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We develop and study the position-dependent bispectrum. It is a generalization of the recently proposed
position-dependent power spectrum method of measuring the squeezed-limit bispectrum. The position-
dependent bispectrum can similarly be used to measure the squeezed-limit trispectrum in which one of the
wavelengths is much longer than the other three. In this work, we will mainly consider the case in which the
three smaller wavelengths are nearly the same (the equilateral configuration). We use the Fisher
information matrix to forecast constraints on bias parameters and the amplitude of primordial trispectra
from the position-dependent bispectrum method. We find that the method can constrain the local-type gNL
at a level of σðglocalNL Þ ≈ 3 × 105 for a large volume SPHEREx-like survey; improvements can be expected by
including all the triangular configurations of the bispectra rather than just the equilateral configuration.
However, the same measurement would also constrain a much larger family of trispectra than local gNL
model. We discuss the implications of the forecasted reach of future surveys in terms of super cosmic
variance uncertainties from primordial non-Gaussianities.
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I. INTRODUCTION

A key property of any correlation function in the density
fluctuations is the degree to which the local statistics can
differ from the global statistics due to coupling between
local (short wavelength) Fourier modes and background
(long-wavelength) Fourier modes. For example, the ampli-
tude of the local density power spectrum in subvolumes of a
survey may be correlated with the long-wavelength density
mode of the subvolume [1]. This observable goes by the
name of “position-dependent power spectrum” and is a
measure of an integrated bispectrum that gets most of its
contribution from the squeezed-limit bispectrum. It is a
probe both of nonlinear structure formation (such as
nonlinear gravitational evolution and nonlinear bias) and
of primordial three-point correlations in the curvature
fluctuations. The position-dependent power spectrum is
easier to measure than directly measuring the bispectrum,
and the position-dependent two-point correlation function
has been recently measured from the SDSS-III BOSS data
in [2].
In this work, we consider the generalization of the

position-dependent power spectrum to higher-order corre-
lation functions (see also [3]). Given the increasing
computational difficulty in directly measuring higher-order

statistics, studying position-dependent quantities provides a
practical route to extract some of the most important
information from higher-order correlations. In particular,
we focus on the position-dependent bispectrum, which is a
measure of an integrated trispectrum. Measurements of the
galaxy bispectrum have been carried out recently by the
SDSS Collaboration [4,5].
For simplicity, we will limit this initial analysis to the

position dependence in the amplitude of the equilateral
configuration of the galaxy bispectrum. We obtain the
expected constraints on a large family of primordial trispec-
tra (including glocalNL , see below) as well as on the linear and
quadratic bias parameters using the Fisher information
matrix formalism for the proposed SPHEREx (Spectro-
Photometer for the History of the Universe, Epoch of
Reionization, and Ices Explored) [6] galaxy survey.
The primordial bispectrum has been well studied, but

measurements or constraints of higher-order correlations
contain independent information. Constraints beyond the
bispectrum are limited by the computational difficulty of
searching for an arbitrary trispectrum and so far just a few
theoretically motivated examples have been studied. One
useful case is the “local” model, where the non-Gaussian
Bardeen potential field, ΦNGðxÞ, is a nonlinear but local
function of a Gaussian random field, ϕGðxÞ. The standard
local “gNL” trispectrum is generated by a term proportional
to ϕ3

GðxÞ. The Planck mission has constrained the ampli-
tude of this trispectrum glocalNL ¼ð−9.0�7.7Þ×104ð1σÞ [7].
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Constraints from SDSS photometric quasars using the
scale-dependent bias [8] give jglocalNL j≲ 2 × 105 [9].
The interesting feature of the local ansatz (in the

bispectrum, trispectrum and beyond) is the significant
coupling between long- and short-wavelength modes
of the primordial perturbations. A convincing detection
of such a coupling would have two important impli-
cations: it would introduce an additional source of
cosmic variance in connecting observations to theory
[10–13], and it would rule out the single-clock inflation
models [14].
While the local ansatz provides a particularly simple

example of correlations that couple long- and short-
wavelength modes, it is of course not the unique example.
Constraining the position dependence of the equilateral
configuration of the bispectrum constrains not only glocalNL ,
but a large family of other trispectra as well, as we will
detail below. In addition, testing for position dependence in
the equilateral configuration is particularly interesting
because it could signal a deviation from single clock
inflation models (since it measures the four-point correla-
tion function) even if the average bispectrum is consistent
with the single clock inflation models.
The paper is structured as follows. In the next section we

introduce the idea of position-dependent power spectrum
and bispectrum. Starting with a review of the position-
dependent power spectrum studied in detail in [1,2], wewill
discuss and derive expressions for position-dependent
bispectrum in terms of the angle-averaged integrated
trispectrum. We then present the position-dependent bis-
pectrum from a generic primordial trispectrum, with two
illustrative examples (Sec. III). In Sec. IV we discuss the
galaxy four-point correlation functions from which we
measure primordial trispectrum amplitudes, which will be
followed by the discussion of the method of the forecast
based on Fisher information matrix. We will report and
discuss the results of our Fisher forecasts in Sec. VI, and
conclude in Sec. VII.

