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We revisit the issue of interpreting the results of large volume cosmological simulations in the context of
large-scale general relativistic effects. We look for simple modifications to the nonlinear evolution of the
gravitational potential ψ that lead on large scales to the correct, fully relativistic description of density
perturbations in the Newtonian gauge. We note that the relativistic constraint equation for ψ can be cast
as a diffusion equation, with a diffusion length scale determined by the expansion of the Universe.
Exploiting the weak time evolution of ψ in all regimes of interest, this equation can be further accurately
approximated as a Helmholtz equation, with an effective relativistic “screening” scale l related to the
Hubble radius. We demonstrate that it is thus possible to carry out N-body simulations in the Newtonian
gauge by replacing Poisson’s equation with this Helmholtz equation, involving a trivial change in the
Green’s function kernel. Our results also motivate a simple, approximate (but very accurate) gauge
transformation—δNðkÞ ≈ δsimðkÞ × ðk2 þ l−2Þ=k2—to convert the density field δsim of standard collision-
lessN-body simulations (initialized in the comoving synchronous gauge) into the Newtonian gauge density
δN at arbitrary times. A similar conversion can also be written in terms of particle positions. Our results can
be interpreted in terms of a Jeans stability criterion induced by the expansion of the Universe. The
appearance of the screening scale l in the evolution of ψ , in particular, leads to a natural resolution of the
“Jeans swindle” in the presence of superhorizon modes.
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I. INTRODUCTION

The paradigm of gravitational instability growing tiny
primordial density fluctuations into a complex “cosmic
web” of large-scale structure at late times has had great
success in explaining measurements of the anisotropic
temperature of the cosmic microwave background
(CMB) [1–3] and the spatial distribution of galaxies as
seen in large surveys [4–6]. While CMB anisotropies are
accurately described using linear perturbation theory in
general relativity [7], a full appreciation of the nature and
nonlinear evolution of the cosmic web requires the use of
numerical simulations. The tool of choice for the latter—
the N-body method—routinely uses Newtonian dynamics
to follow gravitational instability [8] (although see
Refs. [9,10]). As galaxy surveys start to cover ever-
increasing volumes, it has become important to run
simulations in very large boxes—large enough that the
size of the box approaches/exceeds the Hubble scale where
Newtonian theory is no longer valid. This situation has
naturally led to the question of whether or not the results of
these large volume Newtonian simulations can be trusted at
large scales.

Several authors have addressed this question [11–17], as
well as the closely related (but separate) question concern-
ing the inclusion of large-scale general relativistic effects in
modelling observable quantities [18–22]. The understand-
ing that has emerged regarding simulations can be sum-
marized as follows. Simulations of collisionless cold dark
matter (CDM) track the evolution of the gravitational
potential ψ , the fluid peculiar velocity v and density
fluctuation δ (the latter two using the velocities and
positions of a large number of “particles”) in an expanding
background. These fields are initialized at some early time,
typically using (i) the results of fully relativistic linear
perturbation theory for δ in the so-called comoving
synchronous gauge, (ii) the Zel’dovich approximation for
v and (iii) Poisson’s equation for ψ. The simulation then
updates particle positions using their velocities, the veloc-
ities using the Euler equation which involves ψ , and ψ
itself using Poisson’s equation sourced by the density field
of the updated particle positions. By a remarkable coinci-
dence, these are exactly the equations that must be solved
in relativistic linear theory on large scales, provided one
interprets δ as being in the comoving synchronous gauge
but v and ψ as being in the Newtonian gauge (see
Appendix A for details). This feature of linear theory
allows a straightforward interpretation of the results of
N-body simulations in which δ was initialized in the
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comoving synchronous gauge. Indeed, Fidler et al. [17]
have shown that one can self-consistently define a new
“N-body gauge” which retains the Newtonian forms for the
continuity, Euler and Poisson equations. The relativistic
calculations of observable quantities can also be explicitly
written in this “mixed” or N-body gauge language [20,22],
meaning that these calculations can in principle be
embedded into the output of a large simulation (as one
might imagine doing for constructing next-generation
mock catalogs).
A couple of issues are worth noting, however. The above

discussion implies that simulations in which the density is
initialized in the Newtonian rather than synchronous gauge
would be solving the wrong equations on large scales, and
one can show that this error will lead to spuriously large
values of the large-scale potential, which would in turn
nonlinearly couple to the small scales and render the entire
simulation useless (see, e.g., Ref. [17] which discusses
this issue in the context of a correction to the Zel’dovich
approximation; we will also address this point below).
Additionally, the above solution to interpreting N-body
simulations is not very intuitive1; the reason why the large
and small scales should not couple strongly is hidden inside
a gauge transformation.
In this paper, we will look for simple, physically intuitive

recipes that accurately account for the connection between
the evolution of large (linear) and small (nonlinear) scales
in the same simulation. We will approach the problem by
asking whether a simulation can be initialized and run
consistently using the Newtonian gauge for all fields.
Along the way, we will make simplifying approximations
concerning, e.g., the time evolution of ψ ; we will demon-
strate that these are accurate at better than a few per cent in
all regimes of interest.
In Sec. II, we use general relativistic, nonlinear evolution

equations to discuss the behavior of the gravitational
potential in an expanding Universe. We use these results
to motivate a simple and accurate modification of the
standard N-body method which clarifies how screening of
large-scale power arises naturally in the Newtonian gauge
due to the expansion of the Universe. The results of our
screened simulations are discussed in Sec. III. Our results
also motivate simple postprocessing approximations (both
at the level of the density field as well as particle positions)
to convert the output of a standard simulation into the
Newtonian gauge. In Sec. IV, we discuss some interesting

physical insights provided by our formulation. We discuss
possible extensions of our work and conclude in Sec. V.
Appendix A describes the equations behind the N-body
interpretation described above, Appendix B describes the
methodology for generating the initial conditions used
in our simulations, and Appendix C shows how particle
positions and velocities in a simulation are mapped to an
energy-momentum tensor.

II. EVOLUTION OF ψ

We start by setting up our notation and describing the
various regimes we will be interested in, followed by an
analysis of the evolution of the gravitational potential ψ .

