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Most of the information on our cosmos stems from either late-time observations or the imprint of early-
time inhomogeneities on the cosmic microwave background. We explore to what extent early modifications
of gravity, which become significant after recombination but then decay toward the present, can be
constrained by current cosmological observations. For the evolution of the gravitational modification, we
adopt the decaying mode of a hybrid metric-Palatini fðRÞ gravity model which is designed to reproduce
the standard cosmological background expansion history and due to the decay of the modification is
naturally compatible with Solar System tests. We embed the model in the effective field theory description
of Horndeski scalar-tensor gravity with an early-time decoupling of the gravitational modification. Since
the quasistatic approximation for the perturbations in the model breaks down at high redshifts, where
modifications remain relevant, we introduce a computationally efficient correction to describe the evolution
of the scalar field fluctuation in this regime. We compare the decaying early-time modification against
geometric probes and recent Planck measurements and find no evidence for such effects in the
observations. Current data constrains the scalar field value at jfRðz ¼ zonÞj≲ 10−2 for modifications
introduced at redshifts zon ∼ ð500–1000Þ with the present-day value jfR0j ≲ 10−8. Finally, we comment on
constraints that will be achievable with future 21-cm surveys and gravitational wave experiments.
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I. INTRODUCTION

Lovelock’s theorem on the uniqueness of Einstein’s
gravitational field equations does not apply in the presence
of higher than second-order derivatives of the metric,
additional gravitational degrees of freedom, extra dimen-
sions, or other unconventional properties that a more
fundamental theory of gravity may be endowed with.
Such a theory could give rise to new phenomenological
aspects at different scales and epochs in time that may
potentially be observable and can be tested using existent
modified gravity theories.
Einstein’s theory of general relativity (GR) has been well

tested in the Solar System, where, however, potential large-
scale deviations may be suppressed due to screening effects
[1–3]. There is now a complementary effort in obtaining
competitive constraints on larger scales, with a surge of
surveys that will significantly improve our knowledge of
the cosmological regime, such as the Dark Energy Survey
[4], the extended Baryon Oscillation Spectroscopic Survey
[5] and the Euclid survey [6] (for a review on cosmological
tests of gravity see [2]).
Much of the interest in modified gravity theories has

arisen in the search for alternative explanations for the
observed late-time accelerated expansion of our Universe

[7–10], possibly avoiding the fine-tuning problem of the
cosmological constant Λ adopted in the standard model of
cosmology Λ cold dark matter (CDM) (for reviews on
modified gravity, the cosmological constant, and dark
energy see [1–3,11]). However, in Ref. [12] it has recently
been shown that scalar-tensor theories of gravity such as
Brans-Dicke [13], Galileon [14], and fðRÞ gravity [15], or
any other models embedded in the Horndeski action
[16], cannot yield an observationally compatible self-
acceleration effect due to modified gravity that its
genuinely different from Λ or dark energy, unless the
cosmological speed of gravitational waves differs substan-
tially from the speed of light. While such a deviation is
unlikely [17], modified gravity theories are nevertheless
relevant to test gravity and understand how it acts across all
scales and epochs in cosmic time.
However, given the original interest in cosmic acceler-

ation, the study of modified gravity has predominantly
focused on late-time effects with a recovery of GR at
high redshifts. Hence, early-time modifications have, so far,
evaded a thorough investigation and when they have been
studied (e.g., [18,19]), their effects at early times have not
been clearly separated from their late-time effects. The
missing analysis of early-time modifications and their
impact on cosmological observables constitutes a gap in
our current understanding of the gravitational processes at
work and we lack a consistent quantitative analysis of the
constraining power that current (and future) cosmological
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surveys have over this regime of gravity. Generally, the
assumption of GR at early times without a test against
alternatives is a strong extrapolation from its exclusive
validity in the late-time Solar System region (or even from
late-time cosmology). This investigation is also important
to quantify the improvement on our current understanding
of the cosmological model that can be expected with future
surveys such as 21-cm intensity mapping (see, e.g., [20] for
expected dark energy constraints), the use of gravitational
waves as standard sirens at high redshifts, or constraints
from surveys such as the Square Kilometer Array on the
horizon [21].
In this paper, we explore to what extent modifications of

