveforms [4,136])15 and a
spectral noise density constructed by fitting the aLIGO data
for the initial 16 days of coincident observations (see
Appendix C). We only include the ppE correction in the

TABLE IV. Injected parameters for Fisher analyses with
GW150914 and GW151226. These parameters are consistent
with the aLIGO measurement [1,2,4,5].

GW150914 GW151226

ðm1; m2Þ ð35.7; 29.1ÞM⊙ ð14.2; 7.5ÞM⊙
ðχs; χaÞ (0,0) (0.085,0.41)
z 0.088 0.09
SNR 24 13

14The GWamplitude depends not only on the masses, distance
and redshift, but also on the sky location and the inclination of the
source, which are poorly constrained [4]. Moreover, we use a fit
for the noise curve, which naturally has some (small) error,
discussed in Appendix C. In order to minimize the effect of such
uncertainties, we choose the amplitude A0 to give SNRs of 24 and
13 for GW150914 and GW151226, respectively.

15Given that aLIGO could not measure precessional effects
with GW150914 or GW151226, we expect the inclusion of
precessional effects in the tests of GR that we carried out here to
be negligible. However, if an event is detected in the near future
with large precession, then the inclusion of such effects could
allow us to break degeneracies in parameter estimation, in
particular among spins and masses (see e.g. [191]), improving
constraints on non-GR effects [192–195].
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inspiral phase [i.e. for f < fInt with fInt ¼ 52 Hz (154 Hz)
for GW150914 (GW151226)] due to the lack of merger
simulations in non-GR theories, which should allow us to
find conservative bounds on β. The results are plotted in
Fig. 4 as a function of PN order. The GW150914 Fisher
estimate is a good approximation to the more complete
Bayesian analysis of [4], overestimating the constraint by
roughly 15%–50%. We do not show constraints at 2.5PN
order as such a correction is degenerate with a constant
phase shift. The Fisher analysis here includes negative-PN-
order effects, since many theoretical implications require
such constraints; the Bayesian analysis of [5,19] does not
report on these negative-PN-order constraints, which is
why they are not shown in Fig. 4. Based on the fact that the
phase of the IMRPhenom waveform agrees with that of the

numerical relativity waveform within ∼0.015 rad or better
for any frequency [93], we roughly estimate a systematic
error on β due to the waveform mismodeling within GR to
be 3–4 orders of magnitude smaller than the bounds in
Fig. 4 (see Appendix A for more details).
Figure 4 shows that GW151226 places stronger con-

straints on β than GW150914 [2,5] especially at negative
PN orders. This is because GW151226 consists of a BH
binary with lower total mass than GW150914, and thus,
(i) the velocity of the binary constituents at a fixed
frequency (e.g. f ∼ 50 Hz) is smaller and (ii) the observed
frequency range is larger than for GW150914. The first fact
makes the negative-PN-order, ppE correction terms in the
phase and the total number of GW cycles in band larger
than for GW150914. This, together with the second point
above, make β less degenerate with other binary param-
eters, leading to stronger constraints. Regarding corrections
at high positive PN orders, point (i) results in a deterioration
of the constraints, while point (ii) strengthens them
compared to GW150914 [2,5]. Taken together then these
opposing effects lead to similar bounds at positive PN
orders for GW150914 and GW151226. We also calculated
the bounds on β by combining those of GW150914 and
GW151226 using Eq. (4.12d) in [80] and found that such a
combined bound is almost indistinguishable from that of
GW151226 alone (the improvement reaches at most ∼30%
at n ∼ 0PN). This finding is consistent with a similar
analysis performed by the LVC [5].
Our analysis and the study of the LVC in [5,19] differ in

many ways, and yet, the two yield similar constraints on β.
The main differences between these studies are that the
former (latter) uses

(i) a Fisher (Bayesian) analysis,
(ii) nonprecessing (precessing) waveform templates,
(iii) a fit for the noise curve (the real data),
(iv) a simulated waveform injection compatible with the

real signal (the real signal), and
(v) includes only statistical (both statistical and system-

atic) errors.
Probably, differences (i)–(iii) do not have a large impact on
the β constraints for the following reasons. The difference
in statistical errors between Fisher and Bayesian studies
scales as Oð1=SNR2Þ [185,196], which is only ∼Oð0.2%Þ
[Oð0.6%Þ] given the SNR of GW150914 (GW151226).
Precession for both events was too small to be measurable
by the LVC [2,4,5,136]. The real noise spectral density
contains many spikes, but these are very thin, and thus, for
the same SNR, they affect constraints on β by only a few
percent (see Appendix C).16 We do not include any specific
noise realization in our Fisher analysis, since (i) such a
noise realization only shifts the posterior distribution
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FIG. 4. 90%-confidence constraints on the ppE parameter jβj at
nth PN order. The green crosses represent the bounds reported in
[5,19] through a Bayesian analysis of event GW150914, mapped
to constraints on β. The red (magenta) dots and line represent
bounds from GW150914 (GW151226) estimated with a Fisher
analysis, using the IMRPhenom waveform (without spin pre-
cession) and a fit to the aLIGO spectral noise density. The
constraints obtained with a Fisher analysis agree very well with
the Bayesian constraint reported in [5,19]. The blue dotted line
shows projected constraints predicted in 2011 by [142] for a
system similar to GW151226. The dashed black line is a rough
estimate on the constraints that the double binary pulsar PSR
J0737-3039 [127–129] can place on the ppE β parameter [188],
while the cyan star refers to the bound on β at 1PN from the
perihelion precession of Mercury [150]. Binary pulsar observa-
tions can constrain negative-PN-order deviations better than
aLIGO, while aLIGO does better than binary pulsar observations
at higher PN order, as first calculated in [188]. However, note also
that binary pulsar and Solar System bounds cannot be directly
compared to GW ones as the binary pulsar (Solar System) one
corresponds to the extreme case of no conservative (no dis-
sipative) corrections. Moreover, stronger constraints on β for
these latter tests do not necessarily mean stronger constraints on
modifications to GR for BH mergers, as β depends not only on
theoretical coupling parameters but also on system parameters,
and in certain theories (like EdGB gravity), non-GR corrections
are suppressed in stars compared to BHs.

16See the related work by [197], which shows that the effect
of non-Gaussianity in the noise on parameter estimation is
negligible.
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without affecting its spread [137], and (ii) the uncertainties
in parameters averaged over different noise realizations are
the same as those with zero noise injection [198]. On the
other hand, differences (iv) and (v) are probably more
important. For example, in our Fisher analysis we set the
spin magnitudes of the injection to zero, but the posteriors
found by the LVC [4] are quite wide, and a different choice
of spin magnitude can affect our Fisher estimates by a
factor of ∼2. Even using the Bayesian analysis of [4], the
mapping between δϕi and β [see Eqs. (10) and (11)]
depends on the posterior distribution of other parameters,
and different choices can also affect constraints on β at high
PN order by a factor of ∼2. As another example, consider
the systematic errors on the GW150914 measurement of
δϕi (or β) reported in [5,19], i.e. the distance from the peak
of the posterior to zero; these systematic errors are
comparable to the statistical error, the former of which is
not included in the Fisher bound. In spite of these
differences, the constraints on β that we found through
our analysis are very close to those reported by the LVC,
whenever we can compare them directly.
Interestingly, Ref. [142] had already estimated the

accuracy to which the ppE parameter β could be con-
strained, using a detailed Bayesian analysis and inspiral-
only waveforms. For comparison, we have taken the results
of [142] directly and plotted them in Fig. 4 (dotted blue
line) without modification, i.e. for a system with an SNR of
20, (source) component masses ðm1; m2Þ ¼ ð12; 6ÞM⊙
(η ¼ 0.222) and luminosity distance DL ¼ 462 Mpc. It
is quite a coincidence that these parameters are so close to
those of the detected events. The constraints predicted in
2011 are in good agreement with the actual constraints
placed by aLIGO, in particular with GW151226. The
spikes in the constraints of [142] arise due to degeneracies
with the chirp mass and the phase of coalescence, the
former of which is partially broken when one incorporates
the merger-ringdown phase, as done in [5,19].
For comparison, Fig. 4 also includes an estimate of the

bounds that the double binary pulsar PSR J0737-3039
[150,188] (black dashed line) and the perihelion precession
of Mercury [150] (cyan star)17 can place on the ppE β
parameter. The latter places a stronger bound on β at 1PN
order than the GW events, though it can only probe
corrections in the conservative sector, such as those to
the binding energy of the source. The binary pulsar
estimates are rough, since they do not take into account
possible covariances between β and other binary pulsar
parameters, and only dissipative corrections (namely those
in the energy flux) are included. Nonetheless, they are
enough to illustrate that binary pulsars can do a much better
job at constraining “negative-PN”-order effects, while
aLIGO (and in particular event GW150914) can beat

binary pulsar constraints above Newtonian (0PN) order,
as first suggested in [188].
One must keep in mind, however, that a direct com-

parison of bounds on β from binary pulsar observations and
Solar System experiments to those obtained with GWs is
misleading, since the former cannot probe gravity when
compact objects merge (in particular, when the compact
objects are BHs). Moreover, a stronger constraint on β from
one class of observation compared to another does not
necessarily translate to a comparable improvement in
bounds on non-GR theories, as the latter depends on
how β is related to theoretical coupling constants and
binary parameters. Similarly, ppN bounds from the Sun-
Mercury system cannot directly be used to bound the β ppE
coefficient, as these parameters may depend on both
theoretical and system parameters. For example, if such
parameters are proportional to the mass ratio, Solar System
experiments may not be as sensitive as GW observations.
Therefore, the binary pulsar and Solar System bounds on β
in Fig. 4 should be considered as a mere reference and
should not be compared directly to those from GW150914
and GW151226.
Let us now map the constraints on the ppE parameter

β to specific theoretical mechanisms, some of which we
already summarized in Table I (see also Table III).
Constraints listed in the top part of this table are
obtained from modifications to GW generation. For refer-
ence, we also present current constraints on example
alternative theory parameters obtained from other obser-
vations, such as tabletop experiments and observations
with low-mass x-ray binaries. We find the following
theoretical implications of the two detected events on
GW generation:

(i) EdGB gravity.—GW150914 cannot place con-
straints on EdGB gravity due to degeneracies be-
tween the spin magnitudes, the component masses
and the EdGB coupling constant in the leading-order
(dipole) EdGB waveform correction. If one were to
assume a priori that the spins of the binary con-
stituents of GW150914 are zero and the components
masses are given by their posterior peaks, then one
would be able to constrain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijαEdGBj
p ≲ 22 km,

which is consistent with the prediction of
[143,151]. Without this a priori information and
using spin combinations within the 90% posterior
distribution measured by aLIGO [4], the constraint
on the EdGB coupling constant weakens dramati-
cally (see Appendix D). Saturating this weakened
constraint leads to a large value of ζEdGB, which
violates the small-coupling approximation used to
derive the waveform correction in the first place
[Eq. (15)].

Repeating the analysis with GW151226, one finds
the bound

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijαEdGBj
p ≲ 5.1 km, which gives ζEdGB ¼

0.76 and satisfies the small-coupling approximation.
17We updated bounds on parameterized post-Newtonian (ppN)

parameters from [150] using [7].
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However, if one further varies the mass ratio, which
is less strongly constrained for GW151226 than
GW150914, one finds that a set of masses and spins
can shut off the scalar dipole radiation. This leads to
a very weak constraint that violates the small-
coupling approximation.
These GW events may still be able to place

meaningful constraints on EdGB gravity from
higher-PN-order corrections and from the waveform
structure during merger and ringdown, but these
have not yet been calculated.

(ii) dCS gravity.—As in the EdGB case, GW150914 and
GW151226 cannot place meaningful constraints on
dCS gravity because of degeneracies between the
spin magnitudes, the component masses and the dCS
coupling constant in the leading-order dCS wave-
form correction. If one were to assume a priori that
the spins of the BHs in GW150914 are zero, which
is consistent with the 90% posterior distribution
measured by aLIGO [4], then the leading-order dCS
modification would vanish exactly, and the next-to-
leading-order correction would enter at very high PN
order [143,199]. This would lead to an extremely
weak constraint on the dCS coupling constant that
would violate the small-coupling approximation
adopted to derive Eq. (16). GW151226 is incon-
sistent with both of the BHs being nonspinning, but
the resulting bound on dCS of ζdCS ≲ 103 violates
the small-coupling approximation.

(iii) Scalar-tensor theories with BH scalar growth due to
the excitation of a time-dependent scalar field
[64,154].—GW150914 and GW151226 cannot
place constraints on _ϕ because of degeneracies
between this quantity and the component masses
and the spin magnitudes in the waveform correction.
Choosing spin magnitudes that lead to the weakest
(most conservative) constraint with masses fixed to
the injected ones, one finds the bound _ϕ <
Oð104= secÞ for GW150914. Saturating this con-
straint, however, leads to a dimensionless expansion
parameter that violates the small-coupling approxi-
mation mA

_ϕ ≪ 1, which was used to construct the
waveform deformation [64,154]. With GW151226,
the most conservative bound is _ϕ≲ 5 × 103= sec.
Although such a bound satisfies the approximation,
if one further varies the mass ratio, one can find a
set of masses and spins such that scalar dipole
radiation is highly suppressed. This leads to a very
weak constraint on _ϕ that again violates the small-
coupling approximation.