A. Setup

We assume a perturbed Friedmann-Lemâitre-Robertson-
Walker (FLRW) metric described in the conformal
Newtonian gauge by [32]

ds2 ¼ aðτÞ2
�
−
�
1þ 2ϕ

c2

�
c2dτ2 þ

�
1 −

2ψ

c2

�
dx2

�
; ð1Þ

where we set vector and tensor perturbations to zero.
The conformal time τ is related to cosmic time t through
∂τ ¼ a∂t ¼ aH∂a, with H≡ ∂τ ln a ¼ aH the conformal
or comoving Hubble parameter. The background spatial
metric is assumed to be flat, dx2 ¼ δijdxidxj, i, j ¼ 1, 2, 3,
and the scale factor aðτÞ satisfies the Friedmann equation

H2 ¼ 8πGa2

3c2
ðρ̄m þ ρ̄r þ ρ̄ΛÞ

¼ H2
0ðΩma−1 þ Ωra−2 þ ΩΛa2Þ; ð2Þ

where ρ̄X is the energy density of component X, and
Ωm þ Ωr þΩΛ ¼ 1. Throughout, we will be interested in
the matter and Λ-dominated regime and will assume that
inhomogeneities are driven by collisionless CDM (pressur-
eless dust). This means that we can ignore the effects of Ωr
(as well as radiation perturbations), and the absence of
anisotropic stresses on nearly all scales of interest allows
us to set ϕ ¼ ψ [8,33,34]. Note that, in our convention,
the metric potentials have units of velocity squared. We will
also neglect the effect of baryons at late times (i.e.,
a≳ 10−2) and assume that all matter can be accurately
described as a single collisionless fluid, as is commonly
done in N-body simulations.
CDM inhomogeneities in the conformal Newtonian

gauge are described by the density perturbation δ and
peculiar velocity v, which are defined using moments of
the phase space distribution function for CDM and can be
written in terms of the CDM energy-momentum tensor Tμ

ν

as [33,34] (see also Appendix C)

1An alternative approach to understanding this problem was
presented by Ref. [23], which used the result that the effects of
modes with wavelengths longer than the box size can be mapped
into an effective background curvature [24,25] and advocated
simulating only small boxes. This “separate universe” technique
has been recently applied in studying nonlinear halo bias [26,27],
but the large volume simulations typically employed for analyz-
ing large-scale structure, to the best of our knowledge, continue to
use the standard N-body method [28–31].
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T0
0 ¼ −ρ̄mð1þ δÞ;

T0
i ¼ ρ̄mð1þ δÞvi=c;

Ti
j ¼ ρ̄mð1þ δÞvivj=c2; ð3Þ

where the spatial index on vi is raised and lowered using
the Kronecker delta δij. Some comments are in order
regarding the assumptions underlying these expressions.
We are essentially interested in two different regimes of
perturbation, the large-scale linear regime and the deep
subhorizon regime of nonlinear δ. In the former, we expect
the perturbative ordering

δ ∼
v
c
∼
ψ

c2
¼ OðϵÞ; ð4Þ

where ϵ ≪ 1 is set by the initial conditions, while in the
subhorizon nonlinear regime, we expect [35]

δ ¼ Oð1Þ; v
c
¼ OðϵÞ; ψ

c2
¼ Oðϵ2Þ; ð5Þ

where ϵ ¼ H=ðckÞ ≪ 1 at comoving wave number k. In
each regime, we will be interested in equations at leading
order in the respective ϵ. This justifies the expressions in
Eq. (3) where we discarded terms of order ψv=c3 and
higher, which will never be of importance at this order in
either regime.
Similar considerations tell us that the constraint equation

G0
0 ¼ ð8πG=c4ÞT0

0 (after accounting for the Friedmann
equation) can be written as

∇2ψ −
3H
c2

∂τψ −
3H2

c2
ψ

¼ 4πG
c2

a2ρ̄mδþO
�ð∇ψÞ2

c2
;
H2ψ2

c4

�
; ð6Þ

where we treat ∂τψ and Hψ on equal footing, and spatial
derivatives2 are with respect to comoving coordinates x.

The nonlinear evolution of δ and v can be derived
most easily by taking moments of the collisionless
Boltzmann equation for CDM [8,34]. The Euler equation
for v becomes

∂τv þHv þ ðv ·∇Þv

¼ −∇ψ þO
�
Hψv
c2

;
Hv2v
c2

;
ψ∇ψ

c2
;
v2∇ψ
c2

�
; ð7Þ

where shear generated by shell crossing can be safely
ignored since velocities remain nonrelativistic. The con-
tinuity equation under similar approximations reads

∂τδþ∇ · ½ð1þ δÞv� ¼ 3
∂τψ

c2
þO

�
v · ∇ψ
c2

;
δ∂τψ

c2

�
; ð8Þ

where terms of order ∼δ∂τψ can be neglected because they
are always much smaller than ∂τδ.

B. Diffusion of ψ

The Euler and continuity equations are correctly evolved
in simulations, except for the term ∼3∂τψ in the latter
(Appendix C). We will discuss the role of this term later
and focus here on the constraint Eq. (6), which is easily
rewritten as

3aH2

c2
∂aðaψÞ −∇2ðaψÞ ¼ −

3

2
Ωm0H2

0δ≡ S: ð9Þ

Defining u≡ aψ and introducing the variable β such that
∂β ¼ ð3aH2=c2Þ∂a, this becomes the diffusion equation
with a source [32]:

∂βu −∇2u ¼ S: ð10Þ

Of course, the “source” S is coupled to u through its own
evolution equation, so this is only part of a nonlinear
system. Formally, though, the causal Green’s function for
Eq. (10) is

Gðβ; β0;x;x0Þ ¼ ð4πΔβÞ−3=2e−r2=4ΔβθðΔβÞ; ð11Þ

where Δβ ¼ β − β0, r2 ¼ ∥x − x0∥2 and θ is the Heaviside
step function. This clearly shows that ψ only responds
to δ over length scales r ∼

ffiffiffiffiffiffi
Δβ

p
. The variable β can be

expressed in terms of the scale factor using

β ¼ c2

3

Z
a da0

a0H2ða0Þ ¼
Z

a da0

a0
λða0Þ2; ð12Þ

where we introduced the length scale

λðaÞ≡ c=ð
ffiffiffi
3

p
HÞ; ð13Þ

2We emphasize that we have ignored terms of order
∼ψ∇2ψ=c2 and ∼ð∇ψ ·∇ψÞ=c2, both of which we refer to as
Oðð∇ψÞ2=c2Þ. These would contribute to the left-hand side of
Eq. (6) by adding the quantity ð4ψ∇2ψ þ ð3=2Þ∇ψ · ∇ψÞ=c2 at
leading order [9,34]. Although these terms are clearly negligible
in the large-scale linear regime of Eq. (4), it might be less obvious
why we can ignore these terms in the nonlinear regime of Eq. (5)
when they become comparable to terms involving H2ψ and
H∂τψ . The reason is that, in this regime, all these terms areOðϵ2Þ
corrections to the term involving ∇2ψ . In the linear regime,
however, the terms ∼H2ψ and ∼H∂τψ are of course relevant. In
the transition between these two regimes, on grounds of con-
tinuity, we expect that the contribution of the terms involving
ψ∇2ψ=c2 and ð∇ψÞ2=c2 continues to remain subordinate in
comparison with ∇2ψ . Equation (6), as it stands, therefore gives
us a numerically convenient way of tracking various terms during
all the regimes in which they become important.
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which is essentially the comoving Hubble scale, apart from
the constant factor of

ffiffiffi
3

p
.