gravity that may arise after recombination and decay
toward the present can be constrained with current cos-
mological observations that stem either from their impact
on the late-time large-scale structure or changes in the
imprint of early-time inhomogeneities on the cosmic
microwave background. For this purpose, we adopt the
decaying mode of a hybrid metric-Palatini gravity model,
which enables us to separate early- from late-time effects.
We then compare the constraining power of future 21-cm
intensity mapping and standard sirens to these current
constraints.
The outline of the paper is as follows. In Sec. II A, we

introduce and discuss the early-time decaying modified
gravity model adopted for our analysis. In Sec. II B, we
reproduce its linearly perturbed modified Einstein equa-
tions in the Newtonian gauge. We explicitly show how the
breakdown of the quasistatic approximation for the evolu-
tion of the scalar field fluctuation occurs at high redshifts.
This failure motivates an analytic correction to the quasi-
static approximation to accurately describe the evolution of
the slip between the metric potentials in this high-curvature
regime. In Secs. II C and II D, we describe an embedding of
this gravitational modification in the effective field theory
of Horndeski scalar-tensor gravity (reviewed in Ref. [22])
with a postrecombination high-redshift decoupling of the
modification to comply with stringent high-curvature con-
straints from the cosmic microwave background (CMB).
In Sec. III, we infer constraints on the early-time decaying
modified gravity model using current cosmological obser-
vations. Lastly, in Sec. IV we conclude with some final
thoughts and remarks, also providing an outlook for future
cosmological constraints on the model. For completeness,
in the appendixes we provide details on our numerical
computations and approximations adopted to describe
oscillations in the scalar field fluctuations.

II. A DECAYING EARLY MODIFICATION
OF GRAVITY

The main purpose of this work is to explore constraints
on early modified gravity, with modifications from GR
arising at high redshifts and being suppressed as we
approach the present time. We start by describing the

general dynamics of the test model we will embed in
Horndeski theory: the hybrid metric-Palatini fðRÞ gravity,
where the metric and the connection are considered as
independent variables.
Note that while metric fðRÞ theory, where the connec-

tion is not independent, is much more frequently adopted
as toy model to study modifications of gravity, and also
possesses a decaying mode [23], it naturally predicts a 4=3
enhancement of the effective gravitational coupling in
unscreened observables at late times and small scales.
There always exists a small enough object in a late-time,
low-density environment that is not screened and hence
exhibits a modified gravity effect that could potentially
be used to constrain the modification of, for instance, a
dwarf galaxy in a void [24]. Similarly, an up-weighting
of low-density regions in statistical observations of the
large-scale structure can be used to effectively unscreen
the modifications [25]. Hybrid metric-Palatini gravity
evades these constraints as the unscreened effective
gravitational coupling itself tends to the Newtonian value
at late times (this argument will be explained in more
detail in Sec. II B 1).

A. Hybrid metric-Palatini gravity

The four-dimensional action describing the hybrid
metric-Palatini gravity is given by [26]

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðRÞ� þ Sm; ð1Þ

where κ2 ¼ 8πG and we set c ¼ 1. Sm is the standard
matter action, R is the metric Ricci scalar and R ¼ gμνRμν

is the Palatini curvature. The latter is defined in terms of
the metric elements, gμν, and a torsionless independent
connection, Γ̂, through

R≡ gμνðΓ̂α
μν;α − Γ̂α

μα;ν þ Γ̂α
αλΓ̂λ

μν − Γ̂α
μλΓ̂λ

ανÞ: ð2Þ

For a statistically spatially homogeneous and isotropic
universe with the Friedmann-Robertson-Walker metric,
ds2 ¼ −dt2 þ a2ðtÞd~x2, the modified Einstein equations
and the dynamical hybrid metric scalar field equation yield
the modified Friedmann equations and background scalar
field equation [26,27]:

3H2 ¼ 1

1þ fR

�
κ2ρ − 3H _fR −

3 _fR
2

4fR
þRfR − fðRÞ

2

�
;

ð3Þ

2 _H ¼ 1

1þ fR

�
−κ2ðρþ pÞ þH _fR − f̈R þ 3 _fR

2

2fR

�
;