(iv) EA and khronometric theory.—GW150914 and
GW151226 can place constraints on EA and khro-
nometric theory, although these are weaker than the
current binary pulsar bound. Since the bounds on
EA and khronometric theory in Table I are derived

from the bounds on βð0PNÞÆ and βð0PNÞKG , they corre-
spond to assuming that scalar and vector dipole
radiation are suppressed a priori. This can be
justified for NSs, but not yet for BHs, as their scalar
charges have not been calculated. If one includes

both βð−1PNÞÆ and βð0PNÞÆ or βð−1PNÞKG and βð0PNÞKG in the
parameter set, as done e.g. in the projected con-

straints of [115], the bounds on βð0PNÞÆ and βð0PNÞKG
become weaker due to degeneracies. Nonetheless,
although the GW constraints are weaker than current
bounds, they arise entirely from interactions that
take place in BH spacetimes with extreme gravity,
where one could have expected such effects to be
enhanced.

(v) Extra dimensions and temporal variation of G.—
GW150914 and GW151226 can place constraints on
the size of large extra dimensions18 and any time
variation in G, but these are worse than other current
constraints, such as those imposed with binary
pulsars. This is because these effects enter at
−4PN order, which implies that binary pulsar ob-
servations (as shown in Fig. 4) and (low-mass) BH
x-ray binaries lead to much stronger limits. Con-
straints that could be placed by space-borne detec-
tors, such as eLISA [207] and DECIGO [208], could
be many orders of magnitude stronger than aLIGO
(and competitive with current bounds) [140,144].
Once more, nonetheless, the GW constraints are
unique in that they use data from the extreme gravity
regime.

2. Generic constraints on the generation of GWs

What other generic features of GR in the generation
phase can GW150914 and GW151226 constrain? To
address this question, here we map the constraints on
the ppE parameter jβj in Fig. 4 to those on generic
corrections to the binding energy Eb of a binary and the
radiated energy flux _E. We follow the ppE treatment of
[147] and model such corrections as

Eb ¼ Eb;GRð1þ Av2pÞ; _E ¼ _EGRð1þ Bv2qÞ; ð28Þ

where v ¼ ðπmfÞ1=3 corresponds to the relative orbital
velocity, while Eb;GR and _EGR denote the binding energy
and energy flux in GR, respectively. Non-GR fractional

18The aLIGO constraint on the size of the extra dimension in
the RS-II braneworld model is based on the conjecture that
classical BHs evaporate [200,201]. Given that static, brane-
localized BH solutions have now been constructed [202–204],
it is not clear whether classical BHs actually do evaporate. If they
do not, then BH observations cannot be used to constrain the size
of extra dimensions in the way discussed here. An alternative
approach is to use the correction to the binding energy discussed
in [205,206].

THEORETICAL PHYSICS IMPLICATIONS OF THE … PHYSICAL REVIEW D 94, 084002 (2016)

084002-17



corrections to Eb and _E have a magnitude A and B that
enter first at p and q PN order, respectively. Such
corrections propagate to those in the gravitational wave-
form phase. When p < q, the dominant non-GR effect
comes from the correction to the binding energy; we do not
know of any theory where this is the case. When p > q, the
dominant effect comes from the correction to the energy
flux; examples of this include BD, EdGB and EA theory.
When p ¼ q, both corrections to Eb and _E are of
comparable PN order, as is the case in dCS gravity. The
mapping between these parameters and β is given by [147]
19

β ¼

8>>><
>>>:

− 5
32

2p2−2p−3
ð4−pÞð5−2pÞ η

−2p=5A ðp < qÞ;
− 15

32
1

ð4−qÞð5−2qÞ η
−2q=5B ðp > qÞ;

− 15
32

1
ð4−kÞð5−2kÞ η

−2k=5C ðp ¼ k ¼ qÞ;
ð29Þ

with C≡ ½ð2k2 − 2k − 3ÞAþ 3B�=3.
Figure 5 presents the upper bound on jAj, jBj and jCj

obtained by mapping the bound on jβj in Fig. 4 via Eq. (29).
This figure shows that the GW data bounds the magnitude
of corrections to E and _E to much better than unity in the
negative PN region. GW151226 places stronger constraints
than GW150914, as expected from Fig. 4. Since the
mapping for p > q and p ¼ k ¼ q has the same structure,
the bounds on jBj and jCj coincide. β with p < q vanishes
when p ¼ ð1� ffiffiffi

7
p Þ=2 ∼ −0.82 and 1.8, and hence, the

constraint on jAj becomes significantly weaker close to
these two values of p, as shown by the vertical dashed lines.
These generic constraints on the binding energy and

energy flux can be used to place bounds on generic scalar
field interactions in any theory. For example, if the BH
components of a binary acquire scalar hair of lth multipole
order (or lth scalar hair), the interaction of this scalar field
will produce a correction to the binding energy at 2lPN
order and a correction to the energy flux at ð3l − 1Þ PN
order [59]. The scalar field in EdGB gravity and in scalar-
tensor theories gives rise to BH scalar hair of l ¼ 0
(monopole) order, which modifies the binding energy
and energy flux at 0PN and −1PN order, respectively,
the latter being the well-known dipole radiation. On the
other hand, in dCS gravity BHs acquire scalar hair of l ¼ 1
multipole order, and thus, the correction to the binding
energy and energy flux enter both at 2PN order, with the
latter being scalar quadrupolar radiation.
Another generic feature that the GWevents can constrain

is the sudden activation or deactivation of dipole radiation
at a given transition frequency f� during BH binary
inspirals. Such an abrupt activation and deactivation is
known to arise in certain modified theories in the presence

of matter. An example is dynamical scalarization in scalar-
tensor theories [24–26,56–58], during which the scalar
charge of a NS in a binary grows suddenly at a given
threshold binding energy or frequency, abruptly turning
dipole radiation on. A similar mechanism arises in scalar-
tensor theories without dynamical scalarization but with a
massive scalar field [98,209–211], during which scalar
dipole radiation activates at a transition frequency related to
the mass of the scalar field. Scalar field deactivation occurs
in scalar-tensor theories that allow for induced scalarization
[24,25,212,213], during which the scalar charge of one of
the NSs in a binary induces a scalar charge in its binary
companion, suppressing scalar dipolar radiation since this
is proportional to the square of the difference in scalar
charge [24,25].
Whether a sudden activation or deactivation of dipole

radiation is possible in vacuum spacetimes has not been
investigated in the theoretical realm. One possibility is to
consider EdGB gravity with a massive scalar field, in which
case one would expect scalar dipole radiation to turn on at a
threshold frequency related to the scalar mass. A mass for
the EdGB (dilaton) scalar field could arise due to super-
symmetry breaking [214], in which case the mass would be
of the order of the supersymmetry breaking scale. If one
wishes for supersymmetry to resolve the hierarchy prob-
lem, then this scale must be larger or comparable to
1012 eV, which then leads to a very massive dilaton
(∼1012 eV), and thus, a very high threshold frequency
(∼1026 Hz) that is well outside what can be probed with
these GW observations. Another possibility is to consider
scalar-tensor theories with nontrivial initial data [27] for the
scalar field, in which case the scalar field will evolve until it
is absorbed by the BHs or it scatters to infinity, at which
point dipole radiation will cease. The deactivation of dipole
radiation in a vacuum spacetime could also be present if
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energy flux jBj [see Eq. (28)] and a combination of these two jCj
[see Eq. (29)] as a function of the PN order that they enter for
GW150914 (red) and GW151226 (blue).

19The β used in [147] is different from that in this paper by a
factor of 2.
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Kerr BHs can acquire scalar hair and then lose it during the
inspiral, which could occur in GR [105,215–217] and in
(complex-boson) scalar-tensor theories [218].
Observations of GWs with aLIGO can constrain such

sudden scalar field activation, as first studied in [100]. This
work showed through a Bayesian, model-hypothesis study
that the simplest (one-parameter) ppE model is sensitive to
a sudden turn on and off of dipole radiation if present in the
data. Furthermore, a modification where this ppE model’s
phase term is multiplied by a Heaviside function with a new
threshold frequency parameter is even more effective at
detecting an abrupt activation or deactivation of dipole
radiation anywhere in the aLIGO band.
GW150914 and GW151226 can thus place generic

constraints on abrupt dipolelike changes to GW generation.
The red solid curves in Fig. 6 present the upper bound on
jβj at −1PN versus f�, assuming that the scalar field only
activates when f > f�. Since the correction is included in
the inspiral phase only, one cannot place constraints in the
region f� > fInt with this method, where f� ¼ fInt is
shown by the vertical dotted-dashed line. The constraint
becomes stronger when the scalar field evolves during the
observed inspiral phase ð20 Hz < f� < fIntÞ compared to
the case where the scalar field has already activated before
the signal enters the aLIGO observation band
ðf� < 20 HzÞ. For example, the GW150914 constraints
on jβj with f� ¼ 40 Hz (the scalar field activates while the
signal is in the observational frequency band of aLIGO)
and f� ¼ 10 Hz (the scalar field is already on when
the signal enters the band) are jβj < 4.5 × 10−5 and
jβj < 1.6 × 10−4, respectively. This is because the former

has a very distinct feature which helps break degeneracies
between β and other parameters. The constraint on jβj does
not go smoothly to infinity at f� ¼ fInt. This is because
when f� < fInt, the correction introduced in the inspiral
phase also propagates to intermediate and merger-ringdown
phases through the smooth matching condition of the phase
at interfaces, while such corrections disappear completely
from the template when f� > fInt (see Appendix A and
[219] for a related discussion). Similar features can be seen
for the case where the scalar field only activates when
f < f� (blue dashed curves). A comparison between
GW150914 (top) and GW151226 (bottom) shows that
smaller mass systems allow one to probe scalarization
effects in a wider frequency band with better accuracy.
Lacking a concrete theory that predicts dynamical scala-
rization in the coalescence of black-hole binaries, we
cannot map the constraints on β to bounds on fundamental
constants of any known theory.

B. Implications on the propagation of GWs

We now study how strongly one can constrain the
modified dispersion relation of the graviton using
GW150914 and GW151226 (see also [220,221] for pos-
sible constraints on the equivalence principle with
GW150914 through a Shapiro time delay measurement).
As described in Sec. II B 3, we include βMDR in Eq. (23) in
the IMRPhenom waveform in all phases (inspiral, merger
and ringdown). We then carry out a Fisher analysis and
derive upper bounds on jAj as a function of α. Such an
analysis corresponds to extending that in [148] by includ-
ing also the merger and ringdown effects and using the
specific parameters of the two GW events.
The upper bound on jAj from event GW150914 using a

Fisher analysis is shown with red circles in Fig. 7. We do
not show the bound at α ¼ 2 as βMDR is degenerate with tc
in this case. For reference, we also show the bound on the
superluminal propagation of GWs with magenta squares,
derived in [87] from the difference in arrival times at
Hanford and Livingston. When mapping the bound in [87]
to that on A in Fig. 7, we assumed a GW frequency of
f ¼ 100 Hz, corresponding to roughly the peak of the
GW150914 signal. The new Fisher constraint is always
stronger than the bound from the arrival time delay of GWs
by roughly 20 orders of magnitude, except when α ¼ 2
which cannot be constrained from the Fisher analysis
presented here.
The GW151226 constraint on A is very similar to that

from GW150914 but isweaker by a factor of ∼5 for large α,
which is the opposite of what happens in the generation
mechanism case in Fig. 4. This is because at fixed
frequency the velocities of the binary constituents are
smaller for GW151226, which makes the ppE correction
term with large α smaller, deteriorating the bound com-
pared to GW150914. We also estimated the combined
bound on A from both GW150914 and GW151226. We
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FIG. 6. 90%-confidence upper bound on the ppE parameter jβj
at −1PN as a function of the transition frequency f� for
GW150914 (top) and GW151226 (bottom), for theories in which
the scalar field only activates when f > f� (red solid curve) and
f < f� (blue dashed curve). The vertical dotted-dashed line
corresponds to the transition frequency fInt between the inspiral
and intermediate phase in the IMRPhenom waveform.
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find that such a bound is stronger by ∼25% compared to the
bound from each event for smaller α where the GW150914
and GW151226 bounds are comparable, while the com-
bined bound is dominated by the GW150914 bound for
larger α.
We can derive a simple, approximate expression for the

GW150914 bound on A. The Bayesian bound on mg in
[19], which corresponds to the A ¼ m2

g and α ¼ 0 case for
a simple dispersion relation, can be interpreted as a
constraint on the propagation speed of GWs via Eq. (26)
and E ¼ hf, given by jδgj≡ j1 − vg=cj ≲ 4.5 × 10−20

assuming f ¼ 100 Hz. Reference [108]20 then obtained a

rough bound on jAj at α ¼ 3 from the constraint on δg
above and Eq. (26). Applying the same assumption to
arbitrary α, one finds the rough bound

jAj≲ 1.5× 10−44 eV2−α

1− α

�
1013

4.1

�
α
�

f
100 Hz

�
−α

ðα ≠ 1Þ;

