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We propose a novel scenario to produce abundant primordial black holes (PBHs) in new inflation which
is a second phase of a double inflation in the supergravity framework. In our model, some preinflation
phase before the new inflation is assumed and it would be responsible for the primordial curvature
perturbations on the cosmic microwave background scale, while the new inflation produces only the small
scale perturbations. Our new inflation model has linear, quadratic, and cubic terms in its potential and PBH
production corresponds with its flat inflection point. The linear term can be interpreted to come from a
supersymmetry-breaking sector, and with this assumption, the vanishing cosmological constant condition
after inflation and the flatness condition for the inflection point can be consistently satisfied.
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I. INTRODUCTION

The primordial black holes (PBHs), which might be
formed in the early radiation dominated universe, have
attracted scientists for more than 40 years and are recently
refocused on more and more. Theoretically they can be
formed by the gravitational collapse of the Hubble patch if
the mean energy density in that patch is higher by Oð0.1Þ
than its surroundings [1–3]. One of the main motivations of
PBHs is dark matter (DM). Since they behave as a matter
component, they can be a main component of DM without
introducing other elementary particles. However PBHs are
still not detected by any observation, and their abundance is
constrained [4–11], except in a mass window of 1021−24 g,
where PBHs can still account for all dark matter. Some
recent attempts to close this window relied on assumptions
that are difficult to justify. For example, the existence of
neutron stars in globular clusters could help constrain the
remaining window, if the density of dark matter exceeded
the average by more than 2 orders of magnitude [12].
However, observations of globular clusters show no evi-
dence of significant dark matter content in such systems
[13,14]. Furthermore, it was suggested that tidal deforma-
tion of a neutron star could lead to an efficient energy
dissipation and capture of a black hole, leading to stronger
constraints [15], but such energy losses are uncertain, and
they are likely to be suppressed for realistic parameters and
velocities in excess of the speed of sound [16,17], so that no
new constraints can be derived, and the window for PBH
dark matter remains open.

As one of the series of the PBH production works,
several authors have studied the PBH formation in the
double inflation in the supergravity framework [18–24].1
Following this stream, we propose a novel new inflation
model as the second phase of the double inflation, where
PBHs can be produced on mass ∼1022 g enough to con-
stitute the bulk of DM in this paper.2 As the preinflation
before the new inflation, which is responsible for the
curvature perturbations on the cosmic microwave back-
ground (CMB) scale, any specificmodel is not required to be
supposed. The potential of our new inflation model consists
of the linear, quadratic, and nth moment terms and we found
that PBHs can be produced on ∼1022 g enough to be a main
component of DM. Our model is based on the discrete R
symmetry Z2nR and we find that only the n ¼ 3 case could
produce the desired spectrum of PBHs. It is remarkable that
the linear term can be consistently interpreted to come from
the supersymmetry (SUSY)-breaking sector in the case of
n ¼ 3 under the flatness condition at the inflection point and
the vanishing cosmological constant condition. While we
propose the abundant PBHs of∼1022 g asDM,we canmake
another peak in the PBHmass spectrum on∼30 M⊙. Those
PBHs would have contributed to gravitational waves which
were recently detected by the LIGO/Virgo collaboration
[25,26] as discussed in [27–30].
The rest of this paper is organized as follows. In Sec. II,

we describe the constitution method of new inflation in
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1For other PBH production models, see the recent review of
Ref. [11].

2In the supersymmetric framework, the lightest supersymmet-
ric particle (LSP) can be a candidate of weakly interacting
massive particle DM. Here we assume that the R parity is broken
and the LSP is not stable; then we need PBH DM instead.
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supergravity and introduce our model. Then we concretely
evaluate the current PBH abundance in Sec. III. We make
our conclusions in Sec. IV. In the Appendix, we describe
the treatments for the modes which exit the horizon at near
the beginning of the second new inflation.

