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We propose a mechanism to generate a nearly scale-invariant spectrum of adiabatic scalar perturbations
about a stable, ekpyrotic background. The key ingredient is a coupling between a single ekpyrotic field and
a perfect fluid of ultrarelativistic matter. This coupling introduces a friction term into the equation of motion
for the field, opposing the Hubble antifriction, which can be chosen such that an exactly scale-invariant
(or nearly scale-invariant) spectrum of adiabatic density perturbations is continuously produced throughout
the ekpyrotic phase. This mechanism eliminates the need for a second (entropic) scalar field and hence any
need for introducing a second phase for converting entropic into curvature fluctuations. It also reduces
the constraints on the equation of state during the ekpyrotic phase and, thereby, the need for parametric
fine-tuning.
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I. INTRODUCTION

Inflation is one proposed mechanism for smoothing
and flattening the universe while simultaneously stretching
primordial quantum fluctuations to superhorizon scales
[1–3]. Ekpyrotic contraction is another [4]. In both cases,
the fluctuations evolve into the seeds of large-scale struc-
ture and imprint observable anisotropies onto the cosmic
microwave background. The Wilkinson Microwave
Anisotropy Probe [5], the Planck satellite [6,7], the
Atacama Cosmology Telescope [8] and other experiments
indicate that this primordial density fluctuation spectrum is
adiabatic and nearly scale invariant with nearly Gaussian
statistics. Although inflation can generate such perturba-
tions, it results in a multiverse of outcomes [9–14], and
it has been argued that it requires rare initial conditions
[15–17], though some disagree [13,14]. Given that ekpy-
rosis avoids these pathologies it is natural to ask whether it
can generate the same spectrum of perturbations (although
see Ref. [18] for a critical review of the challenges faced by
bouncing cosmologies).
In ekpyrotic universes, smoothing contraction occurs

because the energy density of a scalar field, ϕ, with
equation of state ϵϕ > 3 [where ϵϕ ¼ 3ðpϕ þ ρϕÞ=ρϕ with
pϕ being the pressure and ρϕ the energy density of the
scalar field] grows to dominate all other forms of energy,
including inhomogeneities, anisotropy, and spatial curva-
ture. Meanwhile, due to the slow contraction, fluctuation
modes shrink more slowly than the Hubble radius, so that
quantum fluctuations escape to cosmological scales.
The earliest models of ekpyrosis involved a single,

minimally coupled scalar field with a steep, negative
exponential potential. After some debate, it was shown that
these models cannot produce the observed scale-invariant,

adiabatic spectrum because the comoving curvature pertur-
bation acquires a strong blue tilt [19–23]. However, it
was noticed in Ref. [24] that when a second scalar field
is added—also with a steep, negative potential—there exists
a background solution along the potential energy surface
whose entropic perturbations acquire a scale-invariant spec-
trum. After the ekpyrotic smoothing phase, it was argued
in Ref. [25], the entropic perturbations will convert into a
scale-invariant spectrum of adiabatic perturbations if the
background solution undergoes a bend in field space. This
two-step process, first of generating scale-invariant entropic
perturbations and then of converting them to adiabatic
perturbations, has been dubbed the “entropic mechanism”
[26,27]. This is similar to the “curvaton mechanism”
described in Refs. [28–30]. The first models making use
of the entropic mechanism require finely tuned initial
conditions because the background solution is unstable to
small perturbations [31–35].
More recent two-field models have cured this instability

by introducing noncanonical kinetic terms [36–39]. Such
terms provide friction in the equation of motion for the
noncanonically coupled field [40]. This friction has two
effects: 1) it damps the background evolution for the
noncanonically coupled field, thereby making it the entropy
direction in field space and 2) it alters the spectrum of
perturbations in this direction, such that scale-invariant
entropic spectra are produced even though the entropy field
has no potential. These newer models have the attractive
features that they generate no detectable spectrum of
primordial gravitational waves (the ratio of the tensor-
perturbation amplitude to the scalar-perturbation ampli-
tude, r ≈ 0) and zero non-Gaussianity during the ekpyrotic
contraction phase; only a small amount of local non-
Gaussianity [fNL ¼ Oð1Þ] is generated by the conversion
process [38,41,42]. These models also impose less strin-
gent constraints on the equation-of-state parameter of the
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universe and hence require less fine-tuning of parameters
than actions with canonical kinetic terms.
In all of these models, during the slow contracting phase,

the ekpyrotic fields are assumed to have no direct inter-
action with any other fields. They simply traverse their
potential energy surface in a supercooled universe, and only
after the ekpyrotic phase is the universe assumed to reheat,
either through some coupling to Standard Model particles
or through stringy, higher-dimensional effects [26]. In this
work, we consider a single, ekpyrotic field coupled to a
perfect fluid of ultrarelativistic matter (e.g., radiation) in
thermal equilibrium. As the field falls down its steep,
negative potential, it decays continuously into lighter fields
which are thermally excited, thus generating a dissipative
friction term in its equation of motion. As in the nonca-
nonical, two-field models discussed above, this friction
term allows a scale-invariant spectrum to be produced. In
contrast to the noncanonical models, the scale-invariant
spectrum is immediately adiabatic; no conversion is neces-
sary. We assume in this work that the dissipation occurs
under adiabatic conditions in which the microscopic
dynamical processes operate much faster than the macro-
scopic evolution of the field and of the universe [43]. In this
way, we approximate the dissipation to be local in time, a
condition which may be difficult to achieve in a micro-
physical model. We return to this point in the Discussion.
To describe the interaction between the fluid and scalar

field, we strive for generality, leaving the details of specific
microphysical model building for future work. Therefore,
we work at the level of the equations of motion, adding
generic dissipative and noise terms. As we will show, if
the dissipation is too strong, the radiation fluid dominates
the energy density of the universe; if it is too weak, the
scalar field dominates. Hence, our results require that
the dissipation coefficient evolve in fixed proportion to
the Hubble parameter. This is the main source of fine-
tuning (although this tuning can be relaxed somewhat by
changing the details of the interaction).
The idea of particle production during a cosmological

