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We present the distance priors that we have derived from the 2015 Planck data, and use these in
combination with the latest observational data from Type Ia supernovae (SNe Ia) and galaxy clustering, to
explore the systematic uncertainties in dark energy constraints. We use the joint light-curve analysis (JLA)
set of 740 SNe Ia, galaxy clustering measurements of HðzÞs and DAðzÞ=s (where s is the sound horizon at
the drag epoch) from the Sloan Digital Sky Survey (SDSS) at z ¼ 0.32 and z ¼ 0.57 (BOSS DR12). We
find that the combined dark energy constraints are insensitive to the assumptions made in the galaxy
clustering measurements (whether they are for BAO only or marginalized over RSD), which indicates that
as the analysis of galaxy clustering data becomes more accurate and robust, the systematic uncertainties are
reduced. On the other hand, we find that flux-averaging SNe Ia at z ≥ 0.5 significantly tightens the dark
energy constraints and excludes a flat universe with a cosmological constant at 68% confidence level,
assuming a dark energy equation of state linear in the cosmic scale factor. Flux averaging has the most
significant effect when we allow the dark energy density function XðzÞ to be a free function given by the
cubic spline of its values at z ¼ 0, 1

3
, 2
3
, 1; the measured XðzÞ deviates from a cosmological constant at more

than 95% confidence level for 0.4≲ z ≲ 0.7. Since flux averaging reduces the bias in the SN distance
measurements, this may be an indication that we have arrived in the era when the SN distance
measurements are limited by systematic uncertainties.

DOI: 10.1103/PhysRevD.94.083521

I. INTRODUCTION

We continue to search for the unknown cause for the
observed cosmic acceleration [1,2], also known as dark
energy.1 Current observational data offer tantalizing hints
for deviations from a cosmological constant in a simplistic
combination of all observational data without critical
analysis. In order to arrive at robust constraints on dark
energy, we must carefully examine all the data sets
separately, and jointly. One complication is the difficulty
of detecting and modeling unknown systematic uncertain-
ties in the data used for the analysis.
In this paper, we explore the existence of unknown

systematic uncertainties by critically analyzing the latest
observational data from Type Ia supernovae (SNe Ia) and
galaxy clustering, with the help of distance priors from
cosmic microwave background anisotropy (CMB) data. We
use the joint light-curve analysis (JLA) set of 740 SNe Ia,
galaxy clustering measurements of HðzÞs and DAðzÞ=s
(where s is the sound horizon at the drag epoch) from the
Baryon Oscillation Spectroscopic Survey (BOSS) at z ¼
0.32 and z ¼ 0.57, and the distance priors that we have
derived from the 2015 Planck data.

We describe our method in Sec. II, present our results in
Sec. III, and conclude in Sec. IV.

II. METHOD

We focus on exploring the unknown systematic uncer-
tainties in the current SN Ia and galaxy clustering data
using geometric constraints only, with distance priors from
the 2015 Planck data to help tighten parameter constraints.
For a conservative and transparent approach, we margin-
alize over constraints on the growth rate of cosmic large-
scale structure (which are degenerate with the geometric
constraints [12,13]).
We now give the basic formulas that we will use later in

the paper. The comoving distance to an object at redshift z
is given by

rðzÞ ¼ cH−1
0 jΩkj−1=2sinn½jΩkj1=2ΓðzÞ�;

ΓðzÞ ¼
Z

z

0

dz0

Eðz0Þ ; EðzÞ ¼ HðzÞ=H0; ð1Þ

where sinnðxÞ ¼ sinðxÞ, x, and sinhðxÞ forΩk < 0,Ωk ¼ 0,
and Ωk > 0, respectively. The Hubble parameter, HðzÞ, is
given by
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H2ðzÞ≡
�
_a
a

