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An algorithm is used to generate new solutions of the scalar-field equations in homogeneous and isotropic
universes. Solutions can be found for pure scalar fields with various potentials in the absence and presence of
spatial curvature and other perfect fluids. A series of generalizations of the Chaplygin gas and bulk viscous
cosmological solutions for inflationary universes are found. Furthermore other closed-form solutions which
provide inflationary universes are presented. We also show how the Hubble slow-roll parameters can be
calculated using the solution algorithm and we compare these inflationary solutions with the observational
data provided by the Planck 2015 collaboration in order to constrain and rule out some of these models.
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I. INTRODUCTION

Recent cosmological data indicate that the Universe has
undergone two acceleration phases: an early acceleration
phase called “inflation,” prior to a radiation-dominated era,
and a more recent era of accelerated expansion which
appears to continue today [1-7]. The gravitationally repul-
sive stress that is responsible for the current acceleration of
the Universe is called “dark energy” and must possess
sufficient negative pressure to exert gravitational repulsion.
Its specific identity is still unknown and it may result from a
modification of general relativity when gravity is very weak
or the presence of a specific unknown matter field.

While a range of “exotic” fluids and modifications of the
gravitational action can provide cosmological acceleration,
scalar fields are the simplest candidates to explain the
acceleration phases of the Universe. Moreover, scalar fields
also have various applications in the inflationary phase of the
Universe, for instance in driving chaotic inflation [8]. While
the same scalar field might explain both of the periods of
accelerated expansion, no convincing cosmological model
has been found with this as a natural feature. In a scalar-field
cosmology the field equations are of second order where the
scalar field is introduced as an extra degree of freedom, with a
corresponding conservation equation. These equations dis-
play unexpected complexity. Simple power-law potentials
for the scalar field can create finite-time singularities during
inflation [9] and lead to chaotic dynamics [10], or singularity
avoidance [11] if the Universe is closed.

Very few exact scalar-field solutions in a Friedmann-
Lemaitre-Robertson-Walker (FLRW) spacetime with spatial
curvature are known [12,13]. In a spatially flat FLRW
spacetime closed-form solutions with or without sources
for different scalar-field potentials, or scalar fields which
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mimic other fluids, such as the Chaplygin gas, can be found
in [14-30] while some other classes of integrable scalar-field
models are also given [31-34]. Some solutions for three-
dimensional FLRW spacetimes are given in [35-37].
However, scalar-field cosmology is conformally equivalent
to other scalar-tensor theories, like Brans-Dicke or f(R)-
gravity. [38,39]. Hence, closed-form solutions of the con-
formally equivalent theories (see [40,41] and references
therein) can be used to construct closed-form solutions or
to find new integrable systems for the nonminimally coupled
scalar-field model.

Recently, with the use of nonlocal conservation laws in
[42], the general analytical solution has been expressed for
an arbitrary scalar field with an arbitrary number of
independent perfect fluids possessing constant equation
of state parameters in spatially flat or nonflat FLRW
universes. These general results are applied in this paper
to derive precise forms of the scalar-field potential for
various simple time-dependent forms for the expansion
scale factor, or for particular equation of state parameters
for the scalar field. Finally, the Hubble slow-roll parameters
are studied for these closed-form solutions so that we can
compare the inflationary parameters with the observable
constraints provided by the Planck 2015 observations [7].

The plan of this paper is as follows. In Sec. II, the basic
properties and definitions of scalar-field models are intro-
duced. The cosmological metric we consider is the four-
dimensional FLRW spacetime, while the gravitational
action is that of general relativity with a minimally coupled
scalar field. We review previous results in the literature and
present the general analytical solution for the cosmological
field equations for arbitrary scalar-field potential. Exact
closed-form solutions obtained by using these general
results are presented in Secs. III and IV. Specific closed-
form solutions are derived for spatially flat FLRW uni-
verses when only one scalar field and a perfect fluid with
constant equation of state parameter are present. For
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specific values of the barotropic parameter for the matter
source, these results give closed-form solutions in the case
of a nonflat FLRW universe. In Sec. V, we derive the
Hubble slow-roll parameters for our models and compare
them with those of the Planck 2015 data to isolate
observationally allowed parameter ranges. Finally, in
Sec. VI, we discuss our results and draw conclusions.

II. SCALAR-FIELD COSMOLOGY

We consider the gravitational action to be
S = Sgn + Sy + S (1)

in which Sgy = f dx*,/=gR is the Einstein-Hilbert action,
R is the Ricci scalar of the underlying spacetime geometry
with metric tensor g,,, S, = f dx*./=gL,, is the matter
action, and S is the action for the scalar field, with

$o= [ arv=g| -y e V)| @)

where V(¢) is the self-interaction potential of the scalar
field ¢. Variation of S with respect to g, gives the Einstein
equations,

1 m
R;u/ - Eg;wR = T/(qu> + T/Ew), (3)

where R, is the Ricci tensor, T, is the energy-momentum
tensor of baryonic matter and radiation, and 7, (¢) is the
energy-momentum tensor associated with ¢p. Furthermore,
variation with respect to ¢ gives

—9“bu+Vy =0, 4)

where we have considered that % =0, so there is no
interaction between the matter source, S,,, and the scalar
field, ¢, in the action integral (1).

Using the Bianchi identity for (3) we have that

Tk, + Tmr =0, which gives

These are the equations of motion for the matter sources S,
and the field ¢. It can be seen that (5) is just Eq. (4).