smoothing and flattening phase has been investigated
previously in models referred to as warm inflation, where
thermal fluctuations sourced by radiation-induced noise
were shown to dominate over vacuum fluctuations
[43–48]. Similar effects appear in models such as trapped
inflation [49]. In contracting universes, however, the
thermal fluctuations are suppressed on the largest scales,
and the density perturbations are dominated by vacuum
fluctuations. The reason is that contracting universes grow
hotter with time, so that longer modes cross the horizon at
lower temperature with correspondingly smaller thermal
fluctuations.
This paper is organized as follows. In Sec. II, we solve

and analyze the background evolution, showing the appear-
ance of a new family of attractors introduced by the
interaction between the ekpyrotic field and the radiation

fluid. In Sec. III, we compute the power spectrum for the
comoving curvature perturbation by studying scalar per-
turbations to linear order. This results in a Langevin-like
equation that we solve using Green’s function techniques.
We find that the thermal contribution to the power spectrum
is subleading to the vacuum contribution over the observ-
able modes, and we show how to fix the parameters of the
model to obtain scale invariance. In Sec. IV, we discuss
implications of our results and directions for future work.

II. BACKGROUND

In this section, we derive an explicit solution for the
background cosmology. The main results of this section are
Eqs. (18) and Fig. 1.
We employ reduced Planck units in which 8πGN ¼ kB ¼

ℏ ¼ cL ¼ 1 where GN is Newton’s gravitational constant,
kB is Boltzmann’s constant, ℏ is the reduced Planck’s
constant, and cL is the speed of light. We use the metric
signature ð−;þ;þ;þÞ. Commas denote ordinary deriva-
tives, and semicolons denote covariant derivatives.
We consider a contracting universe populated with a

radiation fluid and a minimally coupled scalar field obeying
Einstein’s equations,

FIG. 1. This streamplot shows that the warm ekpyrotic back-
ground solution is an attractor for a wide range of initial
conditions. For illustration, we have chosen parameter values
ðc; γÞ ¼ ð15;−56.8Þ. Any set of initial conditions for ϕ, _ϕ, _ρ,
and a corresponds to a particular point in this plane ðx; zÞ≡
ð _ϕ=ð ffiffiffi

6
p

HÞ;− ffiffiffiffiffi
ρr

p
=ð ffiffiffi

3
p

HÞÞ. The background solution follows
the blue arrows originating at this point. The red and green curves
are included simply to guide the eye: they are nullclines, where
dx=d ln a ¼ 0 (red) and dz=d ln a ¼ 0 (green). The intersections
of the nullclines are shown as red dots. These so called “fixed-
point, scaling solutions” are special because the blue streamlines
vanish here. If the background solution starts at one of these
points, it stays there. The rightmost such point corresponds to
ðx0; z0Þ defined in Eqs. (16) and (17). Clearly, it is an attractor for
a wide range of initial conditions. The analysis below shows that
the comoving curvature perturbation generated by this solution
acquires a scale-invariant spectrum on large scales.
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Gab ¼ Tab: ð1Þ

Here, Gab is the Einstein tensor, and Tab ¼ TðrÞ
ab þ TðϕÞ

ab is
the total energy-momentum tensor which has been decom-
posed into a term describing the radiation fluid, denoted by
the superscript (r), and a term describing the scalar field,
denoted by the superscript (ϕ). The radiation fluid is
characterized by a four-velocity, ua, an energy density,
ρr, and a pressure, pr, so that its energy-momentum tensor
is given by

TðrÞ
ab ¼ ðρr þ prÞuaub þ prgab: ð2Þ

For simplicity, we take pr ¼ ρr=3, although this is not
central to our results. The scalar field is characterized
by a potential energy density, VðϕÞ, so that its energy-
momentum tensor is given by

TðϕÞ
ab ¼ ϕ;aϕ;b −

�
1

2
ϕ;cϕ;c þ VðϕÞ

�
gab: ð3Þ

For convenience, we take the negative, exponential form,
VðϕÞ ¼ V0e−cϕ, where V0 < 0 and c > 0. The interaction
between the radiation fluid and the scalar field is described
by a flux term, Qa ≡ −Γubϕ;bϕ;a, satisfying

TðrÞb
a;b ¼ −TðϕÞb

a;b ¼ Qa: ð4Þ

In a spatially flat, Friedmann-Robertson-Walker space-
time, the background metric takes the form

ds2 ¼ a2ðτÞð−dτ2 þ δijdxidxjÞ ð5Þ

¼ −dt2 þ a2ðtÞδijdxidxj; ð6Þ

where a is the scale factor, t < 0 is cosmic time, and τ < 0
is conformal time defined by dτ≡ dt=a. At background,
Eqs. (4) gives two equations (from the t-component)

ϕ̈þ 3H _ϕþ V;ϕ ¼ −Γ _ϕ; ð7Þ

_ρr þ 4Hρr ¼ Γ _ϕ2; ð8Þ

where overdots represent derivatives with respect to cosmic
time and H ≡ _a=a < 0 is the Hubble parameter. The flux
term, proportional to Γ, describes the decay of the ϕ-field
into the particles comprising the radiation fluid. It appears
in two places: on the right side of Eq. (8), it sources the
energy density of the radiation, ensuring that ρr is not
rapidly outstripped by the energy density in the ekpyrotic
field, ϕ; most important, in Eq. (7) it manifests as a
dissipative friction term for ϕ. As we will see, this friction
term is critical for the production of a scale-invariant
spectrum.

