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Recent observational progress has led to the establishment of the standard ΛCDMmodel for cosmology.
This development is based on different cosmological probes that are usually combined through their
likelihoods at the latest stage in the analysis. We implement here an integrated scheme for cosmological
probes, which are combined in a common framework starting at the map level. This treatment is necessary
as the probes are generally derived from overlapping maps and are thus not independent. It also allows for a
thorough test of the cosmological model and of systematics through the consistency of different physical
tracers. As a first application, we combine current measurements of the cosmic microwave background
(CMB) from the Planck satellite, and galaxy clustering and weak lensing from SDSS. We consider the
spherical harmonic power spectra of these probes including all six auto- and cross-correlations along with
the associated full Gaussian covariance matrix. This provides an integrated treatment of different analyses
usually performed separately including CMB anisotropies, cosmic shear, galaxy clustering, galaxy-galaxy
lensing and the integrated Sachs-Wolfe effect with galaxy and shear tracers. We derive constraints on
ΛCDM parameters that are compatible with existing constraints and highlight tensions between data sets,
which become apparent in this integrated treatment. We discuss how this approach provides a complete and
powerful integrated framework for probe combination and how it can be extended to include other tracers in
the context of current and future wide-field cosmological surveys.
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I. INTRODUCTION

The past two decades have seen immense progress in
observational cosmology that has lead to the establishment
of the ΛCDM model for cosmology. This development is
mainly based on the combination of different cosmological
probes such as the cosmic microwave background (CMB)
temperature anisotropies, galaxy clustering, weak gravita-
tional lensing, supernovae and galaxy clusters. Until now,
these probes have been, for the most part, measured and
analyzed separately using different techniques and com-
bined at late stages of the analysis, i.e. when deriving
constraints on cosmological parameters. However, this
approach is not ideal for current and future surveys such
as the Dark Energy Survey,1 the Dark Energy Spectroscopic
Instrument,2 the Large Synoptic Survey Telescope,3 Euclid4

and the Wide Field Infrared Survey Telescope5 for several
reasons. First, these surveys will cover large, overlapping
regions of the observable Universe and are therefore not
statistically independent. In addition, the analysis of these
surveys requires tight control of systematic effects, which
might be identified by a direct cross-correlation of the

probes’ statistics. Moreover, each probe provides a meas-
urement of the cosmic structures through a different
physical field, such as density, velocity, gravitational
potentials, and temperature. A promising way to test for
new physics, such as modified gravity, is to look directly
for deviations from the expected relationships of the
statistics of the different fields. The integrated treatment
of the probes from the early stages of the analysis will thus
provide the cross-checks and the redundancy needed not
only to achieve high precision but also to challenge the
different sectors of the cosmological model.
Several earlier studies have considered joint analyses

of various cosmological probes. Mandelbaum et al. [1],
Cacciato et al. [2] and Kwan et al. [3] for example
derived cosmological constraints from a joint analysis of
galaxy-galaxy lensing and galaxy clustering while Liu
et al. [4] used the cross-correlation between the galaxy
shear field and the overdensity field together with the
cross-correlation of the galaxy overdensity with CMB
lensing to constrain multiplicative bias in the weak
lensing shear measurement in CFHTLenS. Recently,
Singh et al. [5] performed a joint analysis of CMB
lensing as well as galaxy clustering and weak lensing.
Furthermore, Eifler et al. [6] and Krause and Eifler [7]
have theoretically investigated joint analyses for photo-
metric galaxy surveys by modeling the full non-Gaussian
covariance matrix between cosmic shear, galaxy-galaxy
lensing, galaxy clustering, photometric baryon acoustic
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oscillations (BAO), galaxy cluster number counts and
galaxy cluster weak lensing.
Extending beyond this, we present and implement an

integrated approach to probe combination. In this first
implementation we combine data from CMB temperature
anisotropies, galaxy overdensities and weak lensing. We
use data from Planck 2015 [8] for the CMB, for galaxy
clustering we use photometric data from the eighth data
release of the Sloan Digital Sky Survey (SDSS DR 8) [9]
and the weak lensing shear data comes from SDSS
Stripe 82 [10]. We combine these probes into a common
framework at the map level by creating projected two-
dimensional maps of CMB temperature, galaxy overden-
sity and the weak lensing shear field. In order to jointly
analyze this set of maps we consider the spherical harmonic
power spectra of the probes including their cross-
correlations. This leads to a spherical harmonic power
spectrum matrix that combines CMB temperature anisot-
ropies, galaxy clustering, cosmic shear, galaxy-galaxy
lensing and the integrated Sachs-Wolfe (ISW) [11] effect
with galaxy and weak lensing shear tracers. We combine
this power spectrum matrix together with the full Gaussian
covariance matrix and derive constraints on the parameters
of the ΛCDM cosmological model, marginalizing over a
constant linear galaxy bias and a parameter accounting for
possible multiplicative bias in the weak lensing shear
measurement. In this first implementation, we use some
conservative and simplifying assumptions. For instance we
include a limited range of angular scales for the different
probes to reduce our sensitivity to systematics, nuisance
parameters and nonlinear corrections. With this, we work
under the assumption of Gaussian covariance matrices and
with a reduced set of nuisance parameters.
This paper is organized as follows. In Sec. II we describe

the framework for integrated probe combination employed
in this work. The theoretical modeling of the cosmological
observables is summarized in Sec. III. Section IV describes
the data analysis for each probe, especially the map-making
procedure. The computation of the spherical harmonic
auto- and cross-power spectra is discussed in Sec. V and
the estimation of the covariance matrix is detailed in
Sec. VI. In Sec. VII we present the cosmological con-
straints derived from the joint analysis and we conclude in
Sec. VIII. More detailed descriptions of data analysis as
well as robustness tests are deferred to the Appendices.

II. FRAMEWORK

The framework for integrated probe combination
employed in this work is illustrated in Fig. 1. In a first
step we collect data for different cosmological probes as
taken by either separate surveys or by the same survey. For
our first implementation described below we use cosmo-
logical data from the CMB temperature anisotropies, the
galaxy overdensity field and the weak lensing shear field.
After data collection, we perform probe specific data

analysis which involves data selection and systematics
removal. We then homogenize the data format by creating
projected two-dimensional maps for all probes considered.
The common data format allows us to combine the
cosmological probes into a common framework at the
map level. We compute both the spherical harmonic auto-
and cross-power spectra of this set of maps and combine
them into the spherical harmonic power spectrum matrix
Cij
l . This matrix captures the cosmological information

contained in the two-point statistics of the maps. In a last
step we compute the power spectrum covariance matrix and
combine it with theoretical predictions to derive constraints
on cosmological parameters from a joint fit to the measured
spherical harmonic power spectra. The details of the
implementation for CMB temperature anisotropies, galaxy
overdensities and weak lensing are described below.

III. THEORETICAL PREDICTIONS

The statistical properties of both the galaxy overdensity
δg and weak lensing shear γ, as well as their cross-
correlation can be measured from their spherical harmonic
power spectra. These generally take the form of weighted
integrals of the nonlinear matter power spectrum Pnl

δδðk; zÞ
multiplied with spherical Bessel functions jlðkχðzÞÞ. Their

FIG. 1. Synopsis of the framework for integrated probe
combination employed in this work.
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computation is time consuming and we therefore resort to
the Limber approximation [12–14] to speed up calcula-
tions. This is a valid approximation for small angular
scales, typically l > Oð10Þ, and broad redshift bins [15].
For simplicity, we further focus on flat cosmological
models, i.e. Ωk ¼ 0, for the theoretical predictions. The
spherical harmonic power spectrum Cij

l at multipole l
between cosmological probes i, j ∈ fδg; γg can then be
expressed as

Cij
l ¼

Z
dz

c
HðzÞ

WiðχðzÞÞWjðχðzÞÞ
χ2ðzÞ

× Pnl
δδ

�
k ¼ lþ 1

2

χðzÞ ; z

�
; ð1Þ

where c is the speed of light, χðzÞ is the comoving distance,
HðzÞ is the Hubble parameter and Wi0 ðχðzÞÞ denotes the
window function for probe i0.
For galaxy clustering the window function is given by

WδgðχðzÞÞ ¼ HðzÞ
c

bðzÞnðzÞ; ð2Þ

where bðzÞ denotes a linear galaxy bias and nðzÞ is the
normalized redshift selection function of the survey i.e.R
dznðzÞ ¼ 1. We focus on scale-independent galaxy bias

since we restrict the analysis to large scales, which are well
described by linear theory.
The window function for weak lensing shear is

WγðχðzÞÞ ¼ 3

2

ΩmH2
0

c2
χðzÞ
a

Z
χh

χðzÞ
dz0nðz0Þ χðz

0Þ − χðzÞ
χðz0Þ ; ð3Þ

whereΩm denotes the matter density parameter today,H0 is
the present-day Hubble parameter, χh is the comoving
distance to the horizon and a denotes the scale factor.
Similarly to the spherical harmonic power spectra of

galaxy clustering and weak lensing the spherical harmonic
power spectrum of CMB temperature anisotropies T can be
related to the primordial matter power spectrum generated
during inflation as [16]

CTT
l ¼ 2

π

Z
dkk2Plin

δδ ðkÞ
����ΔTlðkÞ

δðkÞ
����2; ð4Þ

where ΔTl denotes the transfer function of the temperature
anisotropies and δ is the matter overdensity.
The CMB temperature anisotropies are correlated to

tracers of the large-scale structure (LSS) such as galaxy
overdensity and weak lensing shear primarily through the
integrated Sachs-Wolfe effect [11]. On large enough scales
where linear theory holds, the spherical harmonic power
spectra between these probes can be computed from
expressions similar to those above. In the Limber approxi-
mation [12–14], the spherical harmonic power spectrum

between CMB temperature anisotropies and a tracer i of the
LSS becomes [17]

CiT
l ¼ 3

ΩmH2
0TCMB

c2
1

ðlþ 1
2
Þ2
Z

dz
d
dz

½DðzÞð1þ zÞ�

×DðzÞWiðχðzÞÞPlin
δδ

�
k ¼ lþ 1

2

χðzÞ ; 0

�
; ð5Þ

where TCMB denotes the mean temperature of the CMB
today, i ∈ fδg; γg and WiðχðzÞÞ represents the window
functions defined in Eqs. (2) and (3). We have further split
the linear matter power spectrum Plin

δδ ðk; zÞ into its time-
dependent part parametrized by the growth factor DðzÞ and
the scale-dependent part Plin

δδ ðk; 0Þ. For a derivation of
Eq. (5) for the galaxy overdensity field as a tracer of the
LSS see e.g. Ref. [18]. The derivation for CγT

l is similar and
is detailed in Appendix A.
To compute the auto-power spectrum of the CMB

temperature anisotropies we use the publicly available
Boltzmann code CLASS

6 [19]. For the other power spectra
we use PYCOSMO [20]. We calculate the linear matter
power spectrum from the transfer function derived by
Eisenstein and Hu [21]. To compute the nonlinear matter
power spectrum we use the HALOFIT fitting function [22]
with the revisions of Takahashi et al. [23].