To try and understand the physical significance of the
diffusion scale β, it is useful to contrast it with the other
natural integrated scale in the problem, namely the comov-
ing particle horizon lp given by

lpðaÞ≡
Z

t

0

cdt
aðtÞ ¼ cτ ¼

ffiffiffi
3

p Z
a

0

da0

a0
λða0Þ: ð14Þ

Although β and lp are related (e.g., for an Einstein-de
Sitter universe, λ ∝

ffiffiffi
a

p
so that β ¼ λ2 ¼ l2

p=12), they are
conceptually quite different. Whereas lp follows from
the finite speed of light and is well defined even if
aðtÞ ¼ constant, β only makes sense in an expanding
universe. On scales k ≫ β−1=2, one recovers the Poisson
equation, and on scales k ≪ β−1=2, the potential does not
respond to the source term, and instead initial differences
Sþ∇2u are frozen in. For either c → ∞ or H → 0, one
finds β → ∞ so that the Poisson equation is always valid in
those limits.
The damping of the response of ψ to δ at scales larger

than ∼
ffiffiffi
β

p
is therefore reminiscent of a Jeans stability

criterion—small-scale pressure has now been replaced with
a large-scale expansion, and only small enough wave-
lengths can gravitate, with

ffiffiffi
β

p
acting like a Jeans length.

Although the effect above is gauge dependent (e.g.,
it disappears in the mixed gauge setup described in
Appendix A), it is interesting that the conformal
Newtonian gauge explicitly brings out this connection with
an expansion-related Jeans length. We will explore some
further connections with Jeans stability analysis below.
The previous discussion implies that evolving the

Newtonian gauge density δ in a simulation requires solving
the diffusionlike Eq. (10) for ψ rather than Poisson’s
equation. While numerically tractable, it would be far
more practical to have a simple modification of standard
N-body codes or, better yet, a postprocessing approxima-
tion for standard N-body outputs, that can accurately
reproduce the large-scale behavior of δ in the Newtonian
gauge. We explore this below.

C. Helmholtz equation for ψ

The key assumption we will make is that ψ evolves
weakly with time in all the regimes of cosmological
interest. This is true at all scales in the linear regime,
where ψ is frozen to be a constant during matter domination
and decays slowly when the cosmological constant domi-
nates, and it is also true in the nonlinear regime of δ due to
the nonrelativistic nature of CDM velocities [see Eq. (5)].
We therefore introduce the ansatz

ψðτ;xÞ ≈ΨðxÞD1ðaÞ=aþ corrections; ð15Þ

where D1ðaÞ is the linear theory growth factor for δ and
we assume that the “corrections” are small. Note that the
corrections vanish in linear theory once the growing mode
dominates, as can be easily checked by simultaneously
solving the Euler equation and the second of Eqs. (A1).
This allows us to write ∂τψ ≈ ψ∂τ lnðD1=aÞ ¼ Hðf − 1Þψ
where f ≡ d lnD1=d ln a. The constraint Eq. (6) then
becomes

∇2ψ − l−2ψ ¼ ð3=2ÞΩmH2
0ðδ=aÞ; ð16Þ

where we defined

l≡ λ=
ffiffiffi
f

p
ð17Þ

and λðaÞ was defined in Eq. (13).
It should not be surprising that an ansatz such as Eq. (15)

is necessary if we decide not to solve the correct diffusion
Eq. (10) for ψ ; the information we neglect by doing so
needs to be accounted for. Our ansatz above essentially says
that we can use our knowledge of linear theory to supple-
ment the fully nonlinear evolution of the fields in the
Newtonian gauge. We will see later that this information
can also be brought back using a time-dependent correction
to particle positions in standard N-body simulations (see
also Ref. [12]). It is clear, however, that this approximation
requires (phase) velocities to be nonrelativistic, since
changes in matter perturbations need to be slow compared
to the diffusion time scale of the potential.
Equation (16) is a Helmholtz equation; its Green’s

function is given by GHðrÞ ¼ e−r=lðaÞ=ð4πrÞ, or

GHðkÞ ¼ −1=ðk2 þ l−2Þ ð18Þ

in Fourier space. Comparing this with the Green’s function
for Poisson’s equation, GPðrÞ ¼ 1=ð4πrÞ or

GPðkÞ ¼ −1=k2; ð19Þ

we see the role of the “screening” scale l which regulates
the small k divergence of GP (equivalently, it introduces
an exponential damping in real space at separations larger
than l). The scale l is—as expected—closely related to the
Hubble scale. In fact, during matter domination, we have
f ¼ 1 so that l ¼ λ, while f decreases slowly at late times,
approximately as f ≈ ðΩmðaÞÞ4=7 [36], so that l is very
accurately given (to within ∼2 per cent at a ¼ 1) by

lðaÞ ¼ l0a2=7ðH=H0Þ−3=7; ð20Þ

where l0 ≡ c=ð ffiffiffi
3

p
H0ÞΩ−2=7

m and H=H0 can be read off
from Eq. (2). We note that a similar result was obtained
recently by Eingorn [37] using somewhat different approx-
imations, also leading to a Helmholtz equation but with a
screening scale lðaÞ that differs from our expression (17).
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Figure 1 shows the evolution of the screening scale lðaÞ
in our fiducial ΛCDM cosmology.3 For comparison, we
also show the scaled Hubble radius λðaÞ. Curiously, the
screening scale l has its maximum exactly around the
present epoch. This aggravates to some extent the coinci-
dence problem by making a unique point in the evolution of
lðaÞ coincident with z ¼ 0. As a sanity check, the top row
in Fig. 2 compares the approximation for ψ arising from
Eq (16) sourced by the linear theory δ in the Newtonian
gauge with the full linear theory solution for ψ in the
Newtonian gauge. As shown in the left panel, the approxi-
mation is accurate at the subpercent level at nearly all
times of interest.4 For our simulations below, we will use a
slightly modified background expansion in which we
neglect radiation after a ¼ 0.005 by setting Ωr suddenly
to zero. The right panel shows that, even in this case, the
discrepancy is ≲3% at all times.
Finally, we note that switching from Poisson’s equation

in standard N-body codes to the Helmholtz Eq. (16)
requires the trivial replacement k−2 → ðk2 þ l−2Þ−1 in
the Green’s function kernel. We present the results of this
replacement in Sec. III below. This correction should also
be equivalent to the gauge transformation between the
comoving synchronous gauge density δsyn and the
Newtonian gauge density δN, given by [33]

δN − δsyn ¼ −ð3H=k2ÞθN; ð21Þ

where θ≡∇ · v is the velocity divergence [see also
Eq. (A3)]. In our language, this would be recast as
δN − δsyn ¼ ðkκÞ−2δsyn, where κðk; aÞ is a priori some
time-dependent function of k with dimensions of length.
We show in the bottom row of Fig. 2 that indeed, as
expected, κ ≈ l to better than 1% at nearly all times,
independent of scale, for both the standard calculation (left
panel) as well as when ignoring radiation as mentioned
above (right panel).