ð30Þ

which is shown with cyan stars in Fig. 7. Notice how
accurate this order-of-magnitude estimate is relative to the
more precise Fisher analysis carried out here. A similar
analysis was performed in [181] to derive an order-
of-magnitude GW bound on multifractional spacetime
theories with α ¼ 5=2.
We now compare the GW bound on A to other existing

bounds. In Fig. 7, we show the upper bound on −A from
the absence of gravitational Cherenkov radiation in cosmic
ray observations [84].21 Such an observation can only
constrain the A < 0 sector, since otherwise there is no
Cherenkov radiation. In this sector, the GW bound is
stronger relative to the cosmic ray bound when α≲ 2.
On the other hand, in the positive A sector, the GW event
places a unique constraint (one that is not possible with the
Cherenkov argument). The GW bound, unfortunately, is
very weak for high values of α. For example, when α ¼ 3
or 4, the bound on A normalized to the Planck energy Ep

becomes jAEpj < Oð1020Þ and jAE2
pj < Oð1060Þ, respec-

tively. Regarding tabletop experiments, Blas and Lim [222]
derived the constraints jAj < 108 eV−4 with α ¼ 6. Using
Eq. (30) with α ¼ 6, one finds the GW bound of
jAj < 6 × 1029 eV−4, which is much weaker than the
tabletop bound.
Finally, we map constraints on A to example theories

listed in Sec. II B 3. The results are summarized in the
second half of Table I, together with the current bounds
obtained from e.g. Solar System experiments and cosmic
ray observations. We find the following theoretical
implications of GW150914 and GW151226 on GW
propagation:

(i) Massive gravity.—GW150914 (GW151226) con-
strains the mass of the graviton as mg < 2.2×
10−22 eV (< 2.3 × 10−22 eV) (see also [223] for
other constraints on the graviton screening mass
from GW150914). These Fisher bounds are in good
agreement with the bounds derived from a Bayesian
analysis by the LVC [19]. The GW bounds are a few
times stronger than the current Solar System con-
straint [79] and more than 2 orders of magnitude
stronger than the binary pulsar one [80], although
comparable to the superradiance bound of [83]. On
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FIG. 7. Upper bound on the amplitude of the correction to the
graviton dispersion relation A in Eq. (22) from GW150914 (the
GW151226 bound is almost indistinguishable) as a function of α
for A > 0 (top) and A < 0 (bottom) obtained from 90%-con-
fidence constraints on the ppE parameter β. The top axis shows
the corresponding PN order at which the correction enters. The
red circles are the Fisher estimates derived in this paper, while the
green crosses are a mapping of the Bayesian bound in [19] on the
graviton mass through mg ¼

ffiffiffiffi
A

p
at α ¼ 0. Cyan stars are rough

bounds on A in Eq. (30) based on the Bayesian bound at α ¼ 0.
The magenta squares correspond to a bound derived from the
time of arrival of GW150914 at Hanford and Livingston [87].
Blue pluses present the bound on A from the absence of
gravitational Cherenkov radiation in cosmic ray observations
[84], assuming that cosmic ray particles of p ¼ 1011 GeV arrive
from a distance of 100 Mpc. The GW150914 observation
constrains jAj, while cosmic ray observations only constrain
the negative sector of A. The former places a stronger bound on
theA < 0 region than the latter for α≲ 2, while it places a unique
bound on the A > 0 region.

20Reference [108] actually used f ¼ ω=2π ¼ ð100=2πÞ Hz
and derived jAj ≲ 10−5 eV−1. If one uses the more appropriate
choice of f ¼ 100 Hz, one finds jAj ≲ 10−7 eV−1, which is
consistent with the Fisher analysis in this paper to roughly ∼30%.

21The assumptions used in [84] to derive constraints on A are
valid only when α > 1. One needs to rederive the constraint
without these assumptions to obtain constraints when 0 < α < 1.

YUNES, YAGI, and PRETORIUS PHYSICAL REVIEW D 94, 084002 (2016)

084002-20



the other hand, they are weaker than the bound from
galaxy cluster observations [81,82], though the latter
have larger systematic errors due to uncertainties in
the dark matter distribution of the Universe. Such
bounds can be applied to certain theories in which
the graviton has a mass, such as Fierz-Pauli theory
[224] and Lorentz-violating massive gravity
[160,225,226], but not to all such theories. In
particular, these bounds cannot be applied to theo-
ries like bigravity [227] because, even though
gravitons have a mass in this theory, they oscillate
between physical and reference sectors, making the
dispersion relation much more complicated
[228,229].

(ii) Multifractional spacetime.—The GW events place
constraints on the characteristic energy scale E� for
both timelike and spacelike fractal spacetimes. The
former bound is unique while the latter bound is
weaker than that from cosmic ray observations.

(iii) Double special relativity.—GW150914 and
GW151226 constrain the characteristic length scale
ηdrst for both positive and negative values. The
former is unique while the latter is weaker than
the cosmic ray bound.

(iv) Extra dimension theories.—GW150914 and
GW151226 constrain the characteristic length
squared αedt for both positive and negative values.
The former is weaker than the cosmic ray bound
while the latter is unique.

(v) Gravitational SME.—Table I summarizes the

GW150914 and GW151226 constraints on k
∘ ð4Þ
ðIÞ ,

k
∘ ð5Þ
ðVÞ and k

∘ ð6Þ
ðIÞ . For k

∘ ð5Þ
ðVÞ, we present the bound

obtained by Kostelecky and Mewes [86] due to
the apparent lack of birefringence, which modifies
the real part of the dispersion relation and the
propagation speeds of the plus and cross polarization
modes.22 Such a bound turned out to be slightly

stronger than the Fisher bound on k
∘ ð5Þ
ðVÞ. On the other

hand, the bounds on k
∘ ð4Þ
ðIÞ and k

∘ ð6Þ
ðIÞ are new and are

complementary to cosmic ray bounds due to the
absence of the gravitational Cherenkov radiation. In

fact, the GW bounds are cleaner in the sense that
they are bounds on the pure-gravity sector, whereas
the latter is affected by the coupling between the
matter and gravity sectors. Moreover, gravitational
Cherenkov radiation may even be forbidden for
certain ranges of the coefficients [86], and obviously
the Cherenkov bound becomes invalid in this
case.

(v) Hořava-Lifshitz gravity.—GW150914 and
GW151226 constrain a combination of the coupling
parameters κ4hlμ

2
hl. Such bounds are unique and

cannot be constrained from cosmic ray observations.

IV. THEORETICAL IMPLICATIONS FOR
EXOTIC SPACETIMES

The observation of the ringdown of GW150914 is
consistent with the merger forming a single Kerr BH
and can be used to place stringent constraints on
exotic compact objects alternatives for the remnant.
Reference [230] compared the measured ringdown fre-
quency and damping time of GW150914 with the QNMs of
a rotating gravastar and found that the GW150914 remnant
is unlikely to be such an object. Similarly, Ref. [231]
compared the same frequency and damping time to the
dominant QNM of a scalar field propagating in a para-
metrically deformed Kerr spacetime to place a constraint on
the latter, though there is significant degeneracy here with
the spin of the deformed Kerr object. Such tests, and the
overall line of reasoning, however, are much more nuanced
than it would at first seem for the following three reasons.
First, such tests require that one chooses an exotic

compact object or a specific Kerr deformation to compare
GW150914 against, but there are many alternatives, most
of which have severe theoretical problems from the start.
The gravastars used in [230], for example, are “cut-and-
paste” spacetimes where an interior de Sitter metric is glued
to an exterior BH metric through a boundary layer of exotic
matter; to our knowledge, such constructions are not
realized naturally in GR or in any known modified theories
of gravity. Moreover, all horizonless compact objects with
stable circular photon orbits, including gravastars, are
likely to be unstable due to ergoregion instabilities if they
are spinning rapidly [232,233]. The deformed Kerr metric
used in [231] has an identical quadrupole moment to Kerr
but with a “shifted” event horizon. Yet, no known theory
predicts such a deformed metric, and thus it is unclear what
new physics this metric encodes. Thus, whether one can use
these exotic objects as an “in-principle” caveat to the
evidence of BH existence with GW150914 is, at best,
questionable.
Second, pure ringdown tests of the Kerr hypothesis—

that the exterior metric of compact objects is given by the
Kerr metric—do not address how the perturbed Kerr
spacetime arose to begin with. For GW150914 the pre-
sumed Kerr remnant is clearly produced by the inspiral of

22The absence of the birefringence in GW150914 can either
mean that Lorentz violation effects are too small that the delay in
the arrival time between the two tensor modes was not detected,
or such effects are so large that the slower mode arrived when the
detector was offline or has not even arrived yet. Reference [86]
assumed the former, but due to the possibility of the latter, one
can only exclude a certain finite range in the parameter space of
the Lorentz violation coefficients in gravitational SME. For
example, given that the O1 run lasted for 130 days, the data
cannot rule out the parameter region that is above the threshold
value corresponding to 9 orders of magnitude larger than the
upper bound claimed in [86].
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two compact objects, each consistent with being Kerr BHs
as well. Since the properties of this phase (e.g. its duration,
power spectrum, etc.) must be consistent with the binary
merger problem in GR, the aLIGO observation places
stringent constraints on the dynamics of the compact
objects that merged. Thus, whether alternatives such as
gravastars, wormholes, or parametrically deformed BHs
should be taken seriously in light of the GW150914 data is
further questionable in that they do not have a sound
theoretical underpinning to describe their dynamics, and
consequent GW emission, during a collision.
Third, the observation of the beginning of the ringdown

(right after merger) is not necessarily sufficient to distin-
guish between exotic compact objects that possess similar
light rings. Recently, Refs. [234–237] argued that the
frequency and damping time of the GWs emitted during
the beginning of the ringdown are related to the orbital
frequency and the instability time scale of circular null
geodesics, roughly associated, in turn, with the light ring of
the spacetime (see also [238–240] on relations between BH
QNMs and the BH light ring, ergoregion and horizon). This
is the case even if the GWs emitted at late times, when the
QNMs dominate, are drastically dissimilar for different
exotic compact objects, as is the case for wormholes [237].
GW150914 did not have a SNR large enough to measure
the late-time, purely QNM-dominated phase of the signal if
the amplitude of such QNMs is small, and so it cannot
constrain this class of exotic BH alternatives (though note
the current examples arguing for this possibility suffer from
the problems discussed in points one and two above).
With these issues in mind, this section explores the

theoretical implications that one can infer from event
GW15091423 on the nature of exotic spacetimes from
the combined late-inspiral, merger and ringdown in three
ways. First, we describe how the connection between the
inspiral, merger and ringdown can provide information
about the spacetime through the location of an effective
ISCO, and how this could place constraints on modified
gravity theories and on generic metric deformations. Unlike
the prior study in [231] that focused on the ringdown phase,
we use the entire late-inspiral, merger and ringdown phases
of the GW150914 event.
Second, we study what inferences one can draw from

GW150914 on the nature of an exotic compact object
remnant without appealing to any particular theory. We cast
these inferences in the form of effective bulk and shear
viscosities that would be required to explain the rapid
damping time that aLIGO measured, assuming the bulk
dynamics of the remnant can be characterized by viscous
hydrodynamics (with appropriately exotic equation of state
and transport properties). Even for nonmaterial exotic
alternatives this could still be a useful way to understand

their dynamical behavior, akin to the membrane paradigm
description of BHs in GR [241].
Third, we study how the GW150914 observation con-

strains the amplitude of a second oscillation mode, which
can either be a higher-order, subleading BH QNM or a
mode caused by additional matter oscillations of an exotic
compact object. In contrast to other work [230], our
analysis is model independent and we do not assume
specific properties of such exotic compact objects. We
conclude by discussing how our result can be used to
constrain actual QNMs of exotic compact objects with a
light ring [234–237].

A. Implications on the ISCO properties

GW150914 is a so-called golden binary merger event,
i.e. one that allows the accurate extraction of the total mass
lost during the merger [101]. Using such binaries, one can,
for example, first estimate the final mass Mf and the
magnitude of the spin parameter vector af (where

af ¼ j~afj ¼ j~Sfj=Mf, with ~Sf the final spin angular
momentum) of the remnant BH after merger from the
inspiral part of the GWs using the phenomenological fit in
[242,243] and assuming GR is correct. One can then
compare this fitted prediction to the posterior distribution
of the mass and spin parameter of the remnant BH extracted
using only the ringdown (or post-inspiral) part of the
waveform; the posterior then provides a set of best-fit
parameters ΔMf and Δaf for the deviation from GR,
together with statistical uncertainties. The power of such a
test was recently demonstrated using both Fisher [244] and
Bayesian [245] methods. The latter method was first
applied to the GW150914 data in [19], demonstrating
consistency with GR, albeit with a relatively large 90%-
confidence contour about the GR value in the
ðΔMf=Mf;Δaf=afÞ plane, due to the low (for this test)
SNR of the ringdown part of the event.
Inspired by these results, here we pursue a different

approach to probe the extreme gravity nature of the
compact objects that produced event GW150914. In GR,
Ref. [102] proposed that the final spin angular momentum
~Sf of a BH after merger with Mf ∼m (the difference
between Mf and m is not significant in their analysis) is
approximately given by the sum of the two individual spin
angular momenta before merger and the orbital angular
momentum of a “test particle” with mass μ≡mη
(m ¼ m1 þm2) at rISCO orbiting around a Kerr BH with
the following final spin:

~Sf ¼ ~Lorbðμ; rISCO; afÞ þ ~S1 þ ~S2: ð31Þ

Indeed, this equation correctly reproduces numerical rel-
ativity simulations of the magnitude of the final BH spin
after a merger of two nonspinning BHs within an error of
∼3% [102]; one could use a more accurate fit that includes

23We do not consider GW151226 as the postmerger SNR is
much smaller than that of GW150914 [2,5].
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precession, such as that in [243], but we leave such
refinements to future work. Taking the projection of
Eq. (31) along the unit orbital angular momentum vector

L̂ ¼ ~Lorb=j~Lorbj, and substituting in that the spin angular
momentum of the Ath BH with mass mA and (dimensional)

spin vector ~aA is ~SA ¼ mA~aA, we can rearrange this
equation as

Lorbðμ; rISCO; afÞ
m2

¼ a∥f
m

−
a∥s
m

− δm
a∥a
m

: ð32Þ

Here ~as ≡ ð~a1 þ ~a2Þ=2 and ~aa ≡ ð~a1 − ~a2Þ=2 are the
symmetric and antisymmetric combinations, respectively,
of the spin vector, δm ¼ ðm1 −m2Þ=m, and the subscript ∥
denotes projection of the corresponding vector quantity
along L̂. We then see that a measurement of the individual
component spins of the binary and of the final spin of the
merged object can be used to infer the location of the ISCO
through Lorb.
How accurately is the orbital angular momentum

inferred from the GW150914 event? The individual
masses and dimensionless spins associated with it were
determined to be ðm1; m2Þ ¼ ð36.2þ5.2

−3.8 ; 29.1
þ3.7
−4.4ÞM⊙ and

ðχ1;χ2Þ≔ ðj~a1j=m1; j~a2j=m2Þ¼ð0.32þ0.47
−0.29 ;0.48

þ0.47
−0.43Þ [4,5].