II. POSITION-DEPENDENT POWER SPECTRUM
AND BISPECTRUM

A. Position-dependent power spectrum

Consider a full survey volume in which the density
fluctuation field δðxÞ is defined, and its spherical sub-
volumes with a radius R (and volume VR) [15]. The
smoothed (long-wavelength) density field and the local
power spectrum in a subvolume centered at xR are then
given by

δðkÞxR ¼
Z

d3xδðxÞWRðx − xRÞe−ix·k

¼
Z

d3q
ð2πÞ3 δk−qWRðqÞe−ixR·q ð1Þ

PðkÞxR ¼ 1

VR

Z
d3q1

ð2πÞ3
Z

d3q2

ð2πÞ3 δk−q1δ−k−q2
×WRðq1ÞWRðq2Þe−ixR·ðq1þq2Þ; ð2Þ

where WRðqÞ is the Fourier transform of the window
function. In this work, we will use the spherical top
hat as the window function, which is defined in real
space as

WRðxÞ ¼
�
1; if jxj ≤ R

0; if jxj > R
: ð3Þ

The correlation between the local power spectrum and the
long-wavelength density contrast in each subvolume
ðδ̄xR ¼ ð1=VRÞδðk ¼ 0ÞxRÞ gives an integrated bispectrum
which is defined as

iBRðkÞ≡ hPðkÞxR δ̄xRi

¼ 1

V2
R

Z
d3q1

ð2πÞ3
Z

d3q3

ð2πÞ3 WRðq1ÞWRð−q13Þ

×WRðq3ÞBðk − q1;−kþ q13;−q3Þ; ð4Þ

where q13 ≡ q1 þ q3. See [1] for the details of the
derivation. Because the Fourier space window function
WRðqÞ drops for jqj > π=R, for modes well within the
subvolume (k ≫ π=R), the above expression is dominated
by the squeezed-limit bispectrum and simplifies to

iBRðkÞ ≈
1

V2
R

Z
d3q
ð2πÞ3W

2
RðqÞBðk;−kþ q;−qÞ; ð5Þ

where we have also used the Fourier transform of the
equality W2

RðxÞ ¼ WRðxÞ that follows from Eq. (3). The
squeezed-limit approximation Eq. (5) produces exactly
the same result as the squeezed limit of Eq. (4) for any
separable bispectrum of the form [1]

Bðk1;k2;k3Þ ¼ fðk1; k2; k̂1 · k̂2ÞPðk1ÞPðk2Þ þ 2perm:

Note that this is in general not the case for the integrated
trispectrum (Sec. II B).
Finally, it is useful to define the reduced integrated

bispectrum,

ibRðkÞ ¼
iBRðkÞ
PðkÞσ2R

; ð6Þ

where iBRðkÞ now is the angle-averaged integrated bispec-
trum. Here, and throughout, we assume the statistical
isotropy of the Universe and do not include the redshift-
space distortion. The reduced integrated bispecturm, in this
case, contains all relevant information.
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B. Position-dependent bispectrum

Building upon the idea of the position-dependent power
spectrum, we now divide a survey volume in subsamples
and measure the bispectrum in individual subvolumes
centered on xR. This position-dependent bispectrum is
given by [note that we have used only two-wave-vector
arguments below because the third wave vector of the
bispectrum is fixed by the triangular condition:
k3 ¼ −ðk1 þ k2Þ≡ −k12]

Bðk1;k2ÞxR ¼ 1

VR

�Y3
i¼1

Z
d3qi

ð2πÞ3WRðqiÞe−ixR·qi
�

× δk1−q1δk2−q2δ−k12−q3 ; ð7Þ

and the correlation of the position-dependent bispectra with
the mean overdensities of the subvolumes is given by an
integrated trispectrum as

iTðk1;k2Þ≡ hBðk1;k2ÞxR δ̄xRi

¼ 1

V2
R

�Y4
i¼1

Z
d3qi

ð2πÞ3 WRðqiÞe−ixR·qi

�

× hδk1−q1δk2−q2δ−k12−q3δ−q4i: ð8Þ

The above equation contains the trispectrum T defined as

hδq1δq2δq3
δq4i ¼ ð2πÞ3δDðq1234ÞTðq1;q2;q3;q4Þ; ð9Þ

and therefore can be rewritten as

iTðk1;k2Þ ¼
1

V2
R

�Y3
i¼1

Z
d3qi

ð2πÞ3WRðqiÞ
�
WRð−q123Þ

× Tðk1 − q1;k2 − q2;−k12 þ q123;−q3Þ:
ð10Þ

When all modes in the bispectrum are well inside the
subvolume, jk1j, jk2j, jk12j ≫ π=R, we can use the same
approximation as in Sec. II A that the expression is
dominated by the squeezed limit of the trispectrum in
which one of the wave numbers is much smaller than the
others,

Tðk1 − q1;k2 − q2;−k12 þ q123;−q3Þ
≃ Tðk1;k2;−k12 þ q3;−q3Þ: ð11Þ

With this approximation and the identityW3
RðxÞ ¼ WRðxÞ,

we simplify the integrated trispectrum as

iTðk1;k2Þ ¼
1

V2
R

Z
d3q
ð2πÞ3 W

2
RðqÞTðk1;k2;−k12 þ q;−qÞ:

ð12Þ

We then define the angle-averaged integrated trispec-
trum as

iTðk1; k2Þ ¼
Z

d2k̂1
4π

Z
d2k̂2
4π

iTðk1;k2Þ

¼ 1

V2
R

Z
q2dq
2π2

W2
RðqÞ

×

�Z
d2k̂2
4π

Z
d2q̂
4π

Tðk1;k2;−k12 þ q;−qÞ
�
;

ð13Þ

where we have removed the k̂1 integral by explicitly
fixing k̂1 ≡ ẑ.
The integrated trispectrum measures the correlation

between the local three-point correlation function (scales
smaller than the subvolume size) and the (long-wavelength)
density fluctuation on the subvolume scale. That is, in
Fourier space, the integrated trispectrum signal is domi-
nated by the squeezed-limit quadrilateral configurations (of
connected four-point function) in which one of the
momenta is smaller than the others. Note, however, that
unlike that case for the bispectum, the squeezed limit of the
trispectrum cannot be defined only with the length of the
four momenta. Therefore, strictly speaking, the approxi-
mation equation (11) works for the trispectrum that depend
only on the magnitudes of the four momenta. In this case,
the angular integrals in Eq. (10) have no additional
contribution and therefore the approximation in Eq. (12)
is expected to give exact result in the q → 0 limit. On the
other hand, for generic trispectra which also depend on the
length of two diagonals, or the angle between momenta,
the approximation may not give the exact result even in the
squeezed limit. For example, for the tree-level matter
trispectrum Tð1Þ (see the Appendix), we find that the
angle-averaged trispectrum from the approximation
Eq. (13) is slightly different from the result of the large-
scale structure consistency relations [16,17]. The differ-
ence, however, is only marginal and does not affect the
main result of this paper.