�
2

¼ H2
0½Ωmð1þ zÞ3 þ Ωrð1þ zÞ4

þ Ωkð1þ zÞ2 þΩXXðzÞ�; ð2Þ

where Ωm þΩr þΩk þ ΩX ¼ 1. The dark energy density
function XðzÞ≡ ρXðzÞ=ρXð0Þ. The Ωr term, with Ωr ¼
Ωm=ð1þ zeqÞ ≪ Ωm (zeq denotes the redshift at matter-
radiation equality), is usually omitted in dark energy
studies at z ≪ 1000, since dark energy should only be
important at late times. For comparison with the work of
others and to provide a reference for future surveys, we
consider a dark energy equation of state linear in the cosmic
scale factor a [14]:

wXðaÞ ¼ w0 þ ð1 − aÞwa: ð3Þ

In addition, we consider an alternative two-parameter
parametrization of wXðaÞ, using w0 and w0.5≡wXðz¼ 0.5Þ:

wXðaÞ ¼
�2

3
− a

2
3
− 1

�
w0 þ

�
a − 1
2
3
− 1

�
w0.5

¼ 3w0.5 − 2w0 þ 3ðw0 − w0.5Þa: ð4Þ

Note that a ¼ 2
3
for z ¼ 0.5. It has been shown that

ðw0; w0.5Þ are significantly less correlated compared to
ðw0; waÞ [15].
Finally, we consider a model-independent parametriza-

tion of XðzÞ, where XðzÞ is a free function of redshift given
by the cubic spline of its value at z ¼ 0, 1

3
, 2
3
, and 1. We

assume that Xðz > 1Þ ¼ Xðz ¼ 1Þ.

A. CMB data

We use CMB data in the condensed form of the CMB
shift parameters (also known as distance priors) [16]:

R≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmH2

0

q
rðz�Þ=c;

la ≡ πrðz�Þ=rsðz�Þ: ð5Þ

These two parameters, R and la, together with ωb ≡Ωbh2,
provide an efficient summary of CMB data as far as dark
energy constraints go [16,17].
CMB data give us the comoving distance to the photon-

decoupling surface rðz�Þ and the comoving sound horizon
at the photon-decoupling epoch rsðz�Þ [18]. The comoving
sound horizon at redshift z is given by

rsðzÞ ¼
Z

t

0

csdt0

a
¼ cH−1

0

Z
∞

z
dz0

cs
Eðz0Þ ;

¼ cH−1
0

Z
a

0

da0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ Rba0Þa04E2ðz0Þ

p ; ð6Þ

where a is the cosmic scale factor, a ¼ 1=ð1þ zÞ,
and a4E2ðzÞ ¼ Ωmðaþ aeqÞ þ Ωka2 þΩXXðzÞa4, with
aeq ¼ Ωrad=Ωm ¼ 1=ð1þ zeqÞ and zeq ¼ 2.5 × 104Ωm ×
h2ðTCMB=2.7KÞ−4. The sound speed is cs ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ RbaÞ

p
, with Rba ¼ 3ρb=ð4ργÞ and Rb ¼

31500Ωbh2ðTCMB=2.7KÞ−4. We take TCMB ¼ 2.7255.
The redshift to the photon-decoupling surface, z�, is

given by the fitting formula [19]:

z� ¼ 1048½1þ0.00124ðΩbh2Þ−0.738�½1þg1ðΩmh2Þg2 �; ð7Þ

where

g1 ¼
0.0783ðΩbh2Þ−0.238
1þ 39.5ðΩbh2Þ0.763

; ð8Þ

g2 ¼
0.560

1þ 21.1ðΩbh2Þ1.81
: ð9Þ

The redshift of the drag epoch zd is well approximated
by [20]

zd ¼
1291ðΩmh2Þ0.251

1þ 0.659ðΩmh2Þ0.828
½1þ b1ðΩbh2Þb2�; ð10Þ

where

b1 ¼ 0.313ðΩmh2Þ−0.419½1þ 0.607ðΩmh2Þ0.674�; ð11Þ

b2 ¼ 0.238ðΩmh2Þ0.223: ð12Þ

Since the constraints on ðla; R;ωb; nsÞ are not sensitive
to the assumption about dark energy [21], we are able to use
the Planck archive to obtain constraints on ðla; R;ωb; nsÞ
from the 2015 Planck data. We use data from the Planck
archive that include both temperature and polarization data,
as well as CMB lensing. As we have shown in earlier work
[16], the one-dimensional marginalized probability distri-
butions of ðla; R;ωb; nsÞ are well fitted by Gaussian
distributions. For the Planck 2015 data, ðla; R;ωb; nsÞ
are given by Gaussian distributions with the following
means and standard deviations, without assuming a flat
universe:

hlai ¼ 301.76; σðlaÞ ¼ 0.093;

hRi ¼ 1.7474; σðRÞ ¼ 0.0051;

hωbi ¼ 0.02228; σðωbÞ ¼ 0.00016;

hnsi ¼ 0.9659; σðnsÞ ¼ 0.0048; ð13Þ

with the normalized covariance matrix of ðla; R;ωb; nsÞ:
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0
BBB@

1.0000 0.4529 −0.3507 −0.3576
0.4529 1.0000 −0.7000 −0.7780
−0.3507 −0.7000 1.0000 0.5296

−0.3576 −0.7780 0.5296 1.0000

1
CCCA: ð14Þ

Assuming a flat universe, the Planck 2015 data give
ðla; R;ωb; nsÞ well fit by Gaussian distributions with the
following means and standard deviations:

hlai ¼ 301.77; σðlaÞ ¼ 0.090;

hRi ¼ 1.7482; σðRÞ ¼ 0.0048;

hωbi ¼ 0.02226; σðωbÞ ¼ 0.00016;

hnsi ¼ 0.9653; σðnsÞ ¼ 0.0048; ð15Þ

with the normalized covariance matrix of ðla; R;ωb; nsÞ:

0
BBB@

1.0000 0.3996 −0.3181 −0.3004
0.3996 1.0000 −0.6891 −0.7677
−0.3181 −0.6891 1.0000 0.5152

−0.3004 −0.7677 0.5152 1.0000

1
CCCA: ð16Þ

We have included ns in our distance priors for com-
pleteness. For the remainder of this paper, we marginalize
the CMB distance priors over ns. This means dropping the
fourth row and fourth column from the normalized covari-
ance matrix of ðla; R;ωb; nsÞ, then obtaining the covariance
matrix for ðla; R;ωbÞ as follows:

CovCMBðpi;pjÞ¼ σðpiÞσðpjÞNormCovCMBðpi;pjÞ; ð17Þ

where i, j ¼ 1, 2, 3. The rms variance σðpiÞ and the
normalized covariance matrix NormCovCMB are given by
Eqs. (13) and (14) without assuming a flat universe, and by
Eqs. (15) and (16) for a flat universe.
We include the Planck distance priors by adding the

following term to the χ2 of a given model with p1 ¼ la,
p2 ¼ R, and p3 ¼ ωb:

χ2CMB ¼ Δpi½Cov−1CMBðpi; pjÞ�Δpj;

Δpi ¼ pi − pdata
i ; ð18Þ

where pdata
i are the means from Eq. (13) (without assuming

a flat universe) and Eq. (15) (assuming a flat universe),
and Cov−1CMB is the inverse of the covariance matrix of
[la, R, ωb] from Eq. (17). Note that p4 ¼ ns should be
added if the constraints on ns are included in the galaxy
clustering data.

B. Analysis of SN Ia data

The distance modulus to a SN Ia is given by

μ0 ≡m −M ¼ 5 log

�
dLðzÞ
Mpc

�
þ 25; ð19Þ

where m and M represent the apparent and absolute
magnitudes of a SN. The luminosity distance is dLðzÞ ¼
ð1þ zÞrðzÞ, with the comoving distance rðzÞ given
by Eq. (1).
We use the JLA set of 740 SNe Ia processed by Betoule

et al. (2014) [22]. They give the apparent Bmagnitude,mB,
and the covariance matrix for Δm≡mB −mmod, with [23]

mmod ¼ 5log10DLðzjsÞ − αX1 þ βC þM; ð20Þ

where DLðzjsÞ is the luminosity distance multiplied by H0

for a given set of cosmological parameters fsg, X1 is the
stretch measure of the SN light-curve shape, and C is the
color measure for the SN. M is a nuisance parameter
representing some combination of the absolute magnitude
of a fiducial SN Ia, M, and the Hubble constant H0. M is
assumed to be different for SNe Ia with different host stellar
masses:

M ¼ M1 for host stellar mass < 1010M⊙;
M ¼ M2 otherwise: ð21Þ

Since the time dilation part of the observed luminosity
distance depends on the total redshift zhel (special relativ-
istic plus cosmological), we have [24]

DLðzjsÞ≡ c−1H0ð1þ zhelÞrðzjsÞ; ð22Þ

where z and zhel are the CMB rest frame and heliocentric
redshifts of the SN.
For a set of N SNe with correlated errors, we have

χ2 ¼ ΔmT · C−1 · Δm; ð23Þ

where Δm is a vector with N components, and C is the
N × N covariance matrix of the SNe Ia.
Note that Δm is equivalent to Δμ0, since

Δm≡mB −mmod ¼ ½mB þ αX1 − βC� −M: ð24Þ

The total covariance matrix is [23]

C ¼ Dstat þ Cstat þCsys; ð25Þ

with the diagonal part of the statistical uncertainty given
by [22,23]
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Dstat;ii ¼ σ2mB;i
þ σ2int þ σ2lensing þ

�
5

zi ln 10

�
2

σ2z;i

þ α2σ2X1;i
þ β2σ2C;i þ 2αCmBX1;i − 2βCmBC;i

− 2αβCX1C;i; ð26Þ

where CmBX1;i, CmBC;i, and CX1C;i are the covariances
between mB, X1, and C for the ith SN. Note that
Betoule et al. (2014) included host galaxy correction in
Cstat þ Csys [see Eq. (11) of Ref. [22]].
The statistical and systematic covariance matrices, Cstat

and Csys, are generally not diagonal [23], and are given in
the form

Cstat þ Csys ¼ V0 þ α2Va þ β2Vb þ 2αV0a

− 2βV0b − 2αβVab; ð27Þ

where V0, Va, Vb, V0a, V0b, and Vab are matrices given by
Betoule et al. at the link http://supernovae.in2p3.fr/
sdss_snls_jla/ReadMe.html, and Cstat includes the uncer-
tainty in the SN model. Csys includes the uncertainty in the
zero point. Note that Cstat and Csys do not depend on M,
since the relative distance moduli are independent of the
value of M [23].
We refer the reader to Conley et al. (2011) [23] and

Betoule et al. (2014) [22] for detailed discussions of the
origins of the statistical and systematic errors.
In order to explore the existence of unknown systematic

effects, we apply flux averaging to the JLA SNe Ia at
z ≥ 0.5. Flux averaging was proposed to reduce the
systematic bias in distance measurement due to weak
lensing magnification of SNe Ia [25–27]; it has the addi-
tional benefit of reducing the bias in distance estimates due
to other, possibly unknown, systematic effects [28]. This is
because flux averaging effectively reduces a global sys-
tematic bias to a local bias with a much smaller amplitude,
which in turn results in a reduced impact on global
parameter constraints. Since weak lensing does not have
a significant effect on SN Ia data (see, e.g., Ref. [29]), any
systematic biases in the current SN Ia data are likely
dominated by other, presently unknown, sources.
Here we apply flux averaging in the minimal approach of

flux-averaging the SNe Ia in each redshift bin at higher z,
and then use the usual “magnitude statistics” (instead of
“flux statistics” [25–27]) in computing χ2, since the JLA
SNe Ia have measurement and modeling errors that have
been effectively Gaussianized in magnitudes.
For χ2 statistics using Markov Chain Monte Carlo

(MCMC) or a grid of parameters, here are the steps in
flux averaging [21] in application to the JLA SNe Ia:

1. Convert the distance modulus of SNe Ia into
“fluxes”:

FðzlÞ≡ 10−ðμ
data
0

ðzlÞ−25Þ=2.5 ¼
�
ddataL ðzlÞ
Mpc

�−2
: ð28Þ

2. For a given set of cosmological parameters fsg,
obtain “absolute luminosities” fLðzlÞg by removing
the redshift dependence of the “fluxes”; i.e.,