By assuming that the Universe is spatially isotropic and
homogeneous we select the four-dimensional spacetime to
be that of FLRW:

(dx? + dy* + d7?)

ds? = —df* + a*(t
S +a(> (1+§X2)2

(6)

Furthermore, we assume that ¢) inherits the symmetries
of the metric (6). Therefore ¢(z) and consequently
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¢, = 4258 , where ¢ = %. Consider the comoving observer
u, =& (w'u,=—1). In the 1+ 3 decomposition the
energy-momentum tensor becomes

Tl(ﬂqj) = (,0¢ + P(ﬁ)uu”u + P(ﬁgﬂlﬂ (7)

Tﬁtr:) = (Pm + Pm)u/,tuy + ngﬂl/’ (8)

where

1. 1.
P¢E§¢2+V(¢), P¢E§¢2—V(¢) 9)
are the energy density and the pressure of the scalar field
and p,,, p,, are the components that correspond to the
matter source S,, which we have assumed to be a perfect
fluid. This follows also from (6).

Therefore, the field equations (3) for the line element (6)
become

1 K
szg(pm"i_qu)_; (10)

. K
3H2+2H:—(Pm+P¢)—;, (11)

where H(r) =% is the Hubble function.
Equations (5) become

Pm+3H(py +Pp) =0 (12)
pp+3H(py+Py) =0 (13)

while the corresponding equation of state (EoS) parameters
are given by w,, = P,,/p,, and

_ Py (#/2)-V()
M o T ) V@) (14

which means that w,, < —1 when #* < V(¢). On the other
hand, if the kinetic term of the scalar field is negligible with

respect to the potential energy, i.e., %2 < V(¢), then the
equation of state parameter is w, = —1.

Substituting (9) into (13), we find Eq. (4) which for the
line element (6) takes the form

¢+3Hp+V 4 =0. (15)

The set of equations, (10), (11) and (15), provides us
with the cosmological evolution, i.e. the scale factor a(¢),
where a potential V(¢) and an equation of state parameter
w,, have been defined.

There is a simple recipe [14—-16,43,44] for finding exact
solutions in the flat FLRW universes containing only the
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scalar field (p,, = p,, = 0 = K), where the defining equa-
tions simplify to

3HE = 2+ V(9) (16)

2H = —¢’. (17)

The third equation (15) is a consequence of these equations.
The recipe is to pick a physically realistic function ¢(7),
solve (17) to find H(t), use H(¢) and ¢(¢) to find V(7) from
(16) and convert this to V(¢) using the initial ¢(z). This
completes the solution so long as the intermediate integrals
can be performed and appropriate positivity conditions
hold (for example, H > 0 and V > 0). However, with a
perfect fluid or 3-curvature (which is just another perfect
fluid) this method is not efficient and we must look to a
more systematic version. To this method we now turn.

A. General analytical solution

In the line element (6) we use the comoving proper time,
t, by putting dt = N(z)dz. From the action integral (1), we
can now define

o1 1 ..
L(N.a.d.4.) = (-3@2 ; §a3¢2>
— Na*V(¢p) = Np,oa~") + 3NKa,
(18)

where for the matter source, S,,, we have put w,, =y — 1.
Hence the gravitational field equations follow from the
Euler-Lagrange equations with respect to the variables
{N,a,¢}. However, as it can be seen, the field equations
in the space of variables {N,a,¢} form a singular
dynamical system with constraint equation % =0.
Hence, using [42] with the application of the results of
[45], it has been shown that the gravitational field equations
which follow from (18) admit an infinite number of
(nonlocal) conservation laws. Specifically, every conformal
Killing vector of the minisuperspace {a,¢} provides a
conservation law and, as the minisuperspace has dimension
two, the dimension of the conformal algebra is infinite and
consequently we have an infinite number of conservation
laws. Here, it is important to note that these conservation
laws are not necessarily in involution. For more details
see [45].

With the use of a specific (nonlocal) conservation law, in
[42] it was proved that the field equations form an
integrable system and for a specific lapse, @, such as
dt = ef@)2dw, where a(w)=e”/®; that is, the line
element is now
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o3 (dX* 4 dy* 4 d2?)

ds?> = —ef@da? + ¢ 1+ §x2)2 ,

(19)

and the solution is expressed in terms of the unknown
function F(w), which is directly related to the poten-
tial V().

In the case of a spatially flat Universe, K =0, and
without matter source,p,,; = 0, it has been found that'

P(w) = i?/ V F (0)dw, (20)

where

LeFo(1 = F(w) (1)

V(w) = -

and effective fluid components for the scalar field are

1
py(w) = Ee_F(w)’

1
Py(w) = - e PO 2F () - 1). (22)

Furthermore, in the case of a spatially flat universe with a
perfect fluid the solution is generalized as follows:

) =+ %0 [ [(F0) = 61pp00™) P, (23

where now
1 -F ! 4 -4
V(w) = e (1 = F(w) +5pme™  (24)
12 2
and the fluid components become
1 v
Py =15 = e (25)
and
1 vy
Py = e WP (@)= 1) = (1= Dpuee™.  (26)
In the latter case, the total fluid stress, 7', = ,(ff) + T,S'f),

can be described by a new field, ®, which follows
from (20)—(22). Also in the latter, if we assume that y = %
(to mimic a curvature term in the Friedmann equations) and
Pmo = —3K, then the solution of the scalar-field model in a
nonflat FLRW spacetime is recovered.

The aim of this work is to derive specific closed-form
solutions of the field equations using these results by
assuming special inflationary functions for the scalar factor,

'Where a prime, i.e. F’, denotes derivative with respect to w.
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or special equation of state parameters for the scalar field,
which consequently combine to define the scalar-field
potential.