III. POSITION-DEPENDENT BISPECTRUM
FOR A PRIMORDIAL TRISPECTRUM

As the position-dependent bispectrum depends on the
squeezed limit of the trispectrum, its measurement can
provide constraints on the primordial non-Gaussianities.
In the rest of the paper, we calculate how a primordial
trispectrum could generate position dependence in the
observed bispectrum, and calculate the projected uncer-
tainty on measuring the primordial trispectrum ampli-
tude by this method. In this section we consider the
four-point statistics at the level of initial conditions (and
denote the Bardeen potential by Φ), and evolve it
linearly. In Sec. IV, we will work out the corresponding
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expressions with the galaxy density contrast (δg)
generated from nonlinear gravitational evolution and
nonlinear bias.

A. Position dependence from a general
primordial trispectrum

We write a general primordial trispectrum by using
symmetric kernel functions as follows [18]:

TΦðk1;k2;k3;k4Þ ¼ gNLPΦðk1ÞPΦðk2ÞPΦðk3Þ
× N3ðk1;k2;k3;k4Þ þ ð3 cyc:Þ

ð14Þ

where the kernelN3 is symmetric in the first three momenta
(the last momentum is fixed by quadrilateral condi-
tion: k4 ¼ −k123).
The widely studied glocalNL model is a very useful bench-

mark case and corresponds to the simple case of
N3ðk1;k2;k3;k4Þ ¼ 6. In the squeezed limit (and for
the perfectly scale-invariant primordial power spectrum,
ns ¼ 1), where one of the momenta is much smaller than
the other three, the trispectrum scales as

T
glocalNL
Φ ðk1;k2;k3; q → 0Þ

¼ 3glocalNL

q3
½PΦðk1ÞPΦðk2Þ þ ð2 cyc:Þ� þOðq0Þ: ð15Þ

Notice that the quantity in the square brackets is (up to
normalization) the usual local ansatz bispectrum, which
peaks on squeezed configurations and is nonzero in the
equilateral configuration. The integrated trispectrum in this
case is particularly simple:

iTΦðk1;k2ÞglocalNL ¼ 6glocalNL σ2Φ;R½PΦðk1ÞPΦðk2Þ þ ð2 cyc:Þ�
ð16Þ

where

σ2Φ;R ¼ 1

V2
R

Z
d3q
ð2πÞ3 W

2
RðqÞPΦðqÞ

is the dimensionless, rms value of the Bardeen’s potential
smoothed over the radius R. Notice that for small q (modes
much larger than the box size), this integral diverges
logarithmically (proportional to

R
dq=q).

It is possible to find trispectra that reduce in the squeezed
limit to other bispectral shapes besides the standard local
template. For example, Ref. [18] has written down two
different examples [Eq. (D3) and Eq. (D5) of that paper]
that both have the same squeezed limit

T
gequilNL
Φ

�
k1;k2;k3; q → 0Þ ¼ 1

q3

�
PΦðk1ÞPΦðk2Þ

×

�
−6þ 4

k1 þ k2
k3

þ 2
k21 þ k22

k23
− 4

k1k2
k23

�
þ 2 cyc:

�

þO
�
1

q2

�
: ð17Þ

Here, the term in square brackets is the equilateral
bispectrum, but notice that the strength of coupling to
the background, fixed by the scaling as 1=q3, is the same as
that for the local trispectrum.
The two examples generalize to trispectra whose

leading-order behavior in the squeezed limit can be
schematically written as

TΦðk1;k2;k3; q → 0Þ ∝ 1

q3

�
q

F ðkiÞ
�

β

Beffðk1;k2;k3Þ

ð18Þ

where Beff has the properties of a bispectrum and F ðkiÞ
is a dimension 1 function of the momenta k1, k2, k3.
Comparing with Eq. (15) shows that for a fixed
configuration of the bispectrum Beff , all trispectra with
β ¼ 0 will generate the same average strength of
position dependence for that configuration as the glocalNL
ansatz does.
Note that the position-dependent bispectrum Beff from

the leading term in the squeezed limit of the trispectrum
does not fully characterize the trispectrum. For example,
the distinction between the two trispectra in [18] that
both generate equilateral bispectra in biased subvolumes
is the doubly squeezed limit of the trispectra (k4,
k3 → 0). Namely, one of the two trispectra will also
lead to a position-dependent power spectrum whereas
the other does not. (This is related to terms that are
subleading in the position-dependent bispectrum.) So, a
distinction between the two can be made by correlating
the square of the mean subvolume overdensities with the
power spectra: hPðkÞxR δ̄2xRi. The dominant contribution
from matter trispectrum in that case, in the squeezed
limit, can be obtained from the n ¼ 2 response function
R2ðkÞ in [19]. We will further pursue the utility of this
quantity in distinguishing the two types of primordial
trispectra in a forthcoming publication.
Before specifying to the equilateral configuration that

we will use for forecasting in the next section, we use
Eq. (14) to derive the position-dependent bispectrum in
terms of the kernel that defines a generic trispectrum.
Restricting to cases where β ≥ 0 for simplicity, the
leading contribution in the squeezed limit (k4¼q→0)
can be expressed as
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TΦðk1;k2;−k12 − q;qÞ ≈ gNLPΦðqÞPΦðk1ÞPΦðk2Þ
× N3ðq;k1;k2;−k12 − qÞ
þ ð2 cycÞ; ð19Þ

where we have used PΦðqÞ ≫ PΦðk1Þ, PΦðk2Þ, PΦðk3Þ.
Now, the integrated trispectrum becomes

iTΦðk1;k2Þ ¼ gNLPΦðk1ÞPΦðk2Þ

×
Z

d3q
ð2πÞ3W

2
RðqÞPΦðqÞ

× N3ðq;k1;k2;−k12 − qÞ
þ ð2 cycÞ: ð20Þ

As in the case of the integrated bispectrum, it is useful to
define the reduced integrated trispectrum:

itRðk1;k2Þ ¼
iTðk1;k2Þ

1
3
½Pðk1ÞPðk2Þ þ 2 cyc:�σ2R

; ð21Þ

such that it
glocalNL
Φ;R ¼ 18glocalNL for the local gNL case. The

subscript Φ here is to remind that the computation was
performed for primordial statistics.
In order to calculate the observed integrated trispec-

trum for the galaxy surveys, we need to define and

compute the corresponding signals for the galaxy density
contrast δg. In linear perturbation theory with linear bias
b1 (so that δgðkÞ ¼ b1δðkÞ), the galaxy trispectrum
generated by a primordial trispectrum is, to leading
order, given by

