
Doubling strong lensing as a cosmological probe

Eric V. Linder
Berkeley Center for Cosmological Physics and Berkeley Lab, University of California,

Berkeley, California 94720, USA
(Received 24 May 2016; published 6 October 2016)

Strong gravitational lensing provides a geometric probe of cosmology in a unique manner through
distance ratios involving the source and lens. This is well-known for the time delay distance derived from
measured delays between lightcurves of the images of variable sources such as quasars. Recently, double
source plane lens systems involving two constant sources lensed by the same foreground lens have been
proposed as another probe, involving a different ratio of distances measured from the image positions and
fairly insensitive to the lens modeling. Here we demonstrate that these two different sets of strong lensing
distance ratios have strong complementarity in cosmological leverage. Unlike other probes, the double
source distance ratio is actually more sensitive to the dark energy equation of state parameters w0 and wa

than to the matter density Ωm, for low redshift lenses. Adding double source distance ratio measurements
can improve the dark energy figure of merit by 40% for a sample of fewer than 100 low redshift systems, or
even better for the optimal redshift distribution we derive.
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I. INTRODUCTION

The concept of strong gravitational lensing, the signifi-
cant impact of gravity on the propagation of light, dates
back to Michell in 1783 [1]. Michell used this to predict
black holes (then called dark stars) and gravitational
redshift. In modern cosmology, strong lensing can be used
as a geometric probe of spacetime and the expansion of the
Universe. Refsdal [2] was a pioneer in this, going beyond
the Hubble constant to address the expansion deceleration
parameter and jerk. The distance ratios, similar to focal
lengths, entering in strong lensing effects such as multiple
image separations and time delays provide complementary
information to the expansion history mapping from single
distances such as the luminosity distance of supernovae or
angular distance of baryon acoustic oscillations.
Three main aspects of strong lensing have been used as

cosmological probes: the statistical abundance of strongly
lensed images, whether arcs or multiple images, the angular
separation of multiple images in individual systems, and
the time delay between multiple images of a variable source
(see [3] for a comprehensive introduction). Each involves
different ratios of the distances between the observer and
lens, observer and source, and lens and source. The
sensitivity of these to cosmology, especially the dark
energy equation of state, and their unique properties
relative to single distances, was discussed by [4]. In
particular, the last two observables can exhibit positive
correlation between the dark energy equation of state value
today w0 and a measure of its time variation wa, unlike the
classic cosmology probes. This offers the potential for
complementarity with standard, single distance measure-
ments and hence greater leverage on estimation of cosmo-
logical parameters.

Each strong lensing technique has its specific depend-
ence on other ingredients besides cosmographic distances,
e.g. selection effects and the growth of cosmic structure in
the case of abundances, or the mass profile of the lens and
line of sight structure in the last two methods. Time delay
cosmography has made the greatest advances in the last
several years, with improved lens modeling [5–11], clear
understanding of the cosmological leverage [12,13], high
accuracy time delay estimation [14–20], and actual appli-
cation to derive cosmological constraints on geometry and
dark energy [8,9,21]. For an up to date review, see [22].
In this article we return to investigation of the second

strong lensing technique, using image separations. This is
also a geometric probe of cosmology, and recent develop-
ments have increased its potential. The sensitivity to the
lensing mass distribution poses an obstacle to its use for
precision cosmology, but [23–26] proposed using a ratio of
ratios technique for canceling much of this dependence.
Double source plane lensing, where two independent
sources are each lensed into multiple images by the same
foreground mass, involves a ratio of distance ratios where
the lens model nearly cancels out. Moreover, examples have
recently been observed and the number of such systems
is likely to increase with wide field surveys underway such
as the Dark Energy Survey, HyperSuprime Cam, and
KiloDegree Survey.
In Sec. II we briefly summarize the concept of double

source plane lensing (DSPL) and investigate the cosmo-
logical sensitivity of its central quantity, the ratio of
distance ratios. We demonstrate the significant comple-
mentarity of DSPL measurements with time delay lens
observations in Sec. III, in terms of constraints on dark
energy and cosmology. Section IV examines the impact of
the redshift distribution of the lens and source sample,
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relevant to future surveys such as Euclid, LSST, and
WFIRST, and Sec. V presents the conclusions.