ð4Þ
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R̈ ¼ −
1

fRR

�
_R2

�
fRRR −

fRR
2

2fR

�
þ 3H _RfRR

þ fR
3

½RðfR − 1Þ − 2fðRÞ� − κ2
fR
3

T

�
; ð5Þ

where dots denote derivatives with respect to physical time,
t, H ¼ _a=a is the Hubble parameter, and fR is the extra
scalar degree of freedom introduced in the model. Here, fR,
fRR, fRRR denote the first, second, and third derivatives
of fðRÞ with respect to R. Equations (3), (4), and (5)
constitute a closed set of differential equations that deter-
mines the background evolution for a specified fðRÞ. Note
that we recover the standard Friedmann equations of
ΛCDM in the limit of fR → 0.
Lastly, it is useful to write the effective mass of the

additional scalar degree of freedom, which is given by
[26,27]

m2
fR

¼ 2VðfRÞ − VfR − fRð1þ fRÞVfRfR

3
; ð6Þ

where VðfRÞ ¼ RfR − fðRÞ is the scalar field potential,
defined in the scalar-tensor formulation of the hybrid
metric-Palatini theory.
The hybrid metric-Palatini theory avoids the well-known

instabilities in the pure Palatini approach [28–30] by
providing a propagating additional scalar degree of freedom
that can modify gravity across all scales due to its light, long-
range interacting nature [26,27,31,32]. Furthermore, it does
not require the effective mass of the scalar field to be massive
in order to be viable on small scales, as this is assured as long
as the amplitude of the scalar field remains small [27], which
our designer model naturally guarantees.

1. Designer f ðRÞ model

We briefly review the designer hybrid metric-Palatini
model that we will adopt to describe the evolution of the
decaying early modification of gravity and its observational
constraints in Sec. III. This model was first introduced in
Ref. [33], and it allows one to retrieve a family of fðRÞ
functions that produce a background evolution indistin-
guishable to ΛCDM from solving the second-order differ-
ential equation

f00R þ f0R

�
E0

2E
− 1

�
þ fR

E0

E
−
3

2

f02R
fR

¼ 0; ð7Þ

where here and throughout the rest of the paper primes
represent derivatives with respect to ln a. Equation (7) is
obtained from setting the effective equation of state weff
equal to −1. The background evolution is fixed through

EðaÞ≡H2=H2
0 ¼ Ωma−3 þΩra−4 þ Ωeffa

3
R

1

a
ð1þweffÞd ln a.

In a flat Universe, Ωeff ¼ 1 −Ωm − Ωr and, for weff ¼ −1,
one recovers a ΛCDM-like background cosmology. The

initial conditions for solving Eq. (7) are set at an initial
scale factor, ai ¼ ð1þ ziÞ−1 ≪ 1, by [33]

fRi ¼ C1a
−aaux
i

�
cosh

�
1

2
½ln ai þ C2�

ffiffiffi
d

p ��
−2
; ð8Þ

f0Ri ¼ −C1

a−aauxi

cosh ð…Þ2 ½aaux þ
ffiffiffi
d

p
tanhð…Þ�; ð9Þ

where d ¼ a2aux − 2b, aaux ¼ ð5þ 6riÞ=ð2þ 2riÞ, and
b ¼ ð3þ 4riÞ=ð1þ riÞ, with ri ¼ ΩγðΩmaiÞ−1. The dotted
arguments of the hyperbolic functions refer to the same
argument as in the hyperbolic cosine in Eq. (8). Throughout
the paper we fix C2 to a large value in order for the absolute
value of the hyperbolic tangent to be close to unity. C1 is
then fixed by choosing a value for fRi ≡ fRðz ¼ ziÞ.
Hence, one then just has to numerically evolve the model
using Eq. (7), and make use of the background equations to
recover further quantities of interest, such as fðRÞ, at each
step of the iteration.
In Fig. 1 we plot the evolution of the absolute value of fR

as a function of the scale factor for different initial values
fRi set at a redshift zi ¼ 1000. The scalar field fR decays
with time and is strongly suppressed as we approach
a → 1. In Sec. III it will become evident that due to this
suppression, fðRÞ behaves like a decaying early-modified
gravity model that satisfies Solar System constraints [26].
Having a hybrid metric-Palatini model that recovers a

ΛCDM-like background evolution allows us to separate the
modifications introduced between linear perturbations from
background effects. Possible deviations at the background
level from ΛCDM for other fðRÞ functions have already
been tested against observations in Ref. [34], where
constraints on the initial value of the scalar field fRi at

FIG. 1. Evolution of the absolute value of the extra scalar
degree of freedom introduced in fðRÞ theories, fR, as a function
of the scale factor, a, with zi ¼ 1000. We have fixed Ωm ¼ 0.30
for illustration.
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very early times (zi ∼ 108) were obtained, restricting its
maximum amplitude to an absolute value of 1 × 10−2.
Considering how hybrid metric-Palatini models couple to
the gravitational sector through a factor of ð1þ ϕÞ, this
constrained the maximum variation of the effective gravi-
tational constant Geff in the background evolution to 1% of
its Newtonian value. This result is compatible with con-
straints on Geff from big bang nucleosynthesis [35].
Modifications introduced in the linear cosmological

perturbations have not yet been tested for fðRÞ gravity,
and the designer model discussed here perfectly suits this
purpose. As we will show in Sec. III B 2, the constraints we
obtain in this work using CMB temperature and polariza-
tion anisotropy data are in perfect agreement with existent
(and expected) constraints on Geff considering the same
effects [36].