TðgÞ
Φ ¼ b41αðk1Þαðk2Þαðk3Þαðk4ÞTΦ; ð22Þ

because the matter overdensity field δ in Fourier space is
related to the Bardeen potential Φ as

δðk; zÞ ¼ αðk; zÞΦðkÞ ¼ 2

3

DðzÞ
H2

0Ωm
k2TðkÞΦðkÞ; ð23Þ

in which DðzÞ is the linear growth function and TðkÞ
is the transfer function for total matter perturbations.
Linear matter power spectrum is also related to the
primordial power spectrum by Pδðk; zÞ ¼ α2ðk; zÞPΦðkÞ.
We will often suppress the redshift dependence when
considering the overdensities at a fixed redshift, as
done in Eq. (22). Now, we calculate the reduced
integrated trispectrum of a large-scale structure tracer
[generated by a primordial trispectrum of the form
Eq. (19)] as

itðgNLÞR ðk1;k2Þ ≈
gNL

b21σ
2
δ;R

1
3
½Pδðk1ÞPδðk2Þ þ 2 cyc:�

�
αðk1ÞPδðk2ÞPδðk3Þ

αðk2Þαðk3Þ
Z

d3q
ð2πÞ3

W2
RðqÞ
V2
R

PδðqÞN3ðk2;k3;q;k1Þ
αðqÞ þ 2 cyc:

�
:

ð24Þ

B. A template for constraining position dependence
of the equilateral bispectrum

The generic expression for the reduced integrated
trispectrum found in the previous section, Eq. (24),
simplifies significantly if we consider the position
dependence of equilateral configuration of bispectra
only. That is, we will take jk1j ≈ jk2j ≈ jk3j ¼ k and
ki · kj ≈ −k2=2 for i, j ¼ 1, 2, 3. In this limit, the
kernel reduces to a number and a simple scaling:

N3ðq;ΔkÞ≡ N3ðq;k1;k2;k3jki · kj ≈ −k2=2Þ
¼ Aequilðq=kÞβ þ � � � ð25Þ

where we have used Δk to denote the equilateral con-
figuration of bispectra with side length k. The normali-
zation is Aequil¼ 6 for the local case, for example, and
Aequil ¼ 2 for trispectra that obey Eq. (17). The reduced
integrated trispectrum for the equilateral configuration of
bispectra then simplifies to:

itðΔÞR ðkÞ ≈ 3gNL
b21αðkÞ

1

σ2δ;R

×
1

V2
R

Z
d3q
ð2πÞ3W

2
RðqÞ

PδðqÞN3ðq;ΔkÞ
αðqÞ ; ð26Þ

where, for modes that are much larger than the
subvolume size, the integral on the second line
scales as

∝
Z

dq
q
qðβþ2Þ; ð27Þ

and so is not logarithmically divergent for β ¼ 0.
In this limit we can now write the reduced, integrated

trispectrum in terms of an amplitude and scaling, but
without reference to any particular primordial model:

itðΔÞR ðkÞ ¼ 3APDðΔÞ

b21αðkÞV2
Rσ

2
δ;R

Z
d3q
ð2πÞ3W

2
RðqÞ

PδðqÞðqkÞβ
αðqÞ ð28Þ
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where the amplitude of the position dependence is
APDðΔÞ ¼ 6glocalNL for the standard local trispectrum and
APDðΔÞ ¼ 2gequilNL for any trispectrum that generates the
equilateral template, with standard normalization, in
biased subvolumes [see Eq. (17)]. Trispectra reducing
to either bispectra in the squeezed limit can have any
value of β, but β ¼ 0 is coupling of “local” strength.
[Note that as long as the trispectrum satisfies Eq. (18), β
does not depend on the configuration of the bispectrum
considered.]
To summarize, the important features of the integrated

trispectrum are the configuration of the effective bis-
pectrum considered (which is a choice made in the
analysis), and the scaling β in the integral in Eq. (28),
which is a measure of how strongly the configuration is
coupled to the background. In the absence of motivation
for any particular models, one could constrain β as well
as the amplitude APDðΔÞ. In the next section we will
assume coupling of the local strength (β ¼ 0) and quote
forecast constraints on the primordial trispectrum in
terms of APDðΔÞ. The constraints we will forecast in the
next section apply equally well to any scenario with
β ¼ 0. To obtain constraints on any particular trispec-
trum, one just needs to compute APDðΔÞ from the
primordial model.