II. NEW INFLATION WITH INFLECTION
POINT IN SUPERGRAVITY

Let us briefly review the composition of new inflation in
supergravity first. Here we adopt the model proposed in
Ref. [31,32]. In this model, we assume a discrete R
symmetry Z2nR which is broken down to a discrete Z2R
during and after the inflation. The inflaton superfield ϕ has
an R charge 2. These assumptions lead the following
effective superpotential at the leading order,

WðϕÞ ¼ v2ϕ −
g

nþ 1
ϕnþ1: ð1Þ

Here and hereafter we use the Planck unitswhere the reduced
Planck mass Mp ≃ 2.4 × 1018 GeV is set to be unity. The
R-invariant effective Kähler potential can be written as

KðϕÞ ¼ jϕj2 þ κ

4
jϕj4 þ… : ð2Þ

For these super andKähler potentials, the inflatonpotential in
supergravity is given by

VðϕÞ ¼ eKðDϕWKϕϕ̄ðDϕWÞ� − 3jWj2Þ; ð3Þ
whereDϕW ¼ Wϕ þ KϕW. Defining the inflaton by the real

part of ϕ, namely φ ¼ ffiffiffi
2

p
Reϕ, it can be expanded as

VðφÞ≃ v4 −
κ

2
v4φ2 −

g
2

n
2
−1 v

2φn þ g2

2n
φ2n; ð4Þ

and the slow-roll inflation can be driven either by the
quadratic or nth moment term. Also it has a negative

minimum at φmin ≃
ffiffiffi
2

p ðv2g Þ
1
n as

hVi≃ −3heKjWj2i≃ −3
�

n
nþ 1

�
2

v4
�
v2

g

�2
n

: ð5Þ

This negative energy is canceled out after inflation with a
positive contribution μ4SUSY due to a SUSY-breaking effect.
Therefore the gravitino mass can be related with the new
inflation scale as

m3=2 ≃ μ2SUSYffiffiffi
3

p ≃ n
nþ 1

v2
�
v2

g

�1
n

: ð6Þ

The inflaton mass around the potential minimum is
given by

mφ ≃ nv2
�
v2

g

�−1
n

: ð7Þ

Therefore, if the inflatondecays into standardmodel particles
simply by Planck suppressed operators, the reheating tem-
perature can be evaluated by

TR ≃ 0.1m3=2
φ ≃ 0.1n

3
2g

3
2nv3−

3
n: ð8Þ

In the next section, we use this reheating temperature to
calculate the PBH mass spectrum.3

Now let us consider the initial condition for this inflation.
Small field new inflation generally suffers from a severe
initial condition problem. That is, both the inflaton initial
field value and its time derivative should be extremely
small to have a sufficiently long inflation, but originally
there is no reason to stabilize the inflaton field to the
potential origin since the inflaton potential should be flat
enough to satisfy the slow-roll conditions. Moreover, even
if one can introduce some stabilizing term in the potential,
new inflation realizes eternal inflation if the inflaton’s
initial field value is much smaller than the Hubble fluc-
tuation H

2π and it should continue much longer than 60 e-
folds (we want new inflation to contribute only to small
scale perturbations as we mention). As proposed in [32],
these problems can be naturally solved in the supergravity
framework by introducing a preinflation phase before the
new inflation and adding a constant term to superpotential
Wconst ¼ c.4 During the preinflation, the inflaton of the
new inflation can have a Hubble induced mass term
1
2
Vpreφ

2 ≃ 3
2
H2φ2 through the coefficient eK of the poten-

tial. Moreover the constant term in the superpotential leads
the linear term 2

ffiffiffi
2

p
cv2φ in the potential, which shifts

the potential minimum from 0 to 2
ffiffiffi
2

p
cv2
Vpre

. The Hubble

induced mass keeps stabilizing the inflaton even after
the preinflation until the beginning of the second new
inflation Vpre ≃ v4, and therefore the initial field value of φ
is given by

φi ≃ 2
ffiffiffi
2

p c
v2

: ð9Þ

The new inflation can avoid eternal inflation as long as φi is
sufficiently larger than the Hubble fluctuation H

2π at the
beginning of the new inflation.
Taking the above things, we consider the PBH formation

in the following model:

3For the parameters which we use in the next section, the
reheating temperature can be estimated as TR ∼ 8.8 × 108 GeV
with the above assumption. This value may be marginal to realize
the thermal leptogenesis [33]. However we have checked that
desired PBH mass spectra can be achieved even for a higher
reheating temperature e.g. TR ∼ 1010 GeV.