III. RELATIVISTICALLY SCREENED
N-BODY SIMULATIONS

We have performed screenedN-body simulations replac-
ing the Poisson kernel −1=k2 with the Helmholtz kernel
−1=ðk2 þ l−2Þ. We describe the simulations and compare

FIG. 1. The comoving screening scales lðaÞ (solid red line) and
λðaÞ (dashed orange line) in a ΛCDM universe. Note the decrease
at late times due to the cosmological constant.

FIG. 2. (Top row:) Relative difference between the approxi-
mate screened potential ψ scrn obtained from Eq. (16) sourced by
the linear theory δ in the Newtonian gauge to the full linear theory
Newtonian gauge solution for ψ. We see in the left panel that the
approximation is accurate at better than 1 per cent at nearly all
times. If we neglect radiation for a > 0.005 as described in the
text, the accuracy becomes ≲3 per cent (right panel). (Bottom
row:) Relative difference between the screening scale l (scale-
independent) and the inferred screening scale κðkÞ from the gauge
transformation, Eq. (21), between the synchronous and the
Newtonian gauge. This approximation is accurate at better than
1 per cent at nearly all times, both with (left panel) and without
radiation (right panel).

3While we have plotted the exact result for lðaÞ in terms of the
growth factor, we note that the expression in Eq. (20) would be
nearly indistinguishable.

4We note that the two potentials ϕ and ψ are different at the few
per cent level at the earliest times we show, due to radiation shear.
Also, note that our approximation uses the linear theory growth
function D1ðaÞ which is only defined after radiation is com-
pletely subdominant. As such, we should expect the approxima-
tion to work most accurately at fairly late times, and we see that
this is indeed the case.
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the results for the matter power spectrum with those of
standard simulations in what follows.

A. Linear theory calculations

For the full linear theory calculations, we use a reim-
plementation of both the Newtonian and the comoving
synchronous equations of Ma and Bertschinger [33], very
similar to their original LINGER code. The same calculation
could also be performed using, e.g., the code CLASS

5 [38].
Some care needs to be taken to match the linear calculations
(including cold dark matter, baryons and radiation) to the
collisionless single-fluid N-body simulations discussed
below. Since radiation needs to be included at early times
in order to produce realistic density spectra, we did include
it properly up to a ¼ 0.005 and explicitly set the radiation
density parameter Ωr to zero afterward in the linear
calculations. When we initialize the N-body simulations
at aini ¼ 0.01 (see our discussion below), residual effects
have thus sufficiently decayed. We note, however, that one
could not simply leave Ωr ≠ 0 in the linear calculation
without including it also in the N-body code since it affects
the linear growth at a small but non-negligible level even
after this value of aini.

B. N-body simulations and initial conditions

For the nonlinear calculations, we use the tree-particle
mesh (PM) code L-GADGET3 [39] to evolve density
perturbations and velocities in a simulation box of volume
ð4h−1 GpcÞ3 using 10243 N-body particles between our
initial redshift zini ¼ 99 and z ¼ 0. For all simulations, we
assume Ωm þΩΛ ¼ 1, with a matter density parameter
Ωm ¼ 0.276, including Ωb ¼ 0.045 as the baryon density,
and a cosmological constant consistent with ΩΛ ¼ 0.724.
We use a Hubble constant H0 ¼ 100h km=s=Mpc with
Hubble parameter h ¼ 0.70. The large-scale spectral index
is ns ¼ 0.961, and the power spectrum is normalized so
that σ8 ¼ 0.811. Since the σ8 normalization is gauge
dependent, we determine the correct σ8 for the comoving
synchronous spectrum and apply the same normalization to
the Newtonian spectrum, so that the amplitudes of sub-
horizon density perturbations are identical for every k at
the initial time. Given the box size and particle number, our
N-body particle mass ismp ≈ 1.9 × 1012h−1M⊙. We found
that, due to the very large box size and the modest particle
count we employ, using the tree force leads to unacceptably
large errors on small scales, a well-known phenomenon.
This is seen in terms of a large drop of power in the density
field on small scales before nonlinear growth sets in at low
redshift. While more elaborate solutions are possible, we
have resorted to using only the PM force in our simulations
that is obtained with a PM grid of 20483 cells. This
significantly reduces numerical errors. In order to estimate

the degree of numerical convergence, we also include
results obtained with the same setup but for a box of
ð500h−1 MpcÞ3 using 10243 particles. Overall, we find that
results are numerically converged for the purpose of our
analysis here.
Initial density and velocity spectra were generated in

both Newtonian and comoving synchronous gauge as
discussed above. Particle positions and velocities were
initialized using the Zel’dovich approximation using the
MUSIC code [40]. The initial conditions for the screened
simulations must be set with some care, since these must
correspond to linear theory in the Newtonian gauge. In
particular, one must include corrections to the Zel’dovich
approximation at large scales [12]. Fortunately, this is
straightforward to implement (and in fact simply corre-
sponds to using the Newtonian gauge transfer functions
consistently), and we describe our methodology in detail in
Appendix B. As we show in Appendix C, both the
simulations then correctly evolve the particle velocities
and positions, up to the correction in the screened simu-
lation due to the term ∼∂τψ on the right-hand side of
Eq. (8) (we show below that this correction is small).

C. Power spectrum evolution

Figure 3 compares the matter power spectra in the
screened simulations with those of standard simulations
initialized using the same random seed for the potential ψ .
(Recall that the standard simulations also evolve ψ and v in
the Newtonian gauge but the density δ in the comoving
synchronous gauge.) The left panel of the figure shows
the quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pδðk; aÞ=Pδðk; a ¼ 0.01Þp

using linear
theory (lines) and the measurements in our simulations
(symbols) for both gauges. This ratio is the scale-dependent
growth in each gauge, relative to the starting epoch. The
linear theory curves demonstrate the well-known facts that
(a) large-scale modes in the conformal Newtonian gauge
grow more slowly than the corresponding small-scale
modes and (b) all modes in the comoving synchronous
gauge grow at approximately the same rate, determined by
the growth factor D1ðaÞ [33]. The symbols at large scales
show that our simulations, both standard and screened, are
accurately tracking the respective scale-dependent growth
in each gauge.
At small scales, the results from the two simulations

become identical and depart from linear theory. To test
for resolution effects, we show the results of the smaller
simulations described above as the thick solid lines. We
see that the results are numerically converged at epochs
a≳ 0.2, with the departure from linear theory being
consistent with genuine nonlinear growth. At earlier
epochs, we see a resolution and epoch-dependent departure
at k≳ 0.3h Mpc−1.
The level of accuracy with which we reproduce linear

theory at large scales is demonstrated in the right panel,
which focuses on scales k < 0.02h Mpc−1 and shows the5http://class‑code.net.