B. Linear perturbations in f ðRÞ gravity
We briefly review the main aspects concerning the

evolution of linear perturbations in the hybrid metric-
Palatini theory. For the full set of linearly perturbed
Einstein and scalar field equations we direct the reader
to Ref. [33]. Typically for modified gravity theories
(however, see Refs. [17,37]), the hybrid metric-Palatini
theory introduces a nonzero slip between the gravitational
potentials in the Newtonian gauge, Φ ¼ δg00=ð2g00Þ and
Ψ ¼ −δgii=ð2giiÞ. Neglecting any anisotropic contribution
from matter fields, the anisotropy equation becomes

Φ −Ψ ¼ δfR
1þ fR

; ð10Þ

where δfR is the linear perturbation of the scalar field with
its background value denoted by fR. The evolution of δfR
is dictated by the linear perturbation of the scalar field
equation of motion,

δf̈R þ _δfR

�
2H −

_fR
fR

�

þ δfR

�
k2 þ

_fR
2

2fR2
þ a2m2

fR
−
κ2

3
a2T

�

þΨ

�
_fR

2

fR
− 2f̈R − 4 _fRH

�

− _fRð3 _Φþ _ΨÞ ¼ fR
3

a2κ2δT; ð11Þ

where δT denotes the linear perturbation of the trace of the
stress-energy tensor, T ¼ −ρþ 3p, and for this equation
only, dots indicate derivatives with respect to conformal
time τ with dt ¼ adτ, and H≡ aH.
It has been shown in Ref. [33] that the evolution of δfR

is characterized by quick oscillations around zero, which
end up reflecting in the ratio between the Newtonian

potentials, γ ≡ Φ=Ψ. These oscillations are scale depen-
dent, oscillating faster and with larger amplitude at smaller
scales. They can produce noticeable oscillations at near-
horizon scales, depending on the initial value of the scalar
field at early times that, for instance, have an impact on the
Poisson equation. Due to the Hubble friction term [see
Eq. (11)], these modifications eventually get damped as one
approaches a ≈ 1, becoming negligible at the present with
no signs of significant subhorizon modifications.
We will explore the behavior of δfR further in Secs. II B 1

and II B 2, focusing on its subhorizon and early-time
evolution, respectively, where we will develop accurate
approximations for these regimes. In order to test our
approximations, we follow Ref. [33] and solve the exact
numerical evolution of the gravitational potentials and δfR,
using the linearly perturbed conservation equations for the
stress-energy tensor and the first-order differential equations
for the lensing potential, Φþ ≡ ðΦþΨÞ=2.

1. Subhorizon approximation

We first consider wave modes that are deep within the
Hubble radius with wave number k ≫ aH. To describe this
limit, we adopt the quasistatic approximation, discarding
time derivatives of perturbations when compared to their
spatial variation. Generally, for Horndeski scalar-tensor
theories, this is a good approximation on small scales [38].
In practice, this allows one to keep the terms proportional to
k2=ða2H2Þ as well as those related to the matter perturba-
tion δρm and the scalar field effective mass m2

fR
. The latter

sets a modified length scale that can be compared to that of
the perturbations.
From the 0–0 linearly perturbed Einstein equation in

the Newtonian gauge, we obtain in the subhorizon
regime [33]

k2

a2
Φ ≈

1

2ð1þ fRÞ
�
δfR

�
k2

a2

�
− κ2δρm

�
; ð12Þ

where δρm ≡ ρmδm. Using this approximation in the
anisotropy equation we then get