As it stands, Eq. (7) for the scalar field is incomplete. It is
well understood in the context of classical and quantum
theory that whenever a process generates an effective
dissipative interaction, it also generates fluctuations that
can be described by a stochastic noise source, Ξ, with zero
mean [50]. Thus, Eq. (7) should read

ϕ̈þ 3H _ϕþ V;ϕ ¼ −Γ _ϕþ Ξ: ð9Þ

If the microphysical process responsible for this noise, Ξ, is
in thermal equilibrium at some temperature, T, then the
fluctuation-dissipation theorem relates the dissipation it
induces, Γ, to its correlation function via

hΞðx; τÞΞðx0; τ0Þi ¼ 2ΓTδð3Þðx − x0Þδðτ0 − τÞ; ð10Þ

where angular brackets denote ensemble averaging. If this
process is not in thermal equilibrium, then its correlation,
hΞΞi, can depend more generally on ðx; τÞ and ðx0; τ0Þ. As
discussed in the Introduction, this noise term is critical in
warm inflation because it significantly enhances the power
spectrum of scalar perturbations relative to the vacuum
result. In the contracting models considered here, the
opposite is true: as we will show, the noise, Ξ, is completely
irrelevant to the power spectrum of the comoving curvature
perturbation. Moreover, since it has zero mean, hΞi, it is
irrelevant to the background dynamics as well and will be
omitted in the reminder of this section.
To find the background dynamics, Eqs. (7) and (8) must

be solved subject to the Friedmann constraint [from the
t − t component of Eq. (1)],

H2 ¼ 1

3

�
1

2
_ϕ2 þ V þ ρr

�
: ð11Þ

To this end, it proves useful to introduce the dimensionless
“Ω-variables,” (or more properly their square roots)

ðx; y; zÞ≡
�

_ϕffiffiffi
6

p
H
;−

ffiffiffiffiffiffijVjp
ffiffiffi
3

p
H

;−
ffiffiffiffiffi
ρr

p
ffiffiffi
3

p
H

�
; ð12Þ

characterizing respectively the fractional kinetic energy
density in the scalar field, the fractional potential energy
density in the scalar field, and the fractional energy density
in the radiation fluid. In terms of these variables, Eq. (11)
can be rewritten as y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2 − 1

p
, where we have taken

the positive root sinceH < 0 in a contracting universe. The
equation of state of the universe takes the simple form

ϵ≡ − _H=H2 ¼ 3x2 þ 2z2; ð13Þ

as can be obtained by differentiating Eq. (11) and sub-
stituting Eqs. (7) and (8). Therefore, ekpyrosis occurs
whenever 3x2 þ 2z2 > 3. Meanwhile, Eqs. (7) and (8)
can be rewritten as
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dx
d ln a

¼ 3ðx2 þ z2 − 1Þ
�
x −

cffiffiffi
6

p
�
− x

�
z2 þ Γ

H

�
; ð14Þ

dz
d ln a

¼ ð3x2 þ 2z2 − 2Þzþ Γ
H
x2

z
: ð15Þ

Note that Γ appears only in the ratio γ ≡ Γ=H < 0. It is at
this point that the fine-tuning enters: we assume in this
work that γ is a constant, independent of time. To motivate
this assumption, note that if jγj grows rapidly, the universe
becomes dominated by radiation only, and if it shrinks
rapidly, the universe becomes dominated by the ekpyrotic
field only. It is only when γ is roughly constant that these
two components coexist. Therefore, we assume it in what
follows, and merely observe in passing that if, e.g., Γ ∝ T2

or ffiffiffiffiffi
ρϕ

p , where ρϕ ≡ 1
2
_ϕ2 þ V, then γ is constant along the

solution of interest, and our assumption is justified. With
this assumption, Eqs. (14) and (15) admit a fixed-point,
scaling solution at ðx0; z0Þ with

x0 ≡ ½ð24ðc2 þ 4Þγ þ 9ðc2 − 4Þ2 þ 16γ2Þ1=2
þ 3c2 þ 4γ þ 12�ð6

ffiffiffi
6

p
cÞ−1; ð16Þ

z0 ≡
h
ðγ þ 3Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9c4 þ 24ðγ − 3Þc2 þ 16ðγ þ 3Þ2

q

þ 4γ þ 12
�
− 3c2ðγ − 3Þ

i
1=2ð3

ffiffiffi
2

p
cÞ−1: ð17Þ

As a consistency check, note that in the absence of
radiation, i.e., when γ ¼ 0, this solution reduces to ðx; zÞ ¼
ðc= ffiffiffi

6
p

; 0Þ, which reproduces ordinary, single-field ekpy-
rosis (when c >

ffiffiffi
6

p
).

To summarize, Eqs. (16) and (17) describe a cosmo-
logical background whose evolution is given by

a ¼ ðt=teÞ1ϵ a ¼ ðτ=τeÞ 1
ϵ−1

H ≡ _a=a ¼ 1

ϵt
H≡ a0=a ¼ 1

ðϵ − 1Þτ

ϕ ¼ ϕe þ
ffiffiffi
6

p
x0
ϵ

ln ðt=teÞ ϕ ¼ ϕe þ
ffiffiffi
6

p
x0

ϵ − 1
ln ðτ=τeÞ

ρr ¼
3z20
ϵ2t2

ρr ¼
3z20ðτ=τeÞ−2ϵ=ðϵ−1Þ

τ2eðϵ − 1Þ2 ;

ð18Þ

where 0 ≡ d=dτ and we have normalized the scale factor
to unity when ekpyrosis ends at some time te < 0. For
convenience, we have included the results in conformal
time and defined τe ≡ ϵðϵ − 1Þ−1te and

ϕe ≡ 1

c
ln

�
−

V0τ
2
eðϵ − 1Þ2

3ðx20 þ z20 − 1Þ
�
: ð19Þ

These dynamics are pictured in Fig. 1, which shows that
this solution is an attractor for a wide range of initial
conditions.
We close this section by noting that if the flux term is

changed to Qa ¼ Γðubϕ;bÞnϕ;a, for n > 1, it can be shown
that the updated equations of motion admit a similar
attractor so long as Γ ∝ H2−n. This alleviates the finely
tuned time dependence of Γ required for the stability of the
background solution.

