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The dark sector is described by an additional barotropic fluid which evolves adiabatically during the
Universe’s history and whose adiabatic exponent γ is derived from the standard definitions of specific heats.
Although in general γ is a function of the redshift, the Hubble parameter and its derivatives, we find that our
assumptions lead necessarily to solutions with γ ¼ constant in a Friedmann-Lemaître-Robertson-Walker
universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like
nonrelativistic matter and the other depending on the value of the adiabatic index. This makes the model
particularly interesting as a way of simultaneously explaining the nature of both dark energy and dark
matter, at least at the level of the background cosmology. The ΛCDM model is included in this family of
theories when γ ¼ 0. We fit our model to supernovae Ia, HðzÞ and baryonic acoustic oscillation data,
discussing the model selection criteria. The implications for the early Universe and the growth of small
perturbations in this model are also discussed.
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I. INTRODUCTION

The present time cosmic expansion may be described in
terms of a late-time fluid which dominates over the other
contributions to the cosmic matter budget [1]. The simplest
assumption is based on the hypothesis that such a fluid is
perfect [2] and enters by hand the Einstein equations as the
source for speeding up the Universe today [3]. This
component (referred to as “dark energy”) is required to
have a negative equation of state in order to guarantee that
the Universe undergoes an accelerated phase at late times
[4], and the search for its nature is the focus of much current
research in cosmology. The minimal model for dark energy
is the one where the cosmological constant Λ [5] dominates
over the other species including pressureless matter [6].
Although appealing and now very well established, the
cosmological constant suffers from several shortcomings
and consequently the ΛCDM model cannot be considered
the complete explanation for the universe dynamics [8].1

It is for these reasons that models for an evolving dark
energy contribution have attracted considerable attention

over the past two decades [9]. There exist several explan-
ations for evolving dark energy, which range from modi-
fying Einstein’s gravity, including additional degrees of
freedom arising from quantum backgrounds, to proposing
different energy momentum tensors for this dark sector.2 In
every case, all evolving dark energy contributions should
be compatible with the laws of thermodynamics and be
described by perfect fluids, at least at the level of the
background cosmology [11]. The problem of describing
properties of equilibrium thermodynamics in terms of a
nonequilibrium dark energy fluid is one of the challenges of
modern day cosmology [12].
Within the framework of a homogeneous and isotropic

universe, this problem can be avoided by assuming that at
any given epoch, the fluid evolution is at least described by
a quasistatic process. More recently, it has been shown that
it is possible to formulate the thermodynamic quantities of
interest for a Friedmann-Lemaître-Robertson-Walker
(FLRW) cosmology [13]. In particular, it has been argued
that the role of specific heats in cosmology can be
confronted with observational data [14]. In doing so, an
investigation of the simplest assumptions on specific heats
leading to an evolving dark energy contribution has been
recently presented [15].
In this paper we show that by investigating how heat

capacities evolve at arbitrary redshifts it may be possible to
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1All conceivable approaches to dark energy are practically

indistinguishable at the level of the background, leading to a
degeneracy problem and only model-independent measures of
the evolution of the equation of state would indicate whether the
ΛCDM model really is the favored cosmological framework [7].

2For a representative but incomplete list, see for example [10]
and references therein.
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construct a cosmological model with an evolving dark
energy term, which is a natural extension to the standard
ΛCDM model.
In what follows, a few basic requirements for the heat

capacities are assumed:
(1) they evolve in time,
(2) they are related to the internal energy and enthalpy

of the Universe as required by standard thermody-
namics,

(3) they have been evaluated for all perfect fluids
making up the energy budget of the Universe,

(4) the process of thermal exchange is purely adiabatic,
so that the volume scales as the third power of the
scale factor.

Moreover, as a consequence of the above prescriptions, the
pressureless matter contribution turns out to be an emergent
phenomenon and the inferred dark energy contribution is
weakly interacting, behaving like a gaseous fluid source for
Einstein’s equations.
In particular, we assume that the adiabatic index γ may

take particular values, excluding regions in which it cannot
span. To this end, we try to give either a thermodynamic
explanation for dark energy or to formulate a cosmological
model from basic principles which take into account the
laws of thermodynamics. We explore both the cases of
varying and constant adiabatic indices and find cosmo-
logical models which differ slightly from the concordance
paradigm. In this way we provide a new approach in which
dark energy emerges as a consequence of the Universe’s
thermodynamics. We propose tight bands of available
values for the adiabatic index and describe how to deter-
mine the difference between our thermodynamic dark
energy contribution from a pure cosmological constant,
even at the level of background cosmology.
We investigate either the late-time or early-time universe