II. DOUBLE SOURCE PLANE
LENSING DISTANCES

A. Introduction to DSPL

A double source plane lensing system occurs when two
background sources are sufficiently aligned behind a
common foreground lens that both are split into multiple
images. The angular separation between images depends
on the ratio of the lens-source distance Dls and observer-
source distance Ds, and the mass of the lens (feeding into
its Einstein radius). In the ratio of angular separations for
images from source 1 and images from source 2, the lens
mass will cancel out (in the ideal case), leaving a purely
geometric distance measure.
There are subtleties to this picture, treated in [25–27],

and these should be carefully read. For example, the ratio
comes fundamentally from the deflection angles scaled to
the source plane, and this involves the surface mass density
of the lens: the lens model cancellation is exact only for a
singular isothermal sphere distribution or light rays passing
through the same radius of the lens—but in the general case
the lens model uncertainty is still significantly suppressed.
A form of the mass sheet degeneracy common to lensing
systems, where mass apart from the lens can be degenerate
with the observables, exists for DSPL [28] and requires
dynamical information (e.g. lens velocity dispersion) to
break. We concentrate on galaxy scale lensing where the
mass distribution is expected to be cleaner. Lensing of the
further source by the nearer one must also be taken into
account.
[Note that weak lensing shear ratios for multiple source

planes [29–31] involve a similar distance ratio, but in a
statistical ensemble sense. It is not clear to what extent the
lens mass profile cancels out when averaging over many
(thousands or millions) of galaxy lenses. There is also a
form of the mass sheet degeneracy for the multiplane shear
ratio [32]. Nevertheless, it is exciting to see that the weak
lensing shear ratio method has just been used to combine
galaxy sources and the cosmic microwave background as a
second source plane to give distance constraints [33].]
Finally, double source lensing is rarer than single source

lensing so there are fewer systems to use in cosmological
constraints, but on the other hand there is no requirement
for the sources to be time variable and monitored for
extended periods of time as for time delay lensing.
Just as has been done for time delay cosmography, all

these sources of systematic uncertainty will need to be
addressed through a program of observations, data simu-
lation challenges, and theoretical work. To motivate that
such effort is worthwhile, here we investigate the cosmo-
logical constraint impact if DSPL becomes a new, mature
probe. This is particularly relevant with the approach of

next generation wide field surveys such as Euclid, LSST,
and WFIRST that should find abundant samples of DSPL.
For example, [27] estimates that the Euclid satellite will
find of order ∼2000 DSPL and the ground based Large
Synoptic Survey Telescope (LSST) will find a similar
number. Using the technique of [34,35] estimates that
using only the best seeing exposures to get the highest
quality will deliver ∼160 DSPL from Euclid and ∼120
from LSST. The WFIRST satellite will find fewer but has
the advantage of excellent spatial resolution for more
precise image separation measurements.
Initial work on cosmological parameter estimation

appears in [25,26], concentrating on a flat universe with
constant dark energy equation of state w and a restricted
sample of lenses. We expand on this by focusing on the
more general time varying dark energy equation of state
wðzÞ ¼ w0 þ waz=ð1þ zÞ in common use, and exploring
the influence of distributions in the redshifts of lens, source
1, and source 2, and briefly examining the case of nonflat
universes. (Note [25] did in one section consider w0 − wa
constraints for a fixed redshift distribution.) Most impor-
tantly, we identify strong complementarity between the two
strong lensing probes of DSPL and time delay lensing.