4Note that, in the original model [32], hybrid inflation is
assumed as a preinflation, which gives a nonzero superpotential
and leads the linear term in the potential of the new inflation.
However, since we have already introduced the constant term in
the superpotential, the preinflation does not need to give a
nonzero superpotential in our model.
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Wnew ¼ v2ϕ −
g

nþ 1
ϕnþ1 þ c;

Knew ¼ jϕj2 þ κ

4
jϕj4 þ…;

VðφÞ≃ v4 − 2
ffiffiffi
2

p
cv2φ −

κ

2
v4φ2 −

g
2

n
2
−1 v

2φn þ g2

2n
φ2n

þ Vpre

�
1þ 1

2
φ2

�
: ð10Þ

Here note that, if κ < 0, the linear, quadratic, and nth
moment terms can have an inflection point for φ > 0. Since
V 0 is locally maximized at that inflection point, if the
maximum of V 0 is still negative but quite close to 0, the
slow-roll inflation is not spoiled and moreover very large
curvature perturbations can be produced. The inflection
point φ� can be obtained as

V 00ðφ�Þ≃ jκjv4 − nðn − 1Þ
2

n
2
−1 gv2φn−2� ¼ 0

⇒ φ� ¼
�

2
n
2
−1

nðn − 1Þ
jκjv2
g

� 1
n−2
: ð11Þ

Then we require the flat inflection condition as

V 0ðφ�Þ≃ −2
ffiffiffi
2

p
cv2

þ n − 2

n − 1

�
2

n
2
−1

nðn − 1Þ
� 1

n−1 jκjn−1n−2v
4n−6
n−2

g
1

n−2
∼ 0;

⇒ g ∼
1

nðn − 2Þ
�

n − 2

2ðn − 1Þ
�

n−2 jκjn−1v2ðn−1Þ
cn−2

; ð12Þ

neglecting Vpre and the higher order term. With this
condition, the curvature perturbations generated around
ϕ� are large enough to produce abundant PBHs, and the
concrete successful parameters are shown in the next
section. Here note that the inflection point can be written
as φ� ¼ n−1

n−2
1
jκjφi under this condition and therefore it is

automatically set to be slightly larger than the initial field
value for jκj ∼Oð0.1Þ. That is because the initial field value
φi is determined by the balance between the linear term
cv2φ and the preinflation-induced mass term v4φ2, while
the flat inflection is the point where the linear term is
comparable with the self-induced mass term κv4φ2 which is
smaller than the preinflation-induced mass term by a
factor jκj.
If the new inflation is assumed to realize both small

perturbations like those on the CMB scale and large
perturbations which would cause the formation of PBHs,
it generally takes too many e-folds in the transition from
small to large perturbations since the time derivative of the
slow-roll parameter itself is suppressed by the slow-roll
parameters, d

dN log ϵV ∼OðϵV; ηVÞ, where N denotes the
e-folding number and ϵV and ηV represent the slow-roll
parameters 1

2
ðV 0
V Þ2 and V 00

V , respectively. However, since we
have already introduced double inflation, the new inflation

can be free from the COBE normalization by simply
assuming that the preinflation is responsible for the
CMB scale perturbations, and then the new inflation can
end in sufficiently short time in that case. Indeed we show
in the next section that there are parameter regions where
PBHs can be produced enough to be a main component of
DM and the constraints for large scale perturbations like the
CMB spectral distortion can be avoided. Here if one
assumes that the curvature perturbations generated in the
new inflation are large even apart from the inflection
point, the linear term itself is required to be small enough.
Letting Alin denote the amplitude of the power spectrum of
the curvature perturbations during the linear term in the
potential dominantly contributes to the perturbations; the
constant superpotential c is determined through the follow-
ing relation:

Alin ¼
1

12π2
V3

V 02 ≃
1

96π2
v8

c2
;⇔c≃ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

96π2Alin

p v4: ð13Þ

Therefore, for Alin ∼ 10−3, c is required to be as small as v4.
The above two conditions (12) and (13) are required for