III. PERTURBATIONS

In this section, we study scalar perturbations to linear
order about the background solution described in Eqs. (18).
We show that there exists a wide range in parameter space
(i.e., choices of c and γ) for which the comoving curvature
perturbation acquires a scale invariant power spectrum.
This result is displayed in Fig. 2; it is the main result of
this paper.
A full derivation of the scalar perturbation equations in

spatially flat gauge is presented in Appendix A. In this
gauge, all perturbed quantities can be expressed in terms of
the scalar potentials of the four-velocities of the radiation
fluid, δur, and of the scalar field, δuϕ. In particular, the
comoving curvature perturbation is

R≡ −
H
2ϵ

ð6x20δuϕ þ 4z20δurÞ: ð20Þ

These potentials satisfy the coupled system

δu00ϕ þ
C1

τ
δu0ϕ þ

�
k2 þ C2

τ2

�
δuϕ ¼ J rðδur; k; τÞ þ ξðk; τÞ;

ð21Þ

δu00r þ
C5

τ
δu0r þ

�
k2

3
þ C6

τ2

�
δur ¼ J ϕðδuϕ; k; τÞ; ð22Þ

where

FIG. 2. This shows ns as a function of c and γ for the
background solution in Eqs. (18).
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J rðδur; k; τÞ≡ C3

τ2
δur þ

C4

τ
δu0r; ð23Þ

J ϕðδuϕ; k; τÞ≡ C7

τ2
δuϕ þ

C8

τ
δu0ϕ; ð24Þ

ξ≡ Ξ= _ϕ2, and the Ci are constants that depend on c and γ,
whose explicit definitions are given in Eqs. (A29) and
(A20)–(A27).
The purpose of the rest of this section is to solve

Eqs. (21) and (22) for general c and γ so that we can find
R via Eq. (20). Before solving this system in general
(Sec. III B), we first review the solution in the cold case
when γ ¼ 0 (Sec. III A).

A. Cold ekpyrosis

In this subsection, we reproduce the result of standard,
single-field ekpyrosis, i.e., without radiation, for which a
scale-invariant spectrum for R is impossible [23].
Recall that with no radiation (γ ¼ 0) and a sufficiently

steep potential (c >
ffiffiffi
6

p
), the background solution in

Eqs. (16) and (17) reduces to ðx0; z0Þ ¼ ðc= ffiffiffi
6

p
; 0Þ. As

for the perturbations, δur vanishes identically, and Eq. (21)
becomes

δu00ϕ þ
C1

τ
δu0ϕ þ

�
k2 þ C2

τ2

�
δuϕ ¼ 0; ð25Þ

with C1 ¼ −2 and C2 ¼ 2c2ðc2 − 3Þðc2 − 2Þ−2. The selec-
tion of Bunch-Davies vacuum fixes

δuϕðk; τÞ ¼
ϵ − 1ffiffiffiffiffi
2ϵ

p
ffiffiffi
π

4

r
ð−τÞ1−C12 Hð1Þ

νϕ ð−kτÞ; ð26Þ

where, in terms of the function

νðX; YÞ≡ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX − 1Þ2 − 4Y

q
; ð27Þ

we have defined νϕ ≡ νðC1; C2Þ. In the next subsection, we
will use this same normalization for the perturbation, δuϕ,
since at early times, the temperature, T, and dissipation, Γ,
are small. In the superhorizon limit, −kτ → 0, Eq. (26)
approaches δuϕ ∝ k−νϕ , so the spectral index is given by

ns ¼ 4 − 2νϕ

¼ 3þ 4

c2 − 2
; ð28Þ

which is clearly blue (in particular > 3) for ekpyrosis
(which requires c >

ffiffiffi
6

p
). Thus, scale invariance is impos-

sible in the single-field model.

B. Warm ekpyrosis

In this subsection, we consider the “warm” case when
γ ≠ 0. The presence of the radiation fluid introduces into
Eqs. (21) and (22) two crucial differences: the first is
that C1 and C2 depend not only on the steepness, c, of the
potential, but also on the dissipation rate, γ; the second is
that δur is no longer negligible.
To solve the system, we decompose the scalar

potential for the four-velocity of the radiation fluid as
δur ¼ δuhr þ δupr , where the first term is a homogeneous
solution to Eq. (22) with J ϕ set to 0, i.e.,

δuhrðk; τÞ ¼ ð−kτÞ1−C52 ½a1ðkÞJνrð−kτÞ þ a2ðkÞYνrð−kτÞ�;
ð29Þ

and the second term is the particular solution given by
integrating over the retarded Green’s function, i.e.,

δuprðk; τÞ ¼ k−1
Z

τ

−∞
Grð−kτ;−kτ̄ÞJ ϕðδuϕ; k; τ̄Þdτ̄: ð30Þ

In the above, a1ðkÞ and a2ðkÞ are integration constants and

Grðz; yÞ≡ π

2
yðz=yÞ1−C52 ½Jνrðz=

ffiffiffi
3

p
ÞYνrðy=

ffiffiffi
3

p
Þ

− Yνrðz=
ffiffiffi
3

p
ÞJνrðy=

ffiffiffi
3

p
Þ� ð31Þ

with νr ≡ νðC5; C6Þ. In Appendix B, we show that the
integral in Eq. (30) can be approximated by

δupr ≈ ðC7=C6Þθð1 − kjτjÞδuϕ; ð32Þ

where θðxÞ is the Heaviside step function. That is, δupr is
negligible before horizon crossing and is a constant
multiple of δuϕ after horizon crossing (see Fig. 4).
Armed with these solutions, we now turn to Eq. (21).