B. Cosmological sensitivity

The central quantity for DSPL is the ratio of distance
ratios,

β ¼ Dlsðz; z1Þ
Dsðz1Þ

Dsðz2Þ
Dlsðz; z2Þ

; ð1Þ

where the lens is at redshift z, the nearer source is at z1, and
the further source at z2. We begin by examining its
sensitivity to cosmological parameters.
Most obviously, it is dimensionless and so independent

of the Hubble constant H0. This alone indicates some
complementarity with the dimensional time delay distance,
which is the ratio

DΔt ¼
DlðzÞDsðz1Þ
Dlsðz; z1Þ

ð1þ zÞ; ð2Þ

and so is inversely proportional to H0. To probe the
sensitivity of β to the time varying dark energy equation
of state parameters, we use the Fisher information formal-
ism. Note that β ¼ βðz; z1; z2Þ so for visual ease of
presentation we exhibit the results for a series of lens
redshifts z, and set z1=z ¼ 2, z2=z1 ¼ 1.5. This is moti-
vated by the lensing kernel peaking when the lens is
roughly halfway between the source and observer, but we
analyze various other cases both in this section and
in Sec. IV.
Figure 1 illustrates the cosmological sensitivity of β as a

function of z through the Fisher derivatives ∂β=∂pi, for the
parameters pi of the dimensionless matter density Ωm, the
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dark energy equation of state today w0, and the dark
energy equation of state time variation wa. The fiducial
cosmology is a flat ΛCDM universe with Ωm ¼ 0.3. (We
assume spatial flatness throughout the article, except for
part of Sec. III that examines the free curvature case.)
The larger the absolute value of the sensitivity, and the
greater the distinction between the shapes of the derivative
curves, the more information exists and the tighter are the
cosmological constraints.
We identify several interesting properties. Classic cos-

mology probes are more sensitive to the matter density Ωm
than the dark energy equation of state [for example, low
redshift supernova distances probe the deceleration param-
eter q0 ¼ ½1þ 3wð1 −ΩmÞ�=2, so the sensitivity derivative
with respect to Ωm is ∼1.4 times larger than that for w, and
this only gets larger at higher redshift]. DSPL, however, is
more sensitive to both w0 and wa than Ωm at low redshift,
and indeed has a null in the dependence on Ωm at z ≈ 0.15.
This means that degeneracy with the matter density is
strongly suppressed there. Furthermore, w0 and wa have
opposite signs for z < 0.23, meaning they have positive
correlation, unlike single distance and growth probes. The
sensitivity to dark energy parameters is relatively strong out
to z ≈ 0.6, before the matter density dominates for higher
redshift systems. This means that the systems with the
greatest leverage are at observationally benign low red-
shifts, easing follow-up requirements such as redshift or

velocity dispersion measurements. Thus, DSPL appears at
first glance to be quite promising.
Taking into account the covariances between the cos-

mological parameters, we can use Fisher information
analysis to estimate constraints on the cosmology for a
series of measurements. To emphasize the unique aspects of
positive correlation between w0 and wa, and reduced
sensitivity to the matter density degeneracy, we show an
illustrative calculation (omitting the axis values due to the
idealized precision) in Fig. 2.
The solid ellipses highlight the evolution of the degen-

eracy direction between the dark energy equation of state
parameters by fixingΩm ¼ 0.3. We see that indeed the case
with the lens redshift at z ¼ 0.23, where the wa curve in
Fig. 1 crosses zero, gives a vertical parameter estimation
contour (we actually use lenses at z, z� 0.05 to obtain
finite contours). Lower redshift lenses, where the w0 and wa
sensitivities are positively correlated, give ellipses leaning
to the right, the opposite of standard single distance and
growth probes, while higher redshift lenses give negative
correlation. The dotted lines show the elongation of the
contours when marginalizing over Ωm, as should be done.
The expansion of the contours due to the matter density
covariance is most severe at higher redshift, and changes the
contour direction and size less at lower redshift. Inter-
estingly, the marginalization over Ωm actually tilts the
ellipses to the right, so positive correlation in the w0 − wa
plane occurs for lenses at z≲ 0.4, not just z < 0.23.