PBH formation. Now combining them clarifies the v-
dependence of g as g ∼ jκjn−1v6−2n. Therefore, in the case
of n ¼ 3, g ∼ jκj2 does not depend on the new inflation
scale v and could be smaller than unity. On the other hand,
for n ≥ 4, g becomes much larger than unity for v ≪ 1 and
such a large g spoils unitarity of the theory for example
[34]. Moreover for large n the duration of the new inflation
after the inflection point is short due to its steep potential
and it tends to make the PBH mass small. Indeed we have
checked that the PBH mass spectrum is tilted to the lighter
mass and conflicts with the constraints on the PBH
abundance for n ≥ 4. For those reasons, we concentrate
on the case of n ¼ 3 hereafter.5

As an interesting fact, the small constant term c in
the superpotential can be interpreted to come from the
SUSY-breaking sector in the case of n ¼ 3 [36].6 The
SUSY-breaking F-term order μ2SUSY naively arises from
the term like

WSUSY ¼ μ2SUSYZ: ð14Þ
If Z obtains a vacuum expectation value hZi ∼ μSUSY, this
term can lead the constant superpotential c ∼ μ3SUSY. Indeed
it can be realized in the dynamical SUSY-breaking models
proposed in Ref. [37,38] if the origin of Z is destabilized
due to a large Yukawa coupling (∼4π), and the estimated

5In addition, n ¼ 3 is uniquely favored by the anomaly free
conditions for supersymmetric standard gauge groups with the
discrete R symmetry Z2nR [35].

6Note that the case of n ¼ 4 is considered in Ref. [36] since the
authors’ motivation is not to produce PBHs but to modify the
spectral index in new inflation and therefore the required
condition is different.
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constant term is given by c ∼ Λ3

ð4πÞ2 where the dynamical

scale Λ is related with μSUSY by μ2SUSY ¼ Λ2

4π. On the
other hand, under the flat inflection condition (12)
and the large curvature perturbation condition (13), the
vanishing cosmological constant condition (6) gives
the parameter dependence of the SUSY-breaking scale
as μSUSY ∼ jκj1−n2n v2

n−1
n , neglecting numerical factors.

Therefore the scale dependence of the constant term
c is consistent with the above assumption if and only if
n ¼ 3 as

c ∼ v4 ∼ μ3SUSY: ð15Þ
It can be checked that this consistency is retained for the
concrete parameter values which we show in the next
section even if numerical factors are included.

III. FORMATION OF PRIMORDIAL
BLACK HOLES

In this section, we calculate the PBH abundance and
exemplify parameter sets where PBHs constitute the main
component of DM. At first, given the inflation scale v and
the reheating temperature TR, the perturbation scale can be
related with the backward e-folds by [39]

log

�
k

0.002 Mpc−1

�
≃ −N þ 56þ 2

3
log

�
v

1016 GeV

�

þ 1

3
log

�
TR

109 GeV

�
: ð16Þ

We use Eq. (8) as the reheating temperature hereafter.
Then, with the potential (4) and the Hubble induced mass
1
2
Vpreφ

2, we can calculate the power spectrum of the
curvature perturbations PζðkÞ in the standard linear theory

and the result is shown in Fig. 1 as the black thick line for
the following parameter values:

v ¼ 10−4; κ ¼ −0.44; c ¼ 1.838 × 10−16;

g ¼ 5.036 × 10−3: ð17Þ
In this calculation, we have simply assumed that the
preinflation potential behaves as a matter component
Vpre ∝ a−3 after the preinflation. For these parameters,
the vanishing cosmological constant (6) and the SUSY-
breaking assumption (15) consistently predict m3=2 ∼
108 GeV which suggests the pure gravity mediation
[40]. In this figure, we also show the constraints from
the CMB spectral μ distortion as the red region. The CMB μ
distortion from the Silk damping of a single k-mode can be
approximated by [41]