IV. MEASUREMENT IN A GALAXY SURVEY

In addition to the primordial trispectrum, the
observed position-dependent bispectrum will also
include the contributions from the late-time non-
Gaussianities induced from nonlinear gravitational evo-
lution (see, Ref. [20] for a review) and nonlinear
galaxy bias (see, Ref. [21] for a review). Therefore,
we have to account for these contributions if we are
to look for a primordial signature. Under the null
hypothesis that the primordial density perturbations
follows Gaussian statistics, and assuming a local bias
ansatz (with quadratic and cubic order bias parameters,
respectively, b2 and b3),

δg ¼ b1δþ
b2
2
δ2 þ b3

6
δ3;

the trispectrum induced at the late time may be written
as [22]

TðgÞ ¼ b41T
ð1Þ þ b31b2

2
Tð2Þ þ b21b

2
2

4
Tð3Þ þ b31b3

6
Tð4Þ: ð29Þ

The expressions for each TðiÞ can be found in the
Appendix or in Ref. [22].
We then obtain the angle-averaged trispectra by perform-

ing the integration Eq. (13) in the equilateral limit. The
reduced integrated trispectra are then

itð1ÞR ðkÞ ¼ 1

b21

�
579

98
−
8

7

∂ lnPδðkÞ
∂ ln k

�

itð2ÞR ðkÞ ¼ b2
b31

2

7

�
65þ 18

PδðkÞ
VRσ

2
R
− 7

∂ lnPδðkÞ
∂ ln k

�

itð3ÞR ðkÞ ¼ 6
b22
b41

�
1þ PδðkÞ

VRσ
2
R

�

itð4ÞR ðkÞ ¼ b3
b31

�
3þ PδðkÞ

VRσ
2
R

�
; ð30Þ

where we have used

σ2WR
¼ 1

V2
R

Z
d3q
ð2πÞ3 W

2
RðqÞ ¼

1

VR
:

In Fig. 1, we show the reduced integrated trispectra (or
angle-averaged reduced position-dependent bispectrum) in
the equilateral configuration from the leading-order per-
turbation theory, Eq. (30), and from the local-type primor-
dial trispectrum, Eq. (28).
In later sections, we shall present forecasted cosmo-

logical constraints from the position-dependent power
spectrum (integrated bispectrum) and from the position-
dependent bispectrum (integrated trispectrum). In the
squeezed limit, the reduced integrated bispectrum
induced by late-time gravitational evolution ibSPT and
the quadratic bias ibb2 are given by [1]

ibSPTðkÞ ¼
1

b1

�
47

21
−
1

3

d lnPδðkÞ
d ln k

�
ð31Þ

FIG. 1. The various reduced integrated trispectra, itðiÞR [the
expressions are given in Eq. (28) and Eq. (30)] for a large
spherical subvolume with radius R ¼ 400 Mpc=h at z ¼ 1.0. We
have taken b1 ¼ 1.95, b2 ¼ −0.18, b3 ¼ −3.03.
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ibb2ðkÞ ¼ 2
b2
b21

; ð32Þ

and, similarly, the integrated bispectrum from the local-
type primordial non-Gaussianity (flocalNL ) is given by

ib
ðflocalNL Þ
R ðkÞ ≈ 4flocalNL

b1σ2R

Z
d3q
ð2πÞ3

W2
RðqÞ
V2
R

PδðqÞ
αðqÞ : ð33Þ

So far, we have treated the primordial non-
Gaussianity signal and late-time effects separately. Of
course, primordial non-Gaussianity introduces a scale
dependence in the galaxy bias, as convincingly demon-
strated by [8]. For models with long-short mode
coupling of the local strength (β ¼ 0 case), the scale-
dependent bias is given by a term that grows on large
scales as 1=k2 and so the galaxy power spectrum can
itself be used as a powerful constraint on flocalNL as well
as glocalNL [23–25]. For SPHEREx, for example, forecasts
find expected 1σ uncertainty on estimating flocalNL to be
0.87 from the power spectrum and 0.21 from the
bispectrum [6]. In this work, we focus on understanding
the position-dependent bispectrum alone, so we shall
leave the full treatment including the effect of long-short
coupling to the non-Gaussian scale-dependent bias for
future work.

V. FISHER FORECAST METHOD

We now present the Fisher information matrix formalism
for the position-dependent power spectrum and bispectrum.
Our method follows closely [2], but we restrict ourselves to
the squeezed limit of the reduced integrated bispectra and
trispectra. The expression including full integration can be
found in [2]. Note also that we use the spherical top-hat
window function instead of the cubic window function in
[2]. We calculate the linear matter power spectrum from the
publicly available CAMB [26] code by using the cosmo-
logical parameters from the Planck 2015 results (the TTþ
lowPþ lensing column of Table 4 in [27]): ns ¼ 0.968,
σ8 ¼ 0.815, Ωm ¼ 0.308, Ωb ¼ 0.048.

A. Reduced integrated bispectrum

The Fisher information matrix for measuring cosmo-
logical parameters pα and pβ from the reduced integrated
bispectrum is given by

FibR;αβ ¼
X
zi

Nzi
sub

X
R

X
k≤kmax

×
∂ibRðk; ziÞ

∂pα

∂ibRðk; ziÞ
∂pβ

1

Δib2Rðk; ziÞ
; ð34Þ

where we have considered the reduced integrated bispec-
trum up to wave number k < kmax for a fixed subvolume

size R. We then assume that the reduced integrated
bispectrum with different subvolume sizes are uncorrelated,
so that we can add the information from different sub-
volume sizes by simply summing different subvolume radii
R (see Sec. V C for the justification). Assuming that each
subvolume VR is identical, we multiplied the number of
subvolumes Nzi

sub ¼ Vzi=
P

RVR with Vzi being the survey
volume of the redshift bin centered around zi. We approxi-
mate the uncertainties of measuring the reduced integrated
bispectrum ibRðkÞ by its leading-order, Gaussian covari-
ance as

Δib2Rðk; zÞ ¼
1

NkR

½σ2R;z þ Pshot=VR�½PR;zðkÞ þ Pshot�2
σ4R;zP

2
R;zðkÞ

ð35Þ

in which, NkR ≈ 2πðk=kminÞ2 (with kmin ≃ π=R) is the
number of independent Fourier modes in a subvolume
[23,28], and

PR;zðkÞ ¼
1

VR

Z
d3q
ð2πÞ3W

2
RðqÞPzðjk − qjÞ ð36Þ

is the convolved power spectrum, and Pshot is the shot noise
of the galaxy sample. Here, we assume that the galaxies are
Poisson sample of the underlying density field so that
Pshot ¼ 1=n̄g with the number density n̄g. As for the survey
specifics, we adopt the survey volume and number density
of the low-accuracy sample of the planned SPHEREx
survey [6]. In Fig. 2, we show the galaxy number density
of the low-accuracy sample in Fig. 10 of [6].