III. CLOSED-FORM SOLUTIONS:
SPATIALLY FLAT FLRW SPACETIME
WITHOUT MATTER SOURCE

Consider the simplest scenario for a spatially flat FLRW
spacetime containing only a scalar field. If we assume that
the scalar field has a constant equation of state parameter,
say wy, = (=1 + 3271)’ where ¢ is a constant, then from (22)
we find that

< | } 7)

and hence we have

¢<w>—§q-%w, V(o) = Voe ™. (28)

Therefore, V(¢) = Voe_\/%‘lS = (ao)%q(3q — l)e_\/%{/' in
which, if we apply the transformation dw — dt to write
(19) in the form of (6), we find the well-known power-law
solution [which we can verify directly in (16)—(17)]

¢ =do+\/2qIn(r).  (29)

However, this is only a particular solution of the
exponential scalar-field potential problem [46]. The general
solution can be found in [47], while some special solutions
are given in [48,49].

We continue with the determination of the closed-form
solution for some specific equation of state parameters for
the scalar field.

a(t) = agt?,

A. Perfect fluid with cosmological constant

Assume that the scalar field satisfies the simple equation
of state parameter

Py = (r = 1)py — 3YAH;. (30)
Then, it follows from (22) that
2F' 4+ 36yAel —y = 0. (31)

We observe that, for A = 0, F(w) is linear as above. Hence,
for nonzero A and y # 0, we find that

F(w) = —1In (36Q,,0He™ + 36Q,HZ),  (32)

where 36Q,,0H3 is the constant of integration and

Q) = ﬁ The Hubble function is

PHYSICAL REVIEW D 94, 083518 (2016)
H ()

H% = Q062" + Q,, (33)

which is equivalent to a cosmological model containing a
perfect fluid and a cosmological constant. We can see that
for y = 1, ACDM cosmology is recovered.

Furthermore, using (32) we find

2 Q0 + Qe
P(w) = —arctanh< M) (34)

\/3—7; QmO
and
3 2 ,~Ltw o)
V(o) =5 Heto(0,(2=7) +2006),  (35)

where the equation of state parameter is

QmO (36)

wy(w)=-1+y————.
4( ) meO—i—QAeiw

Finally, we find the potential

RV J A7 R

from which we observe that, for y = 2, the potential is
constant and the perfect-fluid term is that of stiff matter as
we expect for the kinetic part of the scalar field.
Furthermore, for y = 1, we have the unified dark matter
(UDM) scalar-field potential which has been found before
[50,51]. The difference between this solution and that of
[33] is that the free parameters have been selected so that
the stiff fluid of the kinetic part of the field is eliminated.
The transformation between the two line elements (19)
and (6) is

4 /1 (9 Q0
w = ;ln <K exp <§y2AH%t2> - T)

41n(2
_opamz2 - 02 (38)
y

B. Exponential function

Assume now that F(w) is an exponential function,
F(w) = 2Fy e, which gives that

H2(a) = Zexp (~Fa™) (39)

while for the scalar field we find that

083518-4



OBSERVATIONAL CONSTRAINTS ON NEW EXACT ...

23/ 3F F, r
plw) == e,
—2F e
V(o) = w (1= 2F FeF®),  (40)

which gives the potential
1
V(g) =52 =3R4

Finally, the parameter of the equation of state for the
scalar field is

W¢ = -1 =+ 4FOF1 eF'“’, (42)

and after the transformation dw — dt gives this in terms of
the inverse function of the exponential integral.

C. Chaplygin gas

Suppose that the scalar field satisfies the barotropic
equation for the Chaplygin gas [52], that is,’

Py =77 (Pp)" (43)

When we substitute from (22) and solve the first-order
differential equation, we find

F(C()) = —ln(\/Ale_“’—Ao), (44)

where A; is a constant of integration. Therefore, we have
1 A

¢*(w) = = arctanh® <  — e“’) (45)
3 Ay

and

V(w) _ i(ZAOew/z _Ale—w/2) (46)
24 A —Aye®

which gives

_ VA sinh (v/3¢)(2 — coth (V3¢)).  (47)

Vi) =,

Furthermore, for the parameter of the equation of state,
we have

*Note that in a flat FLRW universe the Chaplygin gas is simply
a bulk viscous stress for a pressure-free fluid with a bulk viscous
coefficient proportional to p~*2. Similarly, the generalized
Chaplygin gas with p «x p# is simply a bulk viscous stress
proportional to p#*'/2. The bulk viscous solutions that corre-
spond to all the Chaplygin gas models can therefore be found in
Ref. [53].
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Aoew

S 48
A — Age® (48)

Wo (w) =

while the transformation dw — dt now gives this in terms
of the inverse hypergeometric function.

D. Generalized Chaplygin gas 1

The first generalization of the Chaplygin gas is by a
modification of the equation of state to [54,55]

Py = 12¢A¢(py) "+, (49)

where for 4 = 0 we are in the limit of a perfect fluid, and
for 4 = —2 we have a Chaplygin gas (43).
For the function F(w) we find

Flo) = /llln (A — Ay). (50)

For the scalar field it follows that

P(w) = % arctanh < 1- % e‘§m> (51)

1

and

1 4 L -1-1
Vo) = 5, (A1e2” = 24)(A,2” = Ay) L (52)

From (51) and (52) the potential V(¢) is given by the
following closed-form expression:

Vig) = (Azoi_% (cosh2 (g M2¢) - 2)

« <sinh2 (? ﬂ2¢>>_1_ﬁ. (53)

Furthermore, for the equation of state parameter

Ao

- 54
Alei’” _AO ( )

wy()

while the transformation dw — dr is expressed in terms of
the inverse hyperbolic function.