μ∼2.2PζðkÞ
�
exp

�
−
kMpc−1

5400

�
− exp

�
−
�
kMpc−1

31.6

�
2
��

; ð18Þ

where kMpc−1 represent the wave number in Mpc−1. We
have used the current 2σ upper limit μ≲ 9 × 10−5 by the
COBE/FIRAS experiment [42]. Finally, the modes k≲
106 Mpc−1 actually reenter the horizon between the prein-
flation and the second new inflation. We describe the
treatments of these modes in the Appendix.
With use of this power spectrum, the PBH abundance

can be calculated as follows. At first, the mass of PBH is
almost given by the horizon mass when the overdensity
reenters the horizon; let γ denote the ratio between them
here. That is, the PBH mass corresponding with the scale k
is given by

MPBHðkÞ ¼ γ
4π

3
ρH−3

���
k¼aH

¼ γMeq

�
g�eq
g�

�
1=2

�
Teq

T

�
2

¼ γMeq

�
g�eq
g�

�
1=6

�
keq
k

�
2

; ð19Þ

whereMeq denotes the horizon mass at the matter-radiation
equality calculated as

Meq ¼
4π

3
ρeqH−3

eq ¼ 8π

3

ρ0r
aeqk3eq

: ð20Þ

Also we have used an approximation that the effective
degrees of freedom for energy density g� is almost
equal to that for entropy density g�s. Using ρ0r¼7.84×
10−34gcm−3, keq ¼ 0.07Ωmh2 Mpc−1, a−1eq ¼ 24000Ωmh2,
and g�eq ¼ 3.36, we can finally obtain [4]

MPBHðkÞ¼ 3.6M⊙
�

γ

0.2

��
g�jk¼aH

106.75

�
−1=6

�
k

106 Mpc−1

�
−2
;

ð21Þ

FIG. 1. The power spectra of the curvature perturbations for
parameters (17) (solid line) and (26) (dashed line). The red line
represents the constraints on the power spectrum from the
nondetection of the CMB μ distortion estimated by Eq. (18).
The modes k≲ 106 Mpc−1 actually reenter the horizon between
the two inflations and the treatments for them are described in the
Appendix.
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where M⊙ ≃ 2 × 1033 g is the solar mass. In the simple
analytic calculation [3], γ is evaluated as γ ¼ 3−3=2 ≃ 0.2 and
we use this value hereafter.
The formation rate of PBHs β is given by the probability

of excess over the threshold. That is, under the assumption
that the density perturbations follow the Gaussian distri-
bution,7

βðMPBHÞ ¼
Z
δc

dδ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2ðkÞ
p e

− δ2

2σ2ðkÞ ¼ 1

2
Erfc

�
δcffiffiffi
2

p
σðkÞ

�
:

ð22Þ
Here δc represents the threshold density perturbation and
we adopt the simple analytic estimation δc ¼ pr=ρr ¼ 1=3
[3]. σ2ðkÞ is the variance of the comoving density pertur-
bations coarse grained on k−1, which is given by [46]

σ2ðkÞ ¼
Z

d log k0W2ðk0=kÞ 16
81

ðk0=kÞ4PζðkÞ: ð23Þ

WðzÞ represents the Fourier transformed window function
and we adopt the Gaussian window WðzÞ ¼ e−z

2=2 in the
following calculations. Note that the PBH mass and coarse-
graining scale k are related by Eq. (21). The formation rate
directly gives the ratio of the PBH energy density to the
total energy density at the horizon reentering, βðMPBHÞ ¼
ρPBH=ρjk¼aH. Therefore the current PBH fraction to DM for
a single mass mode can be derived as

fPBHðMPBHÞ ¼
ΩPBHh2

ΩDMh2
¼ Ωmh2

ΩDMh2
ρPBHðMPBHÞ

ρ

����
eq

¼ Ωmh2

ΩDMh2
T
Teq

βðMPBHÞ

¼ 1.3 × 108βðMPBHÞ
�
ΩDMh2

0.12

�−1� γ

0.2

�
1=2

×

�
g�

106.75

�
−1=4

�
MPBH

M⊙

�
−1=2

; ð24Þ

where ΩDMh2 represents the current DM abundance
ΩDMh2 ∼ 0.12 [47]. The resultant PBH fraction is plotted
in Fig. 2 as the black thick line. We also show several
observational constraints for PBH abundance as red regions
[5–11]. Here we have not used the constraints from the
existence of neutron stars [12,15] and white dwarfs [48] in
globular clusters since they require the high DM-density