and we show that our model is compatible with the basic
requirements of the standard paradigm. We noticed that our
approach becomes a pure dark fluid contribution as the
adiabatic index runs to vanish. Finally, we compare our
approach with data, by means of supernovae Ia (SNIa),
HðzÞ and baryonic acoustic oscillation (BAO) data sets.
Our numerical results are compatible with the standard
model, showing that our paradigm works fairly well in
describing the Universe’s expansion history at different
stages of the Universe’s evolution. Slight departures are
accounted for in the shift of linear perturbations, whose
corresponding plots are inside the 10% of discrepancies
with respect to the ΛCDM model.
The paper is structured as follows. In Sec. II, we consider

the properties of heat capacities in the context of a
homogeneous and isotropic universe. We describe how
to build up physical definitions for them and how to obtain
the corresponding adiabatic indices, emphasizing how to
understand their physical meaning. In Sec. III, we describe
the cosmological consequences of inducing dark energy by

examining either the case of constant or variable indices.
We discuss the case of a purely gaseous dark energy
contribution and how to obtain the liming case of a dark
fluid as γ → 0. In Sec. VI, we investigate some conse-
quences of our approach in the high redshift regime, while
in Sec. IV, we consider two fitting procedures involving
supernova and BAO data in order to obtain observational
constraints for our model. Finally, in Sec. VII, we present
our conclusions and give some perspectives for future
work.

II. HEAT CAPACITIES IN OBSERVABLE
COSMOLOGY

In this section, we apply standard thermodynamics to the
case of a homogeneous and isotropic universe in order to
obtain expressions for the specific heats. The thermody-
namic laws can be used either in a classical or quantum
regime, assuming that the Universe does not allow for the
exchange of heat with the environment. It follows that the
simplest choice for modeling the Universe takes into
account that its evolution is purely adiabatic. While matter
creation may occur within this framework [16], we do not
assume this possibility in our approach.
In the case of a pure FLRW line element

ds2 ¼ dt2 − aðtÞ2
�

dr2

1 − kr2
þ r2ðsin2θdϕ2 þ dθ2Þ

�
; ð1Þ

the dynamics of the Universe obeys the Friedmann
equations,

H2 ¼ _a2

a2
¼ 8πG

3
ρþΩkH2

0

a2
; ð2aÞ

_H þH2 ¼ ä
a
¼ −

4πG
3

ðρþ 3PÞ; ð2bÞ

where dots represent derivatives with respect to the cosmic
time t.
From Eq. (2b), it is easy to show that the present day

dynamics of the Universe is sourced by a perfect fluid
whose equation of state is negative, to guarantee that ä > 0.
In general, the gravitational field is determined by the

same source at all stages of its evolution, so that in order to
guarantee that at both early and late times the source is the
same perfect fluid, one is forced to assume that it behaves
like a thermodynamic system [17], whose evolution is
described in terms of the redshift. Hence, we expect the
laws of thermodynamics to hold and to be mathematically
consistent with the FLRW universe [18].
However, the problem with the standard requirements

imposed by thermodynamics in a FLRW universe is that it
is difficult to construct a self-consistent definition of
temperature, because eventual departures from the back-
ground radiation temperature must be associated with
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cosmological fluids [19]. For example, it has been recently
proposed that the specific heats of the Universe, given by

CV ¼ ∂U
∂T ; ð3aÞ

CP ¼ ∂h
∂T ; ð3bÞ

are compatible with FLRW cosmology, but T needs to be
fixed to a precise value inside viable intervals. In general, a
possible dark energy temperature may evolve as the
Universe expands, so that T could be considered as a
function of the redshift rather than a constant. For these
reasons, a direct comparison of Eqs. (3a) and (3b) may be
affected by theoretical shortcomings on its validity.
In principle, both the internal energy and enthalpy are

functions of the volume, pressure and temperature. In this
case, one naturally obtains

CV ¼ 1

T 0

�
h0 −

�∂U
∂T

�
V

�∂P
∂S

�
V
V 0 − VP0

�
; ð4aÞ

CP ¼ CV þ 1

T 0

��∂U
∂T

�
V

�∂P
∂S

�
V
V 0 þ VP0 −

�∂h
∂P

�
T
P0
�
:

ð4bÞ

However, since all state variables evolve in terms of the
redshift, it seems natural to assume the simplest hypothesis
in which both energy and enthalpy are functions of T only.
To do so, it is possible to assume U ¼ ρV and
h ¼ ðρþ PÞV, where V is the volume of the Universe.
In this way, one splits the functional dependence of U, h in
terms of V, assuming that ρ ¼ ρðTÞ and P ¼ PðTÞ. The
standard definition of the volume is V ¼ V0a3 [20], which
represents the simplest assumption reflecting both early and
late times of the Universe’s evolution. Even though its
introduction seems natural, other approaches suggest alter-
native forms of the volume, for example an apparent
horizon volume definition V ∝ r3 ¼ V0H−3 would repro-
duce a causal region where the entropy becomes ∝ H−2

[21]. Moreover, employing the weak energy conditions

Tμνkμkν ≥ 0; ð5Þ

ρ ≥ 0; ð6Þ

ρþ P ≥ 0; ð7Þ

one finds that both U and h must be positive definite.
Under the simplest hypothesis, in which dark energy

weakly interacts, state functions depend on the temperature
only and V ∝ a3; one simply obtains

CV ¼ 3V0

8πGT 0ð1þ zÞ4 ½2ð1þ zÞHH0 − 3H2 þ Ωkð1þ zÞ2�;

ð8aÞ

CP ¼ CV þ V0

T 0ð1þ zÞ3
�
P0 −

3P
1þ z

�
; ð8bÞ

with no restrictions on their evolutions for different epochs
of the evolution of the Universe. Here primes denote
derivatives with respect to redshift z. The above forms
of the heat capacities are not easy to compare to cosmic
predictions, due to the complexity of their dependence on
H and its derivatives. One intriguing way to investigate
their physical consequences is to frame CV and CP in terms
of observable quantities. In order to achieve this, let us
consider expanding the scale factor aðtÞ [22],

aðtÞ ∼ 1þH0Δt −
q0
2
H2

0Δt2 þ
j0
6
H3

0Δt3 þ � � � ; ð9Þ

where

H ¼ 1

a
da
dt

; ð10aÞ

q ¼ −
1

aH2

d2a
dt2

; ð10bÞ

j ¼ 1

aH3

d3a
dt3

; ð10cÞ

and since [23]

H ¼ H0

�
1þ H0

H0

����
z¼0

zþ H00

2H0

����
z¼0

z2 þ � � �
�
; ð11Þ

by comparing Eqs. (11) with Eq. (11), we get [24]

H0 ≡ 1þ q
1þ z

H; H00 ≡ j − q2

ð1þ zÞ2H; ð12Þ

and by virtue of Eqs. (9), we obtain

CP ¼ 2V0

T 0
ðj − 1ÞH2 þ ΩkH2

0ð1þ zÞ2
ð1þ zÞ4 ; ð13aÞ

CV ¼ 3V0

T 0
ð2q − 1ÞH2 þ ΩkH2

0ð1þ zÞ2
ð1þ zÞ4 : ð13bÞ

The above expressions give us direct information on the
behaviour of dark energy in cases where one is able to
describe the temperature as a function of redshift z. On the
other hand, only the adiabatic index

γ ≡ CP

CV
ð14Þ
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is necessary to describe the cosmological evolution
of our model. Using (13b) and (13b), the adiabatic index
becomes

γ ¼ 2½ðj − 1ÞH2 þ ΩkH2
0ð1þ zÞ2�

3½ð2q − 1ÞH2 þ ΩkH2
0ð1þ zÞ2� : ð15Þ

Notice that there exists a solution for which CP ¼ 0 and
CV ¼ 0. ForΩk ¼ 0, this occurs when q → 1=2 and j → 1.
In general, this could happen in standard cosmology at a
redshift z ≫ 1, under the hypothesis of de Sitter contribu-
tion to dark energy.
Another interesting fact is how γ behaves at the transition

redshift ztr [25], i.e., when dark energy starts to dominate
over matter. Assuming for simplicity that Ωk ¼ 0, the
adiabatic index becomes

γtr ¼ −
8πGð1þ ztrÞP0

3H2

����
z¼ztr

¼ ð1þ ztrÞ
d lnP
dz

����
z¼ztr

; ð16Þ

where we have made use of P ¼ 8πGH2ð2q − 1Þ which
is a direct consequence of Eq. (2b), and qðztrÞ ¼ 0. From
the above considerations, it is easy to see that the
expression (16) is valid for any cosmological model.
This heuristically shows that the adiabatic index is
intimately related to the variation of the pressure. As a
consequence, via the dynamics of the Friedmann equa-
tions, this determines how dark energy evolves and how
possible departures from the standard concordance model
may arise. This issue is addressed in the next sections, in
which we investigate the consequences of Eq. (15) in
cosmology.