k2

a2
Ψ ≈ −

1

2ð1þ fRÞ
�
δfR

�
k2

a2

�
þ κ2δρm

�
: ð13Þ

One can then calculate a similar approximation for δfR
from Eq. (11),

δfR ≈ −
H2

0Em

k2=a2 þm2
fR

fRδm; ð14Þ

which can be inserted back into Eqs. (12) and (13) such that

k2

a2
Φ ≈ −

H2
0Emδm

2ð1þ fRÞ
�
k2=a2ðfR þ 3Þ þ 3m2

fR

k2=a2 þm2
fR

�
; ð15Þ
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k2

a2
Ψ ≈ −

H2
0Emδm

2ð1þ fRÞ
�
k2=a2ð3 − fRÞ þ 3m2

fR

k2=a2 þm2
fR

�
; ð16Þ

where Em ≡Ωma−3.
These approximations can, in turn, be used to obtain an

expression for the lensing potential, Φþ, in this regime:

k2

a2
Φþ ≈ −

3H2
0Em

2ð1þ fRÞ
δm; ð17Þ

whereas the slip between the potentials, δfR, is given by

δfR ≈
2

3

k2

a2
fRΦþ

k2=a2 þm2
fR

: ð18Þ

As mentioned in Sec. I, the background value of the
scalar field is required to be small in order for the metric-
Palatini theory to avoid Solar System tests. In these
circumstances, the quasistatic modifications will be almost
unnoticeable, even if the range of the modifications, given
by the effective Compton wavelength λC ¼ 2π=mfR , is
relevant. For instance, note that for fR → 0, δfR → 0
since δfR is proportional to the background value of the

scalar field fR in the quasistatic regime, as can be seen
in Eq. (18).
The fðRÞ models that have been analyzed so far [33,34]

evolve toward smaller deviations from ΛCDM as we
approach the present, with fR tending to negligible values.
This renders the modifications in the quasistatic regime
subdominant, as was explicitly shown in Ref. [33] for
the designerfðRÞmodel,with nomentionable enhancement
of theperturbations in this regimewhencompared toΛCDM.
In Fig. 2 we compare the numerical evolution of the ratio

between the Newtonian potentials, γ, with its quasistatic
approximation,

γQS ≡ Φ
Ψ

¼ k2=a2ð3þ fRÞ þ 3m2
fR

k2=a2ð3 − fRÞ þ 3m2
fR

: ð19Þ

We see that it is an accurate approximation at late times, as
a consequence of large k=ðaHÞ values. As we approach the
present time in our models, the subhorizon modifications
become suppressed, leading in turn to a very small differ-
ence between the compared values. This accuracy holds
even when we consider larger initial values for the scalar
field, fRi.

FIG. 2. Relative difference jγnum − γQSj=γnum between the numerical ratio γ ≡ Φ=Ψ and its quasistatic (QS) approximation given by
Eq. (19). We have considered zi ¼ 1000 and fixed Ωm ¼ 0.30.
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However, the quasistatic approximation breaks down at
earlier times for the smaller scales, due to the oscillatory
behavior of δfR discussed in Sec. II B. For large initial values
of the scalar field the error can be of order unity and decreases
as we consider smaller values for fRi. Hence, for an accurate
but computationally efficient description of the evolution
of γ in the designer fðRÞ model that is valid across a large
range of redshifts and scales, some corrections must be
applied to the subhorizon approximation (see Sec. III B 2).
Lastly, we emphasize that in the hybrid metric-Palatini

model, fR and δfR are strongly suppressed at the present,
and ðGeff − GÞ=G ≪ 1 at any scale, consistent with Solar
System tests. In contrast, in metric fðRÞ gravity, for modes
well within the Compton radius, we have ðGeff −GÞ=G ¼
4=3 at linear order, and the model needs to employ a
nonlinear chameleon mechanism [39–42] to restore
Geff=G → 1 at the small scales probed by Solar System
tests. Unlike the chameleon mechanism, however, the
suppression in the hybrid metric-Palatini model is inde-
pendent of environment and cannot be tested by unscreened
small objects in voids [24] or unscreened by environment-
dependent statistical measurements of the large-scale
structure [25]. We recall that it is for this aspect that we
adopt the decaying early-time gravitational modification
characterized by the hybrid metric-Palatini model rather
than the decaying mode of metric fðRÞ gravity, where an
effective 4=3 enhancement of the gravitational coupling at
late times would always be present at some level.