assumptionwhosevalidity seems questionable asmentioned
in the introduction. Although the shown PBH fraction does
not reach unity in each logarithmic mass bin, the total PBH
fraction

fPBH;tot ¼
Z

d logMfPBHðMÞ ð25Þ

reaches unity with the current parameters. Therefore our
model can describe the formation of sufficient PBHs to be a
main component of DM.Onemight think that the PBHmass
spectrum can be shifted to the more massive direction and
even the neutron star constraints could be avoided for some
parameters. However we have checked that the μ-distortion
constraints shown in Fig. 1 as the red line cannot be satisfied
in that case.
Before ending this section, let us concentrate on the

sharp peaks of the power spectrum around k ∼ 106 Mpc−1

shown in Fig. 1. This peak comes from the fact that at the
beginning of the new inflation the Hubble induced mass
1
2
Vpreφ

2 cannot be neglected yet and the inflaton potential is
being slightly flattened due to its stabilizing effect at first.
For a slightly smaller c (namely a slightly flatter linear
potential), this peak can be enlarged and another peak of the
fraction for more massive PBHs can be shown. For the
following parameters,

v ¼ 10−4; κ ¼ −0.182; c ¼ 5.53 × 10−17;

g ¼ 4.26 × 10−3; ð26Þ
the resultant power spectrum and PBH fraction are plotted
in Figs. 1 and 2 as the black dashed lines. Again the total

FIG. 2. The PBH fraction to DM in each logarithmic mass bin
with the parameters (17) (solid line) and (26) (dashed line).
Several constraints for PBH abundance are also shown as red
regions: from left to right, extragalactic γ rays from evapolation
[5,11], femtolensing of γ-ray bursts [8], existence of white dwarfs
in our local galaxy [10], Kepler microlensing and millilensing [9],
EROS and MACHO collaborations [6], and accretion effects on
CMB [7]. For both the solid and dashed lines, the total integrated
fraction is about unity; therefore these models predicts abundant
PBHs as a main component of DM. Moreover in the dashed line
case there is another peak at ∼30 M⊙, which might cause
GW150914 [29,30].

7Note that the non-Gaussianity (NG) is expected to be small
since the second new inflation is driven almost only by a single
scalar field around the inflection point. Indeed we have briefly
checked that the local nonlinearity parameter fNL is as small as
∼0.1 and for such a small NG it is known that the predicted PBH
abundance is hardly affected [43–45]. However the second peak
on ∼30 M⊙ which we show later might be modified by NG
effects since it corresponds with the phase of the beginning of the
new inflation. We leave this problem for future works.
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PBH fraction is about unity (fPBH;tot ≃ 1) for them, but they
show another peak at MPBH ∼ 30 M⊙. Recently the LIGO/
Virgo collaboration succeeded in the first direct detection of
gravitational waves GW150914, which came from an
inspiral and merger of a black hole binary [25]. The masses
of these black holes are estimated as 36þ5

−4 and 29þ4
−4M⊙.

Taking this, the binary formation rate of PBHs whose
masses are around 30 M⊙ has been evaluated by several
authors [27–30], and the authors of [29] claimed that the
binary formation rate of PBHs satisfying current constraints
[fPBHð∼30 M⊙Þ≲ 10−4] is high enough to be consistent
with the black hole merger rate 2–400 Gpc−3 yr−1 inferred
from LIGO observations [26] (however it was claimed
in [30] that the binary formation rate might be smaller
than that evaluated in [29]). Therefore our model might
explain both the DM whose main component is as ∼1024 g
PBHs and GW150914 from the merger of the ∼30 M⊙
PBH binary.8

However, the existence of the peak around 30 M⊙ in our
model should be examined more carefully since the
corresponding fluctuation modes reenter the horizon
between the preinflation and the new inflation and in such
a case effects of the metric perturbations that are not
included in the present analysis might be important. So we
need to solve full evolutions of fluctuations of scalar fields
and metric perturbations, which will be investigated in
future work.