B. Reduced integrated trispectrum

Similarly, the Fisher information matrix for the reduced
integrated trispectrum is given by

FIG. 2. The galaxy number density as a function of the redshift
assumed in the Fisher matrix calculations. The function approx-
imates the large galaxy count, low-accuracy redshift sample
proposed for SPHEREx ( ~σz ¼ 0.1, cumulative) in Fig. 10 of [6].
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FitR;αβ ¼
X
zi

Nzi
sub

X
R

X
k≤kmax

×
∂itRðk; ziÞ

∂pα

∂itRðk; ziÞ
∂pβ

1

Δit2Rðk; ziÞ
; ð37Þ

with the covariance matrix (again, approximated by the
leading order, diagonal part)

Δit2Rðk; zÞ ¼
VR

Nk;Δ

½σ2R;z þ Pshot=VR�½PR;zðkÞ þ Pshot�3
σ4R;zP

4
R;zðkÞ

:

ð38Þ

Here, Nk;Δ ≈ ð4=3Þπ2ðk=kminÞ3 is the number of indepen-
dent equilateral-type triangular configurations (of size k)
inside each subvolume [23].

C. Note on correlation matrix

When calculating the Fisher information matrix, we have
assumed that there is no cross-correlation among locally
calculated power spectra and bispectra from different
subvolumes. To see that this is a reasonable approximation,
note that the dominant contribution for the matrix element
hitRðk;xÞitRðk;x0Þi separated by jx0 − xj ¼ r is given by

hitRðk;xÞitRðk;x0Þi ≈ VR

Nk;Δ

ξRðrÞ
σ2RPRðkÞ

ð39Þ

where

ξRðrÞ ¼
1

V2
R

Z
q2dq
2π2

W2
RðqÞPðqÞj0ðqrÞ ð40Þ

is the two-point correlation function of the density field
smoothed over the size of the subvolume.
We plot the smoothed correlation function ξRðrÞ=σ2R in

Fig. 3. In the zero shot noise limit, the off-diagonal element
of the covariance matrix can be well approximated by
ξRðrÞ=σ2R (for both the integrated bispectrum and integrated
trispectrum). In the presence of shot noise, we expect the
normalized matrix element (nondiagonal) to be smaller. For
each R, we see that the correlation is very weak when
r > 2R, which is the distance between the centers of
adjacent two subvolumes. In addition, there must be some
correlation from non-Gaussian coupling to very long-
wavelength modes common to neighboring subvolumes,
but the scale dependence of the integrands in Eq. (5),
Eq. (26) indicates that this should be small.
We have also assumed the reduced trispectra at different

wave numbers are uncorrelated. That is

hitRðk1ÞitRðk2Þi ≈ δDðk1 − k2ÞΔit2RðkÞ

(and similarly for the integrated bispectrum). This approxi-
mation breaks down at smaller scales and lower redshifts

when nonlinearities are strong [29] (see in particular
Fig. B.1. and the discussion around it in the Ref. [29]).
It is also worthwhile to note other important results from
[29]: (i) that the cross-correlation between integrated
bispectrum with different k values with different subvo-
lume sizes gets weaker, because different long-wavelength
modes are involved, (ii) that having different sized sub-
volumes and different redshifts is useful in breaking the
degeneracy between the primordial and late-time contri-
butions to the integrated bispectrum. This is because, the
primordial integrated bispectrum signal depends on the
subvolume size (through σ2R) and is also inversely propor-
tional to the growth factor DðzÞ whereas the late-time
contributions are nearly independent of these. Similarly,
we see that the reduced integrated trispectrum signal
(primordial) has different z and R dependence compared
to the late-time contribution.

Note that at a given single redshift, ib
ðflocalNL Þ
R (in the

squeezed limit) and ibb2 are both constant and therefore
degenerate. It is, therefore, necessary to use more than one
subvolume sizes to break this degeneracy for a single
redshift bin. On the other hand, for the integrated trispec-
trum, such a strong degeneracy is absent (see Fig. 1). The
results of our Fisher matrix analysis considering multiple
redshift bins in the range 0.1 < z < 3.0, and using the
number density expected for the SPHEREx survey is
presented next.

VI. FISHER FORECAST RESULTS

We now present results from the Fisher matrix analysis.
We will focus on the projected constraints on the non-
Gaussianity amplitudes flocalNL and APDðΔÞ. The fiducial
values we use for this analysis are flocalNL ¼ 0 and
APDðΔÞ ¼ 0. For the SPHEREx survey, we use a constant

FIG. 3. The smoothed two-point correlation function ξRðrÞ as a
function of the comoving distance r (normalized by σ2R), for three
smoothing scales R ¼ 200; 100; 20 Mpc=h. The vertical lines are
r ¼ 2R lines, and are plotted to show that the correlation is small
for subvolumes separated by r > 2R.
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fiducial linear bias parameter b1 ¼ 1.95 and compute the
nonlinear bias parameters b2 and b3 using the fitting
functions in Table 3 of [21].

A. f localNL constraint from integrated bispectrum

In Fig. 4, we show the projected 1 − σ (68%
confidence level) error ellipse for fNL and the bias
parameters using the integrated bispectrum. We can see
that constraints of order σðfNLÞ ≈ 1 is possible with
SPHEREx survey by using the integrated bispectrum
method. This result is the same order of magnitude with
the projection obtained in [6] using the full bispectrum.
However, we note that we have not included the scale-
dependent bias from local primordial non-Gaussianity
(which dominates the constraint in [6]) nor optimized
the subvolume choices. Therefore, it must be possible to
further improve the constraint.
In addition, in Table I, we also list Fisher constraint

on fNL by considering the luminous red galaxies
(LRGs) and the quasars from the extended Baryon
Oscillation Spectroscopic Survey (eBOSS). We take
the survey parameters, the expected number densities,
and the bias parameters from [30] (See Table 2 in the
reference).