OLIVER HAHN and ASEEM PARANJAPE PHYSICAL REVIEW D 94, 083511 (2016)

083511-6

http://class-code.net
http://class-code.net


ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pδ;synðk; aÞ=Pδ;Nðk; aÞ

p
of comoving synchronous

and Newtonian gauge power spectra from linear theory as
the solid lines, and the ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pδ;stdðk; aÞ=Pδ;scrnðk; aÞ

p
from the standard and screened simulations as the filled
circles. In addition to the epochs shown in the left panel, the
right panel also shows these ratios at the starting epoch of
the simulation a ¼ 0.01. There are two potential sources of
error in our screened simulations: (a) we solve the
Helmholtz Eq. (16) instead of the more accurate, diffusion-
like Eq. (10), and (b) as described in Appendix C, the
evolution of the density in the screened simulation misses
the term 3∂τψ in Eq. (8). The results in the right panel of
Fig. 3 show that the cumulative effects of these errors are at
the few per cent level for all epochs and scales that we
explore.
More importantly, the convergence between the standard

and screened simulations at small scales, together with the
relatively large excess power in the Newtonian gauge as
compared to the synchronous at large scales, demonstrates
that the small scales in our screened simulations are indeed
being correctly screened from the large-scale power.

D. A posteriori gauge transformation
of N-body simulations

The simplicity of ourmodification to theGreen’s function
kernel of the N-body simulation [−1=k2→−1=ðk2þl−2Þ]

suggests that it should be possible to go further and
simply modify the density field of a standard simulation
with a multiplicative factor in Fourier space and obtain the
power spectrum in the Newtonian gauge. Essentially, we
expect that the potential is evolved nearly identically in each
simulation, motivating the relation

δNðkÞ ≈ δsimðkÞ × ðk2 þ l−2Þ=k2 ð22Þ

as a simple and accurate postprocessing approximation to
convert the density field δsim of a standard simulation into
the Newtonian gauge density.
We can also express this approximated gauge trans-

formation in terms of particle displacements. This is very
close in spirit to the calculation presented by Ref. [12].
Since the effect occurs only on very large scales, the
necessary correction can be assumed to be reasonably well
described by the Zel’dovich approximation. Then, we can
write, for sufficiently large scales, the displacement field
in the simulation and in the approximated Newtonian
gauge as

xN ¼ qþ∇ΦN; and xsim ¼ qþ∇Φsim; ð23Þ

where ΦN and Φsim are the potentials giving rise to the
respective displacement fields (proportional to the

FIG. 3. (Left panel:) The ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pδðk; aÞ=Pδðk; a ¼ 0.01Þp

, as a function of comoving wave number k, for several values of scale
factor a (increasing from bottom to top). The dotted (dashed) lines show the linear theory result in the comoving synchronous
(conformal Newtonian) gauge, while the symbols × (þ) show the measurements in the standard (screened) simulation. Thick solid lines
show the results of smaller simulations to test for resolution effects (see the text). (Right panel:) The ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pδ;synðk; aÞ=Pδ;Nðk; aÞ

p
of

comoving synchronous and Newtonian gauge power spectra from linear theory (solid lines) and the ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pδ;stdðk; aÞ=Pδ;scrnðk; aÞ

p
from the standard and screened simulations (filled circles), at scales k < 0.02hMpc−1. The lowermost (black) line and circles show the
respective ratios at the starting epoch of the simulation a ¼ 0.01. (Thus, the circles at a > 0.01 are the ratio of the corresponding × and
þ from the left panel, multiplied by the lowermost black circles; the latter being set by the initial conditions.) The arrows at the top of the
panel mark the wave number corresponding to the screening scale l at each epoch, with scale factor increasing from right to left.
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velocity potential in standard Lagrangian perturbation
theory; see also Appendix B). Using the approximate
relation from Eq. (22), we can express the shift between
the Newtonian gauge particle positions and the simulation
particle positions in Fourier space in terms of a displace-
ment field Lsim→N as

Lsim→Nðk; aÞ ≈
ik

l2ðaÞk4 δsimðk; aÞ; ð24Þ

where we made the time dependence explicit. We note
that the time dependence of the right-hand side cancels
during matter domination at large scales, where
δsimðk; aÞ ∝ a and lðaÞ ∝ H−1 ∝ a1=2. The scale depend-
ence is such that, at large scales, the right-hand side
behaves like ∼ðik=k2ÞδNðk; ainÞ.
These results agree with those reported by Chisari and

Zaldarriaga [12] for the matter-dominated regime. In their
formulation, however, the displacement correction is a
constant and must only be applied at the initial time.
Superficially, it may seem that our results at late times
disagree with theirs. As we discuss in Appendix C, how-
ever, the difference between our results and those of
Ref. [12] is a consequence of the assumptions we make
in converting particle positions into density fields. Briefly,
we use an energy-momentum tensor for particles living on
an unperturbed grid but initialized with the relativistic
linear theory transfer functions for the density and velocity
fields. Consequently, our approach allows us to use the
particle positions in a standard simulation to compute the
displacement correction at any time and does not require
the initial density field of the simulation to be stored. We
discuss the accuracy of our prescription below.
The Zel’dovich approximation, Eq. (23), requires the

gradient to be evaluated at the Lagrangian particle position.
Since the particle displacement correction concerns only
scales much larger than the evolved (nonlinear) distance
between the Eulerian and Lagrangian coordinate for each
particle, one can to a good approximation evaluate the
gradients simply at the Eulerian particle positions. We use
cloud-in-cell interpolation to achieve this. Figure 4 com-
pares the resulting power spectrum with the one measured
in our screened simulations, relative to the standard
simulations. We see that our displacement corrected results
match the results of linear theory even better than the
screened simulations. This is expected for two reasons:
first, the screened simulations are affected by the accumu-
lation of (sub)percent level errors (see Fig. 2) over time, and
more importantly, these simulations do not account for the
term ∼3∂τψ in Eq. (8). Equation (24), on the other hand,
uses the synchronous density contrast which obeys the
continuity equation without this term and therefore cor-
rectly combines with the screening scale lðaÞ to reproduce
the late time large-scale behavior of δN.

IV. FURTHER ANALYTICAL INSIGHTS

A. Interpreting the screening scale

As we discussed in Sec. II B, the diffusionlike evolution
of ψ in Eq. (10) has a natural interpretation in terms
of the Jeans instability, with an effective Jeans scale ∼

ffiffiffi
β

p
determined by the expansion of the Universe [and therefore
related to, but conceptually very different from, the particle
horizon lp; compare Eqs. (12) and (14)]. When the