The LVC also found that the so-called effective dimen-
sionless spin χeff , related to the projected symmetric
spin combination by a∥s ¼ mχeff=2, could be extracted
to χeff ¼ −0.06þ0.14

−0.14 [4,5]. From the merger-ringdown
phase, the final dimensionless spin was inferred from
fitting formulas to numerical simulations to be
χf ≔ j~afj=Mf ¼ 0.68þ0.2

−0.58, where the error is extracted
from the post-inspiral posterior distribution in the χf-Mf

plane in the top panel of Fig. 3 in [19]. Since the median
of such a posterior distribution is unclear from the figure,
we simply adopt 0.68, which is the median value derived
from a full inspiral-merger-ringdown analysis [4,5].24 To
apply these aLIGO measurements to Eq. (32), for
simplicity, we assume a∥f ¼ j~afj; namely the final spin
is aligned with the orbital angular momentum. For
GW150914 we can also neglect contributions from the
second and third terms in Eq. (32) since the former has
been shown to be small from the measurement of χeff ,
while the latter is suppressed by a factor of δm ∼ 0.1.
Thus, using the error on χf from the merger-ringdown
phase to estimate the error on Lorb for GW150914 gives

Lorbðμ; rISCO; afÞ
m2

≈ 0.68þ0.2
−0.58: ð33Þ

This large error justifies us having ignored the intrinsic
error of ∼3% in Eq. (32) coming from neglecting the
angular momentum radiated after merger in GR.
The above calculation suggests that GW observations

can constrain the predicted orbital angular momentum of a
test particle at the ISCO, but with a strong caveat: such a
constraint is only valid provided the mapping constructed
in [102] remains valid when non-GR physical mechanisms
are active. In particular, the following two conditions need
to be satisfied: (i) the non-GR contribution to the total
angular momentum radiated during merger is negligible
compared to the non-GR correction to the orbital angular
momentum at ISCO and its location for a rotating BH, and
(ii) the two-body dynamics can still be well described as a
deformed effective one-body model in non-GR theories.
Whether this is the case or not depends on the particular
theory in question and should be studied through numerical
simulations (that are currently not available) on a case-by-
case basis.
Assuming the mapping in Eq. (31) holds, we can then

study the implications of Eq. (33) on the hypothesis that the
spacetime of BHs is that of the Kerr metric. This hypothesis
is violated in a large class of modified gravity theories,
where the orbital angular momentum of a test particle at the
equatorial ISCO can be written as

LorbðrISCOÞ ¼ LKerr
orb ðrKerrISCOÞ

þ ζ

�∂LKerr
orb

∂r
				
rKerrISCO

δrISCO þ δLorbðrKerrISCOÞ
�

þOðζ2Þ: ð34Þ

We have here expanded to linear order in the small
deformation parameter ζ, modeling the angular momentum
of a test particle as Lorb ¼ LKerr

orb þ ζδLorb and the location
of the ISCO as rISCO ¼ rKerrISCO þ ζδrISCO. GW150914 then
places a constraint on the combination

1

m2

�∂LKerr
orb

∂r
				
rKerrISCO

δrISCO þ δLorbðrKerrISCOÞ
�
≲Oð1Þ; ð35Þ

where on the right-hand side we have used that the error in
Eq. (33) is of order unity. This constrains a combination of
the modification to the angular momentum of a test particle
in a non-Kerr spacetime and a modification to the location
of the ISCO.
The constraint above can be refined further by specifying

a parametrically deformed Kerr spacetime [104,146,246–
256]. To give a concrete example, let us consider the quasi-
Kerr metric [104], which is constructed to represent a
generic deformation to the Kerr metric through a correction
in its quadrupole moment

24In principle, one needs to rederive the median and error for
the final spin measurement using a non-GR template. However,
we are assuming here that the non-GR contribution to the radiated
energy and angular momentum is negligible in the merger-
ringdown phase. Thus, we use the error for the final spin
extracted purely from the post-inspiral phase in GR and neglect
possible non-GR contributions.
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Q ¼ QK

�
1þ ζQK

χ2

�
; ð36Þ

where ζQK is supposed to be a small (dimensionless)
deformation parameter that controls the magnitude of the
Kerr deviation. Such a spacetime describes a generic,
asymptotically flat and slowly rotating vacuum spacetime
in GR, including the exterior spacetime for slowly rotating
gravastars [257], provided the deformation away from Kerr
is small. Using the orbital angular momentum and the shift
in the location of the ISCO for a test particle in an
equatorial orbit of the quasi-Kerr metric in Eq. (33) or
(35), one finds −2.0≲ ζQK ≲ 5.3 × 10−3, which is a con-
straint of order unity in the deformation parameter.
A final refinement of this constraint is to consider

specific modified gravity theories that violate the Kerr
hypothesis, such as EdGB and dCS gravity [66,103]. In
these two theories, the location of the ISCO of a BH with
mass M and dimensionless spin χ is modified from the GR
prediction by [66,258]

δrEdGBISCO ¼ −
16297

9720
ζEdGBM

×

�
1þ 205982

ffiffiffi
6

p

440019
χ −

1167369773

9702418950
χ2
�
; ð37Þ

δrdCSISCO ¼ 77
ffiffiffi
6

p

5184
ζdCSMχ

�
1 −

9497219

19559232
χ

�
; ð38Þ

while corrections to the orbital angular momentum can be
found in Eq. (68) of [258] and Eq. (99) of [66], assuming
slowly rotating BHs to quadratic order in spin and working
in the small-coupling approximation ζ ≪ 1 (where recall
that ζEdGB ≥ 0 and ζdCS ≥ 0 by definition). Substituting
these expressions in Eq. (33) or (35) and truncating all
expressions at quadratic order in spin, we find the con-
straints ζEdGB ≲ 5.2 and ζdCS ≲ 1.2 × 103.
These bounds, however, are not compatible with the

small-deformation approximation (jζQKj ≪ 1) and the
small-coupling approximations (ζEdGB ≪ 1 and ζdCS ≪ 1)
thatwere heavily used to derive the above expressions. Thus,
we conclude that GW150914 cannot place meaningful
constraints on mechanisms that modify the orbital angular
momentumof a test particle at the ISCO if such amechanism
is built as a small deformation from Kerr. Either the
mechanism must be known to all orders in the deformation
parameter, such as in Lorentz-violating theories of gravity
[259,260], orwemustwait for higher SNRGWobservations
that can constrain af more accurately.

B. Implications on the effective hydrodynamic
properties of exotic matter

We now consider properties that exotic matter alterna-
tives to BHs would need to have to be consistent with the

signal seen by aLIGO. We begin by treating such exotic
compact objects within the framework of hydrodynamics
by estimating the effective viscosity that would be required
to explain the observed damping time of τ ¼ 4 ms [19],
assuming large amplitude matter oscillations were pro-
duced by the merger. There are numerous ways to proceed
here, and the specific numbers and physical properties will
depend on the model. However, we emphasize that our
treatment itself does not depend on the theory or nature of
the exotic compact object; it is merely a way to characterize
the properties of the exotic object using a mundane object
whose properties we understand.
For simplicity then, we consider our model to be a

Newtonian, quasi-incompressible star with a density ρ
and radius R, perturbed by a spherical harmonic mode
Ylm, for which the following relationships have been
derived [261]25:

η ¼ 1

ðl − 1Þð2lþ 1Þ
ρR2

τη
; ð39Þ

ζ ¼
�
5

3

�
4 2ð2lþ 3Þ

l3

ρR2

τζ
; ð40Þ

where η and ζ are the shear and bulk viscosity, respectively,
while τη and τζ are the damping time of oscillations
associated with each type of viscosity. We restrict attention
to the least-damped mode l ¼ 2, which is also the
dominant GW generating mode that will be present in
the initial remnant following a two-body, near equal mass
collision. Eliminating ρ from these expressions with

ρ ¼ m
ð4π=3ÞR3

; ð41Þ

we obtain

ηeff∼4×1028
g

cm·s

�
m

65M⊙

��
370 km

R

��
4ms
τη

�
; ð42Þ

ζeff∼3×1030
g

cm·s

�
m

65M⊙

��
370 km

R

��
4ms
τζ

�
: ð43Þ

We scaled these expressions by a fiducial damping time of
τ ¼ 4 ms, a total mass of m ¼ 65M⊙ and a radius of R ¼
370 km (the orbital separation at the end of the inspiral
f ¼ fInt). The above results should be interpreted as

25Equation (39) is valid for incompressible Newtonian stars,
while Eq. (40) was derived for Newtonian stars with a non-
relativistic Fermi gas equation of state (the prefactor of 5=3
corresponds to the adiabatic index of the fluid).
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order-of-magnitude lower limits to the effective viscosities
of the matter comprising the remnant that aLIGO observed,
assuming the initial amplitude of the l ¼ 2 mode was such
as to produce a GW signal close to the peak amplitude
observed. For a typical material body collision, these
viscosities would be an overestimate, as part of the decrease
in the amplitude after the merger is simply due to a decrease
in the reduced quadrupole moment compared to that prior
to contact.
To put Eqs. (42) and (43) in context, in Table V we

summarize effective viscosities of several known compact
objects; the calculation of these numbers can be found in
Appendix E. Notice from Table V that the magnitude of the
viscosities of BHs are comparable to those of the remnant
in Eqs. (42) and (43). On the other hand, for boson stars this
is not the case, with effective viscosities that are 2 orders of
magnitude smaller than those observed, assuming a soli-
tonic configuration with a mass of 65M⊙ and a radius of
R ¼ 3M. In fact, the frequency and damping time of the
dominant QNM of such a boson star are f ∼ 160 Hz and
τ ∼ 320 ms, which are also incompatible with the
GW150914 event. Presumably, more compact boson stars
would have QNMs with frequencies closer to the observed
maximum frequency in GW150914, though the damping
time would be more challenging to reduce to a level
consistent with this observation.
The viscosities of NSs with fiducial magnetic field

strengths and temperatures (as measured in current binary
NS merger simulations; see e.g. [262]) are also in disagree-
ment with those inferred from the remnant produced in the
GW150914 event. If one can scale the relations for NS
matter in Appendix E to a 65M⊙ NS-like object (which of
course would require exotic fermionic matter as standard
model NS equations of state cannot support masses above
at most ∼3M⊙), then an exotic remnant that at, or very
shortly (< 4 ms) after, merger already had a magnetic
field strength of Brem ≳ 4 × 1016 G and a temperature of

Trem ≳ 150 MeV ¼ 2 × 1012 K could be compatible with
the signal of GW150914.