III. THERMODYNAMICS OF ADIABATIC
DARK ENERGY

Standard thermodynamics states that the combination of
the first and second principles leads to

TdS ¼ dðρVÞ þ PdV ¼ d½ðρþ PÞV� − VdP; ð17Þ

and since ∂2S
∂T∂V ¼ ∂2S

∂V∂T, one gets dP ¼ ðρþ PÞdT=T. It is
therefore easy to demonstrate that

dS ¼ d

�ðρþ PÞV
T

�
; ð18Þ

where any arbitrary constant is assumed to be 0 for
simplicity. The basic requirements of thermodynamics
suggest that S≡ Vðρþ PÞ=T. Taking the combination of
the first and second Friedmann equations, one gets

_ρþ 3HðPþ ρÞ ¼ 0; ð19Þ

which can be recast as dðρVÞ þ PdV ¼ 0.

The conservation law, by virtue of Eq. (18), becomes

d

�ðρþ PÞV
T

�
¼ 0; ð20Þ

leading to the fact that S ¼ const. This is equivalent to a
thermodynamic system in which there is no heat exchange,
i.e., is adiabatic.
We postulate a model in which the Universe is filled with

an adiabatic fluid characterized by an adiabatic index γ,
which, in principle, is a function of redshift as evident from
(15), and an external nonrelativistic matter component

ΩðextÞ
m , which can be chosen arbitrarily in a way that will

become clearer later.
The complete system, rewritten in terms of the

redshift, is

H2

H2
0

¼ 8πGρ
3H2

0

þ ΩðextÞ
m ð1þ zÞ3 þ Ωkð1þ zÞ2; ð21aÞ

ð1þ zÞHH0 −H2 ¼ 4πG
�
Pþ ρ

3
þ ΩðextÞ

m H2
0ð1þ zÞ2

�
;

ð21bÞ

P ¼ P0V−γ ¼ P0ð1þ zÞ3γ; ð21cÞ

γ ¼ CP

CV
¼ ðρ0 þ P0ÞV þ ðρþ PÞV 0

ρ0V þ ρV 0 : ð21dÞ

From (21a) and (21b) we can simplify (21d) to obtain

γ ¼ ðρ0 þ P0ÞV þ ðρþ PÞV 0

ρ0V þ ρV 0 ¼ −
P0V
PV 0 ¼

ð1þ zÞP0

3P
:

ð22Þ

On the other hand, taking (21c) gives

ð1þ zÞP0

3P
¼ γ þ ð1þ zÞγ0 lnð1þ zÞ: ð23Þ

Clearly, this is compatible with (22) only for γ0 ¼ 0, that is,
γ ¼ constant. In this case, it is easy to see that ρ is given by

ρðzÞ ¼
�
ρ0 þ

P0

1 − γ

�
ð1þ zÞ3 − P0

1 − γ
ð1þ zÞ3γ: ð24Þ

First of all, we notice that there appears a term scaling as
ð1þ zÞ3, which corresponds to nonrelativistic matter; this
term can, in principle, be identified with cosmological
dark matter, but not necessarily (see below). Moreover,
there appears a second term which instead scales as
ð1þ zÞ3γ . Choosing γ ¼ 0 one recovers the dark fluid
[26], whereby the corresponding term assumes the role of
a pure Λ term.
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To construct our model, we have used general thermo-
dynamic notions to describe a universe filled with an
adiabatic fluid and a standard nonrelativistic matter com-
ponent. Given the standard definitions of CP, CV , γ,
Eq. (21c) essentially defines our models. We have made
no assumptions about the cosmological evolution of the
adiabatic fluid beside (21c) and adiabaticity, and find
that there is both an emergent dark energy and a dark
matter component. In other words, postulating an addi-
tional adiabatic fluid with rather standard thermodynamical
properties leads to the appearance of two separate compo-
nents, one evolving as nonrelativistic matter (dark matter)
and the other as a (dynamical) dark energy component
with ρ ∼ ð1þ zÞ3γ .
We stress that this is not merely a different formulation of

the FLRW cosmology, but a new model entirely.
Solutions with γ evolving with redshift are, in principle,

possible, although in order for this to be possible one has to
relax at least one condition between (21c) and (21d).
For instance, one could try defining the polytropic

behavior using P ∼ ργ instead of P ∼ V−γ, which is strictly
related to the approach of Chaplygin gas models [27].
From (21c) and (24) we find that the equation of state

w≡ P=ρ of the adiabatic fluid evolves as

wðzÞ≡ PðzÞ
ρðzÞ ¼ −

ð1 − γÞw0ð1þ zÞ3γ
w0ð1þ zÞ3γ − ð1 − γ þ w0Þð1þ zÞ3 :