IV. MAPS

A. Cosmic microwave background

We use the foreground-reduced CMB anisotropy maps
provided by the Planck Collaboration [24] in their 2015
data release. We choose these over the uncleaned single-
frequency maps because they allow us to perform the
foreground correction on the maps rather than the power
spectrum level. This is important when considering probe
combination. The Planck foreground-reduced CMB
anisotropy maps have been derived using four different
algorithms: Commander, NILC, SEVEM and SMICA. The
maps are given in HEALPix7 [25] format and are provided
in Galactic coordinates at two different resolutions of
NSIDE ¼ 1024 and NSIDE ¼ 2048. These correspond
to pixel areas of 11.8 and 2.95 arcmin2 respectively.
Different data configurations are available [24]; we use
both the half-mission half-sum (HMHS) maps, which
contain both signal and noise, and the half-mission half-
difference maps (HMHD), which contain only noise and
potential residual systematic uncertainties. All four maps
yield consistent estimates of both the spherical harmonic
power spectrum of the CMB temperature anisotropies as
well as the spherical harmonic cross-power spectrum
between CMB temperature anisotropies and tracers of

6http://class‑code.net.
7http://healpix.sourceforge.net.
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the LSS [24,26,27]. Since the Planck Collaboration found
the Commander approach to be the preferred solution for
studying the CMB anisotropies at large and intermediate
angular scales, we also choose it for our analysis. Each of
the four foreground reduction methods also provides a
confidence mask inside which the CMB solution is trusted.
Following the Planck Collaboration [24], we adopt the
union of the confidence masks for Commander, SEVEM
and SMICA. This is referred to as the UT78 mask and
covers 77.6% of the sky at a resolution of NSIDE ¼ 2048.
To downgrade the mask to NSIDE ¼ 1024, we follow the
description outlined in Ref. [24]. The HMHS CMB
anisotropy map derived using Commander is shown in
the top panel of Fig. 2 for resolution NSIDE ¼ 1024 and
the corresponding HMHD map is shown in Fig. 18 in
Appendix H.

B. Galaxy overdensity

The SDSS [28–31] obtained wide-field images of 14555
deg2 of the sky in five photometric passbands (u, g, r, i, z
[32–34]) up to a limiting r-band magnitude of r≃ 22.5.
The photometric data is complemented with spectroscopic
data from the Baryonic Oscillations Spectroscopic Survey
(BOSS) [29,35,36]. BOSS was conducted as part of SDSS
III [29] and obtained spectra of approximately 1.5 million
luminous galaxies distributed over 10 000 deg2 of the sky.
The SDSS photometric redshifts for DR8 [9] are estimated
using a local regression model trained on a spectroscopic
training set consisting of 850000 SDSS DR8 spectra and
spectroscopic data from other surveys.8 The algorithm is
outlined in Ref. [37].
In our analysis, which is described in the following, we

largely follow Ho et al. [38]. We select objects classified as
galaxies from the PHOTOPRIMARY table in the Catalog
Archive Server (CAS9). To obtain a homogeneous galaxy
sample we further select CMASS galaxies using the color-
magnitude cuts used for BOSS target selection [29] and
outlined in Ref. [38]. This selection isolates luminous,
high-redshift galaxies that are approximately stellar mass
limited [39,40]. We further restrict the sample to CMASS
galaxies with SDSS photometric redshifts between
0.45 ≤ z < 0.65, i.e. we consider the photometric redshift
slices CMASS1-4. This selection yields a total of Ngal ¼
1096455 galaxies.
To compute the galaxy overdensity field, we need to

characterize the full area observed by the survey and mask
regions heavily affected by foregrounds or potential sys-
tematics. The area imaged by the SDSS is divided into units
called fields. Several such fields have been observed
multiple times in the SDSS imaging runs. The survey

footprint is the union of the best observed (primary) fields
at each position and is described in terms of MANGLE [41–
43] spherical polygons. Each of these polygons is matched
to the SDSS field fully covering it.10 In order to select the
survey area least affected by foregrounds and potential
systematics we follow Ho et al. [38] and Ross et al. [40]
and restrict the analysis to polygons covered by fields with
score11 ≥ 0.6, full width at half maximum (FWHM) of
the point spread function (PSF) PSF-FWHM < 2.0 arcsec in
the r-band and Galactic extinction EðB − VÞ ≤ 0.08 as
determined from the extinction maps from Ref. [44].
To facilitate a joint analysis between the LSS probes and

the CMB, which is given as a map in Galactic coordinates,
we transform both the galaxy positions as well as the survey
mask from equatorial (RA, DEC) to Galactic (l, b)
coordinates. We construct the continuous galaxy over-
density field by pixelizing the galaxy overdensities δg ¼
δn=n̄ onto a HEALPix pixelization of the sphere with
resolution NSIDE ¼ 1024. We mask the galaxy overden-
sity map with a HEALPix version of the SDSS survey
mask, which is obtained by random sampling of the
MANGLE mask. To account for the effect of bright stars,
we use the Tycho astrometric catalog [45] and define
magnitude-dependent stellar masks as defined in Ref. [46].
We remove galaxies inside the bright star masks and correct
for the area covered by the bright stars by removing the area
covered by the star masks from the pixel area Apix;corr ¼
Apix;uncorr − Astars when computing the galaxy overdensity.
The final map covers a fraction fsky ≈ 0.27 of the sky and
contains Ngal ¼ 854 063 galaxies.
Even after masking and removal of high contamination

regions, there are still systematics left in the galaxy over-
density map. The correction for residual systematic
uncertainties in the maps follows Ross et al. [40] and
Hernández-Monteagudo et al. [47] and is described in
Appendix B. The final map is shown in the middle panel
of Fig. 2.
As well as the maps we need an estimate for the

redshift distribution of the galaxies in our sample. To this
end we follow Ho et al. [38] and match photometrically
detected galaxies to galaxies observed spectroscopically
in SDSS DR9 [48]. We then estimate the redshift
distribution of the photometric galaxies from the spectro-
scopic redshift distribution of the matching galaxies. The
selected CMASS1-4 galaxies have spectroscopic redshifts
0.4≲ z≲ 0.7 as can be seen from the redshift distribution
shown in Fig. 3.

C. Weak lensing

We take weak lensing data from the SDSS Stripe 82 co-
add [10], which comprises 275 deg2 of co-added SDSS

8More details can be found at http://www.sdss3.org/dr8/
algorithms/photo‑z.php.

9The SDSS Catalog Archive Server can be accessed at http://
skyserver.sdss.org/CasJobs/SubmitJob.aspx.

10This information is found in the files window_unified
.fits and window_flist.fits.

11http://www.sdss3.org/dr10/algorithms/resolve.php.
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imaging data with a limiting r-band magnitude r ≈ 23.5
and r-band median seeing of 1.1 arcsec. The shapes of
objects detected in the SDSS were measured from the
adaptive moments [49] by the PHOTO pipeline [50] and are

available on the CAS.12 Photometric redshifts for all
detected galaxies were computed using a neural network

CMB temperature

Galaxy density

Weak lensing

FIG. 2. Summary of the three maps in Galactic coordinates used in this analysis. The all-sky maps are in Mollweide projection while
the zoom-in versions are in Gnomonic projection. The HMHS map of CMB temperature anisotropies as derived using Commander is
shown in the top panel. It is masked using the UT78 mask. The middle panel shows the systematics-corrected (see text) galaxy
overdensity map for CMASS1-4 galaxies. Grey areas have been masked either because they lie outside the survey footprint or are
potentially contaminated by systematics. The lower panel shows the map of the SDSS Stripe 82 shear modulus jγ̂j. Grey areas have been
masked because they are either unobserved or do not contain galaxies for shear measurement. The zoom-in figures (left) are enlarged
versions of the 5 × 5 deg2 region centred on ðl;bÞ ¼ ð53°;−33.5°Þ shown in the maps. The zoom-in for the galaxy shear map is
overlaid with a whisker plot of the galaxy shears. All three maps have resolution NSIDE ¼ 1024.

12See footnote 9.
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approach as described in Ref. [51] and are available as a

DR7 value added catalog.13

In the following analysis we closely follow the work by
Lin et al. [52]. We select objects identified as galaxies in the
co-add data (i.e. run ¼ 106 or run ¼ 206) from the CAS
and we restrict the sample to galaxies with extinction
corrected i-band magnitudes in the range 18 < i < 24.
Further we select only objects that pass the clean photom-
etry cuts as defined by the SDSS14 and do not have flags
indicating problems with the measurement of adaptive
moments as well as negative errors on those. The former
cuts especially exclude galaxies containing saturated pix-
els. We use shapes measured in the i-band since it has the
smallest seeing (1.05 arcsec) [10,52] and further consider
only galaxies with observed sizes at least 50% larger than
the PSF. This requirement is quantified by requiring the
resolution factor R ¼ 1 − mRrCcPSF=mRrCC [49] to
satisfy R > 0.33, where mRrCc and mRrCcPSF denote
the sum of the second-order moments in the CCD column
and row directions for both the object and the PSF.
For the above galaxy sample we compute PSF-corrected

galaxy ellipticities using the linear PSF correction algorithm
as described in Ref. [53]. For weak lensing shear measure-
ment we follow Lin et al. [52] and restrict the sample to
galaxies with PSF-corrected ellipticity components e1, e2
satisfying je1j < 1.4 as well as je2j < 1.4 and photometric
redshift uncertainties σz < 0.15. This sample has an rms
ellipticity per component of σe ∼ 0.43. We then turn the PSF-
corrected ellipticities for this sample into shear estimates. The
details of the analysis are described in Appendix C.