IV. CONCLUSIONS

In this paper, we proposed a new inflation model as a
second phase of a double inflation consistently constituted
in the supergravity framework, where sufficient PBHs can
be produced to be a main component of DM. Any specific
inflationary model is not required for the preinflation which
is responsible for the large scale curvature perturbations, as
long as it is consistent with the observations of, e.g., the
CMB. The potential of the new inflation in our model
consists of the linear, quadratic, and cubic terms and has a
flat inflection point where PBHs can be produced. The
specific power spectra of the curvature perturbations and
the resultant PBH mass spectra are shown in Figs. 1 and 2
for two parameter sets (17) and (26). The inflection point
corresponds with ∼1022 g PBHs and they constitute the
bulk of DM in our model. In addition, we can make another
peak for the PBH mass spectrum on ∼30 M⊙ as indicated
by the black dashed line in Fig. 2. Such a peak corresponds
with the beginning of the new inflation and those PBHs
might cause the gravitational waves detected by the LIGO/
Virgo collaboration.
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APPENDIX: MULTIPLE HORIZON
CROSSING MODES

In this appendix, we describe the treatments for the modes
which exit thehorizonat the endof the preinflationonce, enter
the horizon between two inflations, and then reexit the
horizon at the beginning of the second new inflation. They
correspond with the modes for k≲ 106 Mpc−1 in our
parameters. Their dynamics are nontrivial due to their
multiple horizon crossing and the amplitudes of them at the
second horizon exit which determine the curvature perturba-
tions in the new inflation have to be evaluated carefully. To do
so, one must solve equations of motion (EoM) for perturba-
tions continuously over the two inflations and connection
phase, including the effects of the metric perturbations.
However here let us roughly estimate them in the super-
and subhorizon limit without metric perturbations.
The linear EoM for perturbations which have a Hubble

induced mass 3
2
H2φ2 is given by

0 ¼ δφ̈þ 3Hδ _φþ
�
3H2 þ k2

a2

�
δφ

∼
�
δφ̈þ 3Hδ _φþ 3H2δφ; k ≪ aH;

δφ̈þ 3Hδ _φþ k2

a2 δφ; k ≫ aH:
ðA1Þ

In the second line, we have used the super- and subhorizon
limit. The subhorizon EoM can be always rewritten, with
use of the conformal time adη ¼ dt and in the subhorizon
limit as

∂2
ηðaδφÞ þ

k2

a2
ðaδφÞ≃ 0; ðA2Þ

and therefore it only has oscillating solutions whose
amplitudes decrease as a−1. On the other hand, assuming
that the background equation of state (EoS) is given by

ω ¼ p=ρ > −1 (a ∝ t
2

3ð1þωÞ), the superhorizon EoM reads

δφ̈þ 2

ð1þ ωÞt δ _φþ 4

3ð1þ ωÞ2t2 δφ ¼ 0: ðA3Þ

It can be easily solved by assuming the power-law solution
tn and the real part of the power is given by Re½n� ¼ −1þ3ω

2ð1þωÞ.

8Recently, in Ref. [49], it has also been proposed that a 30 M⊙
PBH could be produced by the gauge field production with the
Chern-Simons coupling ϕFμν

~Fμν.
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That is, the amplitude of the solutions damps as

t
−1þω
2ð1þωÞ ∝ a−

3ð1−ωÞ
4 . Also, in the exact de Sitter background,

the Hubble parameter is constant and the two solutions are

soon found as δφ ∝ exp ð− 3
2
Ht�

ffiffi
3

p
2
iHtÞ. Namely the

perturbations damp as a−3=2 [therefore the damping factor

a−
3ð1−ωÞ

4 for ω > −1 can be used also for the de Sitter case in
which ω ¼ −1]. In summary, the amplitude of the pertur-
bations decreases as a−1 in the subhorizon limit and as

a−
3ð1−ωÞ

4 in the superhorizon limit.
Now let us evaluate the concrete amplitude of the

multiple horizon crossing modes at the horizon exit during
the new inflation. Letting aHjpre;f and aHjnew;i denote the
horizon scale at the end of the preinflation and the
beginning of the new inflation, such modes correspond
with aHjnew;i < k < aHjpre;f . We illustrate a schematic
image about the relation between the wavelength k and
the horizon scale aH in Fig. 3 as the solid and dot-dashed
lines, respectively. At the first horizon exit during the
preinflation, the perturbation amplitude is given by the
standard one, δφ ∼ Hpre