ð25Þ

Defining

Ωm ≡ 8πG
3H2

0

�
ρ0 þ

P0

1 − γ

�
þΩðextÞ

m ; ð26Þ

we can write the Hubble parameter in the simple form

HðzÞ2
H2

0

¼ Ωmð1þ zÞ3 þ Ωkð1þ zÞ2

þ ð1 − Ωm −ΩkÞð1þ zÞ3γ: ð27Þ

The analysis presented in Sec. IV is performed using Ωm,
Ωk and γ as the independent parameters. The parameter Ωm
describes the total matter content of the Universe, be it
external (baryons and/or dark matter) or due to the
evolution of the polytropic fluid under study. As one can
see from (26), fixing Ωm and γ still leaves freedom in

choosing the value of ΩðextÞ
m and w0 ¼ P0=ρ0, so essentially

one can insert the desired amount of external nonrelativistic
matter by hand. This is a very interesting result because by

choosing any value of ΩðextÞ
m , the “right” amount of dustlike

fluid can automatically be accounted for. The most relevant
possibilities are

(i) ΩðextÞ
m ¼ Ωm, that is,

wðzÞ ¼ w0 ¼ γ − 1: ð28Þ
We are basically tuning our fluid so that its dust
component vanishes. In this picture, the new fluid
only contributes to dark energy, and baryons and
CDM are assumed as external and independent
components. Moreover, the dark energy component
has constant equation of state w ¼ γ − 1. Notably, in
this case our model is equivalent to ωCDM.

(ii) ΩðextÞ
m ¼ Ωb: in this case, the Universe is filled with

just baryons and the new fluid, which is mimicking
both dark energy and cold dark matter. For fixed γ,
Ωm and Ωb, we must choose P0 so that

8πG
3H2

0

�
ρ0 þ

P0

1 − γ

�
¼ Ωm −Ωb ≡ΩCDM; ð29Þ

which corresponds to

P0 ¼ ðγ − 1Þ
�
ρ0 −

3H2
0

8πG
ΩCDM

�
: ð30Þ

Let us stress that these two possibilities, and indeed any

other combination of P0 and ΩðextÞ
m resulting in the same

Ωm, do not need separate analyses. As shown in (27), Ωm
and γ are the only parameters associated to the fluid
relevant for cosmological fits.

IV. COSMOLOGICAL CONSTRAINTS

We test our model using a Metropolis-Hastings
Monte Carlo code using L ¼ expð−χ2tot=2Þ as the like-
lihood function, with

χ2tot ¼ χ2SN þ χ2H þ χ2BAO;

equipped with a Gelman-Rubin convergence diagnostic.
We use several cosmological data sets: SNIa data from the
Union2.1 compilation [28], HðzÞ data (as quoted in [29]),
and BAO [30–32].

A. Differential age and HðzÞ data
Independent reconstructions of Hubble measurements

constitute a novel approach to track the evolution of the
Universe without invoking a model a priori. In particular,
employing massive early-type galaxies as cosmic chro-
nometers, it would be possible to match astronomical and
cosmological measurements to evaluate the differential age,
i.e., the ratio dt

dz. Since, differentiating the scale factor
definition with respect to the redshift, one obtains

dz
dt

¼ −ð1þ zÞHðzÞ; ð31Þ
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it is possible, knowing the redshift at which the measure has
been performed, to evaluate H at different stages of the
Universe’s evolution.
We compare HðzÞ data with the exact solution (27). The

χ2 is

χ2H ¼
X
i

½HðmodelÞðziÞ −HðexpÞðziÞ�2
σ2i

: ð32Þ

B. Supernovae Ia data

We use SNIa data from the Union2.1 catalogue, con-
taining 580 data points. Type-Ia supernovae observations
have been extensively employed during the last few
decades for cosmological model parameter fitting.
Supernovae Ia are widely thought to be standard candles,
i.e., objects whose luminosity curves are intimately related
to distances.3 The Union2.1 catalogue is built up to extend
previous versions, with the advantage that the whole
systematics is mostly reduced. So one can assume that
systematic errors do not influence numerical outcomes.
Moreover, errors on the redshift measurements are assumed
to be negligibly small.
The observable quantity associated to SNIa is the

distance modulus, namely the difference between the
apparent magnitude m and absolute magnitude M of each
object,

μðzÞ≡mðzÞ −M ¼ 5log10
dLðzÞ
10 pc

ð33Þ

where

dLðzÞ ¼
ð1þ zÞ
H0

×

8>>><
>>>:

1ffiffiffiffi
Ωk

p sin ½ ffiffiffiffiffiffi
Ωk

p
DðzÞ� Ωk > 0

DðzÞ Ωk ¼ 0

1ffiffiffiffiffi
jΩk

p
j sinh ½

ffiffiffiffiffiffiffiffiffijΩkj
p

DðzÞ� Ωk < 0

ð34Þ

and

DðzÞ ¼ H0

Z
z

0

1

Hðz0Þ : ð35Þ

However, since M is not known with sufficient accuracy
from theoretical arguments, Union2.1 data are only reliable
up to a normalization,

μobsðz;MÞ ¼ μUnion2.1ðzÞ þM; ð36Þ

where μUnion2.1 is the value reported in the Union2.1
compilation, and M depends both on the absolute magni-
tude of supernovae Ia and on H0, but it does not affect the
expansion history HðzÞ=H0. It has to be treated as a
nuisance parameter, fitted along with the other cosmo-
logical parameters and marginalized over.
The distance modulus for a given redshift and set of

parameters is computed via numerical integration using
(27). The total χ2SN is computed analogously to (32),

χ2 ¼
X
i

½μthðziÞ − μobsðzi;MÞ�2
σ2i

: ð37Þ

C. BAO

BAO are observed in large scale structure (LSS), and are
the result of sound waves propagating in the early Universe.
In recent years, they have provided us with another relevant
data set for cosmological fits. Measuring the position of the
BAO peak in the LSS correlation function corresponds to
measuring a combination of angular distance and lumi-
nosity distance, namely

D3
VðzÞ≡ d2LðzÞz

ð1þ zÞ2HðzÞ : ð38Þ

This quantity tracks the comoving volume variation at a
given redshift.
We consider the two BAO observables

AðzÞ≡H0DVðzÞ
ffiffiffiffiffiffiffi
Ωm

p
z

; dzðzÞ≡ rsðzdragÞ
DVðzÞ

; ð39Þ

where rsðzdragÞ is the comoving sound horizon at the
baryon drag epoch. This quantity needs to be calibrated
with cosmic microwave background data assuming a
fiducial cosmological model, with the latest data giving
[33,34]

zdrag ¼
�
1020.7� 1.1 WMAP9
1059.62� 0.31 Planck

rsðzdragÞ

¼
�

152.3� 1.3
147.41� 0.30

ð40Þ

In this sense, BAO data are slightly model dependent, since
acoustic scales depend on the redshift (drag time redshift),
inferred from first order perturbation theory assuming a
given cosmology. However, the same data would still be
reliable when studying any realistic cosmology which
differs from ΛCDM only at relatively low redshifts. For
the fits, we thus use a Gaussian prior using the Planck
best value.
As for the case of SN data, the theoretical values of AðzÞ

of dz are computed via numerical integration using the

3However, it should be stressed that SNIa absolute magnitudes
can be neither directly measured nor inferred from theoretical
considerations with arbitrary accuracy. See also below.
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exact expression for the Hubble parameter (27). We use the
BAO data shown in Table I. Not all data are uncorrelated. In
fact, the covariance matrix (symmetric, we only quote the
upper diagonal) for the WiggleZ data at z ¼
ð0.44; 0.6; 0.73Þ is [32]

C−1 ¼

0
B@

1040.3 −807.5 336.8

3720.3 −1551.9
2914.9

1
CA: ð41Þ

The total χ2 for BAO data is

χ2BAO ¼ χ26dFGS þ χ2SDSS−III þ χ2WiggleZ; ð42Þ

with

χ2BAO;SDSS�III ¼
X�

dobsz − dthz ðziÞ
σd

�
2

;

χ2WiggleZ ¼ ðAobs −AthÞTC−1ðAobs −AthÞ: ð43Þ

D. Results

Here we use flat priors on the fitting parameters,
Gaussian priors on rsðzdragÞ as mentioned above, and we
marginalize over the nuisance parameter M. We show
results for the broad prior Ωk ¼ Uniformð−1; 1Þ and Ωk ¼
0 in Fig. 1. The corresponding means, 95% confidence
levels and best fits are shown in Table II. We can see that
results are compatible with γ ¼ 0, which corresponds to the
ΛCDM or dark fluid [26] solution, and with Ωk ¼ 0 which
is assumed in many cosmological analyses. As expected, γ
is constrained to small values, roughly jγj≲ 0.25 at 2σ.
Considering only the χ2 value, our modified cosmology

appears to be only slightly preferred over the standard one,
as one can see comparing the left and right tables in
Table II. These considerations suggest that it would be
useful to consider a a discussion on model selection criteria
for our approach and the concordance model. See the next
section for details.

V. MODEL SELECTION CRITERIA

For much of the community, the ΛCDM paradigm is the
favorite framework to fit cosmic data, due to its simplicity

TABLE I. BAO data used in the analysis. For each experiment,
we quote the observable more suitable for the analysis.