After computing weak lensing shear estimates from the
ellipticities we apply a rotation to both the galaxy positions
and shears from equatorial to Galactic coordinates15 to
allow for combination with the CMB. We pixelize both
weak lensing shear components onto separate HEALPix
pixelizations of the sphere choosing a resolution of
NSIDE ¼ 1024 as for the galaxy overdensity map. At this
resolution the mean number of galaxies per pixel is about
38, which corresponds to ngal ≃ 3.2 arcmin−2. We apply a
mask to both maps, which accounts for both unobserved
and empty pixels. The final maps are constructed using
Ngal ¼ 3322915 galaxies and cover a sky fraction
fsky ≈ 0.0069. The map of the shear modulus jγ̂j is shown
in the bottom panel of Fig. 2 together with a zoom-in region
with an overlaid whisker plot illustrating the magnitude and
direction of the weak lensing shear.
We follow Lin et al. [52] and estimate the redshift

distribution of the galaxies from their photometric redshift
distribution. The redshift distribution is shown in Fig. 3
together with the window function for weak lensing shear
defined in Eq. (3). We see that the selected galaxies have
photometric redshifts z≲ 1.0.
A summary of the data used for constructing the maps

can be found in Table 1.

V. SPHERICAL HARMONIC POWER SPECTRA

We calculate the spherical harmonic power spectra of the
maps presented in the previous section using the publicly
available code PolSpice16 [54,55]. The PolSpice code
is designed to combine both real and Fourier space in order to
correct spherical harmonic power spectra measured on a cut-
sky from the effect of the mask. The algorithm can be
summarized as follows: starting from a masked HEALPix
map, PolSpice first computes the so-called pseudo-power
spectrum, which is then Fourier transformed to the real space
correlation function. In order to correct for the effects of the
mask, the latter is dividedby themask correlation function. In
a last step, the demasked correlation function is Fourier
transformed back to the spherical harmonic power spectrum.
This approach ensures that PolSpice can exploit the
advantages of real space while still performing the computa-
tionally expensive calculations in Fourier space.
Demasking can only be performed on angular scales on

which information is available, which translates to a
maximal angular scale θmax for which a demasked corre-
lation function can be computed. This maximal scale leads
to ringing when transforming back from real to Fourier
space, which can be reduced by apodizing the correlation
function prior to inversion. Both these steps lead to biases
in the power spectrum recovered by PolSpice. The
kernels relating the average PolSpice estimates to the

FIG. 3. Redshift distribution for the LSS probes. The figure
shows the redshift selection function of SDSS CMASS1-4
galaxies, the redshift selection function for the SDSS Stripe 82
galaxies as well as the weak lensing shear window function
defined in Eq. (3). The redshift selection function for CMASS1-4
galaxies as well as the weak lensing shear window function have
been rescaled relative to the Stripe 82 redshift selection function.

13http://classic.sdss.org/dr7/products/value_added/, http://
das.sdss.org/va/coadd_galaxies/.

14http://www.sdss.org/dr12/tutorials/flags/.

15The exact rotation of the shears is described in Appendix D.
16http://www2.iap.fr/users/hivon/software/PolSpice/.
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true power spectra can be computed theoretically for a
given maximal angular scale and apodization prescription
and need to be corrected for when comparing theoretical
predictions to observed power spectra.
An additional difficulty arises in the computation of

spherical harmonic power spectra of spin-2 fields. Finite
sky coverage tends to cause mixing between E and B
modes. The polarization version of PolSpice is designed
to remove E- to B-mode leakage in the mean [55]. Details
on our earlier application of PolSpice to LSS data are
described in Appendix A of Ref. [56].
In order to calculate both the auto- and cross-power

spectra for all probes, we need to estimate the maximal
angular scale θmax. This is not a well-defined quantity but
we can separately estimate it for each probe from the real
space correlation function of its mask. The real space
correlation function of the survey mask will fall off
significantly or vanish for scales larger than θmax. We
therefore estimate θmax as the scale around which the mask
correlation function significantly decreases in amplitude.
Appendix E illustrates this analysis for the example of the
SDSS Stripe 82 weak lensing shear mask. In order to
reduce Fourier ringing we apodize the correlation function
using a Gaussian window function; following Chon et al.
[55] we choose the FWHM of the Gaussian window as
θFWHM ¼ θmax=2. Survey masks with complicated angular
dependence might not exhibit a clear falloff, which com-
plicates the choice of θmax. We therefore validate our
choices of θmax and θFWHM with the Gaussian simulations
as described in Appendices F and G. We find that our
choices allow for the recovery of the input power spectra
for all the probes and settings.
All spherical harmonic power spectra are corrected for

the effect of the HEALPix pixel window function and the
power spectra involving the CMBmap are further corrected
for the Planck effective beam window function, which
complements the CMB maps.
We now separately describe the measurement of all the

six spherical harmonic power spectra. To compute the

power spectra, we use the maps and masks described in
Sec. IV at resolution NSIDE ¼ 1024, except for the CMB
temperature power spectrum. For the latter we use the maps
at resolution NSIDE ¼ 2048, but we do not expect this to
make a significant difference. The PolSpice parameter
settings used to compute the power spectra are summarized
in Table II. This table further gives the angular multipole
range as well as binning scheme employed for the cosmo-
logical analysis. For all probes considered, the uncertainties
are derived from the Gaussian simulations described in
Sec. VI B and Appendix F.

A. CMB

We use the HMHS map to estimate the CMB signal
power spectrum and the HMHD map to estimate the noise
in the power spectrum of the HMHS map.
The minimal angular multipole used in the cosmological

analysis is chosen such as to minimize demasking effects
and the cut at l ¼ 610 ensures that we are not biased by
residual foregrounds in the maps as discussed in Sec. VII.
The resulting power spectrum is shown in the top panel of
Fig. 4. In Appendix H we compare the CMB auto-power
spectrum computed from the different foreground-reduced
maps. As illustrated in Fig. 16 in Appendix H we find that
the measured CMB auto-power spectrum is unaffected by
the choice of foreground-reduced map.

TABLE II. Spherical harmonic power spectrum parameters and
angular multipole ranges.

Power spectrum θmax [deg] θFWHM [deg] l range Δl

CTT
l 40 20 [10, 610] 30

C
δgδg
l

80 40 [30, 210] 30

Cγγ
l 10 5 [70, 610] 60

C
δgT
l

40 20 [30, 210] 30

CγT
l

10 5 [70, 610] 60

C
γδg
l

10 5 [30, 210] 60

TABLE I. Summary of used data.

CMB temperature anisotropies Survey: Planck 2015 [24]
Fiducial foreground-reduced map: Commander

Sky coverage: fsky ¼ 0.776

Galaxy overdensity Survey: SDSS DR8 [9]
Sky coverage: fsky ¼ 0.27
Galaxy sample: CMASS1-4

Number of galaxies: Ngal ¼ 854063

Photometric redshift range 0.45 ≤ zphot < 0.65

Weak lensing Survey: SDSS Stripe 82 co-add [10]
Sky coverage: fsky ¼ 0.0069

Number of galaxies: Ngal ¼ 3322915

Photometric redshift range: 0.1 ≲ zphot ≲ 1.1
rms ellipticity per component: σe ∼ 0.43

INTEGRATED APPROACH TO COSMOLOGY: COMBINING … PHYSICAL REVIEW D 94, 083517 (2016)

083517-7



B. Galaxy clustering

The galaxy overdensity maps described in Sec. IV are
estimated from discrete galaxy tracers. Therefore, their
spherical harmonic power spectrum receives contributions
from the galaxy clustering signal and Poisson shot noise.
To estimate the noise power spectrum, we resort to
simulations. We generate noise maps by randomizing the
positions of all the galaxies in the sample inside the mask.
Since this procedure removes all correlations between
galaxy positions, the power spectra of these maps will
give an estimate of the level of Poisson shot noise present in
the data. In order to obtain a robust noise power spectrum,
we generate 100 noise maps and estimate the noise power
spectrum from the mean of these power spectra.

The spherical harmonic galaxy clustering power spec-
trum contains significant contributions from nonlinear
structure formation at small angular scales. The effects
of nonlinear galaxy bias are difficult to model and we
therefore restrict our analysis to angular scales for which
nonlinear corrections are small. We can estimate the
significance of nonlinear effects by comparing the spherical
harmonic galaxy clustering power spectrum computed
using the nonlinear matter power spectrum as well as
the linear matter power spectrum. Since galaxies are more
clustered than dark matter this is likely to underestimate the
effect. We find that the difference between the two reaches
5% of the power spectrum uncertainties and thus becomes
mildly significant at around lmax ∼ 250. This difference is
smaller than the difference derived in Refs. [38] and [57]

FIG. 4. Spherical harmonic power spectra for all probes used in the cosmological analysis. The top left panel shows the power
spectrum of CMB anisotropies computed from the Commander CMB temperature map at resolution of NSIDE ¼ 2048. The middle
left panel shows the cross-power spectrum between CMB temperature anisotropies and galaxy overdensity computed from the
systematics-reduced SDSS CMASS1-4 map and the Commandermap at resolution NSIDE ¼ 1024. The middle right panel shows the
spherical harmonic power spectrum of the galaxy overdensity computed from the systematics-reduced SDSS CMASS1-4 map at
NSIDE ¼ 1024. The bottom left panel shows the spherical harmonic power spectrum between CMB temperature anisotropies and weak
lensing shear measured from the Commander CMBmap and the SDSS Stripe 82 weak lensing maps at resolution NSIDE ¼ 1024. The
bottom-middle panel shows the spherical harmonic power spectrum between galaxy overdensity and galaxy weak lensing shear
computed from the systematics-reduced SDSS CMASS1-4 map and the SDSS Stripe 82 galaxy weak lensing shear map at resolution
NSIDE ¼ 1024. The bottom right panel shows the spherical harmonic power spectrum of cosmic shear E modes computed from the
SDSS Stripe 82 weak lensing shear maps. The angular multipole ranges and binning schemes for all power spectra are summarized in
Table II. All power spectra are derived from the maps in Galactic coordinates. The solid lines show the theoretical predictions for the
best-fit cosmological model determined from the joint analysis which is summarized in Table III. The theoretical predictions have been
convolved with the PolSpice kernels as described in Sec. V. The error bars are derived from the Gaussian simulations described in
Sec. VI B and Appendix F.
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which is likely due to the fact that we consider a single
redshift bin and do not split the data into low and high
redshifts. In order not to bias our results we choose lmax ¼
210 which is comparable to the limit used in Refs. [38] and
[57]. To determine the minimal angular multipole we follow
Ho et al. [38], who determined that the Limber approxima-
tion becomes accurate for scales larger than l ¼ 30.
The middle right panel in Fig. 4 shows the spherical

harmonic galaxy clustering power spectrum computed
from the systematics-corrected map in Galactic coordi-
nates. In Appendix H, we compare the spherical harmonic
power spectrum derived from the systematics-corrected
maps in Galactic and equatorial coordinates. We find small
differences at large angular scales, but the effect on the
band powers considered in this analysis is negligible, as can
be seen from Appendix H (Fig. 14). To test the procedure
for removing systematic uncertainties, we compare the
spherical harmonic power spectra before and after cor-
recting the maps for residual systematics. We find that the
removal of systematics marginally reduces the clustering
amplitude on large scales, which is expected since Galactic
foregrounds exhibit significant large-scale clustering. Small
angular scales on the other hand, are mostly unaffected by
the corrections applied. These results are shown in
Appendix H (Fig. 17).