The right side is a sum of three terms, J rðδupr ; k; τÞ þ
J rðδuhr ; k; τÞ þ ξ. The last term is negligible as discussed
in detail in Appendix C. The second term is a rapidly
decreasing function that depends on the initial state of δuhr .
We restrict attention to models where this term begins
sufficiently small that it can be neglected. Therefore, we
need only consider J rðδuprÞ. Inside the horizon, it has
no effect, but outside the horizon, it renormalizes the
“dissipation” and “frequency” terms on the left side of
Eq. (21),

C1 → ~C1 ≡ C1 − C4C7C−1
6 ; ð33Þ

C2 → ~C2 ≡ C2 − C3C7C−1
6 ; ð34Þ

as is clear from substituting Eq. (32) into Eq. (23) and
putting the result into Eq. (21).
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Therefore, the subhorizon solution is given by

δusubϕ ¼ ϵ − 1ffiffiffiffiffi
2ϵ

p
ffiffiffi
π

4

r
ð−τÞ1−C12 Hð1Þ

νϕ ð−kτÞ; ð35Þ

and the superhorizon solution is given by

δusupϕ ¼ ð−τÞ1− ~C1
2 ðκ1J ~νϕð−kτÞ þ κ2Y ~νϕð−kτÞÞ; ð36Þ

where ~νϕ ≡ νð ~C1; ~C2Þ, and κ1 and κ2 are approximated by
the following matching conditions at horizon crossing
(−kτ ¼ 1):

δusubϕ ¼ δusupϕ ; ð37Þ

ðδusupϕ Þ0 − ðδusubϕ Þ0 ¼ −C4C7C−1
6 kδusubϕ ; ð38Þ

i.e.,

κ1 ¼ −
π3=2ðϵ − 1Þ
8

ffiffiffi
2

p
C6

ffiffiffi
ϵ

p
�
Hð1Þ

νϕ ð1ÞðY ~νϕð1Þð ~C1 − C1

þ 2ðC4C7C−1
6 þ ~νϕ − νϕÞÞ − 2Y ~νϕ−1ð1ÞÞ

þ 2Hð1Þ
νϕ−1ð1ÞY ~νϕð1Þ

�
× k

C1− ~C1
2 ; ð39Þ

κ2 ¼
π3=2ðϵ − 1Þ
8

ffiffiffi
2

p
C6

ffiffiffi
ϵ

p
�
Hð1Þ

νϕ ð1ÞðJ ~νϕð1Þð ~C1 − C1

þ 2ðC4C7C−1
6 þ ~νϕ − νϕÞÞ − 2J ~νϕ−1ð1ÞÞ

þ 2Hð1Þ
νϕ−1ð1ÞJ ~νϕð1Þ

�
× k

C1− ~C1
2 : ð40Þ

Substituting the solution in Eq. (36), together with
Eqs. (39) and (40), into Eq. (20), we find that the primordial
power spectrum of the comoving curvature perturbation on
superhorizon scales is given by

Δ2
Rðk; τÞ≡ k3

2π2
jRj2 ≈Oð10−4ÞV

1þ ~C1þ2~νϕ
2

end kns−1; ð41Þ

where Vend ≡ jV0je−cϕe is the magnitude of the potential
energy density when ekpyrosis ends, and the spectral index
is given by

ns ¼ 4 − 2~νϕ þ ðC1 − ~C1Þ; ð42Þ

which is plotted in Fig. 2.
Given any point in the c − γ plane, the height of the

surface above that point shows the spectral index, ns. The
color scheme reflects that for ns > 1, the spectrum is blue
and for ns < 1, the spectrum is red. The thick, blue curve
at γ ¼ 0 reproduces the results of ordinary, single-field
ekpyrosis from Eq. (28). As discussed in Sec. III A, this
curve describes a blue-tilted spectrum that is inconsistent
with observation. However, note the effect of particle

production on the spectral index: at any value of c,
increasing the dissipation rate, jγj, reddens the spectrum.
In particular, the thick, black curve has ns ¼ 1. Any choice
of c and γ along this curve corresponds to an exactly scale-
invariant spectrum. For such a choice, the exponent of Vend
in Eq. (41) can be computed and is roughly 0.61, so that
to match the observed amplitude, Vend must be made of
order V1=4

end ∼ 1016 GeV, which is high enough to recover
the successful predictions of hot big bang nucleosynthesis.
In this section, we have ignored isocurvature perturbations.

The reason is that even though they are not negligible at the
end of ekpyrosis, reheating will render them thus, provided
theuniverse reheats in local thermal and chemical equilibrium
with no nonzero conserved quantities (see Ref. [51]).
Therefore, our assumption that isocurvature perturbations
can be ignored amounts to this rather mild constraint on
reheating. This can be achieved, e.g., if theϕ-field completely
decays into thermalized radiation at sufficiently early time.

IV. DISCUSSION

In this work, we have presented a scenario for ekpyrosis
that continuously generates a scale-invariant spectrum of
adiabatic perturbations. The key is the continuous decay of
the ekpyrotic field; this decay introduces a friction term that
allows a scale-invariant spectrum to be achieved. More
generally, as can be seen by following a curve of constant c
along the surface in Fig. 2, we showed that the effect of
particle production is to redden the power spectrum of the
supercooled theory.
We view the elimination of the second scalar field and

hence any subsequent conversion mechanism as a major
simplification, and a return to the spirit of the original
formulation of ekpyrosis, since the hydrodynamical behav-
ior at finite temperature is universal regardless of the details
of its microscopic origin. While we have not attempted to
embed this phase into a complete cosmological history, the
decay into radiation presents the tantalizing possibility of
evading the need for additional reheating (provided the
radiation so generated does not present complications for
realizing a bounce).
There are two key assumptions that merit attention. The

first is that the dissipation rate must scale with the Hubble
parameter. This scaling represents the greatest source of
fine-tuning (although see the last paragraph of Sec. II for a
possible alternative). The second is that the initial fluctua-
tions of the fluid, δuhr , are small enough to be neglected. If
these conditions are met, it is always possible to choose the
parameters c and γ such that a scale invariant spectrum is
achieved.
There are many directions for future work. One pos-

sibility is to consider generalizations of the radiation fluid
within the framework presented here, as was done in warm
inflation [52]. For example, one could analyze a fluid with a
nonrelativistic equation of state or that is out of thermal
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equilibrium. One could also include viscosity by adding

corrections to its energy-momentum tensor, TðrÞ
ab .