E. Generalized Chaplygin gas 1II

In [14] a generalized Chaplygin gas was proposed with
barotropic equation

Py =10l = Py (55)

from which we can see that for 1 =1 a perfect fluid is
recovered, while for A = 0 expression (55) reduces to a
special form of (30). Again, by substitution of (22) into (55)
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we find that the solution of the first-order differential
equation is

F(w) = —7—In(yo + 1), (56)

1-4

where 7 =2!"231"4(1 — 1)y, and y, is a constant of
integration. In what follows we assume that 1 # 0, 1.
Hence, it follows that

Plo) =3 2T (57)
and
This gives
1 3 =
V(g) = m <§7(/1 - 1))
x g HE(3(A-1)%7 - 2). (59)

Also, from (22), it follows that p,(w) = 1—12 (Yo + 71)ﬁ
and

2 . -
w(/,(a)) =-1 +/1T1(7/60+71) I (60)
For the scale factor a(r) in the line element (6), we

find that w = —2 + (({Z54)?) ™15 for 2 # 1, while
|

PHYSICAL REVIEW D 94, 083518 (2016)

for 2 = it follows that w = — 77‘ + % e’'. Therefore, for the
cosmological scale factor we have

a(t) =exp(ayfN), A ;e% (61)
and
a(t) =exp (ae’), A= % (62)

F. Generalized Chaplygin gas II1

Consider now a third modification of the Chaplygin gas
in which the pressure and the energy density for the scalar
field satisfy the nonlinear relation

Py =Apy ™ + Bpyt, (63)

from which, for A = —1, we have that p, = (A + B)p,.
Equation (63) differs from that of [56] by a term p. Using
(22), we find that

L (52 50) 1))

(64)

F(a)):—l

where Fy = 6 7112471 F, = /1 — 4AB.
Hence, we have that

\/6 Fl 2
He) =i % —F, \/COSh (

F
F, ! 1 — tanh
1+ F,

where F,(®, x) is the incomplete elliptic integral.
Furthermore, for the potential we find

~

V(w) =

hypergeometric functions. However, in the limit of large o,
expression (64) becomes constant and the solution ap-
proaches the de Sitter universe.

(Fig)gH (F1 + 2sinh (Mw)) (Fl tanh (

Finally, the transformation @ — ¢ is given now in terms of

1
Ii) F1w> — sinh? <(T+/I)F1a)>

)i &

1 1 (Fy —4cosh? (LA F
( :ﬁ)Fla)>—1>H <1 cosh” ("~ 1@)) (66)

cosh* (2 F )

G. Generalized Chaplygin gas IV

We now consider another generalization of the basic
Chaplygin gas, with equation of state

083518-6
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1 A

Py

which for A = 0, reduces to the cosmological constant, and
for B =0, to the Chaplygin gas II model, above, with
A= —1. On the other hand, for B =0 and p, — 0, the

behavior is that of the basic Chaplygin gas (43).

B\/®(@—B)In(B+2(®w—-B+ +\/o(w—B))) —2w(w — B)

PHYSICAL REVIEW D 94, 083518 (2016)

From (67), we have the two solutions:

Fi(®w)=—-In(B+ VB*-2Aw). (68)

Without loss of generality we work with the F| solution,
so for the scalar field we find

w) = , 69
#@) 24A%(@w — B) (9)
o(@—-B)—A
V(i) =————, 70
(@) 12(@ - B) (70)
where 2Aw = 2Bw — @°.
For the equation of state parameter we have
@(w—B)-2A
= - N 71
YT T S@-B) 70
and the transformation @ — ¢ is the real solution of the algebraic equation, 2(3B — 6)\/5 = 3Ar; that is,
2B + (942 — 8B + 3,/A22(9A%7 — 16B7))')’
In (a(r)) = CEE +3VAT( 1)/)3 ) (72)
3(9A4%72 — 8B3 + 3./A%*(9A%1* — 16B%))
|
for (9A%¢% — 16B32) > 0. From this we can see that for large 24+ (B-2) 52Bo o)
time a(¢) = exp(#*), which is a solution of the form (61) for V(o) = IS e . (76)

the generalized Chaplygin gas 1. This asymptotic behavior
leads to a strong curvature singularity as t — oco.

H. Generalized Chaplygin gas V

Let the expression for the equation of state parameter
now be

p = Apj, + Bp,, (73)

where, for B = —1 and A =y, relation (55) is recovered.
For (73) and for B # —1, we find

W) = ot (PRI o5

T 3B(A-1)

and the potential is

24(A - e%B‘”)

From (75), we have that
A—1_ V3B(A-1
exp (T Bw) = sinh? <% ¢>, (77)

so the potential is

V(p) = —B= <2A + (B — 2)sinh? <@ 4;) )
(ame (PR )T

For the equation of state parameter we have

2 exp (5 Bw)

S e 79
Bexp (51 Bw) — A (79)

W(/):—

The transformation linking @ — ¢ is given in terms of the
inverse hyperbolic function, except when 1 = % which

A
yields @ = 2In(*5+), and so

083518-7
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2
1+ e 4\ 1
a(t) = , A=—. 80
o=(*5 L)

1. Bulk viscosity

The standard kinetic model for bulk viscosity in an
isotropic and homogeneous cosmology (see for example
Ref. [57]) replaces the pressure p by p’, where

p'=p-3Hp, (81)

and if we have a bulk viscous coefficient # with = ap”,
with o > 0 constant, then

p/ =p- /3apn+1/2. (82)

In a spatially flat FLRW universe the solutions are found
by solving equation 3H> = p together with the conserva-
tion equation

0=p+ 3H(ﬂ + p/) =p+ \/§p1/2(p +p- \/gapn+l/2).
(83)

Picking p = (y — 1)p we can see that there are special de
Sitter solutions with H = H,, except for the special case
n = 1/2 where the solutions for a(z) are power law in 1.
The exact solutions for the field equations are given in [53].
When n > 1/2 the solution starts as de Sitter at past infinity
and approaches FRW a = /% as t — co. The behavior
displaying approach to de Sitter as t — —oo does not persist
when curvature, anisotropy or another nonviscous fluid is
added to the Friedmann equation. Finally, to set up the
correspondence with Eq. (73) we have to identify Bp with

(y —1)p and A with —/3a and A with n 4+ 1/2.