C. Cosmic shear

The power spectrum computed from the weak lensing
shear maps described in Sec. IV C contains contributions
from both the cosmic shear signal and the shape noise of the
galaxies, which is due to intrinsic galaxy ellipticities. In
order to estimate the shape noise power spectrum we follow
the same methodology as for galaxy clustering and resort to
simulations. We generate noise-only maps by rotating the
shears of all the galaxies in our sample by a random angle.
This procedure removes spatial correlations between gal-
axy shapes. Since the weak lensing shear signal is at least
an order of magnitude smaller than the intrinsic galaxy
ellipticities, the power spectrum of the randomized map
gives an estimate of the shape noise power spectrum. As for
galaxy clustering, we compute 100 noise maps and estimate
the shape noise power spectrum from the mean of these 100
noise power spectra.
For the cosmological analysis we choose broader multi-

pole bins than for the CMB temperature anisotropies and
galaxy clustering since the small sky fraction covered by
SDSS Stripe 82 causes the cosmic shear power spectrum to
be correlated across a significantly larger multipole range.
The low- and high-l limits are chosen to minimize
demasking uncertainties and the impact of nonlinearities
in the cosmic shear power spectrum.
The spherical harmonic power spectrum of the weak

lensing shear E mode is displayed in the bottom right panel
of Fig. 4 and the B-mode power spectrum is shown in
Appendix H (Fig. 19). We see that the E-mode power

spectrum is intrinsically low as compared to the best-fit
theory power spectrum. These results are similar to those
derived by Lin et al. [52], who found a low value of Ω0.7

m σ8
for Stripe 82 cosmic shear. As can be seen, we do not detect
a significant B-mode signal.
When comparing the weak lensing shear E-mode power

spectra computed from the maps in Galactic and equatorial
coordinates, we find discrepancies. These are mainly caused
by the correction for additive bias in theweak lensing shears.
As described in Appendix C, the PSF-corrected galaxy
shears are affected by an additive bias. Following Lin et al.
[52], we correct for this bias by subtracting themean shear of
each CCD camera column from the galaxy shears. This
correction is performed in equatorial coordinates and ensures
that themean shear vanishes in this coordinate system.When
the galaxy positions and shears are rotated from equatorial to
Galactic coordinates, this ceases to be true. Therefore the
correction for additive bias is coordinate dependent and it is
this effect that causes the main discrepancies between the
measured power spectra. Further descriptions of the impact
of the additive shear bias correction can be found in
Appendix H 1.
The discrepancies between the cosmic shear power

spectra measured from maps in Galactic and equatorial
coordinates are still within the experimental uncertainties.
We therefore choose to correct for the additive shear bias in
equatorial coordinates, apply the rotation to the corrected
shears and compute the cosmic shear power spectrum from
the maps in Galactic coordinates. We note however, that
these differences will become significant for surveys
measuring cosmic shear with higher precision. It is there-
fore important to develop coordinate-independent methods
for shear bias correction when performing a joint analysis
of different cosmological probes.

D. CMB and galaxy overdensity cross-correlation

To compute the spherical harmonic cross-power spec-
trum between CMB temperature anisotropies and the
galaxy overdensity, we use the maps and masks described
in Secs. IVA and IV B.
We generally have two possibilities to compute cross-

correlations between two maps with different angular
masks. We can either compute the cross-correlation by
keeping the respective mask for each probe, or we can
compute a combined mask, which is the union of all pixels
masked in at least one of the maps. When testing both these
cases on Gaussian simulations, we observed a better
recovery of the input power spectra when applying the
combined mask to both maps. We therefore mask both
maps with the combined mask, which covers a fraction of
sky fsky ∼ 0.26.
The spherical harmonic cross-power spectrum between

CMB temperature anisotropies and the galaxy overdensity
is shown in the middle left panel of Fig. 4. We see that the
ISW power spectrum is very noisy, which makes its
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detection significance small. Since the power spectrum
uncertainties for the considered angular scales are mainly
due to cosmic variance, we suspect that the low signal-to-
noise is mainly due to the fraction of sky covered by the
SDSS CMASS1-4 galaxies. Despite its low significance,
we include the ISW power spectrum in our analysis,
because we expect it to help break degeneracies between
cosmological parameters. We check that the ISW power
spectrum does not depend on the choice of foreground-
reduced CMB map. We find that the results using the maps
provided by the NILC, SEVEM and SMICA algorithms are
virtually the same, as illustrated in Appendix H (Fig. 16).

E. CMB and weak lensing shear cross-correlation

We estimate the spherical harmonic cross-power spec-
trum between CMB temperature anisotropies and the weak
lensing shear E-mode field from the maps and masks
described in Secs. IVA and IV C. Both maps are masked
with the combination of the masks, which covers a fraction
of sky fsky ∼ 0.0065.
The bottom left panel in Fig. 4 shows the spherical

harmonic power spectrum between CMB temperature
anisotropies and the weak lensing shear E-mode field.
As can be seen, the noise level is too high to allow for a
detection of the ISW correlation between CMB temperature
anisotropies and weak lensing shear. This is to be expected
due to the small sky fraction covered by the SDSS Stripe 82
galaxies and the intrinsically low signal-to-noise of this
cross-correlation. Nevertheless, we include the power
spectrum in the joint analysis to provide an upper limit
on the ISW from weak lensing. The measured power
spectrum is unaffected by the choice of CMB map-making
method, as illustrated in Fig. 16 in Appendix H.

F. Galaxy overdensity and weak lensing
shear cross-correlation

We compute the spherical harmonic cross-power spec-
trum between the galaxy overdensity and weak lensing
shear E-mode field from the maps and masks described in
Secs. IV B and IV C. We mask both maps with the
combination of the two masks. The combined mask covers
a sky fraction fsky ∼ 0.0053.
The spherical harmonic cross-power spectrum between

the galaxy overdensity and weak lensing shear E mode is
shown in the bottom-middle panel of Fig. 4. We see that the
signal-to-noise of the power spectrum is low at the angular
scales considered. This is probably due to the small sky
fraction covered by Stripe 82 galaxies. We nevertheless
include this cross-correlation in our analysis to serve as an
upper limit. In Appendix H we show the comparison
between the power spectra measured from the maps in
Galactic and equatorial coordinates. We find reasonable
agreement between the two, even though the discrepancies
are significantly enhanced compared to the effects on the
galaxy overdensity power spectrum. As discussed in

Sec. V C this is probably due to the coordinate dependence
of the additive shear bias correction.

VI. COVARIANCE MATRIX

In order to obtain cosmological constraints from a joint
analysis of CMB temperature anisotropies, galaxy clustering
and weak lensing we need to estimate the joint covariance
matrix of these cosmological probes. In this work we assume
all the fields to beGaussian random fields, i.e. we assume the
covariance between all probes to beGaussian and neglect any
non-Gaussian contribution. This is appropriate for the CMB
temperature field aswell as thegalaxy overdensity field at the
scales considered but it is only an approximation for theweak
lensing shear field [58]. For example, for a survey with
source redshifts zs ¼ 0.6, Sato et al. [58] found that
neglecting non-Gaussian contributions leads to an under-
estimation of the diagonal terms in the cosmic shear
covariance matrix by a factor of approximately 5 at multi-
poles l ∼ 600. In our case the discrepancy may be more
pronounced since our sample contains a significant number
of galaxies with zs < 0.6. On the other hand we will be less
sensitive to the non-Gaussian nature of the covariancematrix
since the covariance for our galaxy sample is dominated by
shape noise especially at the highest multipoles considered.
We therefore decide to leave the introduction of non-
Gaussian covariance matrices to future work.
In this work, we employ two different models for the

joint Gaussian covariance matrix CG: the first is a theo-
retical model and the second is based on simulations of
correlated Gaussian realizations of the three cosmological
probes. We use the theoretical covariance matrix to validate
the covariance matrix obtained from the simulations.

A. Theoretical covariance estimate

The covariance between cosmological spherical har-
monic power spectra is composed of two parts: cosmic
variance and noise. For spherical harmonic power spectra
computed over the full sky, different l modes are uncorre-
lated and the covariance matrix is diagonal. Partial sky
coverage, i.e. fsky < 1, has the effect of coupling different
lmodes and thus leads to a nondiagonal covariance matrix.
This covariance becomes approximately diagonal if it is
binned into approximately uncorrelated band powers of
width Δl [59]. Cabré et al. [59] found the empirical
relation Δlfsky ∼ 2 to be a good approximation. In this
case the covariance matrix between binned power spectra
Cij
l and Ci0j0

l0 can be approximated as [6,59,60]

CovGðCij
l ; C

i0j0
l0 Þ

¼ hΔCij
lΔC

i0j0
l0 i

≃ δll0

ð2lþ 1ÞΔlfsky
½ðCii0

l þ Nii0 ÞðCjj0
l þ Njj0 Þ

þ ðCij0
l þ Nij0 ÞðCji0

l þ Nji0 Þ�; ð6Þ
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where i, j, i0, j0 denote different cosmological probes; in
our case i; j; i0; j0 ∈ fT; δg; γg. The quantities Nij are the
noise power spectra of the different probes, which vanish
unless i ¼ j.
Given a cosmological model and survey specifications

such as fractional sky coverage and noise level, we can
approximate CG using Eq. (6) for each block covariance
matrix. We choose a hybrid approach: we adopt a cosmo-
logical model to calculate the signal power spectra whereas
we approximate Nij with the measured noise power spectra
used to remove the noise bias in the data as described
in Sec. V.