Experiment z dz � σd AðzÞ � σA References

6dFGS 0.106 0.336� 0.015 [30]
SDSS-III 0.32 0.1181� 0.0023 [31]

0.57 0.0726� 0.0007
WiggleZ 0.44 0.474� 0.034 [32]

0.6 0.442� 0.020
0.73 0.424� 0.021

FIG. 1. 1σ and 2σ contours corresponding to γ ¼ 0 (ΛCDM) (left), and to our model with γ free (right). See also Table II.
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and the fact that the only free parameters are Ωm and Ωk.
However, a large number of different possibilities go
beyond this choice and therefore one needs to determine
methods able to compare the range of different competing
cosmological models. Two statistical model-independent
methods are offered by the so-called selection criteria,
aimed at determining the best model by considering the
combination of χ2 and degrees of freedom. This turns out to
be important, since it is possible that viable models with
higher orders of parameters provide higher chi squares as
well, which do not have to be considered as disfavored at all
compared with the standard model.
Three suitable selection criteria are the Akaike informa-

tion criterion (AIC), the corrected AIC (AICc) and the
Bayesian information criterion (BIC) [35]. These tests are a
standard diagnostic tool [36] of regression models [37].
They are defined as

AIC≡ −2 lnLþ 2d; ð44aÞ

AICc≡ AICþ 2dðdþ 1Þ
N − d − 1

; ð44bÞ

BIC≡ −2 lnLþ 2d lnN; ð44cÞ
where

L ¼ expð−χ2=2Þ ð45Þ
is the chosen likelihood function, d is the number of model
parameters andN is the number of data points, which in our
case is

N ¼ NSN þ NH þ NBAO ¼ 580þ 28þ 6 ¼ 614: ð46Þ
The basic requirement is to essentially postulate two
distribution functions, namely fðxÞ and gðxjθÞ. Here,
fðxÞ is taken to be the exact distribution function, whereas

gðxjθÞ approximates the former. The way of approximating
this makes use of a set of parameters which has been
denoted by θ. Thus, there exists only a set of θmin, which
minimizes the difference between gðx; θÞ and fðxÞ [38].
It follows that the AIC, AICc and BIC values for a single

model are meaningless since the exact model function fðxÞ
is unknown. For those reasons, one is only interested in the
differences

ΔX ¼ Xγ − XΛCDM X ¼ AIC;AICc;BIC: ð47Þ

These quantities must be evaluated for the whole set of
models involved in the analysis.
Results are shown in Table III. The AIC(c) tests indicate

a slight preference for ΛCDM, whereas the BIC test
suggests a very strong preference. Indeed, the BIC has a
much stronger penalty for extra parameters, although a pure
Bayesian evidence analysis sometimes gives results more
in line with the AIC(c).

VI. CONSEQUENCES ON EARLY-TIME
COSMOLOGY

Let us now investigate how the correction due to our dark
energy model affects the Universe’s dynamics at high
redshifts. To do so, we study the impact of the modified
background evolution on density perturbations, which
likely represent the most suitable framework in which
one can naively check the goodness of any cosmological
model at high redshifts. The perturbation equations, in their
coarse-grained form, simply read

δ̈þ 2H _δ − 4πGρmδ ¼ 0: ð48Þ

The so-called growth evolution, intimately related to δ, may
be easily handled by means of the scale variable ln a. One
can parametrize the dark energy effects using the growth
variable

DðaÞ ¼ δ

a
ð49Þ

which satisfies

D00 þD0
�
5

a
þ ðlnE2Þ0

2

�
þD

a

�
3

a

�
1 −

Ωm

2E2a3

�
þ ðlnE2Þ0

2

�

¼ 0; ð50Þ

TABLE III. Comparison between ΛCDM and our model using
three criteria: AIC, AICc, and BIC. See the text for details.

Model χ2best fit Δd ΔAIC ΔAICc ΔBIC

ΛCDM 593.270 0 0 0 0
γ 592.984 1 1.714 1.721 12.554

TABLE II. Results for our model for ΛCDM, i.e., γ ¼ 0 (left)
and γ generic (right). See also Fig. 1.