FIG. 1. The sensitivity of measurements of the double source
lensing distance ratio β for constraining cosmological parameters
is plotted as a function of the lens redshift z. The magnitude of the
sensitivity is for a 1% measurement of β, but the more interesting
aspects come from the shape of the curves: the null of the Ωm
curve at z ≈ 0.15 and the opposite signs for w0 and wa
sensitivities for z ≲ 0.23, indicating a distinct behavior from
single distance probes.

FIG. 2. The leverage of measurements of the double source
lensing distance ratio β for constraining the dark energy equation
of state value today w0 and time variation wa is plotted for
different lens redshifts z. This shows the evolution of covariance
direction. Solid ellipses fix Ωm ¼ 0.3 while dotted ellipses
marginalize over Ωm.
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C. Analytic redshift dependence

DSPL seems an interesting possibility as a new com-
plementary cosmological probe therefore. Before proceed-
ing further, let us return to the point about the source
redshifts. Consider moving the further source closer to the
nearer one, say z2 ¼ z1 þ 0.1. This dramatically reduces
the cosmological sensitivity, by a factor ∼10 according to
numerical computation. We can derive this analytically. Let
z2 ¼ z1 þ δ. Then

Dsðz2Þ ¼ ð1þ z2Þ−1
Z

z2

0

dz=HðzÞ

¼ ð1þ z1 þ δÞ−1½ð1þ z1ÞDsðz1Þ þ δ=Hðz1Þ�

≈ Dsðz1Þ
�
1þ δ

1þ z1

�
1

H1D1

− 1

��
: ð3Þ

Calculating Dlsðz; z2Þ similarly, this gives

β ≈ 1þ δ

1þ z1

�
1

H1D1

−
1

H1Dlsðz; z1Þ
�
: ð4Þ

This makes sense since as z2=z1 → 1, then β → 1 and a
constant has no cosmological sensitivity. Thus the sensi-
tivity is suppressed by the small factor δ=ð1þ z1Þ.
What if we take z2=z1 ≫ 1? Very high redshift sources

are harder to observe since their images will generally be
fainter; also, the follow-up resources needed to measure
their redshift will be more expensive. Thus, we take the
somewhat conservative case of using z2=z1 ¼ 1.5 as a
baseline, though we revisit this in Sec. IV.
If we were to move the closer source nearer to the lens,

we reduce the value of β. Instead of it being near unity, it
can become much smaller. Again, this reflects that the peak
of the lensing kernel is where the lens is roughly midway
between the source and observer. For z1 ¼ zþ δ,

β ≈
δ

1þ z
1

HðzÞDðzÞ
Dsðz2Þ

Dlsðz; z2Þ
: ð5Þ

We see this is suppressed by δ=ð1þ zÞ. However, an
interesting point is that we also have sensitivity not just
to distances but to the Hubble parameter HðzÞ directly.
Which one wins out in its influence on the cosmological
parameter estimation depends on the measurement assump-
tions. If one says the measurements are at constant relative
precision, e.g. 1% measurements, then we find that the
extra information from the direct HðzÞ dependence is more
significant. Note though that since β may be smaller by a
factor 10, say, this means that the measurement must have
σβ ∼ 0.001 rather than σβ ∼ 0.01, for a 1% measurement of
β. This would be highly challenging, and therefore we
conservatively take z1=z ¼ 2, although again we revisit this
in Sec. IV.

III. COSMOLOGICAL CONSTRAINTS

While DSPL has interesting cosmological sensitivity
properties, it does not have much raw sensitivity magni-
tude. Rather it is the complementarity with time delay
lensing and a high redshift probe such as the cosmic
microwave background (CMB) that is of value. We con-
sider time delay lensing as in [12]—1% precision onDΔt in
six redshift bins from z ¼ 0.1–0.6—and CMB measure-
ments of the distance to last scattering and the physical
matter density Ωmh2 (where h ¼ H0=100 km=s=Mpc) of
the quality of Planck satellite measurements. For DSPL we
adopt as the baseline 1% measurements, basically of the
image separations, of 96 systems in the range z ¼ 0.1–0.6.
Recall that this range was identified as most theoretically
promising, as well as observationally tractable, in Sec. II B.
The addition of this new probe improves the dark energy