B. Covariance estimate from Gaussian simulations

The theoretical covariance matrix estimate described
above is expected to only yield accurate results for
uncorrelated binned power spectra, since in this approxi-
mation the covariance matrix is fully diagonal. For this
reason we also estimate the covariance matrix in an
alternative way that does not rely on this approximation:
we estimate an empirical covariance matrix from the
sample variance of Gaussian simulations of the three
cosmological probes. To this end, we simulate correlated
realizations of both the two spin-0 fields, CMB temperature
and galaxy overdensity, as well as the spin-2 weak lensing
shear field. We follow the approach outlined in Ref. [61] for
simulating correlated maps of spin-0 fields and we make
use of the polarization version of the HEALPix routine
synfast to additionally simulate correlated maps of the
spin-2 field. We estimate noise maps from the data and add
these to the correlated signal maps. The details of the
algorithm are outlined in Appendix F.
In order to compute the power spectrum covariance

matrix, we apply the masks used on the data to the
simulated maps and calculate both the auto- and the
cross-power spectra of all the probes using the same
methodology and PolSpice settings as described in
Sec. V. We generate Nsim random realizations and estimate
the covariance matrix as

CovGðCij
l ; C

i0j0
l0 Þ ¼

1

Nsim − 1

XNsim

k¼1

½Cij
k ðlÞ − C̄ij

k ðlÞ�

× ½Ci0j0
k ðl0Þ − C̄i0j0

k ðl0Þ�; ð7Þ

where C̄ij
k ðlÞ denotes the mean over all realizations.

The accuracy of the sample covariance estimate depends
on the number of simulations. As described in Ref. [59],
Nsim ¼ 1000 achieves better than 5% accuracy for estimat-
ing the covariance matrix for the ISW effect from Gaussian
simulations. We therefore follow Cabré et al. [59] and
compute the covariance matrix from the sample variance of
Nsim ¼ 1000 Gaussian realizations of the four maps or six
spherical harmonic power spectra respectively.

The correlation matrix for the spherical harmonic power
spectra derived from the Gaussian simulations for binning
schemes and angular multipole ranges described in Sec. V
is shown in Fig. 5. We see that the survey masks lead to
significant correlations between band powers.

VII. COSMOLOGICAL CONSTRAINTS

Each of the power spectra presented in Sec. V carries
cosmological information with probe-specific sensiti-
vities and degeneracies. An integrated combination of
these cosmological probes therefore helps break these
parameter degeneracies. It further provides robust cosmo-
logical constraints since it is derived from a joint fit to the
auto- as well as cross-correlations of three cosmological
probes.
In order to derive cosmological constraints from a joint

fit to the six spherical harmonic power spectra discussed in
Sec. V, we assume the joint likelihood to be Gaussian, i.e.

LðDjθÞ ¼ 1

½ð2πÞd detCG�12
× e−

1
2
ðCobs

l −Ctheor
l ÞTC−1

G ðCobs
l −Ctheor

l Þ; ð8Þ

where CG denotes the Gaussian covariance matrix. Ctheor
l

denotes the theoretical prediction for the spherical har-
monic power spectrum vector of dimension d and Cobs

l is
the observed power spectrum vector, defined as

FIG. 5. Correlation matrix for the spherical harmonic power
spectra derived from the sample variance of the Gaussian
simulations. The binning scheme and angular multipole range
for each probe follow those outlined in Table II.
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Cobs
l ¼ ðCTT

l C
δgT
l C

δgδg
l CγT

l C
γδg
l Cγγ

l
Þ
obs

: ð9Þ

AGaussian likelihood is a justified assumption for both the
CMB temperature anisotropy and galaxy clustering power
spectra due to the central limit theorem. Since the weak
lensing shear power spectrum receives a significant con-
tribution from nonlinear structure formation, its likelihood
will deviate from being purely Gaussian [62]. It has been
shown however, that a Gaussian likelihood is a sensible
approximation, especially when CMB data is added to
weak lensing [63]. In our first implementation we will thus
assume both a joint Gaussian likelihood and Gaussian
single probe likelihoods.
We estimate the covariance matrix using both methods

outlined in Sec. VI. In both cases we compute the
covariance for a ΛCDM cosmological model, which we
keep fixed in the joint fit. Note that the covariance matrices
depend on the cosmological model and should therefore
vary in the fitting procedure [64]. Following standard
practice (e.g. Ref. [65]), we approximate the covariance
matrix to be constant and compute it for a ΛCDM
cosmological model with parameter values fh;Ωm;
Ωb; ns;σ8; τreion; TCMBg ¼ f0.7;0.3;0.049;1.0;0.88;0.078;
2.275 Kg, where h is the dimensionless Hubble parameter,
Ωm is the fractional matter density today, Ωb is the
fractional baryon density today, ns denotes the scalar
spectral index, σ8 is the rms of matter fluctuations in
spheres of comoving radius 8h−1 Mpc and τreion denotes
the optical depth to reionization. We further set the linear,
redshift-independent galaxy bias parameter to b ¼ 2. To
obtain an unbiased estimate of the inverse of the covariance
matrix derived from the Gaussian simulations, we apply the
correction derived in Refs. [66–68], i.e. we multiply the
inverse covariance matrix by ðNsim − d − 2Þ=ðNsim − 1Þ.
The theoretical covariance matrix estimate does not suffer
from this bias and is thus left unchanged.
From the likelihood given in Eq. (8), we derive con-

straints in the framework of a flat ΛCDM cosmological
model, where our fiducial model includes one massive
neutrino eigenstate of mass 0.06 eV as in Ref. [69]. Our
parameter set consists of the six ΛCDM parameters
fh;Ωm;Ωb; ns; σ8; τreiong. We further marginalize over
two additional parameters: a redshift-independent, linear
galaxy bias parameter b and a multiplicative bias parameter
m for the weak lensing shear. The multiplicative bias
parametrizes unaccounted calibration uncertainties affect-
ing the weak lensing shear estimator γ̂ and is defined as [70]

γ̂ ¼ ð1þmÞγ: ð10Þ

We note that we do not include additional nuisance
parameters such as additive weak lensing shear bias,
stochastic and scale-dependent galaxy bias [71–73], photo-
metric redshift uncertainties, intrinsic galaxy alignments

(for reviews, see e.g. Refs. [74,75]) or parameters describ-
ing the effect of unresolved point sources on the CMB
temperature anisotropy power spectrum [76]. In this present
work we restrict the analysis to angular scales where these
effects are expected to be subdominant.
We sample the parameter space with a Monte Carlo

Markov chain (MCMC) using COSMOHAMMER [77]. The
parameters sampled are summarized in Table III along with
their priors. We choose flat, uniform priors for all param-
eters except for τreion and m. The optical depth to reioniza-
tion can only be constrained with CMB polarization data.
Since we do not include CMB polarization in this analysis,
we apply a Gaussian prior with μ ¼ 0.089 and σ ¼ 0.02 on
τreion. This corresponds to a WMAP9 [78] prior with
increased variance to accommodate the Planck 2015 results
[69]. We further apply a Gaussian prior on the multipli-
cative bias m with mean μ ¼ 0 and σ ¼ 0.1. This is
motivated by Hirata and Seljak [53], who found the
multiplicative bias for the linear PSF correction method
to lie in the range m ∈ ½−0.08; 0.13� for the sample
considered in this analysis.
In our fiducial configuration presented below we use the

covariance matrix derived from the Gaussian simulations as
described in Sec. VI B. We find that this choice does not
influence our results since the constraints derived using the
theoretical covariance are consistent. In order to further
assess the impact of a cosmology-dependent covariance
matrix, we perform the equivalent analysis using a covari-
ance matrix computed with a cosmological model with
∼5% lower σ8. We find that the derived parameter values
change by at most 0.5σ. The width of the contours is only
marginally changed.
In addition to the joint analysis, we also derive parameter

constraints from separate analyses of the three auto-power
spectra CTT

l , C
δgδg
l and Cγγ

l . In all three cases we assume a
Gaussian likelihood as in Eq. (8) and derive constraints on

TABLE III. Parameters varied in the MCMC with their re-
spective priors and posterior means. The uncertainties denote the
68% C.L.

Parameter Prior Posterior mean

h flat ∈ ½0.2; 1.2� 0.699� 0.018
Ωm flat ∈ ½0.1; 0.7� 0.278þ0.019

−0.020
Ωb flat ∈ ½0.01; 0.09� 0.0455� 0.0018
ns flat ∈ ½0.1; 1.8� 0.975þ0.019

−0.018
σ8 flat ∈ ½0.4; 1.5� 0.799� 0.029

τreion Gaussian with μ ¼ 0.089,
σ ¼ 0.02a

0.0792� 0.0196

b flat ∈ ½1.; 3.� 2.13� 0.06
m Gaussian with μ ¼ 0.0, σ ¼ 0.1 −0.142þ0.080

−0.081
aThis corresponds to a WMAP9 [78] prior with increased

variance to accommodate the Planck results.
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the base ΛCDM parameters fh;Ωm;Ωb; ns; σ8g as well as
additional parameters constrained by each probe. These are
τreion for the CMB temperature anisotropies, b for galaxy
clustering and m for the cosmic shear.
Figure 6 shows the constraints on the ΛCDM parameters

fh;Ωm;Ωb; ns; σ8g derived from the joint analysis using the
spherical harmonic power spectrum vector and likelihood
defined in Eqs. (8) and (9). These have been marginalized
over τreion, b and m. Also shown are the constraints derived

from separate analyses of the three auto-power spectra CTT
l ,

C
δgδg
l and Cγγ

l , each of them marginalized over the respec-
tive nuisance parameter. As expected, we find that the
constraints derived from the CMB anisotropies are the
strongest, followed by the galaxy clustering and cosmic
shear constraints, which both constrain the full ΛCDM
model rather weakly. The constraints from the CMB
temperature anisotropies are broader and have central
values which differ from those derived in Ref. [69]. The

FIG. 6. Cosmological parameter constraints derived from the joint analysis, marginalized over τreion, b and m and from the single
probes. The single probe constraints have been marginalized over the respective nuisance parameters i.e. τreion for the CMB temperature
anisotropies, b for galaxy clustering and m for the weak lensing shear. In each case the inner (outer) contour shows the 68% C.L.
(95% C.L.). For clarity the cosmic shear 68% C.L.s are solid while the 95% C.L.s are dashed.
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reason for these discrepancies is the limited angular multi-
pole range l ∈ ½10; 610� employed in the CMB temper-
ature analysis. This causes the CMB posterior to become
broader and asymmetric, and results in a shift of the
parameter means. We have verified that the Planck like-
lihood and our analysis give consistent results when the
latter is restricted to a similar l range. If on the other hand,
we increase the high-multipole limit to lmax ¼ 1000, we
find significant differences between our analysis and the
Planck likelihood. We therefore choose to be conservative

and use lmax ¼ 610 throughout this work. Comparing the
single probe constraints to one another we see that they
agree reasonably well, with the only slight discrepancy
being the low values of both Ωm and σ8 derived from the
cosmic shear analysis. This is similar to the results derived
in Ref. [52] even though the values for Ωm and σ8 are even
lower in our analysis. However, care must be taken since
the amplitude of the cosmic shear auto-power spectrum
appears to have a small dependence on the choice of the
coordinate system as discussed in Appendix H.