I. Lambert function I

Suppose that F () is given by a function of the Lambert
function, W(w), specifically,

F(o) =2In (iM> (84)

which gives the scale factor in the line element (6) as the
simple function

a(t) = (texp(1))”. (85)

From (20)-(22) we find that
#0) = V2t (W) |\ 1 wieh). (s6)

1=3p +6pW(ew)
(W(etr))?

V(w) =3p*+p

PHYSICAL REVIEW D 94, 083518 (2016)

and
w (w)*—l+; (88)
S T 3p(W(em) + 1)
Expressions (86) and (87) give
V()= pBp(e ™ +1) =) (89)
while for ¢(¢) we have
$(t) = /2p\/(1 + 17) Int. (90)

J. Lambert function II

We select a universe (6) in which the scale factor is given
from the following formula,

a(r) = t1exp (p1), o1

where in general g # p, while for p = g we reduce to the
previous case.

We perform the transformation ¢+ — @ in order to write
the line element in the form of (19) and find that

6p(W (L) + 1)); ®2)

that is,

d(@) = \/2¢In (W(Sﬁ)) 1+W<£e%>, (93)

q

237 — L ot
oy s £
q [W(E ew)]

(94)

and
2 P ow)\?
—1+—(1+W<—664>> 5
3 p (95)

_o_
p*6gev¥ 4+ (3¢ - 1)
a4 20
eV
where easily we observe that for ¢ = p expression (89) is
recovered.
We should mention that scale factors (85) and (91) can be
constructed under a rescaling transformation of scalar-field
solutions of the field equations (H — H + constant) from

the power-law solution a(t) = #* found in Ref. [58]. This can
also be a special solution of a two-scalar-field model [59].

W(/,(CO) =

Hence, we have

V() =3p* + ; (96)
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K. Error function solution

Assume now that the pressure and the energy density for
the scalar field satisfy the equation of state parameter

~12Bp,

A
Pp==¢¢ — Py (97)

where for B > 0, when pjy — oo, p; = —py. This gives

F(®)=—In @m (ABw)), (98)

which is a real function when Aw < 0. Therefore, for the
scalar field, we find

4
P(w) = —§D( 27'In (ABw)), (99)
where D(x) is the Dawson integral.’
For the scalar-field potential, it follows that

Vo) = ; ;B (1 +in (ABa))) (100)

which has a minimum at @ =1 and B > 0. Finally the
equation of state parameter is

2

" wln (ABw)" (101)

W¢(w) ==

The expansion scale factor a(7) is given in terms of the
inverse error function.

IV. SPATIALLY FLAT FLRW SPACETIME
WITH MATTER SOURCE

We continue our analysis by assuming that a perfect fluid
with constant equation of state parameter, p,, = (y — 1)p,5,
is added to the scalar field. Now, in order to find closed-
form solutions for the scalar field, equations (23)—(26) have
to be solved.

A. Solution I

First, we consider the special case in which the scalar
field has a constant equation of state parameter equal with
that of the perfect fluid, i.e., w;, = (y — 1). From (25)—(26)
it follows that 2F’ —y = 0, which gives

F(w) :Za)—i—Fo,

. (102)

and using (23) we have that ¢(w) is a linear function.

The Dawson integral function is D(x) = 4 exp[—x?Jerfi(x) =
exp[—x°] i exp[y?]dy.

PHYSICAL REVIEW D 94, 083518 (2016)

For the scalar-field potentials, we derive

V3y
y(1 = 12pge

V(p) = Vyexp <— )¢> (103)

which is just the exponential potential, as expected [60]. In
addition we have Vo = V(y, pmo, Fo) or, specifically,

1
Vo= (2—y)exp(e~fo) + 5 7Pmo- (104)

B. Solution II

Let the scalar field have a constant equation of state
parameter wy, =y, — 1, but in contrast to the above,
Y4 # v- This scaling solution has been studied before in
[24]. Therefore, for this ansatz we find that the unknown
function, F(w), of the line element (19) has the form

Yy Y=V fo

“In <l2pmoexp ( _2” (Fy —w)> - 1),

where we see that the linear function (102) is recovered
for y =y,
For the scalar field, we find that

2\ / 374,

(105)

Ve
arctanh<\/12pmoexp < (F, w)) - 1);
(106)
that is,
_ 2 1 + tanh?(1 , /3
0= Tyt ln< (V/3r,(r = 7¢)¢)>
Y =7¢ 12,0

(107)

Furthermore, for the potential of the scalar field we find
that in terms of w it is expressed as

= Y
V(o) = Voly. o Folexp (-2 0) (108
or in terms of ¢ with the use (107)

V(¢) V()(}’ Y>Pmo> FO)(lzme)’ y(ﬁ

x eF <1—|—tanh2<

in which

¢

\/ﬂ(y—m)rﬁ))m

(109)

N[ =
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_ 1 Yo~V —
VO(}/’}’qﬁ’me?FO) = <Pmo +ﬂ(y¢—2)exp< ¢2 Fo))-

(110)

C. Solution IIT

We consider that the scalar provides two fluid terms: a
fluid with constant equation of state parameter 7, and a
component which mimics the perfect fluid p,,. That means
that we assume the Hubble function to be

H(a) :HO\/Qla_37+Qza_37, (111)

and so
F(w) = —In (36Q, H2e ™% + 36Q,H2e™5).  (112)

Hence, for the scalar field it follows that

R e e
QlHoe_iw + QzH%a_iw

(113)

and

1270 +36(2— 1) H3
24

4
—z0
’

3 _
V(o) 25(7— 2)QHje ™ +

(114)

where Q0 = £25. In order to specify the exact form of
V(¢), the inverse function w(¢) has to be determined from
the integral (113). However, for the specific case in which
¥ = 0, where the extra fluid term is that of the cosmological
constant, we find that the scalar-field potential has the form

V() = Vi + Vo(1 + Vatanh? (Vo)) 7, (115)
where Vo, = Vo_3(Q,Q, Hy, 7, pmo)- This is different
from the exponential term and differs from (110).