2. Early-time corrections

The dynamics of δfR is dictated by Eq. (11), which is the
equation of a damped harmonic oscillator with a driving
force proportional to the matter perturbation. The frequency
of the oscillation depends on the mode wave number k,
while the damping term is dominated by the Hubble
parameter at early times, and δfR quickly becomes
negligible toward late times, where the oscillations are
no longer observable. The driving term could deviate the
equilibrium position of the oscillations. However, note that
it is proportional to fR, which not only is fixed to a small
value at early times as we study small deviations from GR,
but also evolves toward zero at late times, rendering the
external force term almost negligible.
Hence, rewriting Eq. (11) to depend on ln a, assuming

fR; _fR ≪ 1, but not neglecting terms proportional to
_fR=fR, we approximate it to

δf00R þ δfR

�
k2

a2H2
þ f02R
2f2R

þH2
0Ωma−3

H2

�

þ δf0R

�
3þH0

H
−
f0R
fR

�
≈ 0; ð20Þ

for which we attempt a solution under the Wentzel-
Kramers-Brillouin approximation given by

δfR ≈
Affiffiffiffiffiffi
2w

p a−γexp cos

�Z
wd ln aþ θ0

�
: ð21Þ

We expect the approximation to be valid as long as the
adiabatic condition j _wj ≪ w2 holds, where w2 is the term
multiplying δfR in Eq. (20), and γexp is the quantity
multiplying the δf0R term in Eq. (20). The constants θ0
and A can be fixed by imposing suitable initial conditions
for δfR and δf0R at a chosen redshift.
For the fðRÞ designer model, the ratio between f0R and

fR can be easily calculated at early times using the initial
conditions presented in Sec. II A. This yields

f0R
fR

≈
ffiffiffi
d

p
− aaux: ð22Þ

With this approximation, it is possible to simplify w and
obtain an analytical solution for the integral

R
wd ln a. The

details of this calculation may be found in Appendix B.
In Fig. 3 we set the initial conditions for δfR by

determining θ0 such that δfR is zero at the chosen initial
redshift zi ¼ 1000. We note that this is completely arbi-
trary, but not particularly relevant for the overall evolution
of δfR since it quickly oscillates around zero. We can then
differentiate Eq. (20) with respect to ln a and compute A by
calculating the numerical value of δf0R using Eq. (67) of
Ref. [33] at the same redshift.
We see in Fig. 3 that our analytical approximation works

remarkably well, considering the complexity of the equa-
tion describing the dynamics of δfR. Even though it may
fail in predicting the exact amplitude of the oscillations, the
relative difference to the numerical results is insignificantly
small compared to the precision available with current
experiments. Also, it clearly encompasses the desired
dependence on the scale of the modes of the perturbations,
with a higher amplitude and frequency of oscillation the
smaller scales (higher k) one considers.
Lastly, Fig. 3 serves as further confirmation of the

viability of the subhorizon approximations derived in
Sec. II B 1 at late times. As Eq. (18) dictates, δfR should
be strongly suppressed in the subhorizon regime following
the behavior of the background scalar field value and
with k ≫ aH.

C. Decoupling at high redshifts

The hybrid metric-Palatini modification of gravity needs
to decouple at high redshifts in order not to violate stringent
high-curvature constraints from the CMB. However, we
wish to determine below which redshift zon the modifica-
tion can be introduced and to which degree a decaying
early-time modification motivated by the evolution of
hybrid metric-Palatini gravity at z ≤ zon can be constrained
by the CMB radiation observed today. In order to formulate
an explicit realization of the decaying early-modified
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gravity model, we embed the designer hybrid metric-Palatini
scenario with high-redshift decoupling in Horndeski scalar-
tensor theory [16] using the effective field theory of cosmic
acceleration (see Ref. [22] for a review).

D. Embedding in Horndeski gravity
and effective field theory

We will now embed the designer fðRÞ model in the
effective field theory of Horndeski gravity following the
notation of Ref. [43]. Given the ΛCDM background
expansion history of our designer hybrid metric-Palatini
model, its modifications are fully specified by the effective
parameters characterizing the linear perturbations,

αM¼ f0R
1þfR

; αK¼−
3

2

f0R
fR

αM; αB¼−αM; ð23Þ

where αM ≡ ðM2�Þ0=M2� describes the running of the Planck
mass κ2M2� ≡ 1þ fR; αK denotes the contribution of the
kinetic energy of the scalar field; and αB determines the
mixing of the kinetic contributions of the metric and
scalar fields. The decaying early modifications of gravity
constrained here are therefore realized in a Horndeski
scalar-tensor model with

αX;model ¼
�
αX; z ≤ zon;

0; z > zon;
ð24Þ

where the αX’s are given by Eq. (23) according to hybrid
metric-Palatini gravity. Note that αX;modelðz > zonÞ ¼ 0

recovers a ΛCDM universe at high redshifts, avoiding
the stringent high-curvature constraints around re-
combination.