FIG. 4. (Top panel:) Evolution of the power spectrum in a
standard N-body simulation of the comoving synchronous gauge
density spectrum (orange stars) and of a screened simulation in
the Newtonian gauge (red crosses). We also show the power
spectra obtained by applying the transformation from Eq. (24) to
convert the synchronous spectrum to the Newtonian gauge by
displacing the particle positions (blue circles). The solid lines
show the result of the linear theory calculation. The density
fluctuations asymptote to a constant on superhorizon scales in
Newtonian gauge and to a power law in synchronous gauge (here
∝k2). The amplitude on superhorizon scales in the Newtonian
gauge is frozen during matter domination but evolves at earlier
times and more importantly due to a cosmological constant.
(Bottom panel:) Ratio of the power spectrum in comoving
synchronous to Newtonian gauge for the spectrum obtained in
the Newtonian simulation (crosses) and from the displacement
transformed synchronous simulation (circles). Note that the latter
provides a more accurate approximation to linear theory at large
scales.
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diffusion Eq. (10) is approximated as the Helmholtz
Eq. (16), the Jeans length takes on a new form and appears
as the relativistic screening scale l. Although our termi-
nology of screening is inspired by the phenomenon of
Debye screening in plasma physics (see, e.g., Ref. [41]), we
should note that there are some pitfalls involved with this
association.
Debye screening is the phenomenon where the electro-

static potential of a point charge placed at rest in a plasma
picks up a multiplicative contribution ∼e−r=λD (where λD is
the Debye length) on top of the usual 1=r, due to the
collective behavior of its neighboring electrons and ions
in the plasma which converts Poisson’s equation for the
potential into a Helmholtz equation at leading order. The
potential of the charge is then said to be screened or
“shielded” by the plasma. There have been several analy-
ses, in a variety of contexts, discussing the notion of
screening in a gravitating system [42–45]; however, all of
these end up with a screening term that has the “wrong”
sign in the Helmholtz equation, leading to oscillations
rather than exponential damping. Put simply, gravitational
effects cannot be shielded.
The fact that our Helmholtz Eq. (16) does have the

correct sign to induce damping therefore suggests that the
effect we are seeing is a version of Jeans instability (arising
from the expansion of the Universe) as discussed above,
rather than some form of collective gravitational screening.
A further connection with Jeans instability occurs through a
natural resolution of the “Jeans swindle” problem that is
provided by the Helmholtz Eq. (16), as we discuss next.

B. Note on the Jeans swindle

The Jeans swindle refers to the problem ofmaking sense of
Poisson’s equation in the presence of a uniform density [46]
or, more generally, in the presence of superhorizon modes
that are indistinguishable from a uniform density at leading
order in spatial derivatives. The problem arises because, in the
presence of a uniform density, Poisson’s equation is unde-
fined in Fourier space due to its divergence as k → 0. The
swindle comprises stating that this concerns only the mean
potential which gives rise to no gravitational force and thus
the problem is—while mathematically inelegant—fictitious.
More precisely, one ignores the fact that∇2ϕ0 ¼ 4πGρ0 and∇ϕ0 ¼ 0 are inconsistent unless ρ0 ¼ 0.
Calculations that account for the expansion of the

Universe, on the other hand, have shown that the expansion
leads to terms that cancel the divergence if one switches
from proper to comoving coordinates [47,48]. The presence
of superhorizon modes, however, renders this solution
incomplete, since today’s superhorizon modes could be
tomorrow’s superclusters, so that cancelling the divergence
at each time would require tracking the dynamics of these
modes. In other words, superhorizon modes in comoving
coordinates pose the same problem as the global mean
density did in proper coordinates.

This problem is well known to no longer arise for the
Helmholtz equation, and in fact, an exponential weakening
of the gravitational potential ∼ expð−r=lÞ=r was already
discussed before the advent of relativistic cosmology
[49,50] (see also Ref. [51] for a more recent discussion).
The presence of the scale l naturally screens the potential.
The Helmholtz equation ð∇2 − l−2Þψ0 ¼ 4πGρ0 sourced
by a homogenous density ρ0 (comprising superhorizon
modes) has the well-defined solution ψ0 ¼ −4πGρ0l2 ¼
constant (in space), which has a vanishing force6

V. CONCLUSIONS

The outputs of large volume cosmological simulations
must be interpreted with care in order to correctly account
for general relativistic effects at large scales. The standard
approach to this problem, as discussed in the Introduction,
requires the density contrast δ of a CDM simulation to be
initialized and interpreted as the one in the comoving
synchronous gauge, while the velocity field v and gravi-
tational potential ψ must be interpreted in the conformal
Newtonian gauge. In particular, ψ and δ are then correctly
related by Poisson’s equation. This rather nonintuitive
solution is required in order to explain why the large-scale
modes of the Newtonian gauge density (which have
considerably more power than the synchronous gauge
modes at the same scales) should not couple strongly with
the small-scale modes.
In this paper, we developed a simple, physically intuitive

recipe to initialize and run an N-body simulation entirely in
the conformal Newtonian gauge, thereby allowing us to
directly address and understand this issue. Our main results
can be summarized as follows:

(i) In the conformal Newtonian gauge, the potential ψ
obeys the diffusion Eq. (10). We showed that this
equation can be accurately approximated in the
absence of relativistic velocities as the Helmholtz
Eq. (16), with an effective screening scale lðaÞ
determined by the expansion of the Universe and the
linear growth of structure [Eqs. (17) and (20)].

(ii) Since Poisson’s equation is replaced by a Helmoltz
equation, implementing this screening in an
N-body simulation requires the trivial change
k−2 → ðk2 þ l−2Þ−1 in the Green’s function kernel
relating the potential ψ to the density δ. This also
motivates a simple multiplicative correction to con-
vert the density output of a standard simulation into
the Newtonian gauge density, as well as a similar
approximate gauge transformation for particle posi-
tions [Eq. (24) and Fig. 4].

(iii) The initial conditions for such a screened simulation
should have ψ , δ and v initialized in the Newtonian

6Curiously, we see that ψ0 is proportional to both the mean
density ρ0 and the surface area of the screened region 4πl2.
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gauge using a modification of the Zel’dovich
approximation (Appendix B). The required transfer
functions are standard outputs of Newtonian gauge
linear perturbation theory codes.

(iv) The resulting simulation correctly screens the
small-scale density from the large-scale Newtonian
gauge power and reproduces the linear theory
evolution in this gauge at large (including super-
horizon) scales (Fig. 3). We note, however, that
the particle displacement correction to standard
simulations described above is a more accurate
(and therefore preferred) way of obtaining the
Newtonian gauge density. Running Newtonian
gauge simulations thus serves as more of a proof
of concept.

(v) Although our terminology is borrowed from
Debye screening in plasmas, gravity cannot be
screened. We argued that our results are better
interpreted as a version of Jeans stability induced
by the expansion of the Universe. An upshot of
our analysis is the natural resolution of the Jeans
swindle problem in the presence of superhorizon
modes (Sec. IV).