figure of merit FOM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detFw0wa

p
, a measure of the

uncertainty in dark energy equation of state estimation, by
43%. Figure 3 shows the confidence contours in thew0 − wa
plane, marginalized over the other cosmological parameters.
The matter density Ωm is determined to 0.0047, w0 to 0.072,
wa to 0.25, and the reduced Hubble constant h to 0.0047.
Thus both strong lensing probes work well together.

Furthermore, the combination remains complementary
with a single distance probe like supernovae. The dashed
curve shows the addition of a midterm supernova sample
of the rough quality, including systematics, expected by
the end of the Dark Energy Survey, approximately

FIG. 3. Cosmological parameter estimation uncertainty is
plotted in the dark energy equation of state plane for the case
of strong lensing time delays (dotted curve), time delays plus
double source plane strong lensing (solid), and the two strong
lensing probes plus supernova distances (dashed). DSPL brings
significant complementarity.
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equivalent to 150 supernovae at z < 0.1, 900 at z ¼ 0.1–1,
and 42 at z ¼ 1–1.7 (as used in [12]), with a systematic of
0.02ð1þ zÞ=2.7 mag.
Degrading the DSPL precision to 2% reduces the FOM

by 22%. We can also examine the impact of the redshift
range used for the lenses. Cutting out the low (z ¼ 0.1) or
high (z ¼ 0.6) part of the sample reduces the FOM by 14%,
while extending it to z ¼ 0.7 improves it by 13%. As
expected, estimation of h suffers most when removing the
low redshift systems, while predominantly the dark energy
parameter constraints loosen when removing the high
redshift systems. Thus the range of lens system redshifts
between z ¼ 0.1–0.6 seems a happy medium, especially as
higher redshift systems become more expensive for follow-
up to obtain spectroscopic redshifts and lens velocity
dispersions. (Note that [36] describes code for optimizing
the science return under constrained follow-up resources by
a merit vs cost weighting.)
Recalling that [12] found that time delay lensing greatly

immunized supernova distances against the degeneracy due
to spatial curvature, we consider the effect of doubling
strong lensing. Figure 4 shows that combining DSPL with
time delay lensing similarly reduces the constraint loss due
to spatial curvature density Ωk. While allowing Ωk to float
blows up the w0–wa contour area by a factor 20, relative to
the flat case, for time delay lensing plus CMB, this factor
is only 4.5 for the DSPL plus time delay lensing plus
CMB combination. Moreover, in the curvature free case,

including DSPL tightens the constraint on the curvature
by a factor 4.6, to σðΩkÞ ¼ 0.0072, and tightens the wa
determination by a factor 3.6.

IV. REDSHIFT SENSITIVITY

Although we gave good rationales in Sec. II for why the
choices z1=z ¼ 2 and z2=z1 ¼ 1.5 were reasonable, from
both theoretical sensitivity and observational follow-up
points of view, let us revisit the question of optimal redshift
distributions. We vary these two redshift ratios and study
the impact on dark energy figure of merit.
Figure 5 shows the results for the case of constant

relative precision, i.e. 1% per DSPL system. Recall from
Sec. II that we showed analytically that as z1=z gets close to
unity, β involves the Hubble parameter HðzÞ itself. This
would be expected to bring in extra cosmological infor-
mation and indeed that is exactly what we find: the figure of
merit improves as we move to the left in the figure. As we
increase z2=z1 and move up in the figure, we have an
increased lever arm in distance, allowing for greater
complementarity in the measurements, and again the
FOM increases. For one source close to the lens and the
other much further away, the FOM from the combination of
DSPL, time delay lensing, and CMB can reach 373.
However, this obscures some difficulties. Pushing the

ratios in these directions lowers β, and it is only the
assumption of constant relative precision that enables such
gains. Indeed in the extreme case leading to a FOM of 373,
we have β ¼ 0.13 (rather independent of lens redshift) and

FIG. 4. Cosmological parameter estimation uncertainty,
allowing for (outer contours) and fixing (inner contours) spatial
curvature, is plotted in the dark energy equation of state plane.
The curvature induced degeneracy in the case of strong lensing
time delays (dotted curves) is substantially tamed by the
combination of double source plane lensing with the lensing
time delay measurements (solid curves).