Another possibility is to devise a microphysical theory—
to identify the microscopic degrees of freedom comprising
the fluid that realizes the effective dynamics described here.
For example, one could try to reproduce the trapped
inflation scenario in a contracting universe [49]. In warm
inflation, this is difficult, though not impossible [53–55],
to achieve because, as argued in Ref. [56], the dissipation
coefficient, Γ, appears as the result of a small correction
to a subleading thermal correction to the potential energy
density of the inflaton, which must be extremely flat to
support inflation. Thus, non-negligible Γ requires large
thermal corrections, which spoil the extreme flatness of the
potential. In ekpyrosis, such extreme flatness is neither
required nor permitted. Nevertheless, constructing a micro-
physical model may also prove difficult for warm ekpy-
rosis. We assumed in this work that the degrees of freedom
in the thermal bath induce a dissipation coefficient that is
local in time. However, as indicated above, interactions
between a scalar field and the degrees of freedom in an
ambient thermal bath generically lead to nonlocal terms in
the equation of motion for the scalar field. These terms can
be approximated with a local friction term only when the
microphysical dynamics of these degrees of freedom
operate much faster than the evolution of the ekpyrotic
field and the contraction of the universe. Since the back-
ground solution in Eq. (18) involves only a logarithmic
dependence of the ekpyrotic field on time, it may be
possible to find a model where these nonlocal interactions
are well approximated by a local term, but we leave this for
future work. In addition, the scaling Γ ∝ H may require
nontrivial microphysics. For example, if the dissipation
coefficient depends only on temperature, this scaling
requires Γ ∝ T2, which may be difficult to achieve [56–61].
It is important to understand to what extent dissipation

affects the tensor-to-scalar ratio. One does not expect
dissipation to alter the tensor spectrum from the predictions
of ordinary, single-field ekpyrosis, in which it is strongly
blue tilted and exponentially suppressed on large scales
[41]. Since we have shown that dissipation flattens the
scalar spectrum, we expect the tensor-to-scalar ratio to be
exponentially suppressed on observable scales.
It is also important to understand the effects of dis-

sipation on the non-Gaussian signatures. A reason to be
optimistic is that, as we have shown, neither the steepness,
c, of the potential nor the equation-of-state parameter of
the universe, ϵ, needs to be tuned particularly large. For
comparison, the models discussed in Refs. [36–39]
generate no non-Gaussianity during the ekpyrotic phase.
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APPENDIX A: PERTURBATION EQUATIONS

In this appendix, we will derive the linearized perturba-
tion equations. We will follow the notation of Ref. [62] (see
also Ref. [63]). To simplify the derivation, we will find the
linearized equations for the ensemble expectation values of
the fields. This implies that any stochastic contribution to
these equations will vanish.
A metric with the most general scalar-type perturbation

in a flat Friedman-Robertson-Walker background is

ds2 ¼ −a2ð1þ 2αÞdτ2 − 2a2β;idτdxi

þ a2½δijð1þ φÞ þ 2ψ ;ij�dxidxj: ðA1Þ

Ignoring anisotropic stress, the energy-momentum tensor
for the fluid can be decomposed as

TðrÞτ
τ ¼ −ðρr þ δρrÞ ðA2Þ

TðrÞτ
i ¼ aðρr þ prÞδur;i ðA3Þ

TðrÞi
j ¼ ðpr þ δprÞδij: ðA4Þ

Thus, perturbations in the fluid are parameterized by δρr,
δpr, and δur. For simplicity, we will assume δpr ¼ δρr=3,
though this is not central to our results. In writing the
perturbation equations, it is useful to define the shear,
χ ≡ aðβ þ a _ψÞ, and the perturbed expansion of the normal-
frame vector field κ ≡ 3ð− _φþHαÞ þ k2

a2 χ. In Fourier
space, the perturbation equations are

−
k2

a2
φþHκ ¼ −

1

2
δρ; ðA5Þ

κ −
k2

a2
χ þ 3

2

X
i¼r;ϕ

ðρi þ piÞδui ¼ 0; ðA6Þ

_χ þHχ − α − φ ¼ 0; ðA7Þ

_κ þ 2Hκ þ
�
3 _H −

k2

a2

�
α ¼ 1

2
ðδρþ 3δpÞ; ðA8Þ

δ_ρr þ 3Hðδρr þ δprÞ

¼ −
k2

a2
ðρr þ prÞδur þ δqr þ _ρrαþ ðρr þ prÞκ; ðA9Þ

−1
a3ðρr þ prÞ

d
dt

½a3ðρr þ prÞδur�

¼ δpr

ρr þ pr
þ α −

jr
ρr þ pr

; ðA10Þ
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δϕ̈þ 3Hδ _ϕþ
�
k2

a2
þ V;ϕϕ

�
δϕ

¼ _ϕðκ þ _αÞ − δqϕ þ ð2ϕ̈þ 3H _ϕÞα; ðA11Þ

where

δρ≡ δρr þ _ϕδ _ϕ − _ϕ2αþ V;ϕδϕ; ðA12Þ

δp≡ δpr þ _ϕδ _ϕ − _ϕ2α − V;ϕδϕ; ðA13Þ

δuϕ ≡ −δϕ= _ϕ; ðA14Þ

δqr ≡ δΓ _ϕ2 þ 2Γ _ϕδ _ϕ − 2αΓ _ϕ2; ðA15Þ

δqϕ ≡ δΓ _ϕ − Γα _ϕþ Γδ _ϕ; ðA16Þ

jr ≡ −Γ _ϕδϕ: ðA17Þ

Equations (A5)–(A10) are, respectively, the Gt
t component

of the field equations, the Gt
i component, the Gi

j − 1
3
δijG

k
k

component, the Gi
i − Gt

t component, the TðrÞb
i;b ¼ Qi

component, the TðrÞb
t;b ¼ Qt component, and the

TðϕÞb
t;b ¼ −Qt component.