FIG. 7. Comparison between the parameter constraints derived from the joint analysis, marginalized over b and m and the constraints
from Ref. [69] using only CMB data (TTþ lowP) or adding external data (TT, TE, EEþ lowPþ lensingþ ext). The Planck constraints
are marginalized over all nuisance parameters. In each case the inner (outer) contour shows the 68% C.L. (95% C.L.).
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The potential of the joint analysis emerges when the
three auto-power spectra are combined together with their
three cross-power spectra. Due to the complementarity of
the different probes the constraints tighten and the allowed
parameter space volume is significantly reduced. This is
especially true in our case, since the constraints from CMB
temperature anisotropies are broadened due to the restricted
multipole range that we employed. Including more CMB
data would significantly reduce the impact of adding
additional cosmological probes. The numerical values of
the best-fit parameters and their 68% C.L.s derived from
the joint analysis are given in Table III.
Figure 7 compares the constraints derived from the joint

analysis to the constraints derived by the Planck
Collaboration [69]. We show two versions of the Planck
constraints: the constraints derived from the combination of
CMB temperature anisotropies with the Planck low-l
polarization likelihood (TTþ lowP) and the ones derived
from a combination of the latter with the Planck polariza-
tion power spectra, CMB lensing and external data sets (TT,
TE, EEþ lowPþ lensingþ BAOþ JLAþH0). We see
that the joint analysis prefers slightly lower values of the
parameters Ωm and Ωb and a higher Hubble parameter h,
but these differences are not significant. Despite this fact
we find sensible overall agreement between the constraints
derived in this work with both versions of the Planck
constraints. While the constraints we derived in this
analysis are broadened by the restricted multipole range
we used, the results already demonstrate the power of
integrated probe combination: the complementarity of
different cosmological probes and their cross-correlations
allows us to obtain reasonable constraints.
The measured power spectra together with the theoretical

predictions for the best-fitting cosmological model derived
from the joint analysis are shown in Fig. 4. The best-fit
cosmology provides a rather good fit to all power spectra

except C
γδg
l and Cγγ

l , whose measured values are generally
lower than our best-fit model. This is mainly due to the
assumed Gaussian prior on the multiplicative shear bias m,
which does not allow for more negative values of m as
would be preferred by the data. If we relax the prior to a
Gaussian with standard deviation σ ¼ 0.2, we find a best-fit
value for the multiplicative bias parameter of
m ¼ −0.276� 0.108. This results in an improved fit to

both C
γδg
l and Cγγ

l , but is in tension with the values derived
for the multiplicative bias by Hirata and Seljak [53]. We
therefore find evidence for a slight tension between CMB
temperature anisotropy data and weak gravitational lensing,
as already seen in e.g. Refs. [79,80].

VIII. CONCLUSIONS

To further constrain our cosmological model and gain
more information about the dark sector, it will be essential
to combine the constraining power of different

cosmological probes. This work presents a first implemen-
tation of an integrated approach to combine cosmological
probes into a common framework at the map level. In our
first implementation we combined CMB temperature
anisotropies, galaxy clustering and weak lensing shear.
We used CMB data from Planck 2015 [8], photometric
galaxy data from the SDSS DR8 [9] and weak lensing data
from SDSS Stripe 82 [10]. We took into account both the
information contained in the separate maps as well as the
information contained in the cross-correlation between
the maps by measuring their spherical harmonic power
spectra. This leads to a power spectrum matrix with
associated covariance, which combines CMB temperature
anisotropies, galaxy clustering, cosmic shear, galaxy-gal-
axy lensing and the ISW [11] effect with galaxy and weak
lensing shear tracers.
From the power spectrummatrix we derived constraints in

the framework of a ΛCDM cosmological model assuming
both a Gaussian covariance as well as a Gaussian likelihood.
We found that the constraints derived from the combination
of all probes are significantly tightened compared to the
constraints derived from each of the three separate auto-
power spectra. This is due to the complementary information
carried by different cosmological probes. We further com-
pared these constraints to existing ones derived by the Planck
Collaboration and found reasonable agreement, even though
the joint analysis slightly prefers lower values of both Ωm
andΩb and a higher Hubble parameter h. For a joint analysis
of three cosmological probes, the constraints derived are still
relatively weak, which is mainly due to our conservative cuts
in angular scales. Nevertheless this analysis already dem-
onstrates the potential of integrated probe combination: the
complementarity of different data sets, that alone yield rather
weak constraints on the full ΛCDM parameter space, allows
us to obtain robust constraints which are significantly tighter
than those obtained from probes taken individually. In
addition, our analysis reveals challenges intrinsic to probe
combination. Examples are the need for foreground correc-
tion at the map as opposed to the power spectrum level and
the need for coordinate-independent bias corrections.
In this first implementation we have made simplifying

assumptions. We assumed a Gaussian covariance matrix for
all cosmological probes considered. This is justified for the
CMB temperature anisotropies and the galaxy overdensity
at large scales. The galaxy shears on the other hand exhibit
nonlinearities already at large scales and their covariance
therefore receives significant non-Gaussian contributions
[58]. Furthermore, we did not take into account the
cosmology dependence of the covariance matrix [64]. In
addition we only included systematic uncertainties from a
potential multiplicative bias in the weak lensing shear
measurement and neglected effects from other sources.
Finally we also used the Limber approximation for the
theoretical predictions. We leave these extensions to future
work but we do not expect them to have a significant
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impact on our results since we restricted the analysis to
scales where the above effects are minimized.
In order to fully exploit the wealth of cosmological

information contained in upcoming surveys, it will be
essential to investigate ways in which to combine these
experiments. It will be thus interesting to extend the
framework presented here to include additional cosmologi-
cal probes, three-dimensional tomographic information and
tests of cosmological models beyond ΛCDM.
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APPENDIX A: THEORETICAL PREDICTION
FOR CMB AND WEAK LENSING SHEAR

CROSS-CORRELATION

The CMB temperature anisotropies are correlated with the
weak lensing shear due to the ISWeffect. The anisotropies in
the temperature field generated by time-varying gravitational
potentials Φ are given by (see e.g. Ref. [18])

ΔTISWðθÞ ¼ TCMBδTISW ¼ 2TCMB

Z
η0

ηr

dη
∂Φ
∂η ; ðA1Þ

where η0 denotes the conformal time today and ηr is the
conformal time at recombination. Note that we follow the
conventions for the gravitational potential Φ as in Ref. [82].
These anisotropies can be decomposed into spherical har-
monics with multipole coefficients

ΔTISW;lm ¼ 4πil2TCMB

Z
η0

ηr

dη

×
Z

d3k
ð2πÞ3

d
dη

½Φðk; zÞ�jlðkχðzÞÞY�
lmðθkÞ:

ðA2Þ

The multipole coefficients of the weak lensing shear E
modes can be expressed through the lensing potential ψ and
are given by [82]

aE;lm ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
ψl;m ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
4πil

×
Z

dχgðχÞ
Z

d3k0

ð2πÞ3 Φðk
0; zÞjlðk0χðzÞÞY�

lmðθk0 Þ;

ðA3Þ
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where

gðχÞ ¼ 1

χðzÞ
Z

χh

χðzÞ
dz0

χðz0Þ − χðzÞ
χðz0Þ nðz0Þ: ðA4Þ

The spherical harmonic power spectrum CγT
l between CMB temperature anisotropies and the weak lensing shear is defined as

hΔTISW;lma�E;l0m0 i ¼ CγT
l δll0δmm0 : ðA5Þ

Expressing the integrals in terms of redshift and interchanging the integration boundaries gives

hΔTISW;lma�E;l0m0 i ¼ ð4πÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
2TCMB

�Z
z�

0

dz
Z

d3k
ð2πÞ3

d
dz

½DðzÞð1þ zÞ�Φðk; z ¼ 0Þjl(kχðzÞ)Y�
lmðθkÞ

×
Z

dz0
c

Hðz0Þ gðχðz
0ÞÞ

Z
d3k0

ð2πÞ3 Φðk
0; z0Þjl0(k0χðz0Þ)Yl0m0 ðθk0 Þ

�
; ðA6Þ

where z� denotes the redshift at recombination. In order to derive Eq. (A6) we have used that in linear perturbation theory the
time and scale dependence of the gravitational potentials can be separated i.e.

Φðk; zÞ ¼ Φðk; z ¼ 0ÞDðzÞð1þ zÞ; ðA7Þ

where DðzÞ denotes the linear growth factor. We further have that

hΦðk; z ¼ 0ÞΦðk0; z0 ¼ 0Þi ¼ ð2πÞ3Plin
ΦΦðk; z ¼ 0Þδðk − k0Þ; ðA8Þ

and therefore Eq. (A6) reduces to

CγT
l ¼ ð4πÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
2TCMB

Z
z�

0

dz
Z

k2dk
ð2πÞ3

d
dz

½DðzÞð1þ zÞ�

×
Z

dz0
c

Hðz0Þ gðχðz
0ÞÞDðz0Þð1þ z0ÞPlin

ΦΦðk; z ¼ 0ÞjlðkχðzÞÞjlðkχðz0ÞÞ: ðA9Þ

Equation (A9) is the exact expression for the spherical
harmonic cross-power spectrum between CMB temper-
ature anisotropies and weak lensing shear. In order to speed
up computations, it can be simplified by resorting to the
Limber approximation [12–14] which gives

CγT
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
2TCMB

Z
z�

0

dz
d
dz

½DðzÞð1þ zÞ�

×DðzÞð1þ zÞ gðχðzÞÞ
χ2ðzÞ Plin

ΦΦ

�
k ¼ lþ 1

2

χðzÞ ; z ¼ 0

�
:

ðA10Þ

The power spectrum of the gravitational potential at late
times is related to the matter power spectrum through
Poisson’s equation

Plin
ΦΦðk; z ¼ 0Þ ¼

�
3

2

�
2Ω2

mH4
0

c4
Plin
δδ ðk; z ¼ 0Þ

k4
: ðA11Þ

For large l we can make the approximations

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
∼ l2;

�
lþ 1

2

�
2

∼ l2: ðA12Þ

Using Eqs. (A11) and (A12) we can write Eq. (A10) as

CγT
l ¼ 3

ΩmH2
0TCMB

c2
1

ðlþ 1
2
Þ2
Z

dz
d
dz

× ½DðzÞð1þ zÞ�DðzÞWγðχðzÞÞPlin
δδ

�
k ¼ lþ 1

2

χðzÞ ; 0

�
;

ðA13Þ

which is the expression given in Eq. (5).
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APPENDIX B: TREATMENT OF SYSTEMATIC
UNCERTAINTIES IN GALAXY

CLUSTERING DATA

The number density of galaxies observed in SDSS
DR8 photometric data is affected by various systematic
uncertainties such as stellar density, Galactic extinction
and PSF size variation [38,40]. These effects remain even
after masking and removal of the highest contamination
regions. In order to obtain an unbiased galaxy over-
density map, we need to correct for the number density
variation due to systematics. The SDSS recorded the
values of several potential systematic uncertainties for the
observed fields—airmass, Galactic extinction and seeing
(as measured by the PSF FWHM)—in all five SDSS
bands for the field each galaxy has been observed in as
well as sky emission at the position of the galaxy for all
the five bands. These quantities can be queried for each
galaxy position on the CAS.17 In this work, we consider
four different observational systematics: Galactic extinc-
tion in the r-band as well as FWHM of the PSF, airmass
and sky emission in the i-band. A further potential
systematic uncertainty is the presence of foreground stars.
Ross et al. [40] showed that the effects of foreground
stars on the galaxy number density are largely indepen-
dent of the magnitude of the stars. We therefore follow
Ho et al. [38] and investigate how the number density of
stars with i-band magnitudes in the range 18.0 ≤ i <
18.5 affects the number density of detected galaxies.