B. APDðΔÞ constraint from integrated trispectrum

In Fig. 5, we show the projected 1 − σ (68% con-
fidence level) error ellipse for APDðΔÞ and the bias
parameters using the integrated trispectrum. With the
same survey parameters that was used for fNL, we
obtain σðAPDðΔÞÞ ≈ 106. See Table II for a list of
constraints on the non-Gaussianity parameter APDðΔÞ

and the corresponding constraint on glocalNL for other
choices of subvolume sizes. By using only the equi-
lateral configuration of the bispectrum, we can obtain
σðglocalNL Þ ≈ 3 × 105. By adding the position dependence
of the other triangular configurations, we should expect
improvements in the glocalNL constraints. Note that this is

TABLE I. Fisher forecast results for fNL. In the first row, we
have considered two subvolume sizes: one large R ¼
1000 Mpc=h (N ¼ 255) and one small: R ¼ 100 Mpc=h
(N ¼ 1047). In the second row, we have used five different
subvolume sizes: R ¼ 100, 200, 300, 400, 500 Mpc=h; there are
1155 of each of these subvolumes.

Survey R ðMpc=hÞ Nsubvolumes σðfNLÞ
SPHEREx 100, 1000 1302 1.20
SPHEREx ½1; 2; 3; 4; 5� × 100 5775 1.71
eBOSS LRGs 200, 500 408 20.5
eBOSS quasars 200, 500 1750 54.5

FIG. 4. Fisher forecast ellipses for two of ðflocalNL ; b1; b2Þ
marginalized over the other, assuming SPHEREx survey volume
and other parameters given above in the figure. See Fig. 2 for the
assumed galaxy number density as a function of the redshift.
The two different ellipses in each plot represent different
choices for subvolumes: (i) dashed green—only one type of
subvolume with radius R ¼ 100 Mpc=h; this means that the total
number of subvolumes when dividing the whole survey is large
(N ¼ 260924), (ii) solid blue—two sizes of subvolumes with
R ¼ 100, 1000 Mpc=h in equal numbers (except for when the
volume of a redshift bin is smaller than the volume of the larger
subvolume). The Fisher constraint for these two cases are
σðfNLÞ ¼ 4.0, 1.2; σðb1Þ ¼ 0.02, 0.16 and σðb2Þ ¼ 0.03, 0.22.

FIG. 5. Fisher forecast ellipses for two of ðAPDðΔÞ; b1; b2Þ
marginalized over the other and b3 (which is not shown),
assuming SPHEREx survey volume. The different colored
ellipses represent different sets of subvolume types: (i) dashed
green—only one type of subvolume with radius R¼ 200Mpc=h,
(ii) solid blue—two sizes of subvolumes with R ¼ 200,
500 Mpc=h in equal numbers. The Fisher constraints for these
two cases are σðAPDðΔÞÞ¼ 1.57×106, 2.49 × 106; σðb1Þ ¼ 2.93,
10.2; σðb2Þ ¼ 2.96, 10.6. Note that while the two figures in the
bottom panel look very similar, they have slightly different 1 − σ
errors for b1 and b2.
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different than the case of flocalNL using integrated bispec-
trum in which we use all the power spectra in the
“position-dependent power spectrum.” In the equilateral
configuration, the total number of triangles used is
roughly given by

Nequil;Δ ≈ 2π2
�
kmax

kmin

�
4

:

If we use all the triangles possible, however, then the
rough count of the number of triangles becomes

Nall;Δ ≈ π2
�
kmax

kmin

�
6

:

Therefore, if we assume that the ratio of the primor-
dial contribution to the late-time contributions to the
integrated trispectrum do not change drastically when
considering nonequilateral configurations, we can esti-
mate the approximate improvement expected in the glocalNL
constraint when including all triangular configurations
by taking the square root of the ratio Nall;Δ=Nequil;Δ.
That is roughly one expects improvement of the order
Oðkmax=kminÞ; so, it is reasonable to expect an improve-
ment to σðglocalNL Þ by a factor of 10 than what is obtained
in our Fisher forecasts (with only the equilateral
configuration). In that case, σðglocalNL Þ ≈ 104 may be
possible with the SPHEREx survey using the posi-
tion-dependent bispectrum method, which is nearly a
factor of 10 better than the current best constraint from
Planck satellite.

VII. CONCLUSIONS

We have developed the “position-dependent bispec-
trum,” a higher-order extension of the position-dependent
power spectrum in Ref. [1]. We have shown that, when
applied to galaxy surveys, this new observable can open up
a new and efficient avenue of measuring the four-point
correlation functions in the squeezed limit; through the
method, the galaxy surveys can be an even more powerful
probe of primordial non-Gaussianities. We have shown that
the projected uncertainty of measuring glocalNL from a
SPHEREx-like galaxy survey is already comparable to

that of Planck result [σðglocalNL Þ ≈ 105]. But, this result is
obtained by using only a small subset (equilateral con-
figuration of the local bispectra) of all the available
triangles, and we expect an order-of-magnitude better
constraint by using all triangular configurations. For the
constraint on flocalNL , we find that the position-dependent
power spectrum with SPHEREx survey can provide
σðflocalNL Þ ≈ 1; this value is consistent with the previous
studies if one restricts to the squeezed limit of the galaxy
bispectrum.
One goal of constraining the position dependence of