LðzlÞ≡ d2LðzljsÞFðzlÞ: ð29Þ

3. Flux-average the “absolute luminosities” fLi
lg in

each redshift bin i to obtain fLig:

Li ¼ 1

Ni

XNi

l¼1

Li
lðzðiÞl Þ; zi ¼

1

Ni

XNi

l¼1

zðiÞl : ð30Þ

4. Place Li at the mean redshift z̄i of the ith redshift
bin; now the binned flux is

FðziÞ ¼ Li=d2LðzijsÞ; ð31Þ

with the corresponding flux-averaged distance
modulus

μdataðziÞ ¼ −2.5log10FðziÞ þ 25: ð32Þ

5. Compute the covariance matrix of μ̄ðz̄iÞ and μ̄ðz̄jÞ:

Cov½μ̄ðz̄iÞ; μ̄ðz̄jÞ�

¼ 1

NiNjL
iLj

·
XNi

l¼1

XNj

m¼1

LðzðiÞl ÞLðzðjÞm ÞhΔμdata0 ðzðiÞl ÞΔμdata0 ðzðjÞm Þi;

ð33Þ

where hΔμdata0 ðzðiÞl ÞΔμdata0 ðzðjÞm Þi is the covariance of
the measured distance moduli of the lth SN Ia in the
ith redshift bin, and the mth SN Ia in the jth redshift
bin. LðzÞ is defined by Eqs. (28) and (29).

6. For the flux-averaged data fμ̄ðz̄iÞg, compute

χ2 ¼
X
ij

Δμ̄ðz̄iÞCov−1½μ̄ðz̄iÞ; μ̄ðz̄jÞ�Δμ̄ðz̄jÞ; ð34Þ

where

Δμ̄ðz̄iÞ≡ μ̄ðz̄iÞ − μpðz̄ijsÞ; ð35Þ

and

μ̄pðz̄iÞ ¼ −2.5log10Fpðz̄iÞ þ 25; ð36Þ

with Fpðz̄ijsÞ ¼ ðdLðzjsÞ=MpcÞ−2.
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For the sample of SNe we use in this study, we flux-
averaged the SNe with dz ¼ 0.04.

C. Galaxy clustering data

For galaxy clustering data, we use the measurements of
xhðzÞ ¼ HðzÞrsðzdÞ=c and xdðzÞ ¼ DAðzÞ=rsðzdÞ, where
HðzÞ is the Hubble parameter, DAðzÞ is the angular
diameter distance, and rsðzdÞ is the sound horizon at the
drag epoch. It has been shown that xhðzÞ and xdðzÞ are more
tightly constrained by data and less sensitive to modeling
assumptions, compared toHðzÞ andDAðzÞ [30]. We use the
xhðzÞ and xdðzÞ measurements from the two-dimensional
power spectrum measured at z ¼ 0.32 and z ¼ 0.57 from
BOSS DR12 galaxies [31,32]. Converting the results in
Refs. [31,32] to the same definitions used in this paper, we
find that for BAO only [31],

xhð0.32Þ≡Hð0.32ÞrsðzdÞ=c ¼ 0.0397� 0.0021;

xdð0.32Þ≡DAð0.32Þ=rsðzdÞ ¼ 6.49� 0.16;

rhdð0.32Þ ¼ 0.41; ð37Þ

xhð0.57Þ≡Hð0.57ÞrsðzdÞ=c ¼ 0.0498� 0.0013;

xdð0.57Þ≡DAð0.57Þ=rsðzdÞ ¼ 9.18� 0.13;

rhdð0.57Þ ¼ 0.47: ð38Þ

For BAO measurements marginalized over RSD [32], we
find

xhð0.32Þ≡Hð0.32ÞrsðzdÞ=c ¼ 0.0391� 0.0019;

xdð0.32Þ≡DAð0.32Þ=rsðzdÞ ¼ 6.185� 0.185;

rhdð0.32Þ ¼ 0.5; ð39Þ

xhð0.57Þ≡Hð0.57ÞrsðzdÞ=c ¼ 0.0476� 0.0015;

xdð0.57Þ≡DAð0.57Þ=rsðzdÞ ¼ 9.18� 0.15;

rhdð0.57Þ ¼ 0.53: ð40Þ

Galaxy clustering data are included in our analysis
by adding χ2GC ¼ χ2GC1 þ χ2GC2, with zGC1 ¼ 0.32 and
zGC2 ¼ 0.57, to the χ2 of a given model. Note that