Parameter Prior 95% limits Best fit

Ωm Uniform(0,1) 0.283þ0.040
−0.037 0.2843

Ωk Uniform(-1,1) −0.009þ0.090
−0.082 −0.0174

γ ¼ 0

χ2tot 593.270
ΛCDM (γ ¼ 0)

Parameter Prior 95% limits Best fit

Ωm Uniform(0,1) 0.287þ0.041
−0.039 0.2865

Ωk Uniform(-1,1) −0.06þ0.20
−0.22 −0.05483

γ Uniform(-1,1) 0.05þ0.23
−0.24 0.05877

χ2tot 592.984
γ ≠ 0
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where a prime denotes differentiation with respect to the
scale factor a, and E≡H=H0. We assume the boundary
conditions DðaLSSÞ ¼ 1 and D0ðaLSSÞ ¼ 0, with aLSS ¼
ð1þ zLSSÞ−1, i.e., the last scattering surface scale factor,
approximated by zLSS ≈ 1089.
The growth history for a given γ can be compared with

the standard model, i.e., ΛCDM, keeping in mind that any
viable cosmological models should not yield deviations
exceeding about 10%.
Analogously, one can define the growth index as

f ¼ d ln δ
d ln a

; ð51Þ

which enables one to rewrite the perturbation equations as

f0 þ f2

a
þ
�
2

a
þ ðlnE2Þ0

2

�
f −

3Ωm

2E2a4
¼ 0; ð52Þ

with the boundary condition fðaLSSÞ ¼ 1. Furthermore, to
corroborate the results on the shift parameters, we also plot
the relative deviation

ΔH ≡HΛ −Hmodel

HΛ
ð53Þ

between the Hubble rates of the ΛCDM model (γ ¼ 0) and
that corresponding to a general γ.
Plots of D, f and ΔH for a few values of γ, compared

with the ΛCDM predictions, are shown in Fig. 2. As we can
see from numerical results, ΔH differs substantially from 0
only at intermediate redshifts (0.1≲ z≲ 10), peaking
around z ∼ 1. At large redshifts, the dark energy component
is completely negligible, and our model is indistinguishable
from ΛCDM. Naturally, we also have ΔH → 0 as z → 0
because we require that Hðz → 0Þ ¼ H0 for any model.
D and f start departing from the standard ΛCDM

solution around z ∼ 1, after which they follow the standard
evolution but with a normalization factor with respect to the
standard cosmological scenario.

All curves for ΔH, D and f fit within the �10% bands
with the exception of the γ ¼ 0.3 solution in the plot for f.
Notice that the 95% limits from the numerical fits of
Table II constrain jγj≲ 0.25 so this result does not
effectively reduce the allowed range of values for γ.

VII. DISCUSSION AND CONCLUSIONS

We have developed a simple dark energy model starting
from an adiabatic fluid which evolves following rather
standard thermodynamic considerations. The adiabatic
index γ is expressed as a specific function of redshift
and the Hubble parameter. In a homogeneous and isotropic
universe, solutions give γ ¼ constant, but we would expect
this to change if one or more of the assumptions are relaxed.
In the simplest case of P ∝ V−γ, the resulting fluid is the

combination of two effective fluids evolving differently
throughout the history of the Universe: a component
scaling as ð1þ zÞ3, i.e. as nonrelativistic matter, and
another scaling as ð1þ zÞ3γ , which corresponds to a
dynamical dark energy term. The ΛCDM paradigm is
included in our model, by taking γ ¼ 0. We are free to
choose P0, ρ0 and w0 according to the desired amount of
dark energy/dark matter and the redshift evolution of dark
energy.
Although we do need two different numbers, e.g. ρ0; γ, in

order to specify the relative abundances of dark energy/dark
matter, they are manifestations of the same adiabatic fluid,
about whose cosmological evolution we have made no
a priori assumption.
We fitted the model using SNIa, HðzÞ, and BAO data,

and found the corresponding constraints on the model
parameters. As expected, the ΛCDM solutions fit perfectly
within the observational bounds, and are actually preferred
by model selection criteria despite the slight improvement
in terms of total χ2 for our model.
We also performed an analysis of the evolution of density

perturbations at high redshifts and found that reasonable
values of γ are well within the allowed discrepancies from
the standard cosmological scenario derived from the late
universe constraints.

FIG. 2. Comparison between ΛCDM (black solid lines) and our model, for a few values of γ: −0.3 (dotted), −0.15 (dot-dashed), 0.15
(dashed, small) and 0.3 (dashed, large). The grey bands correspond to �10% departures from ΛCDM. The plotted quantities are ΔH
[Eq. (53)], D [Eq. (49)], and f [Eq. (52)]. For definiteness, we have taken Ωm ¼ 0.3 and Ωk ¼ 0.
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In future works, it would be interesting to relax the
hypothesis P ∝ V−γ and explore the consequences on
cosmology. Moreover, it would be useful to constrain
the heat capacities together with the adiabatic index, giving
a possible explanation of the role played by the
temperature.
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