C. Implications on the oscillation modes
of exotic objects

Can we infer the properties of exotic compact objects by
constraining the amplitude of their oscillation modes with
GW150914? If the binary constituents of GW150914 are
Kerr BHs and the remnant is also a Kerr BH, the dominant
QNM of the latter is the fundamental l ¼ m ¼ 2 mode,
with the next subleading modes being overtones of this and
the l ¼ m ¼ 3 fundamental mode. The SNR, however,
seems to be too low for the subdominant modes to be
detectable [37]. On the other hand, if the constituents and
the remnant are exotic compact objects, they could produce
matter oscillation modes that are longer lived than the l ¼
m ¼ 2mode of a Kerr BH [263] and with amplitudes likely
significantly larger than subleading modes of the Kerr-
remnant case. In addition, Refs. [234–237] pointed out that
when an exotic compact object with a light ring is perturbed
by a test particle, the dominant GWmodewill resemble that
of a regular BH, followed by a set of exotic compact object
QNMs, which will have a smaller amplitude than the
primary l ¼ m ¼ 2 mode but a longer damping time. The
goal of this subsection is to place constraints on one
additional mode (on top of the primary l ¼ m ¼ 2 mode)
in terms of the new mode’s oscillation frequency fRD and
damping time τ in a manner as agnostic as possible.
We begin by explaining how we model the GWs emitted

during QNM ringing for Kerr BHs in GR. The IMRPhenom
waveform models the GW amplitude AMR of the merger-
ringdown phase as a product of a Lorentzian function and
an exponential decay:

AMR ¼ A0f−7=6
γ1
m

γ3fdamp

ðf − fRDÞ2 þ ðγ3fdampÞ2
e
−γ2ðf−fRDÞ

γ3fdamp ;

ð44Þ

where A0 is an overall amplitude factor that is common
to the inspiral, intermediate and merger-ringdown phases,
while the coefficients γi are given by fits in terms of the
symmetric mass ratio and spins [93]. The oscillation and
the damping frequencies of the l ¼ m ¼ 2 mode are fRD
and fdamp ≡ 1=ð2πτÞ, where τ is the mode’s damping
time. aLIGO measured fRD and τ from the GW150914
event to be fRD ¼ 251� 8 Hz and τ ¼ 4.0� 0.3 ms,
using the full inspiral-merger-ringdown waveform in
GR. Due to the exponential factor in Eq. (44), the
amplitude peaks at a frequency that is slightly lower
than fRD, i.e. at fMR ¼ 222 Hz, which also corresponds
to the transition frequency between the intermediate and
merger-ringdown phase.
Let us now explain how we model the GW amplitude of

the exotic compact object’s additional ringdown mode. For

TABLE V. Effective shear and bulk viscosities of compact
objects in units of g cm−1 s−1. The GW150914 viscosities are
those of the remnant estimated in Eqs. (42) and (43). We assumed
the BH and (solitonic) boson star mass of 65M⊙ and the boson
star radius of 1.5 times the Schwarzschild radius. “NS (n)” and
“NS (B)” refer to NS effective viscosities due to neutron
scattering and magnetic field damping, respectively, with the
stellar density, radius, temperature and magnetic field strength set
to 1015 g=cm3, 12 km, 1011 K ∼ 10 MeV and 1015 G, respec-
tively (typical values seen in simulations of magnetized NS
mergers when a hypermassive remnant forms). See Appendix E
for more details.

GW150914 BH Boson star NS (n) NS (B)

Shear η̄ 4 × 1028 1 × 1030 7 × 1026 2 × 1014 1 × 1027

Bulk jζ̄j 3 × 1030 1 × 1030 5 × 1028 6 × 1028 � � �
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simplicity, we adopt the same model of Eq. (44), but with
the replacements ðγi; fRD; fdampÞ → ðγi; fRD; fdampÞ; notice
that this additional ringdown mode is very similar to the
original ppE ringdown waveform of [88] and is also similar
to the extension used in [100] to calculate projected
constraints on the ringdown phase of future aLIGO
observations. The choice of γ3 does not affect our analysis
as shifting this parameter is equivalent to redefining fdamp;
in fact, even in GR, γ3 is completely degenerate with fdamp

in Eq. (44). We thus set γ3 ¼ γ3 so that τ can be directly
compared to τ. The choice of γ2 is more subtle; we set it to
zero, γ2 ¼ 0, to avoid having an artificial exponential
enhancement in the amplitude when fRD is much larger
than f.
With these models at hand, we carry out a Fisher analysis

to estimate a bound on γ1. We inject a GR GW signal
(γ1 ¼ 0) with the central values fRD and fdamp that aLIGO
measured,26 which leads to a SNR of ∼7. The parameters in
our Fisher analysis are ðγ1; γ2; fRD; τ; γ1Þ. We also search
for parameters of the primary oscillation mode, since we do
not assume that the binary components are BHs, and hence
we cannot use the fitting formulas presented in [92,93]. We
only use the GW signal with f ≥ fMR and use the prior
fRD ≥ fMR.

27 Other parameters in the additional mode’s
amplitude, such as fRD and τ, cannot be measured when
γ1 ¼ 0 since derivatives of the amplitude with respect to
such parameters vanish. Since here we are only con-
straining the amplitude of the additional mode, we only
consider the amplitude in the waveform and set the wave-
form phase to be effectively independent of the above
parameters when calculating the Fisher matrix.
Figure 8 presents the upper bound on γ1=γ1 as a function

of fRD and τ. The constraint on the additional mode’s
amplitude becomes stronger when the oscillation frequency
is close to fMR and when τ is large. In particular, the
constraint is better than 10% when τ ≳ 100 ms. This is as
expected since the SNR of the additional mode becomes
larger in this case with a fixed γ1 ≠ 0. On the other hand,
when ðfRD; τÞ are close to the frequency and damping time
of the primary l ¼ m ¼ 2 mode (white dot in the figure),
the parameters become degenerate, which weakens the
constraint. One can alternatively see Fig. 8 as showing
upper bounds on τ for a given γ1 and fRD, which can be
mapped to lower bounds on the viscosity via Eqs. (42) and
(43). For example, when we assume γ1=γ1 ≤ 0.1 and
fRD ¼ fRD, one finds τ ≲ 50 ms, which maps to η≳ 3 ×
1027 g=cm=s and ζ ≳ 2 × 1029 g=cm=s.

Let us now discuss the implications of Fig. 8 on the
properties of the compact object remnant, assuming that
the remnant of GW150914 was a BH. In such a case, the
remnant would have emitted subdominant modes, such as
the l ¼ m ¼ 3 one, whose amplitude is typically smaller
than 10% of the dominant mode [37]. The frequency and
damping time of such a mode can be derived from the fit in
[36] to be fRD ¼ 433 Hz and τ ¼ 3.6 ms for a 62.3M⊙
remnant BH spinning at χ ¼ 0.68, which is shown by the
black dot in Fig. 8. The figure shows that it would be
difficult for aLIGO to detect such a signal, as one can only
distinguish the dominant and subdominant modes if the
latter’s amplitude is larger than at least ∼60% of the
primary one. Such a finding is consistent with [37], which
found that the ringdown SNR needs to be ≳100 to
distinguish the first two leading BH QNMs produced by
the merger of two BHs with the mass ratio of ∼1.2.
Let us now discuss the implications of Fig. 8 on

the properties of exotic compact object remnants.
Reference [237] showed that exotic compact objects with
a light ring can produce GWs whose dominant modes are
similar to those of a Kerr BH at early times but differ at late

FIG. 8. 90%-confidence upper bound on the amplitude of an
additional ringdown mode γ̄1 relative to the amplitude γ1 of the
primary l ¼ m ¼ 2 mode as a function of the former’s ringdown
frequency f̄RD and damping time τ̄. γ̄1 can be constrained to be
less than ∼10% of the primary mode’s amplitude if the damping
time is larger than 100 ms, which is typical for boson star QNMs.
The constraint becomes relatively weak around the white dot
corresponding to the frequency and damping time of the primary
l ¼ m ¼ 2mode, due to degeneracies between the primary mode
and the additional mode. The black dot represents the subleading
l ¼ m ¼ 3 mode of a BH [36], whose amplitude is smaller than
10% [37].

26This SNR is different from the postinspiral SNR of ∼16
found in [19], as the latter was calculated from fInt ¼ 132 Hz.

27A similar analysis could be used to place limits on lower
frequency modes. The exponential term in Eq. (44) would then
need to be modified to avoid issues when f < fMR. For brevity
we do not do so here, focusing instead on the f > fMR case as an
illustrative example.
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times through subleading modes that correspond to exotic
QNMs. This conclusion was arrived at by studying how a
test particle falls into an exotic object, which is quite
different from the merger of comparable mass objects.
Nonetheless, assuming this conclusion remains true for
comparable-mass mergers, Fig. 8 then implies that aLIGO
can bound the amplitudes of additional, slower damped
QNMs of an exotic object. For a damping time 5 times
longer than the primary l ¼ m ¼ 2 mode, the secondary
mode amplitude must be less than∼50% that of the primary
mode, with the limits strengthening as the damping time of
the secondary mode increases. Regarding boson star
mergers, as we discussed in Sec. IV B, one may expect
the damping time to be Oð100 msÞ (see also Appendix E).
The amplitude of such a boson star QNM can then be
constrained from the GW150914 measurement to be less
than 10% of the primary mode’s amplitude.
Let us end this subsection by discussing how a possible

time delay between the primary and secondary oscillation
modes may affect the constraint on the amplitude of the
latter in Fig. 8. Since the above analysis assumes a damping
sinusoidal waveform in the time domain for both the
primary and secondary oscillation modes, we effectively
assumed that the two modes were excited approximately at
the same time. On the other hand, Ref. [237] showed that
QNMs of exotic compact objects with a light ring are
typically excited after the primary mode excitation (at
merger). If the time delay between the excitation of the two
modes is relatively large, one can treat them independently
with the secondary one modeled by a Gaussian sinusoidal
(or a sine-Gaussian) waveform. One can then easily
estimate the upper bound on the amplitude of such a
secondary mode relative to the primary one as a function of
fRD and τ, requiring that the SNR of the secondary mode be
smaller than a threshold SNR of ∼5. Such a bound leads to
results similar to those presented in Fig. 8, with the only
exception around the white dot in the figure, where
parameter degeneracies would become negligible in such
a new analysis. To give an example on the bound
comparison, we found that the upper bound on the
secondary mode relative amplitude with fRD ¼ fRD and
τ ¼ 5τ is 0.15, while that in Fig. 8 is 0.3. Given the
similarity between the two analyses, we expect Fig. 8 to be
a valid order-of-magnitude estimate, even if one allows for
a finite time delay between the two modes, with the bound
around the white dot becoming stronger as the time delay
becomes larger.

V. THEORETICAL IMPLICATIONS OF
AN ELECTROMAGNETIC COUNTERPART

TO GW150914

The Fermi Collaboration announced that the GBM in the
Fermi spacecraft detected a gamma-ray signal that was
coincident with event GW150914 [55] (see also [264]).
This signal lasted for roughly 1 s and it started 0.4 s after

GW150914. With a false alarm probability of roughly
0.002, this is not a high-σ signal. Moreover, the signal was
detected only in the GBM offline search [265] (not as a
GBM trigger) and not in any other instrument (like the
Fermi Large Area Telescope [266], INTEGRAL [267] or
Swift [268]) or by any other particle detector (like neutrino
detectors [269]). The properties of the signal make it look
like a weak short GRB, but if so, it is unclear how it was
generated; typically, short GRBs are expected to be
produced by the merger of binary NSs or a mixed
BH-NS system, and not by a binary BH merger. Some
astrophysical scenarios have been proposed for the gen-
eration of such a short GRB, which include emission from a
circumbinary accretion disk with possible future afterglows
[109,270] (see also [271]).
In broad terms, electromagnetic counterparts can be

classified in two groups: precursor-emission signals or
prompt- or delayed-emission signals. In the first scenario,
the electromagnetic counterpart is produced during the
inspiral phase, for example due to interactions of the
binary with a circumbinary accretion disk (see e.g.
[272,273]). In this case, assuming GR is correct, the
electromagnetic signal can arrive before or with the peak
of the GW strain. In the second scenario, the electro-
magnetic signal is produced after the compact objects
have merged, for example due to the production of a
short GRB (see e.g. [274,275]). In this case, the
electromagnetic counterpart arrives a certain time after
the peak of the detected GW. The Fermi GBM obser-
vation would fit in this second scenario (as a prompt- or
delayed-emission signal), if GWs travel at or slower than
the speed of light. If GWs travel at superluminal speeds,
however, then the Fermi GBM signal could have been
emitted before the GW signal, with the latter arriving first
due to its faster propagation speed.
Let us study then what theoretical implications one

can infer if the GBM signal were indeed interpreted as
an electromagnetic counterpart to GW150914.28 The
most obvious implication is a model-independent test
of the speed of gravity by simply comparing the times
of arrival of the two signals [107]. In the prompt- or
delayed-emission scenario, if GWs travel at the speed of
light, the difference in the arrival times can, at most, be
due to the intrinsic time delay in the emission of
photons after the GW emission has ended. For NS
mergers in the standard short GRB scenario, this time
delay can be anywhere between O(1) and O(100) s, with
variations dependent on the particular details of the
astrophysical model. The fractional difference between
the speed of light and the speed of GWs, δg ¼ 1 − vg=c,
can then be constrained to [107]

28Recent studies have argued that the GBM signal may not
even be of astrophysical origin, let alone be a counterpart to
GW150914 [276,277].
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jδgj <
cΔτint
DL

; ð45Þ

where DL is the luminosity distance.
Let us now investigate how strongly the GW150914

event constrains jδgj if the Fermi event was a prompt or
delayed counterpart to GW150914. Using that the GW
inferred distance DL ¼ 420þ150

−180 Mpc, one can place a
conservative bound on the speed of gravity, but only as
a function of the unknown Δτint. The top (bottom) panel of
Fig. 9 shows constraints in the subluminal (superluminal)
region, with the region above the curves excluded. Since
the Fermi GBM time binning is 0.256 s [55], we do not
show constraints on jδgj with Δτint < 0.256 s. One could
also map constraints on jδgj to constraints onA via Eq. (26),
assuming e.g. a GW frequency of f ∼ 100 Hz. However,
such constraints are weaker than those in Fig. 7 by more
than 2 orders of magnitude, except in the α ¼ 2 case, which
cannot be constrained strongly from GW observations
alone. The point of this figure is to show that the constraint
depends sensitively on the unknown intrinsic time delay
parameter, without which a constraint cannot actually be
placed.
Let us discuss in detail constraints on the subluminal

propagation of GWs. The top panel of Fig. 9 shows the
hypothetical Fermi-GW150914 constraint, together with
the bound from cosmic ray observations due to the absence
of gravitational Cherenkov radiation [179]:

δg ≤ 2.45 × 10−16
�

E
1011 GeV

�
−3=2

�
DL

1 Mpc

�
−1=2

; ð46Þ

where we assumed, as in Fig. 7, that cosmic ray particles
with an energy E ¼ 1011 GeV have traveled DL ¼ 1 Mpc
to reach Earth. The GW-Fermi coincident constraint is
more stringent than the cosmic ray bound, provided that
Δτint < 60 s. Given that there are no agreed-upon models
for the electromagnetic emission detected by Fermi, it is not
clear whether such an intrinsic time delay is reasonable.
Let us now discuss in detail constraints on the super-

luminal propagation of GWs. The bottom panel of Fig. 9
shows the coincident Fermi-GW150914 constraint, which
again depends on the intrinsic time delay Δτint. If one
assumes the Fermi event was a prompt or delayed scenario,
the most conservative bounds on negative δg is obtained
when Δτint ¼ 0.4 s, i.e. when we set the delay to be exactly
the observed arrival time delay between the GW observa-
tion and the GBM observation (shown with a dotted-
dashed line), which gives δg ≳ −10−17 [108,109].29 On

the other hand, Collett and Bacon [110] assumed that
GWs and gamma rays are emitted simultaneously at
merger, which corresponds to Δτint ¼ 0 and leads to
δg ¼ −1.0þ0.8

−1.9 × 10−17, where the errors are propagated
from the Fermi timing bins and from errors in the
luminosity distance measurement. The error bar does not
contain δg ¼ 0 in this case, which means that GWs must
propagate superluminally under the assumption that grav-
itons and photons were emitted simultaneously.
Assuming that our understanding of the astrophysical

emission mechanisms improve in the future and constraints
can be placed from a coincident Fermi-GWobservation, let
us investigate the theoretical implications of the resultant
model-independent constraint on the speed of gravity. The
most obvious implication is a severe constraint on gravita-
tional Lorentz violation [115]. EA theory [111,279] breaks
gravitational Lorentz invariance by introducing a vector
field that couples to the metric tensor; this theory is the most
generic modification to Einstein’s theory that contains a
(unit timelike) vector field and (at most) quadratic combi-
nations of its first derivative. Khronometric theory [113,280]
breaks gravitational Lorentz invariance by introducing a
globally preferred frame selected by a scalar field (the
“khronon”); this theory arises as the low-energy limit of
the ultraviolet complete and power-counting renormalizable
Hořava-Lifshitz theory [169]. In these theories, the speed of
GWs is corrected through a fractional modification of the
form [180,281]
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FIG. 9. GW150914 constraints on the fractional deviation in
the propagation speed of GWs away from the speed of light for
the δg > 0 (top) and δg < 0 (bottom) region, assuming that the
event Fermi observed was associated with GW150914. We also
show the cosmic ray constraints from the absence of the
gravitational Cherenkov radiation in Eq. (46) in the top panel.
The vertical dotted-dashed line in the bottom panel corresponds
toΔτint ¼ 0.4 s assumed in [108,109]. We do not show the region
with Δτint < 0.256 s, since then the binning of the Fermi
observation in the time dominates the error budget over Δτint.

29The deviation in the propagation speed of high-energy
photons vp with energy Ep from that of low-energy photons c
is constrained by jvp=c − 1j ≤ 4.8 × 10−22ðEp=1 MeVÞ or 2.4 ×
10−28ðEp=1 MeVÞ2 [278], which is much smaller than 10−17, and
hence can be neglected.
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δEAg ¼ 1 − ð1 − cþÞ−1=2; ð47Þ

δKGg ¼ 1 − ð1 − βKGÞ−1=2; ð48Þ

where cþ is a combination of coupling constants in EA
theory, while βKG is a coupling constant in khronometric
gravity.
We can now easily map constraints on δg to constraints

on Lorentz-violation mechanisms. A bound on δg of order
10−17 implies a constraint on gravitational Lorentz viola-
tion at the same level:

cþ ≲ 10−17; βKG ≲ 10−17: ð49Þ

These constraints are 15 orders of magnitude more strin-
gent than any other constraint on gravitational Lorentz
violation. The EA and khronometric modification to GW
propagation cannot be constrained from the bound on A
with the Fisher analysis of Fig. 7 and only GW observa-
tions. This is because such a modification corresponds to
the α ¼ 2 case in Eq. (22), and thus, it is degenerate with
the time of coalescence in the waveform phase, as
explained in Sec. III B. On the other hand, one can apply
the GW150914 (GW151226) bound on δg from the GW
arrival time delay between Hanford and Livingston detec-
tors [87], which yields ðcþ; βKGÞ ≲ 0.7 (≲19), as summa-
rized in Table I. Although such a bound is weaker than the
putative constraints in Eq. (49), obviously the former is
more robust, given the uncertainties associated with the
Fermi GBM event. A simultaneous measurement of GWs
and gamma rays also allows us to place constraints on a
more generic Lorentz-violating framework, the gravita-
tional SME framework, in particular on nondispersive and

nonbirefringent coefficients like k
∘ ð4Þ
ðVÞ, as discussed in

Sec. II B 3.
Another theoretical implication that could be derived

from a coincident GW or electromagnetic observation
is a severe constraint on gravitational parity violation
[139,141,282]. If gravity breaks parity, then, generically,
left- and right-polarized GWs will obey different propa-
gation equations, with the amplitude of one mode sup-
pressed and the other enhanced. To constrain this effect, a
network of GW detectors [283] would then need to separate
the two GW polarization amplitudes. Due to parameter
degeneracies, however, such a test also requires that a
coincident short GRB observation (a) constrain the incli-
nation angle (the angle between the orbital angular
momentum of the binary and the line of sight) and
(b) provide a distance measurement through galaxy iden-
tification. Event GW150914 is particularly well suited for
this test, as it was observed nearly face-on and thus the
signal arrives almost entirely circularly polarized. The
aLIGO detectors, however, are essentially coaligned, so
the two GW polarizations could not be separated in event

GW150914 [19]. Moreover, the GBM signal was not bright
enough to allow for galaxy identification and a measure-
ment of distance. Therefore, a test of gravitational parity
invariance cannot be carried out, even if one associated the
GBM signal with a counterpart to GW150914; for this, one
will have to wait for a network of GW detectors [283] to
allow for the extraction of polarizations, as well as a
coincident GRB signal that is sufficiently localized to allow
for galaxy identification.

VI. CONCLUSION

We have studied the theoretical physics implications of
GW150914 and GW151226. The LVC has demonstrated
that these events are entirely consistent with binary BH
mergers in GR via constraints on deviations from the GR
PN coefficients describing the inspiral, and for GW150914
that subtraction of the best-fit GR template from the data
gives a residual consistent with noise. Our analysis has
shown that more than simply verifying consistency with
GR, the information contained in the GWevents allows one
to place limits on many physical phenomena that various
modified gravity theories predict and could have been
operational in a BH binary merger.
Even though some of the constraints on these physical

mechanisms are not as stringent as current bounds with
binary pulsars, low mass x-ray binaries, Solar System
experiments, tabletop experiments on Earth or cosmo-
logical observations, constraints with GW150914 and
GW151226 are of a completely different nature: they
come directly from the extreme gravity environment of
merging BHs. Moreover, we can anticipate that these
bounds will steadily become stronger in the near future as
(i) more GW observations are made (through stacking of
multiple signals30), (ii) different sources of GWs are
observed (e.g. binary NS inspirals will constrain low-
frequency mechanisms better than binary BH mergers),
(iii) higher SNR events are observed (since the allowed
magnitude of deviations quantified by the ppE parameter
β scales inversely with SNR), and (iv) multiband GW
observations of heavier BH binaries (such as GW150914)
with ground- and space-based interferometers may be
possible [286–288].
Events GW150914 and GW151226 are fantastic probes

of theoretical physics that have important implications for
certain aspects of extreme gravity, but unfortunately not all.
Future detections of GWs from NS binaries will allow us to
probe different aspects of extreme gravity. The prime

30For example, if aLIGO detects N binary BH merger events,
one can anticipate to statistically improve the upper bound on jβj
presented here by roughly a factor of ∼

ffiffiffiffi
N

p
, an excellent prospect

for the future considering that the expected number of highly
significant events at the end of the O3 run is above 35 [5,284].
Though of course the exact enhancement factor depends on the
distribution of sources in SNR and parameter space [285].
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examples of this are theoretical models where gravity is
described by a metric tensor with evolution equations that
differ from the Einstein equations only through a modified
“right-hand side” that depends on the matter stress-energy
tensor [289]. Examples of such theoretical models are
Eddington-inspired Born-Infeld gravity [290] and Palatini
fðRÞ theories (see e.g. Sec. 9 of [291] and references
therein). Other examples include the activation of certain
scalar or pseudoscalar fields in the strong-gravity regime
sourced by dense matter, such as Brans-Dicke theory
[94–99], the scalar-tensor theory extension of Damour
and Esposito-Farèse [212,213], and fðRÞ models as they
can be mapped to scalar-tensor theories [292].
Let us end by stressing that the true potential of heavier

BH mergers like GW150914 to test GR and exotic compact
objects is limited by the lack of knowledge of how GWs
behave during the merger phase in GR alternatives. This
event has given us a remarkable glimpse into this regime of
extreme gravity, which could in principle place very
stringent constraints on modified gravity theories, were
their dynamics known in this regime. In our ppE analysis
we only included non-GR corrections to the inspiral phase
of coalescence. If one were to include modifications to the
merger-ringdown phase, the bounds on various theoretical
GW generating mechanisms presented in the top part of
Table I would become stronger. GW150914 therefore calls
for a more concerted effort by the gravity and high-energy
communities to explore the full nonlinear regime of
merging compact object binaries.
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APPENDIX A: CONSTRAINING GR
MODIFICATIONS WITH PHENOMB AND

PHENOMD WAVEFORMS

In this Appendix, we compare constraints on the ppE
parameter β using PhenomB [90] and PhenomD [92,93]
waveforms. Although we only used the latter for parameter
estimation, it is still interesting to see whether the con-
straints we found are affected by the GR waveform model

employed (especially given that GW150914 is in a regime
where some of the approximations used to create these
models become questionable). Through this comparison,
we provide a rough estimate of the impact of mismodeling
error on the constraints on β. As wewill show, the impact of
mismodeling error is minimal and unimportant on the
bounds reported in this paper.
Let us then begin by reviewing the similarities and

differences between these two waveform models. Both
waveforms were obtained by first constructing hybrid PN
and numerical relativity waveforms in the time domain and
then Fourier transforming them into the frequency domain.
The PhenomB waveform was calibrated over the mass ratio
range 1 ≤ q ≤ 10 and the spin range −0.85 ≤ χA ≤ 0.85.
Each part of the PhenomB waveform (inspiral, merger and
ringdown) was then fitted by polynomials of the form of
Eq. (1), with Φi ¼ ΦEI in Eq. (2). On the other hand, the
PhenomD waveform was calibrated over a larger sector of
parameter space: 1 ≤ q ≤ 18 and −0.95 ≤ χA ≤ 0.95.
Moreover, the PhenomD waveform amplitude and phase in
each segment (described in Sec. II B 1) are matched together
to ensure continuity and differentiability at the interfaces.
These PhenomB and PhenomD waveforms in GR can be

extended to capture non-GR effects by adding a ppE
correction term in Eq. (8) in the waveform phase. We
include such a term only in the inspiral phase when
investigating modified GW generation mechanisms.
However, such a correction propagates to the intermediate
and merger-ringdown phases in PhenomD due to the
continuity and differentiability requirements at interface
frequencies. This does not occur in the modified PhenomB
model, and thus, the model is discontinuous at the interface
between the inspiral and merger phases when β ≠ 0. When
studying modified GW propagation effects, we include the
ppE correction term in all phases, which renders both the
modified PhenomB and PhenomD models continuous and
differentiable at the interfaces.
Figure 10 compares the upper bound on jβj from