χ2GCi ¼Δpi½C−1
GCðpi;pjÞ�Δpj; Δpi¼pi−pdata

i ; ð41Þ

where p1 ¼ HðzGCiÞrsðzdÞ=c and p2 ¼ DAðzGCiÞ=rsðzdÞ,
with i ¼ 1, 2.

III. RESULTS

We perform an MCMC likelihood analysis [33] to obtain
Oð106Þ samples for each set of results presented in this
paper. We assume flat priors for all the parameters, and we
allow ranges of the parameters wide enough such that
further increasing the allowed ranges has no impact on the
results. We constrain dark energy and cosmological param-
eters (w0, wa, Ωm, Ωk, h, ωb), where ωb ≡Ωbh2. In
addition, we marginalize over the SN Ia nuisance param-
eters fα; β;M1;M2g.

A. Constraints on w0 and wa

Figure 1 shows the marginalized probability distribu-
tions of parameters from JLA SNe, galaxy clustering data at

FIG. 1. Marginalized probability distributions of parameters from JLA SNe, galaxy clustering data at z ¼ 0.32 and z ¼ 0.57, and
Planck 2015 distance priors. The solid and dotted curves correspond to using HðzÞ and DAðzÞ measurements from BAO-only
measurements, and using those from RSD marginalized measurements.
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z ¼ 0.32 and z ¼ 0.57 [31,32], and Planck 2015 distance
priors presented in this paper (see Sec. II A). The solid and
dotted curves correspond to using HðzÞ and DAðzÞ mea-
surements from BAO-only measurements, and using those
from RSD marginalized measurements. Figure 2 shows the
joint 68% and 95% confidence contours for (wa, w0) and
(wa, Ωk) corresponding to Fig. 1, with the same line types.
The combined dark energy constraints seem insensitive to
the assumptions made in the analysis of galaxy cluster-
ing data.
Figure 3 shows the impact of flux-averaging SNe Ia on

the marginalized probability distributions of parameters
from the combination of the same data sets as in Fig. 1. The
solid and dotted curves correspond to using SNe Ia with
and without flux averaging. Figure 4 shows the joint 68%
and 95% confidence contours for (wa, w0) and (wa, Ωk)
corresponding to Fig. 3, with the same line types. Clearly,

flux averaging significantly tightens the dark energy con-
straints. This may be due to the reduction in the bias of
distance measurements from flux averaging, which
increases the concordance of the data, resulting in tighter
constraints.

B. Constraints on w0 and w0.5

Figures 5–8 are similar to Figs. 1–4, but for para-
metrizing the linear dark energy density using w0 and
w0.5 [see Eq. (4)], instead of the usual w0 and wa. Figure 5
shows the impact of the galaxy clustering analysis tech-
nique on the marginalized probability distributions of
parameters from JLA SNe, galaxy clustering data at z ¼
0.32 and z ¼ 0.57 [31,32], and Planck 2015 distance priors
presented in this paper (see Sec. II A). The solid and dotted
curves correspond to using HðzÞ and DAðzÞ measurements
from BAO-only measurements, and using those from RSD

FIG. 2. The joint 68% and 95% confidence contours for (wa, w0) and (wa, Ωk) corresponding to Fig. 1, with the same line types.