For example, if we assume that y = 1, i.e., we are in the
A-cosmology, with Q; + Q, = 1, we have that

3
V(g) =3(1 - Q)Hj +§(91 +pmo)e™>  (116)
and
3
V($) =3(1 - QOHE + <1 +’;;11°>
X (e — (1 —Q))e 2402 (117)

PHYSICAL REVIEW D 94, 083518 (2016)

N
case of the UDM model [50]; that is, the UDM provides a
dust component in the field equations. This property for the
UDM potential has been found earlier [27] and also for a
class of scalar-field potentials of the form (115) in [29]. On
the other hand, the exponential behavior of the potential is
expected according to the results of [51] because a scaling
solution is an attractor in scalar-field models when the
potentials have asymptotically exponential terms.

where 1 = . This is nothing other than a special

D. De Sitter universe

As a final case consider that the line element (6) is that of
the de Sitter universe, a(f) = age’’, which means that
F(w) in (19) is a constant function, F(w) = F,. That can
be seen as a special case of the previous model that we
studied in which the scalar field eliminates the perfect fluid,
ie., Q =0.

Therefore, we find the potential to be

V() —ie‘F0<1 —y—zqﬁz) (118)
12 3 ’
We end our analysis here and we recall that, if we set
Y :% and p,,0 = —3K, then the solutions that have been
presented in this section hold also for the scalar-field model
in a nonflat FLRW universe without a matter source.

V. INFLATIONARY SLOW-ROLL PARAMETERS

In scalar-field cosmology, the parameters

V 2
o= (32)"

are called the potential slow-roll (PSR) parameters [61] and
provide us with an inflationary universe when €, < 1. The
condition 7y < 1 is also important for the duration of the
inflation phase.

Alternatively, more accurate parameters which describe
the inflationary phase of the Universe are provided by the
so-called Hubble slow-roll (HSR) parameters [62]

_ Vo

= 11
Ny A ( 9)

dlnH H¢ 2
= — =], 120
eH dlna <H> (120)
and
=== 121
T dina  H (121)

The PSR parameters and HSR parameters are related
exactly through the relations

_ 3—-ny\?
Ey = €y 3—gH

(122)
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and

VEH
3 - &y

N = NHg + @ — ZH> (ew +ny)  (123)

H
or approximately through e, = ¢y and 5y = ey + 5 when
ey, Ny are both very small. Therefore, when the closed-
form solution of the field equations is known, it is more
accurate to work with the HSR parameters in order to study
the inflationary phase of the model rather than with the PSR
parameters.

The analytical solution which was presented in Sec. II A
can be used to write the slow-roll parameters in terms of the
function, w, or the number of e-folds, N,. Recall that the
number of e-folds is given by the formula

Llf 1

i

where a; = a(t;) is the moment at which inflation ends,
ey(ty) = 1, while a; = a(t;) is the moment at which
inflation starts. It is assumed that N, lies in the inter-
val N, € [50,60].

Therefore, the HSR parameters are

(F/)z — F"

£y = 3F,, F, )

g =3 (125)
where either from (122) and (123) or directly from
with the use of (20) and (21) the PSR parameters can be
derived in terms of w. Here we comment that the PSR
parameters depend always upon a higher derivative of F, in
contrast to the HSR parameters, ey = ey (F', F”) and
ny =ny(F,F",F").

In a similar way, the HSR expansion parameters [61] can
be expressed in terms of the function F(w) and its
derivative. For example, the third-order HSR parameter is

H()H() p 9\/6
Ey= /HZ/(M:_4(F,>%[(F/)4_(3F/2+2F”)F”+2F/Fm]‘
(126)

Note that the spectral indices for the density perturba-
tions, and for the gravitational waves in the first approxi-
mation, are given in terms of the HSR parameters by

ng=1—4ey + 2ny, n, = —2ep, (127)
while the tensor to scalar ratio is r = 10ey. Finally, the
range of the scalar spectral index is given by

n/‘ = 2€H7’]H - 2§H (128)
From the Planck 2015 Collaboration [7], we have that

the above parameters are n; = 0.968 £0.006 and
17, = —0.003 £ 0.007, while the tensor to scalar ratio has

PHYSICAL REVIEW D 94, 083518 (2016)

a value smaller than 0.11, i.e., r < 0.11. From these values
some intervals for the HSR parameters can be determined.
For instance from r it follows that 5 < 0.01.

In what follows, we determine the HSR parameters for
some of the solutions of Sec. III and compare them with the
Planck data constraints. Specifically, we study the follow-
ing models: generalized Chaplygin gases I-V; the Lambert
function II model, and the error function solution.