2π . After that, the amplitude decreases
until the second horizon exit during the new inflation as

δφj3 ∼
Hpre

2π

�
apre;f
a1

�
−3=2

�
a2
apre;f

�
−3ð1−ωÞ

4

×

�
anew;i
a2

�
−1
�

a3
anew;i

�
−1
; ðA4Þ

following the scale factor dependences which we showed
previously. Here the subscript 1, 2, and 3 represents each
horizon crossing time during the preinflation, between two
inflations, and during the new inflation, respectively. Also
we have referred to the EoS between two inflations as ω.
Noting that the horizon scale aH is proportional to a−

1þ3ω
2 , it

can be rewritten as

δφj3 ∼
Hpre

2π

�
aHjpre;f

k

�−3=2� k
aHjpre;f

� 3ð1−ωÞ
2ð1þ3ωÞ

×

�
aHjnew;i

k

� 2
1þ3ω

�
k

aHjnew;i

�
−1

¼ Hpre

2π

�
aHjpre;f
aHjnew;i

�−3ð1þωÞ
1þ3ω

: ðA5Þ

Finally, using aH ∝ a−
1þ3ω
2 ∝ ρ

1þ3ω
6ð1þωÞ, we can obtain

δφj3 ∼
Hpre

2π

�
ρpre
ρnew

�
−1=2 ≃Hnew

2π
: ðA6Þ

That is, the resultant amplitude is eventually identical with
the standard one even though they experienced a compli-
cated process.
The results obtained in this appendix would be changed

by the effects of, e.g., the metric perturbations or the
resonance. For example, if one assumes the mass term
chaotic inflation as the preinflation, the Hubble induced
mass 1

2
Vpreφ

2 ¼ 1
4
m2χ2φ2 where χ represents the inflaton

of the preinflation leads the parametric resonance [50].
However this problem is solved by introducing a Kähler
coupling K ⊃ jXj2jϕj2 where X is the preinflaton super-
field, since this Kähler potential brings _χ2φ2 coupling for
example and it cancels and reduces the oscillation of the
Hubble induced mass. Also the metric perturbations would
also grow density perturbations on subhorizon scales
[51,52]. However the peak of the PBH mass spectrum
on ∼30 M⊙ is mainly caused by the largest scale mode
k ∼ aHjnew;i which is hardly affected by the subhorizon
effect. Moreover, even if the amplitude of the perturbations
is slightly modified, it could be absorbed into the parameter
tuning. Anyway, more strict analysis for those modes is
postponed to future works.

log(a)

log(aH)

aH pre,f

aH new,i

k

a1 apre,f a2 a3anew,i

FIG. 3. The schematic image of the relation between the
horizon scale aH and the multiple horizon crossing mode k.
The time before apre;f corresponds with that during the prein-
flation, while anew;i represents the beginning of the new inflation.
Between the two inflations, the horizon scale generally decreases
as aH ∝ a−

1þ3ω
2 with ω ¼ p=ρ. Therefore the modes which exit

the horizon near the end of the preinflation can reenter the
horizon during the preinflaton oscillation phase, and then reexit
the horizon at the beginning of the new inflation. Those modes
contribute to the sharp peaks of the power spectra around
k ∼ 106 Mpc−1 shown in Fig. 1, which can lead the second peak
to the PBH fraction on ∼30 M⊙. In the super- or subhorizon
limits, it can be shown that the amplitude of the perturbations at
the second horizon exit a3 is equal to the standard value Hnew

2π in
spite of their complicated horizon crossing process.
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