FIG. 3. Marginalized probability distributions of parameters from JLA SNe, galaxy clustering data at z ¼ 0.32 and z ¼ 0.57 (BAO
only), and Planck 2015 distance priors. The solid and dotted curves correspond to using SNe Ia with and without flux averaging.
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marginalized measurements. Figure 6 shows the joint 68%
and 95% confidence contours for (w0.5, w0) and (w0.5, Ωk)
corresponding to Fig. 5, with the same line types. Again,
the assumptions made in the analysis of galaxy clustering
data have little impact on the combined dark energy
constraints.
Figure 7 shows the impact of flux-averaging SNe Ia on

the marginalized probability distributions of parameters
from the combination of the same data sets as in Fig. 5. The
solid and dotted curves correspond to using SNe Ia with
and without flux averaging. Figure 8 shows the joint 68%
and 95% confidence contours for (w0.5, w0) and (w0.5, Ωk)
corresponding to Fig. 7, with the same line types. Flux
averaging of SNe makes an even more dramatic difference

in the joint constraints on (w0, w0.5), compared to those of
(w0, wa).

C. Constraints on the dark energy density function

We now examine the dark energy constraints when we
allow the dark energy density function, XðzÞ≡
ρXðzÞ=ρXðz ¼ 0Þ, to be a free function, given by the cubic
spline of its value at z ¼ 0, 1=3, 2=3, 1, and assuming
that Xðz > 1Þ ¼ Xðz ¼ 1Þ.
Figure 9 shows the impact of the galaxy clustering

analysis technique on the marginalized probability distri-
butions of parameters from JLA SNe, galaxy clustering
data at z ¼ 0.32 and z ¼ 0.57 [31,32], and Planck 2015
distance priors presented in this paper (see Sec. II A). The

FIG. 4. The joint 68% and 95% confidence contours for (wa, w0) and (wa, Ωk) corresponding to Fig. 3. The solid and dotted curves
correspond to using SNe Ia with and without flux averaging.

FIG. 5. Marginalized probability distributions of parameters from JLA SNe, galaxy clustering data at z ¼ 0.32 and z ¼ 0.57, and
Planck 2015 distance priors. The solid and dotted curves correspond to using HðzÞ and DAðzÞ measurements from BAO-only
measurements, and using those from RSD marginalized measurements.
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FIG. 6. The joint 68% and 95% confidence contours for (w0.5, w0) and (w0.5, Ωk) corresponding to Fig. 5. The solid and dotted curves
correspond to using HðzÞ and DAðzÞ measurements from BAO-only measurements, and using those from RSD marginalized
measurements.

FIG. 7. Marginalized probability distributions of parameters from JLA SNe, galaxy clustering data at z ¼ 0.32 and z ¼ 0.57 (BAO
only), and Planck 2015 distance priors. The solid and dotted curves correspond to using SNe Ia with and without flux averaging.

FIG. 8. The joint 68% and 95% confidence contours for (w0.5, w0) and (w0.5, Ωk) corresponding to Fig. 7. The solid and dotted curves
correspond to using SNe Ia with and without flux averaging.
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solid and dotted curves correspond to using HðzÞ and
DAðzÞ measurements from BAO-only measurements, and
using those from RSD marginalized measurements.
Figure 10 shows the impact of flux-averaging the SNe
Ia on the marginalized probability distributions of param-
eters from the same combination of data sets. The solid and
dotted curves correspond to using SNe Ia with and without
flux averaging. Again, we find that the assumptions made
in the galaxy clustering data analysis have little impact on
the combined dark energy constraints, while flux averaging
of SNe Ia has a significant impact on these constraints.
Figure 11 shows the dark energy density function

XðzÞ ¼ ρXðzÞ=ρXð0Þ measured from JLA SNe, galaxy
clustering data at z ¼ 0.32 and z ¼ 0.57 [31,32], and
Planck 2015 distance priors presented in this paper (see
Sec. II A). The shaded regions indicate the 68% confidence
region, while the outer envelope indicates the 95% con-
fidence level. The densely shaded and sparsely shaded
regions correspond to using SNe Ia with and without flux
averaging, respectively. Flux averaging has the most
significant effect here—the measured XðzÞ deviates from
XðzÞ ¼ 1 (w ¼ −1) at more than a 95% confidence level
for 0.4≲ z≲ 0.7.