A. Generalized Chaplygin gas I

For the generalized Chaplygin gas model, (49), the HSR
parameters are given by

3 1 1
€p :Em, NH 25(2811(1 +u)=3p).  (129)
and
3v2
=== El(1+) (1+20) e =303+ 200, (130)
where, for 4 = —2, the parameters reduce to those of the
basic Chaplygin gas, (43). Moreover, inflation ends when
wp = ——ln (_EA_) from which we find that
__ 3 131
ep(w;) = 21 N (131)

As above, the spectral indices can be expressed in terms of
ey by

ng=1+2ey(u—1)-3u (132)
and
32
g =2(1 + u)ey — {(Zﬂu —1=3u—2u*)ey
9
——f@ +20) V. (133)

From (131), we observe that in order for e < 1, pu
should be positive. In Fig. 1 the n,—r and n, — n}
diagrams are presented. They reveal that for N, = 60 we
have max n, = 0.887 < 0.968 while at the same time r =
0.08 and n), = —0.02, which corresponds to = 0.033; that
is, a small deviation from a perfect fluid. Also, we mention
that for smaller values of N, the maximum of 7, is smaller,
n’; is smaller, although the scalar ratio has a similar value.
For N, = 55, we have max ny, = 0.877, r = 0.09 and n}, =
—0.022 for u = 0.032.

B. Generalized Chaplygin gas II

Consider now the generalized Chaplygin gas II model,
(55). For this model the HSR parameters are calculated
to be
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FIG. 1. Diagrams r = r(ny) (left) and n}; = n)(n,) (right) for the generalized Chaplygin gas I model for the number of e-folds in the

range N, € [50,60].
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0.15

Scalar ratio (r)
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n
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0.975

<104 n_-n‘ for Generalized Chaplygin gas Il

1 1 1 1 1 1 I

-1
0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975

n
s

FIG. 2. Left: n, — r diagram for the generalized Chaplygin gas Il model. Right: n, — n), diagram for the same model. The plots are for

N, €[50.60] and 1 € [-0.5.0.5).

-
8H=m(7w+71) L

and
V2
4
where for A :% the parameter &y becomes
Furthermore, we find that

N = Aey, Sy = /1(2'1 - 1)(51-1)%7

ng =1—4ey + 2ley,

fim —1)(en)?

n = 2A(ey)? +

(134)

(135)

ZE10.

(136)

and inflation ends at the point @, = 737 — I, Therefore, we
have that

(o) = (1+2N(1 =), (137)

where ey <1 and ey >0 for A< 1, while for
lim,_,_ey(w;) =0. In Fig. 2 we give the n, —r and
n, — n’, diagrams for various values of the parameter A in
the range 4 € [-0.5,0.5]. From these diagrams, we observe
that for N, = 55 (dashed lines), for n; = 0.968, we have
r=0.073 and n, = 2 x 107, These are values inside the
range of values consistent with the Planck 2015
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Collaboration, in contrast to the situation for the general-
ized Chaplygin gas L

C. Generalized Chaplygin gas III

For the equation of state parameter (63), that is for the
solution (64), we find that

e =25 (1 (525,0))

x cosh™ <(]T+/1)Fla)> (138)
and
=5 e+ (14 Dy (en)? = 3e4 +9(F)D). (139
_ 3VeEw 2y _ 2
&y = i (eg(3+42+224%) =3(1 +4)
+3(1+ /1)\/4(5H)2 —12e +9(F1)?).  (140)
Therefore, we have
ng=1-=2e5+ (1 +/1)\/(€H)2—38H+9(F1)2. (141)

From (139), we see that ny — 0, when ey — 0, if and
only if 3(1 + A)|F;| — 0, while at the same time &y — 0;
that is n, —» 1 and n}, — 0. Furthermore, from (138), we
find that inflation ends at

n_- Scalar ratio for Generalized Chaplygin gas lll
0.35

031
0.25 |

02

Scalar ratio (r)

0.1

0.05 |

1 1 1 1 1 1 I

0
0.905 0.91 0.915 0.92 0.925 0.93 0.935 0.94

n
s

FIG. 3.
N, €[50,60] and 1 € [-1.03, —1.01], with F, = —1.0001.
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2
ewf:z—ﬁ@mz—8\/9<F1>2—8—2>““’”, (142)

Fi—1

which requires (F 1)2 > %; that is, from the above, A should
be very close to —1.

In Fig 3, we give the evolution of the n; — r and n, — n/,
diagrams. We observe that ng reaches the observed value
0.986 when the number of e-folds N, exceeds 60.

D. Generalized Chaplygin gas IV
The HSR parameters for the generalized Chaplygin gas
IV model (67) are found to be
3A
Eyg = )
" B - 240+ BVE® - 240
. 3A
 2Aw - B*’
: \f 9A}(4B + 3VB% = 2Aw)
H="\5 3 I
22(B? - 2Aw)}(B(B + VB — 2Aw) — 2A0)’
(144)

Nu (143)

from which we find wjf _ Bo0ALV B H12AB W. In Fig. 4, the
ng—r and ng —n) diagrams are given for wy, and for
various values of the parameter B; we have assumed that
A = 1. From the diagrams it is easy to see that this model
can fit the Planck 2015 data quite well. Specifically, we find
that for n;,=0968 and for N, =155 r=0.054
and n) = —1.51073.

E. Generalized Chaplygin gas V

For function (74), the HSR parameters are now calcu-
lated to be

Jx 102 n_-n‘_for Generalized Chaplygin gas Ill

T T T T T T

o

1 1 1 1 1 1

-1
0.905 0.91 0.915 0.92 0.925 0.93 0.935 0.94

n
s

Left: n, — r diagram for the generalized Chaplygin gas IIIl model. Right: n, — n}, diagram for the same model. The plots are for
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FIG. 4. Diagrams r = r(ny) (left) and n}, = n/(n,) (right) for the generalized Chaplygin gas IV model for the number of e-folds in the
range N, € [50,60], for A = 1 and free parameter B in the range B € [—10, 100].
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FIG. 5.
N, € [50.60]. B = —0.002 and A € [-1,0).