Stability of the background solution of the Horndeski
model with respect to the scalar mode requires [43]

Qs ≡ 2M2�D
ð2 − αBÞ2

> 0; ð25Þ

where

D≡ αK þ 3

2
α2B ¼ −

3ðf0RÞ2
2fRð1þ fRÞ2

: ð26Þ

With the evolution of fR given by hybrid metric-Palatini
theory, we have

Qs ¼
�
< 0; for fR > 0;

> 0; for fR < 0:
ð27Þ

Hence, we require −1 < fR < 0 to prevent ghost insta-
bilities. To avoid a gradient instability or a superluminal
sound speed cs of the scalar field perturbation, we require
that 0 < c2s ≤ 1. To check this, we compute c2s in the hybrid
metric-Palatini theory,

D · c2s ¼
κ2

H2ð1þ fRÞ
�
4

3
ρr þ ρm

��
fR þ f0R

2

�

þ αM
2

�
f0R þ 2ð1þ fRÞ

1þ fR

�
−
f00R − ðf0RÞ2
1þ fR

: ð28Þ

Furthermore, note that for the designer model we use in this
work

f0R ¼
�
> 0; for fR < 0;

< 0; for fR > 0;
ð29Þ

FIG. 3. (Top panels) Numerical evolution (solid lines) of the perturbation δfR against the evolution predicted by our analytical
approximation (dashed lines) given by Eq. (21). The two largest scales have been enhanced by a factor of 100 and 1000 to be noticeable.
(Bottom panels) The absolute difference between the analytical approximation and the numerical results. We have fixed Ωm ¼ 0.30.
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and jf0Rj ≫ jfRj. Therefore, for fR < 0, fR þ f0R=2 > 0.
Also, f00R will be negative definite [as can be verified by
differentiating Eq. (9)] for negative values of the scalar
field. All of this, in conjunction with the fact that αM > 0

and D > 0, ensures that c2s > 0 for −1 < fR < 0. We have
also confirmed numerically that cs is subluminal for the
range of values we consider for fRi. Note that whereas the
condition for avoiding ghost instabilities applies to all
hybrid metric-Palatini gravity models and should be
respected when designing any other fðRÞ models, the
condition for avoiding gradient instabilities may be
model dependent and should be studied in more detail
for other choices of fðRÞ. For completeness, we also
verify the stability of tensor modes [43] withQT ∝ κ2M2⋆ ¼
1þ fR > 0 whenever fR > −1. Also note that in fðRÞ
models, the propagation speed of gravitational waves
equals the speed of light cT ¼ 1.

III. OBSERVATIONAL CONSTRAINTS

Having fully specified a theoretically consistent
decaying early modified gravity model in Sec. II, we
now determine the observational effects and constraints
that can be set on early gravitational modifications with
current cosmological data (Sec. III B). We also provide an
outlook of constraints achievable with future surveys
(Sec. III C).

A. Cosmological observables

To constrain our model parameters, we perform a
Markov-chain Monte Carlo (MCMC) search using a
range of geometric probes and CMB measurements by
Planck 2015.

1. Geometric probes

The comparison between the luminosity magnitudes of
high-redshift to low-redshift supernovae type Ia (SNe Ia)
provides a relative distance measure affected by the
Universe’s expansion rate. Complementary absolute dis-
tance measures are obtained from measuring the local
Hubble constant H0 and the baryon acoustic oscillations
(BAOs) in the clustering of galaxies. These probes con-
strain the cosmological background evolution and since
the fðRÞmodels considered here are designed to match the
ΛCDM expansion history, they only serve to constrain the
standard cosmological parameters and prevent degenera-
cies with the effect of the additional scalar degree of
freedom on the fluctuations.