We end by noting that we have ignored the effects of
radiation, baryons and massive neutrinos in our setup,
accounting for which is important for precision analyses of
large-scale structure. As we indicate in Appendix B, the
inclusion of baryons would require modifications of the
Zel’dovich approximation even for standard simulations
(because the early time velocity fields of baryons and
CDM are different); this becomes straightforward in our
approach. An obvious next step then is to generalize
these modifications to second order Lagrangian perturba-
tion theory which is routinely used in place of the
Zel’dovich approximation for generating initial conditions
(see, e.g., Ref. [52] for recent results for CDM in the
Newtonian gauge).
Additionally, applying the peak-background split argu-

ment [53,54] to the standard and screened simulations,
we expect that the halo bias b2ðkÞ≡ PhðkÞ=PδðkÞ should
approach the same constant value in both types of
simulations, at small k. It will be very interesting to extend
our technique to larger volumes to test this idea. We will
return to these issues in future work.
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APPENDIX A: N-BODY RESULTS
AT LARGE SCALES

Let us see how the results of standard N-body simu-
lations can be interpreted in the context of linear perturba-
tion theory at large scales. For convenience, we set c ¼ 1 in
this and subsequent sections. The argument that follows
can be made directly in the language of gauge invariant
variables [15,32], but it will be more convenient for
us to start with the metric in the conformal Newtonian
gauge (1). In this gauge, the linearized constraint equations
Gα

0 ¼ ð8πGÞTα
0, α ¼ 0; ::; 3 reduce to [33]

∇2ψN − 3Hð∂τψN þHψNÞ ¼ 4πGa2ρ̄mδN

∇2ð∂τψN þHψNÞ ¼ −4πGa2ðρ̄m þ P̄mÞθN;
ðA1Þ

where the first equation is the same as Eq. (6), θ≡∇ · v is
the velocity divergence and we set ϕ ¼ ψ . Combining these
gives us, in Fourier space,

k2ψN ¼ −4πGa2ρ̄m
�
δN þ 3ð1þ wmÞ

HθN
k2

�
; ðA2Þ

where wm ≡ P̄m=ρ̄m ≈ 0 for CDM. In general, one can
show, using the gauge transformation between the con-
formal Newtonian gauge and any synchronous gauge
[32,55], that

δN þ 3ð1þ wmÞ
HθN
k2

¼ δsyn þ 3ð1þ wmÞ
Hθsyn
k2

: ðA3Þ

In particular, for a single fluid comprised of CDM, in the
comoving synchronous gauge, we have θsyn ¼ 0, so that
Eq. (A2) becomes

k2ψN ¼ −4πGa2ρ̄mδsyn; ðA4Þ

where the label ‘syn’ here and below refers to the comoving
synchronous gauge. The Newtonian gauge potential
therefore obeys Poisson’s equation sourced by the density
contrast in the comoving synchronous gauge.
In a standard N-body simulation, we have the following

chain: the particle velocities (defined as the rate of change
of their comoving positions with time) obey Eq. (7) in the
Eulerian picture; the forces are determined by a potential
that obeys Poisson’s equation; the density sourcing
Poisson’s equation is in turn determined by the particle
positions. To complete the mapping between simulation
and theory, we must then check (a) that the particle
positions are consistent with interpreting their density as
the comoving synchronous one and (b) that the initial
conditions are appropriately set. We discuss these issues in
a somewhat broader context in the next two sections,
starting with the initial conditions in Appendix B and then
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showing, in Appendix C, that particle positions in standard
(screened) simulations do correspond to the density
contrast in the comoving synchronous (conformal
Newtonian) gauge.

APPENDIX B: INITIAL CONDITIONS

The generation of initial conditions (ICs) for a simulation
requires some discussion, particularly in light of our
proposed modification in Sec. II C. Here, we focus mainly
on the conformal Newtonian gauge, which will bring out
some conceptual points that become important when
implementing our modification. We begin with dark matter
and describe the extension to include baryons in the ICs
at the end. We assume that the initial fluctuations obey
Gaussian statistics.
We follow the standard approach in that we use linear

perturbation theory to compute the values of ψðk; τiÞ,
δðk; τiÞ and θðk; τiÞ at the initial epoch of the simulation
τi. This means that we can set

δðk; τiÞ ¼ Tδðk; τiÞψðk; τiÞ
θðk; τiÞ ¼ Tθðk; τiÞψðk; τiÞ; ðB1Þ

where ψðk; τiÞ is a Gaussian random field with zero mean
and variance set by the primordial power spectrum
Pψðk; τiÞ ∝ kns−4, and the transfer functions Tδ and Tθ

are the outputs of the linear theory calculation that satisfy
(in the Newtonian gauge) Tδðk; τÞ → −2 and Tθðk; τÞ →
2k2=ð3HÞ for k=H ≪ 1 during matter domination, assum-
ing adiabaticity and neglecting decaying modes [see
Eqs. (A1)].
Next, we assign velocities to the simulation particles

(which are uniformly distributed on a mesh) using

vðk; τiÞ ¼ −ðik=k2Þθðk; τiÞ: ðB2Þ

In order to reproduce the correct density, however, the
particles must be additionally displaced from their mesh
locations q to new locations x which satisfy

xðτiÞ ¼ qþΨðq; τiÞ; ðB3Þ

where the displacement field is given, in Fourier space, by7

Ψðk; τiÞ ¼ ðik=k2Þδðk; τiÞ: ðB4Þ

During matter domination (which is when simulation ICs
are typically required) and at subhorizon scales (kτ ≫ 1),

we have the standard result δðk; τÞ ¼ δðkÞD1ðτÞ ¼
δðkÞaðτÞ if we ignore the decaying mode, and θ ¼ −∂τδ
[7], which means vðk; τiÞ ¼ ð∂τ lnD1ÞΨðk; τiÞ. This is, of
course, the Zel’dovich approximation which is usually
invoked in setting ICs. Our analysis above has therefore
generalized the IC setup in the conformal Newtonian gauge
to large scales, showing that the large-scale Fourier modes
of the particle displacements are no longer proportional to
the velocities in this gauge [see, e.g., the superhorizon
limits for the transfer functions below Eq. (B1)]. In other
words, we must account for corrections to the Zel’dovich
approximation in the Newtonian gauge.
What about standard N-body simulations which do use

the Zel’dovich approximation along with a density contrast
initialized in the comoving synchronous gauge? As we
discussed in Appendix A, in these simulations, one is really
interested in ψ ¼ ψN, v ¼ vN and δ ¼ δsyn at large scales.
For these variables, at early times, the relation vðk; τiÞ ¼
ð∂τ lnD1ÞΨðk; τiÞ is true at all scales, thereby justifying the
use of the Zel’dovich approximation.
Finally, if one cares about precision in the initial

conditions at the level of a few per cent or less, then the
effects of radiation, baryons, and massive neutrinos must
also be accounted for. For the baryons, for example, this
means replacing Tδ and Tθ in Eq. (B1) with

Tδ → fcTδ;c þ fbTδ;b

Tθ → fcTθ;c þ fbTθ;b; ðB5Þ

where fb ¼ Ωb=Ωm, fc ¼ 1 − fb and the transfer functions
Tδ;c; Tθ;c for CDM and Tδ;b; Tθ;b for baryons must be
calculated separately in linear theory. Notice that, in this
case, there is a nontrivial velocity divergence for matter
even in the comoving synchronous gauge, since the
baryon fluid is not comoving with the dark matter fluid
at early times for subhorizon scales [56,57]. At super-
horizon scales, however, the difference between baryons
and CDM disappears [33].