GW150914 as a function of the leading PN order of the
ppE correction using the ppE-modified PhenomB and
PhenomD models. The left and right panels show the bound
on modified generation and propagation mechanisms. The
two models give almost identical bounds at any PN order in
the propagation case, but only when n ≤ −1 in the generation
case, with larger differences arising at positive PN order. This
is because the generation-modified PhenomB model has a
correction only in the inspiral phase, with the correction
shutting off suddenly at the inspiral-merger interface, while
the propagation-modified model is always continuous and
differentiable as the PhenomD model is. This nonsmooth
feature of the generation-modified PhenomB model makes
such a correctionunique, allowingβ to be less degeneratewith
other parameters relative to the PhenomD case (see also the
relatedwork of [219]). In order to check this, we constructed a
modified PhenomD waveform by adding Eq. (2) in the
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inspiral phase but not imposing continuity and differenti-
ability at the interface frequency in the non-GR part of the
phase. Thus, such a waveform suddenly changes to the GR
model in the post-inspiral phases, which is similar to what
occurs in the scalar field deactivation waveform with a
transition frequency of f� ¼ fInt (see Sec. III A 2) but an
arbitrary b instead of b ¼ −7=3. As we expect, the bound on
jβj shownby the red dashed curve in the left panel of Fig. 10 is
similar to the bound obtained from the PhenomBmodel even
for positive PN corrections.
The main conclusion this result allows us to draw is that

if one wishes to obtain an accurate constraint on a possible
deviation from GR using GW data, one should use the ppE-
modified PhenomD model (or a model as accurate or more
accurate than this one), as this guarantees smoothness at the
transition frequencies. Indeed, one does not expect that GR
deviations will lead to nonsmooth GWs; even when there is
a sudden activation or deactivation of scalar dipole radi-
ation, this ought to occur smoothly (even though such a
transition has sometimes been modeled with a Heaviside
function in the literature [100,209–211]).
We conclude this Appendix with a rough estimate of the

impact of mismodeling error of the GR part of the wave-
form on jβj constraints. Although both PhenomB and
PhenomD waveforms are approximations to numerical
relativity waveforms, the fact that both of these give similar
bounds on jβjwhen the ppE modifications are introduced in
the same way suggests that the effect of GR waveform
mismodeling does not strongly affect the β bounds. In order
to quantify this statement, consider the following. The
difference between the waveform phase in the PhenomD
model and the numerical relativity waveform for an equal-
mass, nonspinning BH binary (i.e. the mismodeling error of

the GR phase) is ∼0.015 rad at most at any frequency [93].
This suggests that the peak of the posterior distribution for
β may shift away from β ¼ 0, producing systematic errors.
Setting jβjðπMfÞb=3 ≲ 0.015 and maximizing β over the
frequency,31 we can find the maximum systematic error on
β assuming that the mismodeling error is completely
absorbed by the ppE phase. This, in turn, determines the
minimum value of jβj, the mismodeling threshold, that can
be constrained without contamination from GR mismodel-
ing error; i.e. if the SNR were large enough to allow for a
constraint on β that is smaller than this minimum value,
such a constraint would be limited by mismodeling error in
the GR part of the waveform. The mismodeling threshold
for GW15091432 is shown with green dotted-dashed curves
in Fig. 10. The constraints on β would have to be much
tighter (the blue or red lines would have to be much lower,
by a factor of 100–5000) for GR mismodeling to have an
effect. Given that GR mismodeling is independent of the
SNR, while the constraints on β scale linearly with SNR,
we conclude that GR mismodeling would become impor-
tant for SNR≳ 2400.
This rough estimate does not account for how GR

mismodeling error affects other parameters and, in turn,
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FIG. 10. Comparison of 90%-confidence GW150914 constraints on jβj with PhenomD and PhenomB waveforms for modified
generation (left) and propagation (right) effects on GWs. We also show the PhenomD result with a sudden transition of the
non-GR effect at f ¼ fInt like PhenomB, which corresponds to the sudden deactivation of the scalar field with a transition at f� ¼ fInt in
Sec. III A 2 (but for arbitrary b). Green dotted-dashed curves present a rough estimate of the impact of mismodeling error in the
PhenomD waveform on constraints on jβj, which serve as the threshold on future jβj constraints.

31The frequency range of GW150914 for maximizing β is
chosen to be f ∈ ð20; 52Þ Hz for the generation mechanism
constraint (as the ppE modification is only introduced in the
inspiral phase) and f ∈ ð20; 300Þ Hz for the propagation mecha-
nism one.

32The mismodeling threshold for GW151226 is almost iden-
tical to that of GW150914. Although the statistical error on β is
much smaller for GW151226 especially on negative PN mod-
ifications, the mismodeling error is still smaller than such a
statistical error by a factor of ∼5 even at −4PN order.
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the mismodeling threshold. Namely, inferring systematic
errors from the dephasing alone and comparing them
against statistical errors is not a robust approach to estimate
the former properly. A much better approach is to maximize
the overlap between the signal and template waveforms
over all parameters, which could be achieved through a
Bayesian analysis of the GW signal with the ppE-modified
IMRPhenomD templates and zero noise realization (as
specific noise realizations shift the peak of the posterior
distribution [137]), which is beyond the scope of this paper.
Having said this, one can take an alternative approach to

map the statistical errors to the dephasing and compare the
latter to the maximum mismodeling dephasing of 0.015 rad
within the PhenomD model. Such an approach allows us to
circumvent the problem of estimating systematic errors
properly and yet provides us with more trustworthy results
than the above mismodeling threshold argument. To
achieve this, we carried out the following Monte Carlo
simulations. First, we draw a point in the parameter space,
based on the Fisher matrix derived with injected parameters
(see the beginning of Sec. III) consistent with the LVC
measurement for GW150914; such a Fisher matrix defines
a multivariate Gaussian probability distribution within the
parameter space that defines a proposal function.33 Next,

we calculate the ppE-modified PhenomD waveform phase
at this new point in parameter space. With that in hand, we
evaluate the dephasing δΨ between that non-GR model
Ψmodðθ; fÞ (at the new point in parameter space) and the
GR model ΨGRðθðinjÞ; fÞ (at the injected parameters)
evaluated at a fixed frequency f�, i.e.

δΨ≡Ψmodðf�; θÞ −ΨGRðf�; θðinjÞÞ: ðA2Þ

We then repeat this calculation over 104 times to construct a
normalized histogram that defines a probability distribution
function for the dephasing. This probability distribution is a
dephasing measure of the statistical uncertainties.
The left panel of Fig. 11 presents such a distribution at

f� ¼ 50 Hz for the −1PN ppE modification. We evaluate
the dephasing at this frequency because we only include
ppE corrections in the inspiral part of the waveform, and
this phase ends at 52 Hz for the GW150914 event. The
asymmetry in the distribution mainly comes from the
requirement that η ≤ 0.25. The mean and standard
deviation of this distribution are −9.9 and 12 rad, which
are shown in the right panel of Fig. 11, together with those
for ppE modifications at other PN orders. The absolute
dephasing within 1σ errors of the distribution can be as
large as 10–50 rad. Such dephasings at one sample
frequency of 50 Hz is already much larger than the
maximum mismodeling dephasing (0.015 rad) of the
PhenomD waveform (and the dephasing becomes even
larger if we were to maximize it over frequency). This
suggests that such mismodeling errors are negligible
compared to statistical parameter uncertainties, a finding
that is consistent with the mismodeling threshold argument
of Fig. 10.
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FIG. 11. (Left) Probability distribution of the PhenomD waveform dephasing between the injected parameters and parameters within
statistical errors at f ¼ 50 Hz with a ppE modification at −1PN order. The asymmetry in the distribution arises from the condition
η ≤ 0.25. (Right) The mean of the probability distribution of the dephasing as a function of the PN order of the ppE modification,
together with 1σ error bars. The mean and 1σ error of the left panel (at −1PN order) are shown in blue. The absolute dephasing within 1σ
errors of the distribution can be as large as 10–50 rad, which is much larger than the maximum mismodeling dephasing of 0.015 rad.
This suggests that the latter is negligible in constraining β.

33A new point θ in the parameter space is chosen via

θ ¼ θðinjÞ þ
XD
A¼1

αAffiffiffiffiffi
λA

p VA; ðA1Þ

where θðinjÞ are injected parameters with dimension D, λA and VA
are eigenvalues and unit eigenvectors, respectively, of the Fisher
matrix, and αA are random numbers drawn from a Gaussian
distribution with zero mean and variance of 1=D.
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APPENDIX B: EFFECT OF HIGHER-PN-ORDER
CORRECTIONS IN THE PPE FORMALISM

In this Appendix, we study whether the quantitative
inferences derived from the GW150914 event by using an
inspiral-only analysis with a leading-PN-order deformation
(à la simple ppE) is affected by our ignorance of higher-
PN-order terms induced in the late inspiral and merger.
Indeed, we do not possess predictions for the GWs emitted
during the entire inspiral-merger-ringdown coalescence
that includes modifications to Einstein’s theory, such as
the activation of a scalar field in a vacuum spacetime, or
from the presence of large extra dimensions. This
Appendix will demonstrate that it is not a priori necessary
to have knowledge beyond the leading-order PN modifi-
cation to derive some level of meaningful inferences from
GWobservations; i.e. knowledge of the higher-order terms
and merger phase may strengthen the constraints derived
from the analysis presented here (since e.g. one would be
able to integrate the signal to higher frequencies), but it
does not invalidate our analysis.
Consider the question of how much are bounds on

modified gravity affected by the inclusion of higher-PN-
order modified gravity terms in the inspiral phase. For a
specific calculation, let us consider a −1PN deformation
from GR, for example as induced by the activation of a
scalar monopole charge in BD theory. The waveform in
such a theory is known to 2.5PN order relative to the
leading −1PN order term in the test-particle limit for
nonspinning BHs. To this order then, the inspiral Fourier
phase is given by

ΦBD
I ðfÞ ¼ ΦGR

I ðfÞ þ βBDðπMfÞbBD

×

�
1þ

X5
i¼2

δϕBD
i ðηÞðπMfÞi=3

�
; ðB1Þ

where bBD ¼ −7=3 and [98]

δϕBD
2 ¼ −

7

2
η−2=5; ðB2Þ

δϕBD
3 ¼ 5πη−3=5; ðB3Þ

δϕBD
4 ¼ −

350

9
η−4=5; ðB4Þ

δϕBD
5 ¼ 84

5
πη−1: ðB5Þ

Although βBD ¼ 0 for BH binaries even if the BD param-
eter is finite, one can still estimate the bound on βBD with
GW150914 to see if such a measurement is consistent with
the BH no-hair theorem in BD theory.
The subsequent coefficients in BD theory shown above

present the familiar structure of the PN series: alternating

signs, absence of a relative 0.5PN order modification in the
Fourier phase, and growing coefficients as the PN order
increases. Of course, this neglects mass-ratio corrections, as
the modifications were calculated in the test-particle limit;
however, in GR the PN series in the test-particle limit
presents more (asymptotic) divergent features than in the
comparable-mass limit—i.e. the coefficients of the series
grow more rapidly with PN order in the test-particle limit.
Thus, by using the δϕi above in the test-particle limit we are
exaggerating the effect of higher PN terms in the waveform,
which will suffice to make conservative statements.
With this in mind, we carried out five different

Fisher analysis: one analysis used only the leading-order
(−1PN) phase modification, while the others included
higher PN corrections. Figure 12 shows Fisher estimates
of the accuracy to which βBD can be constrained from
GW150914 and GW151226 as a function of the highest PN
order included in the modified phase. For example, n ¼ 0
corresponds to Fisher studies where the correction to the
waveform phase includes the leading-order (−1PN) piece
and its first PN-order correction (0PN). Including higher-
order PN terms barely modifies the strength of the con-
straint one can place on βBD. The difference shown in the
bottom panel shows nice convergence as one increases the
order of higher PN corrections included. We conclude that,
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FIG. 12. (Top) Fisher estimates of the accuracy one can
constrain the ppE parameter βBD at −1PN with GW150914
and GW151226, as a function of the highest PN order included in
the modified waveform phase. The bound at −1PN order is the
same as that in Fig. 4. For reference, we also show the bound
from a NS-BH and NS-NS binary with SNR ¼ 24 and with
masses ð10; 1.4ÞM⊙ and ð1.5; 1.3ÞM⊙, respectively. (Bottom)
The absolute fractional difference of the bound on jβBDj as a
function of PN order. Including higher-order corrections only
affects the bound obtained with only the leading-PN-order phase
correction by at most Oð10%Þ for GW150914. The fractional
difference for GW151226, NS-BH and NS-NS binaries is even
smaller.
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if the event has already been shown to be consistent with
GR and one is trying to constrain deviations from Einstein’s
theory, then including only the leading-order PN term in the
analysis suffices.
To show that the behavior described in the previous

paragraph is not specific to BH binaries, we also present in
Fig. 12 how higher PN corrections in BD affect the
measurement accuracy of βBD with a NS-BH and NS-
NS binary, with masses ð10; 1.4ÞM⊙ and ð1.5; 1.3ÞM⊙,
respectively. To compare with the GW150914 result, we set
the SNR to 24. We still use the IMRPhenom waveform and
neglect any finite size effects in NSs, which would first
enter at 5PN order [293] and thus be weakly correlated with
βBD. We also neglect conservative corrections to the
waveform phase, which are not included in Eqs. (B2)–
(B5) and are absent for BH binaries in the test-particle limit
[98]. Figure 12 shows that the higher-PN-order corrections
in NS-BH and NS-NS binaries are even less important than
in BH-BH binaries. This is because at a fixed frequency, the
orbital velocity of the binary constituents is smaller for the
former, which makes the higher-order PN effects less
important.
How do higher-PN-order corrections affect constraints

on ppE parameters in theories other than BD? To a limited
extent, we can address this question by repeating the
calculation explained above but varying the ppE exponent.
The top panel of Fig. 13 compares constraints on the ppE
parameter β from GW150914 (for which higher PN terms
have a larger contribution than for GW151226) obtained

with only the leading-PN-order correction (red solid line)
and with corrections up to 2.5PN order higher than the
leading-order term (blue dashed line). To model the latter,
we adopt the same relative corrections from the leading-
order term as in the BD case. The bottom panel shows the
fractional difference of the two constraint curves. The
difference remains around 10% for all n ≤ 1. Although
this difference generally grows with n, it typically remains
smaller than ∼20% in most cases. When n ¼ 3, a partial
degeneracy with the phase of coalescence at 2.5PN order
deteriorates the bound.
Let us now move away from the ppE framework and

discuss how higher-PN-order corrections may affect con-
straints on β in more general theories. Consider a non-GR
theory with a single coupling constant that admits a PN
expansion, i.e. one in which the solution to the field
equations admits a perturbative solution in v ≪ 1. The
coefficients in the PN expansion are functions of the system
parameters (like the masses and spins) and the coupling
constant of the non-GR theory (that controls the magnitude
of the GR deformation). One can classify a non-GR theory
by the behavior of these coefficients into one of the
following three classes:

(i) There are no values of the system parameters for
which the coefficient of the leading-PN-order cor-
rection is suppressed.