We pixelize all quantities onto HEALPix maps of
resolution NSIDE ¼ 1024 and compute the number
density of galaxies relative to their mean number density
as a function of the value of the systematic in the pixel.
In order to correct for these systematic uncertainties, we
fit a third-order polynomial to the functional dependence
of the relative galaxy number density on the systematic.
Then we multiply the uncorrected number densities by
the inverse of this function. Various potential systematics
such as Galactic extinction and stellar density are
spatially correlated to one another. When correcting for
various systematics simultaneously, the order in which
the corrections are applied could influence results [40]. In
our sample we find that the corrections are both inde-
pendent of ordering and SDSS band and correcting for
the effect in one band simultaneously corrects for all the
other bands. The results are shown in Fig. 8 and we use
those to correct the galaxy maps from residual systematic
uncertainties. We clip the systematics maps at the
minimum and maximum systematics value shown in
the figure and apply the fitted corrections to the galaxy
number density. The galaxy clustering spherical harmonic
power spectra before and after correcting for systematic
uncertainties are discussed in Sec. V B and shown in
Appendix H.

APPENDIX C: PSF CORRECTION AND
CONSTRUCTION OF WEAK
LENSING SHEAR MAPS

The galaxy shapes measured from images represent a
convolution of the intrinsic galaxy shapes with the PSF

FIG. 8. Galaxy number density ngal relative to mean galaxy density n̄gal as a function of potential systematic value. The figures show
both the uncorrected data and the data corrected using a third-order polynomial fit to the uncorrected relation. The error bars assume
Poisson noise and are thus likely underestimated due to the correlations between galaxy positions.

17See footnote 9.
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of the telescope and the atmosphere. We therefore need
to correct this effect using PSF estimates measured from
the shapes of stars observed in the survey. As described
in Refs. [10,52], the PSF model for SDSS Stripe 82 data
is derived from weighted sums of shapes measured in
the individual runs as opposed to the co-adds. Lin et al.
[52] found that this leads to biases that need to be
removed prior to PSF correction. In order to correct for
these effects, we follow the steps outlined in Ref. [52].
We select bright stars with i-band magnitudes in
16 < i < 17, which pass the clean photometry cuts,18

and fit polynomials to the residuals between their shapes
measured from the co-adds and the PSF model for these
stars. The residuals before and after subtraction of the
polynomial fit are shown in Fig. 9. We see that the
correction introduced in Ref. [52] has considerably
removed both an overall bias and discontinuities at
the CCD camera column (camcol) edges.
Using the revised PSF model, we correct the mea-

sured shapes for the effect of the PSF. We use the
linear PSF correction algorithm derived in Hirata and
Seljak [53], which can be applied to the adaptive
moment measurements from the SDSS PHOTO
pipeline.19

In order to obtain a galaxy sample for reliable weak
lensing shear measurement, we follow Lin et al. [52] and
perform two additional selection cuts on the galaxies after
PSF correction: we select galaxies with ellipticity com-
ponents e1, e2 satisfying je1j < 1.4 as well as je2j < 1.4
and photometric redshift uncertainties σz < 0.15. This
additional selection leaves a galaxy sample consisting of
Ngal ¼ 3322915 galaxies.

Lin et al. [52] found a camcol-dependent additive
bias in the PSF-corrected ellipticities. The mean ellip-
ticities for each camcol lie in the range jē1j ¼
½6 × 10−5; 0.02� and jē2j ¼ ½0.002; 0.009�, which is
larger than expected for a mean zero field [52]. We
therefore follow Lin et al. [52] and correct for the
additive bias by subtracting the mean ellipticity for
each camcol. We choose to perform this step prior to
coordinate transformation (i.e. for ellipticities defined
relative to equatorial coordinates) as opposed to after
rotation. We find that removing the mean camcol
ellipticity reduces PSF leakage to a level which is
subdominant in our analysis.
Figure 10 shows the distributions of the ellipticity

components e1 and e2 defined relative to equatorial
coordinates. They are averaged over HEALPix pixels of
resolution NSIDE ¼ 512, which corresponds to a pixel
area of Apix ≈ 0.013 deg2. The figure displays both the
ellipticity histograms prior to PSF correction and sub-
traction of additive bias as well as the final distributions
obtained after applying both corrections. We see that
the corrections have removed the effects of the PSF
and the final histograms can be described by Gaussian
distributions.
In the final step, these ellipticities need to be

transformed to shear estimates by correcting for the
shear resolution factor R, which is defined as

R ¼
�∂γ̂i
∂γi

�
: ðC1Þ

The shear resolution factor R quantifies the response
of the estimated mean ellipticity to an applied shear.
For the adaptive moment method described in Ref. [49]
it is given by R ¼ 2ð1 − e2intÞ, where eint denotes the
intrinsic rms ellipticity per component. We follow

FIG. 9. Residuals between the ellipticity component e1 of a random sample of 10000 bright stars measured on the co-add images and
PSF models for these objects as a function of declination (DEC) before (left panel) and after (right panel) applying the correction
described in the text.

18See footnote 14.
19Note that there is a typo in Ref. [53]: the quantities Cg, Cf,

Dg, Df in Eq. (B9) should be squared.
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Lin et al. [52] and use eint ¼ 0.37 as measured by
Hirata et al. [83].
In order to construct the final weak lensing shear

maps we thus apply the resolution correction to the
ellipticities and transform them from equatorial to
Galactic coordinates.

APPENDIX D: TRANSFORMATION OF WEAK
LENSING SHEAR UNDER ROTATION

We rotate the weak lensing galaxy shears from equatorial
to Galactic coordinates following the implementation in
HEALPix. The method is briefly summarized below.
The rotation angle of the shears under a coordinate

rotation as described by the rotation matrix R is equal to
twice the rotation angle ψ of the coordinate axes with
respect to which they are defined. In HEALPix the
x axis is in the direction of eϕ and the y axis is in the
direction of eθ.
In order to derive ψ we define the following quantities:

the position before rotation is denoted as r ¼ ð x y z Þ
and the position after rotation is r0 ¼ ð x0 y0 z0 Þ. We
further define the vector towards the north pole in the
unrotated coordinate system, which is given by

p ¼ ð x0 y0 z0 Þ ¼ ð 0 0 1 Þ. Under the inverse rota-
tion R−1 the north polar vector is mapped to
p00 ¼ ð x000 y000 z000 Þ. At the position r the unit vectors
in the θ and ϕ directions are given by

eϕ ¼ p × r
jp × rj ;

eθ ¼
ðp × rÞ × r
jðp × rÞ × rj : ðD1Þ

We have the following identities:

Reϕnθ · p ¼ eϕnθ · R−1p;

R−1p · r ¼ p · Rr: ðD2Þ

Taking into account the left-handedness of the HEALPix
coordinate system and inserting the explicit expressions, it
follows that

cosψ ¼ cffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ðzz0 − z000Þ;

sinψ ¼ cffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ðxy000 − yx000Þ; ðD3Þ

FIG. 10. Histograms of the ellipticity components e1 and e2 averaged over HEALPix pixels of resolution NSIDE ¼ 512. The left
panels show the distributions before correction for the PSF and subtraction of a camcol-dependent additive bias, while the right panels
show the distributions after the application of these corrections.
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where c is a constant, which we can remove by ensuring
that sin2ψ þ cos2ψ ¼ 1. Under this rotation the weak
lensing shear transforms as

γ01 ¼ cos 2ψγ1 þ sin 2ψγ2;

γ02 ¼ − sin 2ψγ1 þ cos 2ψγ2: ðD4Þ

APPENDIX E: CHOICE OF PolSpice
PARAMETER SETTINGS

In this section we illustrate the determination of the
maximal angular scale θmax used to compute spherical
harmonic power spectra on the example of the SDSS Stripe
82 mask. Figure 11 shows the real space correlation
function of this mask. It is nonzero for small angular
scales, then starts to fall off and approximately vanishes for
large angular separations. From this figure we see that θmax
is not a well-defined quantity. Our approach is thus to
choose a maximal angular scale by eye and validate it on
the Gaussian simulations. For the SDSS Stripe 82 mask, we
choose θmax ¼ 10 degrees and θFWHM ¼ 5 degrees. When
testing these PolSpice settings on the simulations, we
find a reasonable agreement between input and recovered
power spectra.