APPENDIX C: THE ENERGY-MOMENTUM
TENSOR OF N-BODY SIMULATIONS

To relate the particle positions in a simulation to a
theoretical density contrast in a particular gauge, we need to
understand the energy-momentum tensor that is being used
by the simulation. In a perturbed FLRW spacetime, the
energy-momentum tensor of particles of mass m can be
written as an integral over their phase-space distribution
function (see, e.g., Refs. [33,58] and references therein),

Tμ
ν ¼

1ffiffiffiffiffiffi−gp
Z

d3P
ð2πÞ3

PμPν

P0
fðxi; Pj; τÞ; ðC1Þ

where d3P ¼ dP1dP2dP3, the momentum Pi (the spatial
part of the 4-momentum, with lower indices) is canonically

7This is easily seen by using mass conservation to relate the
uniform density of the particles on the mesh to the inhomogenous
density of the displaced particles, ρ̄ðτiÞ ¼ ρðτi;xÞ∥∂x=∂q∥, and
expanding to lowest order in δ and the displacement field.
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conjugate to the spatial coordinate xi, and g is the
determinant of the metric. The phase-space distribution
function fðxi; Pj; τÞ is a scalar, and the 4-momentum Pμ is
constrained by gμνPμPν ¼ −m2. This expression can be
simplified in any specific gauge by introducing the
gauge-dependent proper momentum pi measured by an
observer at fixed spatial location (with pi ≡ δijpj) and the
corresponding proper energy E which satisfies
E2 ¼ p2 þm2, with p2 ¼ pipi ¼ gijPiPj. For example,
in the conformal Newtonian gauge with metric (1), rewrit-
ten for convenience as

ds2 ¼ aðτÞ2½−e2ϕdτ2 þ e−2ψdx2�; ðC2Þ

we have Pi ¼ ae−ψpi and P0 ¼ a−1e−ϕE. The distribution
function f is treated as a function of xμ and pi, without
transforming it, so that the particle number is given by
dN ¼ fd3xd3P ¼ fa3e−3ψd3xd3p, which is sensible since
ae−ψdxi is the proper displacement (cf. Ref. [33]). Similar
expressions hold in the comoving synchronous gauge.
For a system of CDM particles, the components of Tμ

ν

then become [34]

T0
0 ¼ −

Z
d3p
ð2πÞ3 fE≡ −ρ;

eðϕþψÞT0
i ¼

Z
d3p
ð2πÞ3 fE

�
pi

E

�
≡ ρvi;

Ti
j ¼

Z
d3p
ð2πÞ3 fE

�
pipj

E2

�
≡ ρvivj; ðC3Þ

which leads to the expressions in Eq. (3) upon neglecting
the factor eϕþψ for the reasons discussed in the main text.
The nice property of the variables pi and E is that, although
they are gauge dependent, the definitions of the energy
density ρ and bulk velocity vi as integrals over pi have the
same form in any gauge [33].
A final simplification occurs upon introducing the

comoving momentum Qi ¼ api, which remains constant
in an unperturbed cosmology. Again, we treat the distri-
bution function, without transforming it, as a function of xα

and Qi, and the T0
0 component becomes

T0
0 ¼ −a−3

Z
d3Q
ð2πÞ3 fE ≈ −

m
a3

Z
d3Q
ð2πÞ3 f; ðC4Þ

in any gauge, where we used the nonrelativistic approxi-
mation for the second equality.
We are now in a position to relate these formal

expressions to the particles being tracked in a simulation.
The key point to remember is that spacetime in the
simulation is not perturbed; the simulation simply tracks
the evolution of fields in a flat, homogeneous comoving
space. The momenta of the simulation particles are

therefore comoving momenta Qi ¼ msimvisim, and the
appropriate distribution function is f → fsim where

fsim ¼ ð2πÞ3
X
I

δDðx − xIðτÞÞδDðQ −QIðτÞÞ; ðC5Þ

where δD is the Dirac delta, the sum is over all the particles
in the simulation, and all the effects of ψ are absorbed into
the trajectories xIðτÞ and momenta QIðτÞ. This is sensible
because, in the absence of perturbations, the particles
would be fixed on the homogenous mesh (xIðτÞ ¼ qI)
and their density ρsim ¼ −T0

0;sim would dilute as ∼a−3. As
it is, performing the momentum integral gives

T0
0;sim ¼ −

msim

a3

Z
d3Q
ð2πÞ3 fsim

¼ −
msim

a3
X
I

δDðx − xIðτÞÞ

≡ −ρ̄ð1þ δsimÞ: ðC6Þ

It should be clear from our discussion above that this
relation holds in either gauge, Newtonian or synchronous.
Since the simulation density is simply a sum over particles
in cells, the evolution of δsim obeys Eq. (8) without the term
3∂τψ . The Eulerian velocity field defined using Ti

0;sim

obeys Eq. (7) once gravity is included as an external force
determined by ∇ψ, and the potential ψ is determined in
terms of δsim.
So, if the particle positions are initialized as in Eqs. (B3)

and (B4) using the linear comoving synchronous density
δsyn, the velocities initialized using the Zel’dovich approxi-
mation, and we use Poisson’s Eq. (A4) sourced by δsim to
determine ψ , then we are guaranteed to reproduce the linear
δsyn at large scales at all later times.
On the other hand, if the particle positions are initialized

using the conformal Newtonian density δN, the velocities
using the Newtonian gauge velocity divergence θN, and we
use the Helmholtz Eq. (16) to calculate ψ , then we should
reproduce the linear δN at large scales at all later times. The
results of the main text validate this discussion.
Finally, we note that our use of the simulated particle

density directly in the right-hand side of the Einstein Eq. (6)
may seem at odds with the fact that the Einstein equations
require the fully relativistic energy-momentum tensor
defined on a perturbed spacetime. Indeed, this is the main
reason behind the difference between our prescription of
the displacement correction discussed in Sec. III D and that
of Chisari and Zaldarriaga [12]. Our approach, however,
is in the same spirit that allows particle positions of
standard simulations to be directly interpreted in the
comoving synchronous gauge, which is the usual solution
to interpreting large volume simulations as discussed in
the Introduction. (The N-body gauge defined by Ref. [17]
avoids this complication by explicitly demanding that the
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particle positions be directly related to the relativistic
density contrast.)
What matters at the end, however, is whether or not the

variables of interest are evolved correctly by the simu-
lation. The approach of Ref. [12] is correct because it
explicitly uses a relativistic energy-momentum tensor,
tracking all terms at the relevant order. In practice, this
means that, in addition to the displacement correction
(applied at the initial step), the particle density must be
corrected by a factor ð1þ 3ψÞ (arising from the deter-
minant of the perturbed metric) at every step to convert it

into the relativistic Newtonian gauge density. In our
approach, on the other hand, the effect of the perturbed
metric is absorbed into the time dependence of the
displacement correction (24) at all times. This has the
added advantage that the initial particle density of a
simulation need not be invoked in order to apply the
correction. This is also consistent with our prescription
for running screened simulations, in which the initial
particle positions must be set using the relativistic linear
theory transfer function in the Newtonian gauge, as
discussed in Appendix B.
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