Henceforth, we work in spatially flat gauge
(G ¼ φ ¼ 0). Then, Eqs. (A5) and (A6) can be solved
algebraically for the metric variables α and β in terms of the
matter variables δϕ, δur, and δρr. Equation (A10) can then
be solved algebraically for δρr in terms of δur and δϕ.
Substituting these results into Eqs. (A9) and (A11) leaves
two closed equations for the variables δur and δuϕ.
Specializing to the background solution in Eqs. (18),
these are

δüϕ þ c1Hδ _uϕ þ
�
k2

a2
þ c2H2

�
δuϕ

¼ c3H2δur þ c4Hδ _ur ðA18Þ

δür þ c5Hδ _ur þ
�

k2

3a2
þ c6H2

�
δur

¼ c7H2δuϕ þ c8Hδ _uϕ; ðA19Þ

with the constants ci defined by

c1 ≡ −
ffiffiffi
6

p
cz20
x0

−
ffiffiffi
6

p
cx0 þ

ffiffiffi
6

p
c

x0
− γ − 3; ðA20Þ

c2 ≡ 6
ffiffiffi
6

p
cx30 þ 6

ffiffiffi
6

p
cx0z20 − 6

ffiffiffi
6

p
cx0 − 18x40

− 24x20z
2
0 þ 27x20 þ 2γz20 þ 6z20 þ

ffiffiffi
6

p

2
cγx0; ðA21Þ

c3 ≡ −
2

ffiffiffi
6

p
cz40

x0
− 2

ffiffiffi
6

p
cx0z20 þ

2
ffiffiffi
6

p
cz20

x0
− 8γx20 þ 12x20z

2
0 þ 16z40 − 2γz20 − 8z20; ðA22Þ

c4 ≡ −4z20; ðA23Þ

c5 ≡ 4γx20
z20

− 1; ðA24Þ

c6 ≡ −
2

ffiffiffi
6

p
cγx30
z20

− 2
ffiffiffi
6

p
cγx0 þ

2
ffiffiffi
6

p
cγx0
z20

−
6γx40
z20

− 7γx20 −
4γ2x20
z20

−
6γx20
z20

− 8x20z
2
0 þ 3x20 − 8z40 þ 10z20; ðA25Þ

c7 ≡ −
2

ffiffiffi
6

p
cγx30
z20

− 3
ffiffiffi
6

p
cx30 − 2

ffiffiffi
6

p
cγx0 þ

2
ffiffiffi
6

p
cγx0
z20

− 3
ffiffiffi
6

p
cx0z20 þ 3

ffiffiffi
6

p
cx0 þ 12x40 − 5γx20 −

4γ2x20
z20

−
6γx20
z20

þ 12x20z
2
0 − 18x20; ðA26Þ

c8 ≡ 5γx20
2z20

þ 2x20: ðA27Þ

For concreteness, we have assumed Γ ∝
ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞp

, indepen-

dent of ρr and _ϕ, i.e., Γ ¼ −γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−VðϕÞ=ð3ðx20 þ z20 − 1ÞÞ

p
.

For this choice, δΓ ¼ γcHδϕ=2. Of course, for a realistic
model, Γ should depend on the temperature of the radiation
fluid [57]; the field dependence is not required [56,58,59].
One possibility, which preserves the Γ ∝ H scaling neces-
sary for the warm ekpyrotic background solution, is
Γ ∝ T2=M, where M is some mass scale fixed by the
background solution. More generally, Γ can be any function
of T and ϕ, provided the scaling Γ ∝ H is preserved. We
have performed the analysis for the two extreme cases,
where Γ ∝

ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞp

and where Γ ∝ T2, and found that both
cases give qualitatively similar results; namely, a scale-
invariant scalar spectrum is possible. There are only minor
differences, e.g., in the ci in Eqs. (A20)–(A27). This is
important because in warm inflation, a temperature
dependence in the dissipation coefficient can have large
effects on the primordial scalar spectrum as shown in
Refs. [57,60,61].
As we explained above, in deriving these equations, we

have averaged out the stochastic fluctuations. However, at
background level, we know that whatever microphysical
process generates the dissipation, Γ, in the equation of
motion for the scalar field, must also be accompanied
by a stochastic source, Ξ, whose correlation satisfies the
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fluctuation-dissipation theorem (see Appendix C for
details). That is, Eq. (A18) must be replaced with

δüϕ þ c1Hδ _uϕ þ
�
k2

a2
þ c2H2

�
δuϕ

¼ c3H2δur þ c4Hδ _ur þ ξðk; tÞ; ðA28Þ

where ξ≡ Ξ= _ϕ2 with the extra factors of _ϕ in the
denominator coming from the change of variables from
δϕ to δuϕ. In conformal time, Eqs. (A28) and (A19)
become Eqs. (21) and (22), with

Ci ¼

8>><
>>:

ci−1
ϵ−1 if i ¼ 1; 5
ci

ðϵ−1Þ2 if i ¼ 2; 3; 6; 7
ci
ϵ−1 if i ¼ 4; 8

ðA29Þ

where again ϵ≡ 3x20 þ 2z20.