the statistics like the power spectrum and bispectrum is
to bound the non-Gaussian cosmic variance that may
affect the translation between properties of the observed
fluctuations and the particle physics of the primordial
era. This cosmic variance arises from the coupling of
modes inside our Hubble volume (that we observe from,
for example, galaxy surveys) to the unobservable modes
outside. For scenarios with mode coupling of the local
strength (β ¼ 0 for the coupling of the bispectrum to
long-wavelength modes), the cosmic variance uncer-
tainty can be significant even for very low levels of
observed non-Gaussianity. For example, consider a
universe with a trispectrum of the sort given in
Eq. (17), that induces a bispectrum of the equilateral
type in biased subvolumes. As plotted in [18], if our
Hubble volume has values of fequilNL ¼ 10, gequilNL ¼ 5×103,
the value of fequilNL in an inflationary volume with 100
extra e-folds can be between 0 and 20 at 1 − σ
(68% confidence level). From Table II, this value of
gequilNL (¼ APDðΔÞ=2) is more than 2 orders of magnitude
below our rough estimate of what can be ruled out by a
SPHEREx-like survey, and so is unlikely to be reached
even by including more configurations of the bispec-
trum. If models that can generate a trispectrum like that
in Eq. (17) are physically reasonable (which is certainly
possible, although we have not yet investigated in
detail), it will be hard to conclusively tie a detection
of fequilNL to single-clock inflation, unless we have other
ways of quantifying the non-Gaussian cosmic variance.
We have made several approximations here in order

to convey the basic utility of the position-dependent
bispectrum, and there are many ways in which our

TABLE II. Fisher forecast results forAPDðΔÞ. In the last column, we have translated the constraint onAPDðΔÞ to the
constraint on the local-type primordial trispectrum amplitude glocalNL using glocalNL ¼ APDðΔÞ=6.

Survey R (Mpc=h) Nsubvolumes σðAPDðΔÞÞ σðglocalNL Þ
SPHEREx ½1; 2; 3; 4; 5� × 100 5775 1.85 × 106 3.08 × 105

SPHEREx 200, 500 3912 2.49 × 106 4.15 × 105

SPHEREx 100, 1000 1302 4.04 × 106 6.73 × 105

eBOSS LRGs 200, 500 408 1.80 × 107 3.00 × 106

eBOSS quasars 200, 500 1750 6.43 × 107 1.07 × 107
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analysis can be improved. In particular, we have not
included complimentary, and potentially very signifi-
cant, information from the scale-dependent bias, nor the
information from higher-order position-dependent power
spectrum correlations [e.g., hPðkÞxR δ̄2xRi], which would
further distinguish trispectra configurations. To obtain
the best constraint from a given galaxy survey (e.g.
SPHEREx that we adopted here), we should also extend
the position-dependent bispectrum to include more
general triangular configurations and optimize the selec-
tion subvolume sizes and numbers. We will address
these issues in future work.
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APPENDIX: TRISPECTRUM EXPRESSIONS

Here we list the expression for galaxy trispectrum
induced by late-time nonlinear gravitational evolution
and nonlinear bias, taken from [22]. We assume that the
primordial fluctuations follow Gaussian statistics. See
Eq. (29) for the full expression including the galaxy bias
parameters.

Tð1Þ ¼ Ta þ Tb ðA1Þ

Tð2Þ ¼ 4P1½FðsÞ
2 ðk2;k3ÞP2P3 þ FðsÞ

2 ðk2;−k23ÞP2P23 þ FðsÞ
2 ðk3;−k23ÞP3P23� þ 4P2½FðsÞ

2 ðk1;k3ÞP1P3

þ FðsÞ
2 ðk1;−k13ÞP1P13 þ FðsÞ

2 ðk3;−k13ÞP3P13� þ 4P3½FðsÞ
2 ðk1;k2ÞP1P2 þ FðsÞ

2 ðk1;−k12ÞP1P12

þ FðsÞ
2 ðk2;−k12ÞP2P12� þ ð3 cyc:Þ

Tð3Þ ¼ 4P1P2ðP13 þ P14Þ þ ð5 perm:Þ
Tð4Þ ¼ 6P1P2P3 þ ð3 cyc:Þ ðA2Þ

where

Ta ¼ 4P1P2½P13F
ðsÞ
2 ðk1;−k13ÞFðsÞ

2 ðk2;k13Þ þ P14F
ðsÞ
2 ðk1;−k14ÞFðsÞ

2 ðk2;k14Þ� þ ð5 perm:Þ
Tb ¼ 6FðsÞ

3 ðk1;k2;k3ÞP1P2P3 þ ð3 cyc:Þ ðA3Þ

where the symmetrized perturbation theory kernels are given by (see [20] for a review)

FðsÞ
2 ðk1;k2Þ ¼

5

7
þ 1

2

k1 · k2

k1k2

�
k1
k2

þ k2
k1

�
þ 2

7
ðk̂1 · k̂2Þ2 ðA4Þ

GðsÞ
2 ðk1;k2Þ ¼

3

7
þ 1

2

k1 · k2

k1k2

�
k1
k2

þ k2
k1

�
þ 4

7
ðk̂1 · k̂2Þ2 ðA5Þ

FðsÞ
3 ðk1;k2;k3Þ ¼

2k2123
54

�
k1 · k23

k21k
2
23

GðsÞ
2 ðk2;k3Þ þ ð2 cyc:Þ

�
þ 7

54

�
k123 · k23

k223
GðsÞ

2 ðk2;k3Þ þ ð2 cyc:Þ
�

þ 7

54

�
k123 · k1

k21
FðsÞ
2 ðk2;k3Þ þ ð2 cyc:Þ

�
: ðA6Þ

By directly taking the appropriate equilateral and soft limit jk4j ¼ q → 0, and after angular averaging, we can get the

integrated trispectrum iTð1Þ
R ðkÞ. For example, for the two terms in Tð1Þ, we obtain
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hTaðkÞiangle−avg ¼ P2
δðkÞPδðqÞ

�
585

147
−
20

21

∂ lnPδðkÞ
∂ ln k

�

hTbðkÞiangle−avg ¼ P2
δðkÞPδðqÞ

�
27

14
−

4

21

∂ lnPδðkÞ
∂ ln k

�

⇒ iTð1ÞðkÞ ¼ P2
δðkÞPδðqÞ

�
579

98
−
8

7

∂ lnPδðkÞ
∂ ln k

�
: ðA7Þ
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