APPENDIX F: CORRELATED MAPS OF SPIN-0
AND SPIN-2 FIELDS

Our analysis relies on Gaussian simulations both for
validation of the data analysis pipeline and covariance
matrix estimation. We thus need to generate correlated
HEALPix maps of both spin-0 and spin-2 fields from input
auto- and cross-power spectra. Cabré et al. [59] and
Giannantonio et al. [61] described an algorithm for gen-
erating correlated HEALPix maps of spin-0 fields. In order
to consistently simulate the weak lensing shear field, we
extend this algorithm to also include correlations between
spin-0 and spin-2 fields.
These algorithms are all based on the HEALPix routine

synfast, which generates HEALPix maps of realizations

of input spherical harmonic power spectra Cii
l . If the fields

are additionally mean subtracted, this is equivalent to
requiring that the spherical harmonic coefficients alm of
the maps satisfy

hailmi ¼ 0;

hailmai�l0m0 i ¼ Cii
lδll0δmm0 : ðF1Þ

In synfast these conditions are imposed by assigning
a random phase ξ with mean 0, hξi ¼ 0, and unit
variance, hξξ�i ¼ 1, to each spherical harmonic mode
l and setting

ailm ¼
ffiffiffiffiffiffi
Cii
l

q
ξ: ðF2Þ

As derived in Ref. [61], this method can be extended to
correlated maps using more random phases. The sim-
plest case is to create two correlated spin-0 zero maps
with power spectra Cii

l , C
jj
l and cross-power spectrum

Cij
l . This is the only case relevant for our work and it is

achieved by choosing the amplitudes of the maps of the
two probes i, j as [61]

ailm ¼
ffiffiffiffiffiffi
Cii
l

q
ξ1;

ajlm ¼ Cij
lffiffiffiffiffiffi
Cii
l

p ξ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cjj
l −

ðCij
l Þ2
Cii
l

s
ξ2: ðF3Þ

As described in Ref. [61] this algorithm can be
implemented using synfast by first creating a map
with power spectrum Cii

l and a second map using the
same seed with power spectrum ðCij

l Þ2=Cii
l . Finally the

second map needs to be added to a third map, generated
with a different random seed and with power spectrum
Cjj
l − ðCij

l Þ2=Cii
l . This ensures the desired auto- and

cross-correlations.
To extend this algorithm to spin-2 fields, we make

use of the polarization version of synfast, which
allows us to generate correlated spin-0 and spin-2
maps consistent with input auto- and cross-power
spectra. Let 0 denote the spin-0 field. Then C00

l
denotes the auto-power spectrum of the spin-0 field,
CEE
l , CBB

l are the E- and B-mode power spectra of the
spin-2 field and C0E

l is the cross-power spectrum
between the spin-0 field and the spin-2 E mode.
Given these input power spectra, the polarization mode
of synfast generates a map of the spin-0 field and
two maps of the spin-2 field with the desired auto- and
cross-power spectra.
In order to obtain correlated maps mT, mδg , mγ1 , mγ2 of

CMB temperature anisotropies, the galaxy overdensity and
galaxy weak lensing shear with auto- and cross-power

FIG. 11. Real space correlation function of the SDSS Stripe 82
mask. The dashed line denotes the value chosen for θmax.
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spectra CTT
l , C

δgT
l , C

δgδg
l , CγT

l , C
γδg
l , Cγγ

l we therefore
proceed as follows.

(i) We first create three correlated HEALPix maps
using synfast in polarization mode with the
power spectra

C00
l ¼ CTT

l ;

CEE
l ¼ Cγγ

l

2
;

CBB
l ¼ 0;

C0E
l ¼ CγT

l :

These maps are denoted m1
i , where i ∈ fT; γ1; γ2g.

(ii) Following Eq. (F3), we then create three maps with a
new random seed and the power spectra

C00
l ¼ C

δgδg
l −

ðCδgT
l Þ2
CTT
l

;

CEE
l ¼ Cγγ

l

2
;

CBB
l ¼ 0;

C0E
l ¼ C

γδg
l :

These maps are denoted m2
i , where i ∈ fδg; γ1; γ2g.

(iii) We create a spin-0 map generated with the same seed
as used for m1 with the power spectrum

C00
l ¼ ðCδgT

l Þ2=CTT
l ;

which is called m3.
(iv) Finally we combine the maps i.e.

mT ¼ m1
T;

mδg ¼ m2
δg
þm3;

mγ1 ¼ m1
γ1 þm2

γ1 ;

mγ2 ¼ m1
γ2 þm2

γ2 :

This procedure yields four correlated maps with auto- and

cross-power spectra CTT
l , C

δgT
l , C

δgδg
l , CγT

l , C
γδg
l , Cγγ

l . The
algorithm described above introduces an unwanted, addi-
tional correlation between mδg and mγ1 , mγ2 . It can in
principle be corrected for by adding counterterms to the
respective maps. Since the additional correlation is sub-
dominant in the present case, we neglect these
counterterms.
In order to obtain realistic maps we need to account

for the effects of the HEALPix pixel and beam window
function. The signal measured in each HEALPix pixel
is a convolution of the underlying signal with the
HEALPix window function. If further experimental

beams are present, the signal is additionally convolved
with the beam window function. Since a convolution in
real space is equivalent to a multiplication in Fourier
space, we account for these effects by multiplying
the input power spectra by the power spectra of the
respective window functions prior to generating the
HEALPix maps.
To compute the covariance matrix as well as to validate

the analysis pipeline we need to add realistic noise to the
correlated Gaussian simulations. We choose to add the
noise on the map level. For the CMB temperature anisot-
ropies we add the Commander HMHD map provided by
the Planck Collaboration to each simulated temperature
map. We do not randomize the noise map for each new
realization since the HMHD map features significant
correlations which would be lost by randomizing. Since
we are adding the same noise map to each random
realization we expect to slightly underestimate the noise
using our simulations. However, we do not expect this to
have a significant effect on our results, since the noise in the
CMB temperature power spectrum is dominated by cosmic
variance at the scales considered. For the galaxy over-
density field we create noise maps by randomizing the
positions of the galaxies in our data inside the survey mask.
We then pixelize those on a HEALPix map and add the
noise map to the simulated map. The galaxy shear noise
maps are created by rotating each galaxy shear by a random
angle and repixelizing the rotated shears onto HEALPix
maps. As before these noise maps are added to the signal
maps to produce the Gaussian simulations including both
signal and noise.

APPENDIX G: VALIDATION OF SPHERICAL
HARMONIC POWER SPECTRUM

MEASUREMENTS

We validate the spherical harmonic power spectrum
measurement outlined in Sec. V using the correlated
Gaussian simulations described in Appendix F. We
compute theoretical predictions for the six spherical har-

monic power spectra considered in this work, i.e.CTT
l ,C

δgT
l ,

C
δgδg
l , CγT

l , C
γδg
l , Cγγ

l for a ΛCDM cosmological model
with parameters fh;Ωm;Ωb;ΩΛ; ns; σ8; τreion; TCMBg ¼
f0.7; 0.3; 0.049; 1.0; 0.88; 0.078; 2.275 Kg. We further set
the linear, redshift-independent galaxy bias parameter
to b ¼ 2.
Using the algorithm described above, we generate

Nsim ¼ 1000 Gaussian realizations of these power spectra
and add the noise maps determined from the data. We then
apply angular masks equivalent to those in the data and
compute the spherical harmonic power spectra from the
masked maps using the exact same methodology and
PolSpice settings as applied on the data. To estimate
the noise bias we follow the same randomization
approaches as outlined in Sec. V.
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Figures 12 and 13 show a comparison between the
input power spectra for all the six probes and the
means of the recovered realizations. The uncertainties
are derived from the sample covariance of the Gaussian
realizations. We see that the input power spectra are

recovered rather well. Also shown are the χ2 values
between the reconstruction and the theory. These are
not rigorous measures for the goodness of the recovery
since they strongly depend on binning and angular
multipole range chosen.

APPENDIX H: SPHERICAL HARMONIC
POWER SPECTRUM ROBUSTNESS

TESTS

This section summarizes the robustness tests performed
for the spherical harmonic power spectra.

1. Comparison between spherical harmonic power
spectra in equatorial and Galactic

coordinates

We test that the spherical harmonic power spectra
involving maps which can be transformed between
coordinate systems, i.e. galaxy overdensity and weak
lensing shear maps, are unaffected by the rotation. The
comparison between spherical harmonic power spectra
computed from maps in Galactic and equatorial

FIG. 13. The cosmic shear B-mode power spectrum recon-
structed from Nsim ¼ 1000 Gaussian realizations generated using
the algorithm outlined in Appendix F. The angular multipole
range and binning scheme is summarized in Table II.

FIG. 12. Comparison between input power spectra and mean recovered power spectra as estimated from Nsim ¼ 1000 Gaussian
realizations generated using the algorithm outlined in Appendix F. The noise level of the Gaussian realizations is tuned to the data and
the spherical harmonic power spectra have been computed using the same methodology and PolSpice settings as applied on the data.
The angular multipole ranges and binning schemes for all power spectra are summarized in Table II. Dashed lines denote negative
spherical harmonic power spectrum values.
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coordinates are shown in Fig. 14. We find good
agreement between the two power spectra for both

C
δgδg
l and C

γδg
l , while we find discrepancies for Cγγ

l . We
attribute this to the additive bias correction applied to
the galaxy shears as outlined in Sec. V C. The additive
bias correction described in Appendix C, causes an
asymmetry between the galaxy shears in different
coordinate systems, which is the cause for the large
discrepancies detected. This can be seen from Fig. 15,
which shows a comparison between the cosmic shear

power spectra prior to noise removal as estimated from
maps in Galactic and equatorial coordinates. The left
panel shows the comparison when the additive bias
correction is applied while in the right panel we do not
apply any correction. As can be seen, we find dis-
crepancies when we apply the additive bias correction
in equatorial coordinates and then rotate the corrected
shears to Galactic coordinates. Not applying any
additive bias correction on the other hand, removes
most of these effects.

FIG. 14. Comparison between spherical harmonic power spectra computed from the maps in Galactic and equatorial
coordinates.

FIG. 15. Comparison between cosmic shear spherical harmonic power spectra prior to noise removal measured from the maps in
Galactic and equatorial coordinates. The left-hand panel shows the results when applying the correction for additive bias in equatorial
coordinates and then rotating the shears to Galactic coordinates. The right-hand panel shows the results when no additive bias correction
is applied.
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FIG. 16. Comparison between spherical harmonic power spectra CTT
l , C

δgT
l , CγT

l derived using the four different foreground-reduced
CMB maps from Commander, NILC, SEVEM and SMICA.

FIG. 18. HMHD Commander CMB temperature anisotropy
map. This map contains only noise and potential residual
systematics.

FIG. 17. Comparison between galaxy overdensity power
spectra computed before and after systematics removal.
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2. Comparison between spherical harmonic
power spectra derived from different

foreground-reduced
CMB maps

We test that the spherical harmonic power spectra
involving CMB data are unaffected by our choice of
foreground-reduced map. The power spectra involving
CMB data are shown in Fig. 16 for the foreground-
reduced CMB maps derived using the component sepa-
ration methods Commander, NILC, SEVEM and SMICA.
As can be seen, the power spectra are virtually the
same.

3. Impact of systematics correction on
the galaxy clustering power

spectrum

We further investigate the effect of systematics correc-
tion on the galaxy clustering power spectrum. The galaxy
clustering spherical harmonic power spectra before and
after correcting for systematic uncertainties are shown in
Fig. 17. Our systematics removal method slightly reduces

the clustering amplitude at large angular scales, while
leaving small angular scales almost unaffected. This is
to be expected since Galactic foregrounds typically exhibit
significant large-scale clustering.
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