IV. DISCUSSION AND SUMMARY

We have explored the existence of unknown systematic
uncertainties in the current SN Ia and galaxy clustering
data, with the help of the latest CMB distance priors. We

FIG. 9. Marginalized probability distributions of parameters
from JLA SNe, galaxy clustering data at z ¼ 0.32 and z ¼ 0.57,
and Planck 2015 distance priors. The solid and dotted curves
correspond to using HðzÞ and DAðzÞ measurements from BAO-
only measurements, and using those from RSD marginalized
measurements.

FIG. 10. Marginalized probability distributions of parameters
from JLA SNe, galaxy clustering data at z ¼ 0.32 and z ¼ 0.57
(BAO only), and Planck 2015 distance priors. The solid and
dotted curves correspond to using SNe Ia with and without flux
averaging.

FIG. 11. The dark energy density function XðzÞ ¼ ρXðzÞ=ρXð0Þ
measured from JLA SNe, galaxy clustering data at z ¼ 0.32 and
z ¼ 0.57 [31,32], and Planck 2015 distance priors presented in
this paper (see Sec. II A). The shaded regions indicate the
68% confidence region, while the outer envelope indicates the
95% confidence level. The densely shaded and sparsely shaded
regions correspond to using SNe Ia with and without flux
averaging, respectively.
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use the JLA set of 740 SNe Ia from Betoule et al. (2014)
[22], and the measurements of HðzÞ and DAðzÞ at z ¼ 0.32
and z ¼ 0.57 from BOSS DR12 data by Gil-Marin et al.
(2016) [31,32]. We have derived the CMB distance priors
from Planck 2015 data, in the form of the mean values and
covariance matrix of fla; R;Ωbh2; nsg, which give an
efficient summary of Planck data in the context of dark
energy constraints [see Eqs. (13)–(16)].
It is remarkable that the Planck distance priors that we

have derived from the 2015 Planck data have uncertainties
that are within 10% of the forecasted errors for Planck by
Mukherjee et al. (2008) [34]. This indicates that Planck has
achieved its forecasted precision in cosmological constraints.
We note that Huang, Wang, and Wang [35] independently
derived similar but slightly different constraints from Planck
2015 data at approximately the same time.
We find that the combined dark energy constraints are

insensitive to the assumptions made in the galaxy clustering
measurements (whether they are for BAO only [31] or
marginalized over RSD [32]), independent of the dark
energy parametrization used (see Figs. 1, 2, 5, 6, 9). We
note that the published BAO-only constraints in Ref. [31]
differ from those in the earlier arXiv version, and are closer
to the RSD marginalized constraints in Ref. [32]. This is
reassuring, as it indicates that as the analysis of galaxy
clustering data becomes more accurate and robust, the
systematic uncertainties are reduced.
On the other hand, we find that flux-averaging SNe Ia at

z ≥ 0.5 significantly tightens the dark energy constraints,

and excludes w ¼ −1 at greater than 68% confidence level
(see Figs. 3, 4, 7, 8, 10, 11). Flux averaging has the most
significant effect when we allow the dark energy density
function XðzÞ ¼ ρXðzÞ=ρXð0Þ to be a free function given by
the cubic spline of its values at z ¼ 0, 1

3
, 2
3
, 1; the measured

XðzÞ deviates from XðzÞ ¼ 1 (w ¼ −1) at more than a
95% confidence level for 0.4≲ z≲ 0.7 (see Fig. 11). This
is somewhat surprising, since for SN data with redshift-
dependent systematic biases that are negligible compared to
statistical errors, flux averaging of SNe should give some-
what less stringent constraints on dark energy [25]. Since
flux averaging reduces the bias in the SN distance mea-
surements [28], this may be an indication that we have
arrived in the era when the SN distance measurements are
limited by systematic uncertainties.
Identifying and correctly modeling systematic effects

will be key in illuminating the nature of dark energy. Future
dark energy surveys from space [36–39] will be designed to
minimize systematic uncertainties. We can expect dramatic
progress in the next decade in our quest to shed light on
dark energy.
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