APPENDIX B: LOCALITY OF
FLUID RESPONSE

Since, in general, fluids behave nonlocally, we will show
in this appendix how locality can be recovered in the late
time limit. This is because the sources for the fluid are
τ−2δuϕðk; τÞ, τ−1δu0ϕðk; τÞ and not δuϕ itself. Using the
expression for the source, J ϕ, in Eq. (24) and integrating
the derivative term by parts, the particular solution for the
radiation fluid in Eq. (30) can be rewritten as

δuprðzÞ ¼
Z

∞

z
dyKrðz; yÞδuϕðyÞ; ðB1Þ

where z≡ −kτ and we defined the kernel

Krðz; yÞ≡ C7 þ C8

y2
Grðz; yÞ −

C8

y
Gr;yðz; yÞ: ðB2Þ

Now, we will show that this kernel behaves locally in the
small z (superhorizon) approximation. It follows from
the explicit expression of the Green’s functions that
Krðz; zÞ → ∞ and Krðz; yÞ → 0 for z ≠ y as z → 0.
These properties are illustrated in Fig. 3. To compute the
particular solution for the radiation fluid, we can therefore
make the local approximation

δuprðzÞ ¼
Z

∞

z
dyKrðz; yÞδuϕðyÞ ≈ δuϕðzÞ

Z
∞

z
dyKrðz; yÞ:

ðB3Þ

In the small z limit, this integral can be done exactly and
gives

Z
∞

z
dyKrðz; yÞ ¼

C7

C6

þOðz1−C5þ2νr
2 Þ: ðB4Þ

Therefore, in this limit, we make the approximation (see
Fig. 4)

δuprðzÞ ≈ ðC7=C6ÞδuϕðzÞ þOðz1−C5þ2νr
2 Þ: ðB5Þ

FIG. 3. (a) Comparison of the locality of the Green’s function,
Gr, (blue) and the kernel, Kr, (black) for z ¼ 10−2. Both are
normalized such that their maximum value is 1: as should be
clear, ymax is the argument for which Grðz; yÞ is maximized. Note
the logarithmic scale on the horizontal axis. (b) Comparison of
the fluid kernel, Kr at different final times, z. As modes are
stretched beyond the horizon z ≪ 1, this kernel becomes in-
creasingly local. For both plots, we used ðc; γÞ ¼ ð15;−56.8Þ.

FIG. 4. This plot shows the time dependence of the real (blue)
and imaginary (red) parts of the ratio δupr=δuϕ when
ðc; γÞ ¼ ð15;−56.8Þ. Recall δuϕ is given by Eqs. (35) and
(36) and δupr is given by Eq. (30), or, equivalently, by Eq. (B1).
There is a sharp transition once a mode exits the horizon. Inside
the horizon (z > 1), the particular solution for the fluid δupr is
negligible. Outside (z < 1) it rapidly approaches a constant
factor, roughly C7=C6, times δuϕ. This justifies the mode
matching procedure in the text.
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APPENDIX C: THERMAL CONTRIBUTION
TO THE SCALAR SPECTRUM

In this appendix, we will show that the thermal con-
tribution to the power spectrum of the comoving curvature
perturbation, Δ2

R, is negligible for the observable modes in
comparison to the vacuum, scale-invariant contribution.
To prove this, we write the particular solution for the

scalar field perturbation in terms of the stochastic noise

δuϕðk; τeÞ ¼ k−1
Z

τe

−∞
dτGϕð−kτe;−kτÞξðk; τÞ; ðC1Þ

where Gϕ is the retarded Green’s function for Eq. (21),
and again, τe is the time at which ekpyrosis ends. The two-
point function of the noise follows from the fluctuation-
dissipation theorem in Eq. (10)

hξðk; τÞξðk0; τ0Þi ¼ N FDð2πÞ3δðkþ k0Þδðτ − τ0Þ; ðC2Þ

where the noise kernel is given by

N FD ≡ 2ΓT= _ϕ2; ðC3Þ

with the extra factors of _ϕ in the denominator coming
from the change of variables from δϕ to δuϕ. Substituting
Eq. (C2) into Eq. (C1) and changing the integration variable
to y ¼ −kτ, the thermal power spectrum for δuϕ is given by

hδuϕðk; τeÞδuϕðk0; τeÞi

¼ 1

k3

�Z
∞

−kτe
½Gϕð−kτe; yÞ�2N FDdy

�

× ð2πÞ3δð3Þðkþ k0Þ: ðC4Þ

To compute this integral, we separate out the time depend-

ence of the noise kernel, i.e., N FD ¼ N 0ð−τÞ
1
2
þ 1

2ðϵ−1Þ with

N 0 ≡ −γðϵ − 1Þ1=2
3x20

�
45

π2
z20

�
1=4

ð−τeÞ−
1

2ðϵ−1Þ: ðC5Þ

For the Green’s function, Gϕ, we use the same approxi-
mation we used to compute δuϕ in Eqs. (35) and (36),

namely finding the solutions for y > 1 and y < 1 and
matching at horizon crossing, taking account of the effect
of J r according to the change in dissipation and frequency
in Eqs. (33) and (34).
Then, dropping the arguments on the left side of

Eq. (C4), the power spectrum is

k3hδu2ϕi ¼ N 0ð−τeÞ
1
2
þ 1

2ðϵ−1ÞAð−kτeÞ
× ð2πÞ3δð3Þðkþ k0Þ ðC6Þ

where the function

AðzÞ≡ z−
1
2
− 1
2ðϵ−1Þ

Z
∞

z
dy½Gϕðz; yÞ�2y

1
2
þ 1

2ðϵ−1Þ ðC7Þ

is plotted in Fig. 5. Using Eqs. (C5), (C6), and (20) in
Eq. (41), we find that this contribution to Δ2

R is suppressed
relative to the vacuum result by a factor that is weakly
dependent on c and γ and is of order Að−kτeÞV0:14

end , e.g.,
for the choice ðc; γÞ ¼ ð15;−56.8Þ. Thus, the ratio of this
thermal contribution to the vacuum contribution is of order
Oð10−9Þ for the largest observable modes.
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