3B 1
ey = — (1 — Ae™TB%),

3_
Ng = —EB(A - 1) +18H7

and

=~ 2V (3 1)2(6  dey)
+ (A=1)(9B — 6¢ey) — 2ey),

from which we find that inflation ends when

0.985

0.99

(145)

(146)

< -001f

n_-n‘ for Chaplygin Gas V
0.005 T T T T

-0.005 |

-0.015 |

-0.02 [

-0.025

0.965 0.97 0.975 0.98 0.985 0.99

n
s

Left: n, — r diagram for the model generalized Chaplygin gas V. Right: n, — n/, diagram for the same model. The plots are for

~ 2(In2A-1n(2-3B))
“r= B(a-1)

From (145) we observe that when e — 0, ny = B(A—1);
hence 5 — 0 when B — 0, or A — 1. Recall that B =0
means that we are in the case of the generalized Chaplygin
gas II model. On the other hand, by replacing w; = @y —
6N, in (145) and (146) using (147), it follows that the HSR
parameters are independent on the constant A, and are
functions of B, A and the number of e-folds N,. We choose
B =-0.002 and for the ranges N, € [50,60] and
A€ [-1,0), we present the n, — r and n, — n/; diagrams
in Fig 5. We can see that this differs from that of the
Chaplygin gas II model.

(147)
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n_- n‘s for Lambert Function Il
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FIG. 6. Left: n, — r diagram for the model “Lambert function IL” Right: n; — n), diagram for the same model. The plots are for

N, € [50.60] and g € [65. 100].

F. Lambert function II
For the scale factor (91) we find that the HSR parameters

are
l p o -2
eg=—1+W/(=ew (148)
q q
and
€y 3\/§
M =\~ ¢ = _—4 > VEH (149)
q q
n_- Scalar ratio for "Error function"
0.06
0.05 [
0.04
°
®
= 0.03 [
o
®©
O
(%}
0.02 [
L N_=50
0.01 e N =60
e
0 . . . . . |
0.955 0.96 0.965 0.97 0.975 0.98 0.985

n
s

while the spectral indices become

ny=1—4ey +2, 22,
q

2 3+3ﬁ

ng = \/_g(SH)E T Ven- (150)

From (148), we
1) :6ln(4‘/‘7(1_‘/§)
f P

that in order for (148) to be positive we need g > 0, while

w; is real when % > 0. Furthermore, we find

find

) + %‘7. It is important to mention here

that inflation ends at

3 n_-n‘_for "Error function"
14 X10 s s
T T T T T

N,=50

101 Ne=60 1

2 L L L L L
0.955 0.96 0.965 0.97 0.975 0.98

n
s

0.985

FIG. 7. Left: ny — r diagram for the model error function. Right: n, — n} diagram for the same model. The plots are for N, € [50, 60]

and AB € [~100, -0.02].
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ey :é <1 +W<%e%exp (—%»)_2. (151)

In Fig. 6 the ny, — r and n; — n diagrams are given for
g € [65,100], where we observe that n;, — 0 as n; — 1,
while the relation r(ng) is linear. However, for N, €
[50,60] we see that in the range of n, given by the
Planck data we need to have r > 0.11.

G. Error function solution

For the “error function” solution for the equation of state
(97), the HSR parameters are given by

3
T o (ABw)’
3
I/IH -
w
3
=——./¢ 2In (ABw) — 1), 152
En 2\/5 H’7H( ( ) ) ( )
and so inflation ends when w reaches the value
3
= —— 153
“r = T W(=3AB) (153)

where W is the Lambert function. We can easily see that in
order for w; to be real, AB < 0. The n, —r and n, — n;
diagrams for this model are given in Fig. 7 for the range of
e-folds N, € [50,60] and for AB € [-100, —0.02]. From
the plots we observe that for r < 0.06, we have n, €
[0.957,0.981] and n) € [3,10] x 1073. These values are
compared with the best-fit values from the Planck
Collaboration.

VI. CONCLUSIONS

In this work we studied exact solutions in scalar-field
cosmology using a new mathematical approach, and with
an emphasis on inflationary models. We have found new

PHYSICAL REVIEW D 94, 083518 (2016)

closed-form solutions for spatially flat FLRW universes
with or without an extra matter source. For the latter
cosmological scenario, we determined exact solutions for
the case in which the scalar field mimics the perfect fluid,
the scalar field has a constant equation of state parameter
different from that of the perfect fluid, and when the scalar
field provides two perfect-fluid terms in the field equations.
The first solution is the well-known special solution of the
exponential potential, while in the other two solutions the
scalar-field potentials are expressed in hypertrigonometric
functions and the unified cold dark matter potential is
recovered. Furthermore, these expressions can be applied in
order to construct other solutions in a FLRW spacetime
with spatial curvature.

In the cosmological scenario in which the Universe is
dominated by the scalar field we determined the scalar-field
model in which the equivalent equation of state parameter
is that of the Chaplygin gas, or some generalizations of the
Chaplygin gas which have been proposed in the literature.
We also considered solutions in which the Hubble function
is expressed in terms of the Lambert function or by
logarithmic function. These models provide exact infla-
tionary universe solutions.

We compared these solutions with the constraints on
inflation from the Planck 2015 Collaboration. In order to
perform this analysis we expressed the Hubble slow-roll
parameters in terms of the expansion scale factor in the
variables defined by our solution-generating functions. For
every specific model and solution we calculated the HSR
parameters and we derived the spectral indices in the first
approximation. The diagrams for the density perturbations
(ny) with the scalar ratio (r) and the variation n), have been
derived and the subset of models which are compatible with
the Planck 2015 data set have been delineated.
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