FIG. 5. Isocontours of dark energy figure of merit are plotted
for a range of source-source and source-lens redshift ratios,
assuming constant relative precision of 1% on β. The baseline
case used in Sec. III, justified in Sec. II, with z1=z ¼ 2 and
z2=z1 ¼ 1.5, is indicated by the star.
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so are positing an extremely small measurement uncer-
tainty σβ ¼ 0.0013. Low β also means the images sample a
wider range of lens radii, reducing the insensitivity to mass
model. Moreover, the further source will be at a high
redshift possibly more difficult for precision follow-up.
(These challenges are not wholly beyond practicality:
angular separations such as Einstein radii have been
measured to better than 0.1% under good circumstances
and the double source plane system SDSSJ0946þ 1006
does have z2=z1 ¼ 3.8 [26].)
Instead let us consider constant absolute precision

σβ ¼ 0.01. This will penalize redshift distributions that give
low β, since then the signal to noise is lower. Figure 6 bears
this out exactly. Indeed we see that the optimum source 1 to
lens redshift ratio z1=z ¼ 2, in order to get the highest FOM
for fixed source 2 to source 1 redshift ratio z2=z1. This
justifies our previous adoption of z1=z ¼ 2. As one pushes
the farther source to higher redshift, β slowly declines from
unity with increasing z2=z1, but the longer cosmological
lever armwins out and the FOM increases. The price of this,
however, is more difficult observations: the images of the
farther sourcewill be fainter and of lower signal to noise and
hence harder to measure well, plus follow-up time for, e.g.,
the source redshift will be more expensive. We therefore
have used the conservative assumption that z2=z1 ¼ 1.5.
Further work, using specific exposure time calculations for a
given survey instrument, may eventually indicate that this
source-source redshift ratio can be increased; this would
bring a further gain in FOM.

V. CONCLUSIONS

Cosmography is an important element of the quest to
understand the nature of cosmic acceleration, especially to
the extent that it is free of uncertainties in the growth of
structure (e.g. the mapping between galaxies or clusters and
the underlying dark matter field). A new geometrical probe
would be a valued addition to the cosmic toolbox. While it is
very early days yet, double source plane lensing (DSPL)
possesses several intriguing properties that motivate further
development of theoretical, simulation, and observational
studies.
Uniquely, DSPL for low redshift systems is more sensi-

tive to the dark energy equation of state than to the matter
density, and indeed there is a nulling of the matter density
degeneracy. Furthermore, it is one of the rare probes,
involving distance ratios like time delay lensing, that has
a positive correlation between dark energy equation of state
parameters w0 and wa, thus offering special complementar-
ity with single distance measures like supernovae and
baryon acoustic oscillations. Finally, we have demonstrated
that double source plane lensing has complementarity with
time delay lensing, doubling strong gravitational lensing as a
cosmological probe. This holds in both flat and, especially,
spatial curvature free cosmologies.
We have identified the optimum redshift distributions of

lens and sources under various measurement assumptions,
both analytically and numerically, and quantified the dark
energy figures of merit. Improvement of the figure of merit
by 40% with the addition of DSPL is found under
reasonable assumptions. Issues of systematics, and obser-
vational and follow-up practicalities, certainly remain to be
addressed, but the calculations here show the worth of
undertaking such efforts. Moreover, we have been some-
what conservative in not using second sources at much
higher redshift, which have the potential to lead to a FOM
over 200.
Double source plane lensing has become an observa-

tional reality, with two galaxy scale systems currently
known, dozens more likely to be found by the current
generation of wide field surveys, and hundreds to thou-
sands expected in the next generation by Euclid, LSST, and
WFIRST. Time delay lensing is similarly poised for a
cornucopia of data. Doubling strong lensing may prove to
be a fruitful path forward in understanding the geometry
and accelerated expansion of the Universe.
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precision of 0.01 on β (corresponding to ∼1% relative precision
for well spaced sources and lens).