(ii) There is a set of values of the system parameters for
which the coefficient of the leading-PN-order cor-
rection is moderately suppressed.

(iii) There is a set of values of the system parameters for
which the coefficient of the leading-PN-order
correction is strongly suppressed and may vanish
exactly.

For theories in class (i), the leading-PN-order correction
always dominates any higher-PN-order corrections and the
constraints on β derived in this paper are valid. This is the
case for BD theory, as already discussed previously. For
theories in class (ii), there may be a small subset of systems
for which the leading-PN-order correction becomes com-
parable to the next-to-leading-order correction in a given
velocity range. Therefore, one can further split such
theories into the following two subclasses:
(iia) There are no values of the system parameters for

which the coefficient of the leading-PN-order cor-
rection cancels with the next-to-leading-order cor-
rection.

(iib) There is a set of system parameters for which the
above cancellation occurs, forcing the next-to-next-
to-leading-order correction to be dominant.

For theories in case (iia), the bound on β obtained from the
leading PN correction is still valid as an order of magnitude
estimate. No known theory falls into class (iib), but if one
existed, constraints on β derived by including only the
leading-PN-order correction could be too strong; for correct
estimates one would have to map the constraint on β to the
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FIG. 13. (Top) Upper bound on the leading ppE parameter jβj
for GW150914 with only the leading PN correction at nPN order
added (red solid line) and with relative corrections the same as
BD theory added up to ðnþ 2.5ÞPN order (blue dashed line). The
vertical dotted-dashed line shows n ¼ −1, which corresponds to
the BD case in Fig. 12. (Bottom) The fractional difference
between the two curves in the top panel. Such a difference
generally becomes larger for high PN terms but is smaller than
∼20% in most cases.
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particular coupling constants of the theory for a value of b
that corresponds to the next-to-next-to-leading-order term.
Class (iib), however, would likely require fine-tuning of the
system; i.e. the masses and spins would have to be just right
so that the cancellation occurs. Even if this fine-tuning did
happen in a given (as-of-yet-unknown) theory, it is incred-
ibly unlikely that it would happen for both events
(GW150914 and GW151226) simultaneously.
For theories in class (iii), there is a small subset of

systems for which the leading-PN-order correction
becomes subdominant relative to the next-to-leading-order
correction in a given velocity range. If this is the case,
constraints derived from the leading-PN-order correction
would be too weak; i.e. they would be conservative because
if one had included the next-to-leading-PN-order term, the
constraints would have been stronger. This is probably the
case for EdGB gravity, as discussed previously.
Since the second case requires a fine-tuned system and a

theory that has not yet been proposed or studied, we
conclude that in all knownmodified gravity cases the bound
on β presented in this paper is a solid conservative estimate
for theories with a single coupling parameter that admits a
PN expansion.
What about modified theories that either possess more

than one coupling parameter or do not admit a PN
expansion? EA theory is an example of a model with
more than one coupling parameter. All coupling parameters
are likely to enter the GW phase, with different combina-
tions entering at different PN orders. In such a case,
including more than the leading-PN-order term in the
waveform phase, as was done in e.g. [19,137], is critical
to break degeneracies between the coupling parameters and
constrain them individually. Certain scalar-tensor theories
(i.e. those that admit dynamical scalarization) are examples
of models that do not necessarily admit a PN expansion. In
such a case, including more than a single ppE parameter, as
shown in [58], is critical to properly constrain the modified
GR effect. We have discussed the latter in more detail in
Sec. III A 2.
Whether one should include higher-PN-order terms in

modified waveforms depends sensitively on whether the
event in question has been shown to be consistent with GR.
Let us imagine that a new GW observation is made. The
first step should then be to determine whether this obser-
vation is consistent with GR or whether anomalies are
present in the data. The verification of consistency can be
made through the residual SNR argument suggested in
[100,142,294] and performed for GW150914 by the LVC
[19]. The search for anomalies could be done through a
parameterized model, as the ppE framework.34

Reference [137] has shown that using a single parametric
deformation in the waveform phase is ideal to detect
anomalies; the inclusion of simultaneous multiple defor-
mations dilutes the power of such an analysis. However, it
was further shown that if an anomaly is present, a single
parametric deformation will not be able to pinpoint exactly
what type of modification to GR is present in the data. It is
only in such cases, i.e. when the data points to the presence
of a statistically significant anomaly, that a higher-PN-order
parametric deformation may be necessary to properly
characterize it.

APPENDIX C: NOISE SPECTRUM FIT

We construct a fit for the Hanford noise spectrum data
[121,296] through the polynomial

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
¼

ffiffiffiffiffi
S0

p
exp ða0 þ a1xþ a2x2 þ a3x3 þ a4x4

þ a5x5 þ a6x6Þ; ðC1Þ

where S0 ¼ 0.8464=Hz, x≡ ln½f=ð1 HzÞ� and the coeffi-
cients ai are given by Table VI. We assumed that the
Livingston noise spectrum is identical to the Hanford one,
for simplicity.35 None of the conclusions derived in this
paper are affected by that assumption.
Although the fit provided above is good (r2 ¼ 0.99995),

it is by no means perfect. To see this graphically, the top
panel of Fig. 14 shows the actual Hanford noise spectral
density during the O1 run, together with the fit as a function
of frequency in hertz. The data contains many spikes,
which the fit smooths over. The bottom panel shows the
fractional difference between the fit and the data. On
average, the fit accurately describes the data to Oð1%Þ
accuracy in the f > 102 Hz region, while the fractional
difference becomes Oð10%Þ in the f < 60 Hz region. We
could have constructed a more accurate fit to the data, but
we found that this was not necessary.

TABLE VI. Fitting coefficients and their standard deviation for
the fitting function of Eq. (C1), which approximates the aLIGO
noise spectrum during O1, and in particular, around the time of
the GW150914 observation.

a0 47.8466� 5.38
a1 −92.1896� 6.41
a2 35.9273� 3.07
a3 −7.61447� 0.759
a4 0.916742� 0.103
a5 −0.0588089� 0.00721
a6 0.00156345� 0.000206

34Absence of a residual from the best-fit GR template does
not necessarily imply the data are also consistent with the absence
of anomalies, as in some cases a parameter bias in the GR
template could “fit” the anomaly, producing stealth bias
[100,142,294,295].

35We checked that the fractional difference between the
Hanford and Livingston detectors on the upper bound on β in
Fig. 4 is always smaller than 20%.
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One may wonder whether the spikes in Fig. 14 affect the
constraints derived in this paper. The answer is no. The
spikes do affect the SNR that would be measured at
Hanford and at Livingston, but we have here chosen the
waveform amplitude such that the SNR with the fitted noise
curve is exactly what aLIGO measured. With the SNR
properly adjusted, we have checked that the difference
between the fit and the data only affects the constraints on
jβj at −1PN order by 3%–6% at most relative to what we
quote in this paper.

APPENDIX D: CONSTRAINING EDGB
GRAVITY WITH GW150914

In this Appendix, we study whether the GW150914
observation by aLIGO allows us to place constraints on
EdGB gravity from the absence of scalar dipolar radiation.
As shown in Fig. 4, such an observation places a bound on
the ppE parameter jβj at −1PN of jβj ≤ 1.7 × 10−4. One
can map this constraint to that on the coupling constant
αEdGB using Eq. (15). Assuming the injected values of spins
(χ1 ¼ 0 ¼ χ2) and masses that we used to derive the bound
on jβj via a Fisher analysis, one finds ffiffiffiffiffiffiffiffiffiffiffiffiffiffijαEdGBj

p
≤ 22 km.

However, to be as conservative as possible, one needs to
study how such a bound depends on the injected values of
binary parameters such as individual spins χA, as the latter
are only weakly constrained (jχ1j ≤ 0.79 and jχ2j ≤ 0.95
[5,134]), even when the effective spin parameter is better
constrained χeff ¼ −0.06þ0.14

−0.14 [4,5].
Figure 15 presents the upper bound on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijαEdGBj
p

in
kilometers obtained by mapping the bound on jβj but
varying χ1 and χ2. The region of χ1 and χ2 spanned by the

posterior distribution is within the orange dashed lines. The
bound weakens rapidly as one approaches spins that shut
off dipole radiation completely (shown by white curves).
Because of the width of the χ1 and χ2 posterior distribution,
this immediately shows that one cannot place a bound onffiffiffiffiffiffiffiffiffiffiffiffiffiffijαEdGBj
p

with the GW150914 event.
Figure 15 also shows that the bound on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijαEdGBj
p

weakens significantly as χ1 and χ2 approach unity.
These bounds, however, were obtained within the small-
coupling approximation, which requires 16πα2EdGB=r

4
H ≪ 1

with rH corresponding to the horizon size of the smaller
BH. This approximation, thus, is valid only for sufficiently
small values of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijαEdGBj
p

, i.e. those within the region
enclosed by horizontal yellow curves. Therefore, if
GW150914 was produced by BHs with large spins, and
if aLIGO had been able to measure these spins accurately,
one would still not be able to place bounds on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijαEdGBj
p

,
because these would be outside the regime of validity of the
approximation used to derive such bounds.

APPENDIX E: EFFECTIVE VISCOSITIES OF
COMPACT OBJECTS

In this Appendix, we derive the effective viscosities of
compact objects that are summarized in Table V. Let us first
compute the viscosities of nonrotating BHs [297,298] with
mass M. The membrane paradigm [241,299] allows us to
estimate the kinematic viscosity νBH ∼M, which is related
to the shear viscosity by ηBH ¼ ρBHνBH and to the bulk
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FIG. 14. (Top) Square root of the noise spectral density as a
function of frequency (in hertz) for theHanford detector during the
O1 (red solid line) and using the fitted function of Eq. (C1) (blue
dashed line). (Bottom) The relative fractional difference between
the data and the fit. The data contains spikes that are absent from
the fit, but we have checked that these spikes do not significantly
affect the constraints quoted in this paper, if the SNR is fixed.

FIG. 15. GW150914 upper bound on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffijαEdGBj

p
in kilometers

derived by mapping the constraint on β at −1PN order with each
(χ1, χ2) allowed from the aLIGO measurement. Orange dashed
lines show the allowed region from the effective spin χeff
measurement, while white curves show spins that shut off dipole
radiation completely. However, note that the small-coupling
approximation used to derive these bounds is only valid within
the region between the yellow curves.

YUNES, YAGI, and PRETORIUS PHYSICAL REVIEW D 94, 084002 (2016)

084002-36



viscosity by ζBH ¼ −ηBH [241]. Estimating the BH density
as ρBH ∼M=½ð4π=3ÞR3

s � with Rs ¼ 2M corresponding to
the Schwarzschild radius, one finds

ηBH ¼ −ζBH ∼ 1.3 × 1030
g

cm · s

�
m

65M⊙

�
−1
: ðE1Þ

The fact that the sign of the bulk viscosity is negative is a
well-known peculiarity of the effective fluid description of
event horizons.36 Naive application of the Newtonian stellar
fluid model in Eq. (43) would then suggest BHs have
unstable radial modes, which of course is not the case. It is
unclear exactly how to interpret negative bulk viscosity in
the case of BHs, and this illustrates that not all exotic
compact objects may have dynamics that fit comfortably in
an effective hydrodynamic framework.
Let us now compute the viscosities of nonrotating,

unmagnetized NSs. The shear viscosity due to the scatter-
ing of neutrons is given by [261,301,302]

ηðnÞNS ∼ 2 × 1014ρ9=415 T−2
11

g
cm · s

; ðE2Þ

while the bulk viscosity is given by [302,303]

ζðnÞNS ∼ 6 × 1028ρ215T
6
11ω

−2
10

�
eν

0.1

�
g

cm · s
; ðE3Þ

where ω10=2π corresponds to the oscillation mode fre-
quency divided by ð10=2πÞ kHz, ρ15 is the NS density
divided by 1015 g=cm3, eν is the ðt; tÞ component of
the NS metric, T11 is the NS temperature divided by
1011 K ∼ 10 MeV, with the latter corresponding to the
typical temperature of hypermassive NSs formed after NS
binary mergers.
Let us then proceed to compute the shear viscosity of

nonrotating but magnetized NSs. For a strongly magnetized
NS, this can be estimated by comparing the Alfvén time
scale to the viscous time scale, given by Eqs. (41) and (42)
in [304], respectively:

ηðBÞNS ∼ 1.3 × 1027B15R12

ffiffiffiffiffiffi
ρ15

p g
cm · s

; ðE4Þ

where R12 is the NS radius divided by 12 km, while B15 is
the magnetic field strength divided by 1015 G.
Let us finally compute the viscosities associated with

boson stars. There are numerous models for boson stars
[305], though typically bosonic matter has very low
effective viscosity, with the leading-order dissipation of
self-gravitating configurations coming from GW emission
[306,307] (this is similar to ideal fluid NSs). For example,
from the calculation of the QNMs of a so-called solitonic
boson star [308] with radius R ∼ 3M presented in [307], the
damping time of the l ¼ 2 polar mode is τ ∼ 103M. For a
65M⊙ boson star, the damping time is then τ ∼ 320 ms,
which leads to effective shear and bulk viscosities of ηBS ∼
7 × 1026 g cm−1 s−1 and ζBS ∼ 5 × 1028 g cm−1 s−1 via
Eqs. (42) and [43], respectively.
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