ERIC V. LINDER PHYSICAL REVIEW D 94, 083510 (2016)

083510-6



[1] J. Michell, Phil. Trans. R. Soc. London 74, 35 (1784).
[2] S. Refsdal, Mon. Not. R. Astron. Soc. 132, 101 (1966).
[3] C. S. Kochanek, P. Schneider, and J. Wambsganss, in

Gravitational Lensing: Strong, Weak, & Micro, edited by
G. Meylan, P. Jetzer, and P. North, Lecture Notes of the 33rd
Saas-Fee Advanced Course (Springer-Verlag, Berlin, 2006).

[4] E. V. Linder, Phys. Rev. D 70, 043534 (2004).
[5] M. Oguri, Astrophys. J. 660, 1 (2007).
[6] S. H. Suyu, P. J. Marshall, R. D. Blandford, C. D. Fassnacht,

L. V. E. Koopmans, J. P. McKean, and T. Treu, Astrophys. J.
691, 277 (2009).

[7] S. H. Suyu, P. J. Marshall, M.W. Auger, S. Hilbert, R. D.
Blandford, L. V. E. Koopmans, C. D. Fassnacht, and T. Treu,
Astrophys. J. 711, 201 (2010).

[8] S. H. Suyu et al., Astrophys. J. 766, 70 (2013).
[9] S. H. Suyu et al., Astrophys. J. 788, L35 (2014).

[10] T. E. Collett et al., Mon. Not. R. Astron. Soc. 432, 679
(2013).

[11] Z. S. Greene et al., Astrophys. J. 768, 39 (2013).
[12] E. V. Linder, Phys. Rev. D 84, 123529 (2011).
[13] T. Treu et al., arXiv:1306.1272.
[14] A. Hojjati, A. G. Kim, and E. V. Linder, Phys. Rev. D 87,

123512 (2013).
[15] G. Dobler, C. Fassnacht, T. Treu, P. J. Marshall, K. Liao, A.

Hojjati, E. Linder, and N. Rumbaugh, Astrophys. J. 799,
168 (2015).

[16] K. Liao et al., Astrophys. J. 800, 11 (2015).
[17] A. Hojjati and E. V. Linder, Phys. Rev. D 90, 123501

(2014).
[18] A. Aghamousa and A. Shafieloo, Astrophys. J. 804, 39

(2015).

[19] V. Bonvin, M. Tewes, F. Courbin, T. Kuntzer, D. Sluse, and
G. Meylan, Astron. Astrophys. 585, A88 (2016).

[20] H. Tak, K. Mandel, D. A. van Dyk, V. L. Kashyap, X.-L.
Meng, and A. Siemiginowska, arXiv:1602.01462.

[21] S. H. Suyu (private communication).
[22] T. Treu and P. J. Marshall, Astron. Astrophys. Rev. 24, 11

(2016) .
[23] R. Link and M. J. Pierce, Astrophys. J. 502, 63 (1998).
[24] G. Golse, J.-P. Kneib, and G. Soucail, Astron. Astrophys.

387, 788 (2002).
[25] T. E. Collett, M.W. Auger, V. Belokurov, P. J. Marshall, and

A. C. Hall, Mon. Not. R. Astron. Soc. 424, 2864 (2012).
[26] T. E. Collett and M.W. Auger, Mon. Not. R. Astron. Soc.

443, 969 (2014).
[27] R. Gavazzi, T. Treu, L. V. E. Koopmans, A. S. Bolton, L. A.

Moustakas, S. Burles, and P. J. Marshall, Astrophys. J. 677,
1046 (2008).

[28] P. Schneider, Astron. Astrophys. 568, L2 (2014).
[29] L. Gautret, B. Fort, and Y. Mellier, Astron. Astrophys. 353,

10 (2000).
[30] B. Jain and A. Taylor, Phys. Rev. Lett. 91, 141302

(2003).
[31] W. Hu, D. E. Holz, and C. Vale, Phys. Rev. D 76, 127301

(2007).
[32] P. Schneider, Astron. Astrophys. 592, L6 (2016).
[33] H. Miyatake, M. S. Madhavacheril, N. Sehgal, A. Slosar, D.

N. Spergel, B. Sherwin, and A. van Engelen, arXiv:
1605.05337.

[34] T. E. Collett, Astrophys. J. 811, 20 (2015).
[35] T. E. Collett (private communication).
[36] E. V. Linder, Phys. Rev. D 91, 083511 (2015).

DOUBLING STRONG LENSING AS A COSMOLOGICAL PROBE PHYSICAL REVIEW D 94, 083510 (2016)

083510-7

http://dx.doi.org/10.1098/rstl.1784.0008
http://dx.doi.org/10.1093/mnras/132.1.101
http://dx.doi.org/10.1103/PhysRevD.70.043534
http://dx.doi.org/10.1086/513093
http://dx.doi.org/10.1088/0004-637X/691/1/277
http://dx.doi.org/10.1088/0004-637X/691/1/277
http://dx.doi.org/10.1088/0004-637X/711/1/201
http://dx.doi.org/10.1088/0004-637X/766/2/70
http://dx.doi.org/10.1088/2041-8205/788/2/L35
http://dx.doi.org/10.1093/mnras/stt504
http://dx.doi.org/10.1093/mnras/stt504
http://dx.doi.org/10.1088/0004-637X/768/1/39
http://dx.doi.org/10.1103/PhysRevD.84.123529
http://arXiv.org/abs/1306.1272
http://dx.doi.org/10.1103/PhysRevD.87.123512
http://dx.doi.org/10.1103/PhysRevD.87.123512
http://dx.doi.org/10.1088/0004-637X/799/2/168
http://dx.doi.org/10.1088/0004-637X/799/2/168
http://dx.doi.org/10.1088/0004-637X/800/1/11
http://dx.doi.org/10.1103/PhysRevD.90.123501
http://dx.doi.org/10.1103/PhysRevD.90.123501
http://dx.doi.org/10.1088/0004-637X/804/1/39
http://dx.doi.org/10.1088/0004-637X/804/1/39
http://dx.doi.org/10.1051/0004-6361/201526704
http://arXiv.org/abs/1602.01462
http://dx.doi.org/10.1007/s00159-016-0096-8
http://dx.doi.org/10.1007/s00159-016-0096-8
http://dx.doi.org/10.1086/305892
http://dx.doi.org/10.1051/0004-6361:20020448
http://dx.doi.org/10.1051/0004-6361:20020448
http://dx.doi.org/10.1111/j.1365-2966.2012.21424.x
http://dx.doi.org/10.1093/mnras/stu1190
http://dx.doi.org/10.1093/mnras/stu1190
http://dx.doi.org/10.1086/529541
http://dx.doi.org/10.1086/529541
http://dx.doi.org/10.1051/0004-6361/201424450
http://dx.doi.org/10.1103/PhysRevLett.91.141302
http://dx.doi.org/10.1103/PhysRevLett.91.141302
http://dx.doi.org/10.1103/PhysRevD.76.127301
http://dx.doi.org/10.1103/PhysRevD.76.127301
http://dx.doi.org/10.1051/0004-6361/201628506
http://arXiv.org/abs/1605.05337
http://arXiv.org/abs/1605.05337
http://dx.doi.org/10.1088/0004-637X/811/1/20
http://dx.doi.org/10.1103/PhysRevD.91.083511