2. Cosmic microwave background

In addition to the geometic probes described in
Sec. III A 1, the acoustic peaks in the CMB also contain
information on the absolute distance to the last-scattering
surface. These peaks are affected by early-time departures
from GR at high curvature, i.e., in the case of fðRÞ

modifications, where zon is sufficiently large.
Gravitational modifications can generally further manifest
themselves in the CMB temperature and polarization via
secondary anisotropies. For details on the numerical
computation of these effects in the designer hybrid met-
ric-Palatini model, we refer the reader to Appendix A.
In Fig. 4, we show the predictions for the CMB

temperature anisotropy power spectrum (TT) for three
different choices of zon. Hence, we introduce the oscil-
lations between the Newtonian potentials in distinct epochs
of the cosmological evolution which in turn produces
different effects in the observed power spectrum. The first
immediate observation is that the later we introduce these
oscillations, the less significant is their impact on the TT
power spectrum. This is mainly due to the fact that, at later
epochs, the amplitude of the oscillations has already been
considerably damped out, reducing their effect on the TT
power spectrum.
The second noticeable modification of the spectrum

is in the Sachs-Wolfe plateau, on scales around l < 100,
where we observe a shift toward higher or smaller values
compared to ΛCDM. The Sachs-Wolfe effect, resulting
from a combination of gravitational redshift and intrinsic
temperature fluctuations at angular last scattering, can lead
to a variation of the temperature power spectrum like [44]

ΔT
T

∝ δΦ; ð30Þ

where δΦ corresponds to the variation of the gravitational
potential Φ. The designer hybrid metric-Palatini model
introduces modifications close to the surface of last
scattering. Therefore, depending on the redshift we choose

FIG. 4. (Top panel) Lensed CMB temperature anisotropy
power spectrum predicted by the designer hybrid metric-Palatini
model for jfRðziÞj ¼ 5 × 10−2 and different values of zon as well
as the prediction for the ΛCDM model. (Lower panel) Difference
from ΛCDM, Δrel ¼ lðlþ 1ÞðCTT;hybrid

l − CTT;Λ
l Þ=ð2πÞ.
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to start the oscillations, the Newtonian potential Φ will be
displaced toward larger or smaller values compared to
ΛCDM, leading to the shift we observe in the power
spectrum. Then, at low l, we have the traditional increase in
power due to the integrated Sachs-Wolfe (ISW) effect in the
presence of late-time dark energy. Our model clearly
mimics ΛCDM due to the fact that we fix the background
evolution to match the standard cosmological scenario,
even if the power can be deviated toward lower or smaller
values due to the Sachs-Wolfe effect discussed before.
Lastly, we have what is probably the most discerning

effect on the CMB TT power spectrum. When we introduce
the oscillations at zon ¼ 1000, we notice a significant
decrease in the amplitude of the first peak. Traditionally,
at early times, the non-negligible presence of radiation
after the epoch of last scattering can cause a decay of the
gravitational potentials before these become constant,
contributing to an early ISW effect that can influence the
amplitude and position of the peaks. Therefore, if we allow
modified gravity to be relevant close to the epoch of
recombination, we not only modify this decay but also
cause additional variation, influencing the acoustic phe-
nomenology of the CMB. Of course, as we test lower
values of zon, this effect becomes increasingly negligible.

B. Cosmological constraints

Before presenting the current cosmological constraints
on decaying early modified gravity, we briefly describe the
cosmological data sets we use in our analysis. We then give
an outlook on constraints that can be obtained with 21-cm
surveys and gravitational wave observations.

1. Data sets

For the SN Ia luminosity-redshift relation, we use the
data set compiled in the Joint Lightcurve Analysis [45].
This includes records from the full three years of the
Sloan Digital Sky Survey (SDSS) survey plus the “C11
compilation” assembled by Conley et al. [46]; comprising
supernovae from the Supernovae Legacy Survey, the
Hubble Space Telescope (HST), and several nearby experi-
ments. This whole sample consists of 740 SNe Ia.
For H0, we include information provided by the Wide

Field Camera 3 on HST. The objective of this project
was to determine the Hubble constant from optical and
infrared observations of over 600 Cepheid variables in
the host galaxies of eight SNe Ia, which provide the
calibration for a magnitude-redshift relation based on
240 SNe Ia [47]. Hence, we use the Gaussian prior
of H0 ¼ 73.8� 2.4 km s−1 Mpc−1.
We also use the BAO observations from the 6dF Galaxy

Redshift Survey at low redshift zeff ¼ 0.106 [48], as well as
Data Release 7 main galaxy sample from SDSS at
zeff ¼ 0.15, from the value-added galaxy catalogs hosted
by New York University (NYU-VAGC) [49] and the BAO

signal from the Baryon Oscillation Spectroscopic Survey
Data Release 11 at zeff ¼ 0.57 [50].
Lastly, we use the Planck 2015 data for the CMB. The

Planck temperature and polarization and Planck lensing
likelihood codes may be found in the Planck Legacy
Archive [51].

2. Constraints

Using the data sets described in Sec. III B 1, we conduct
a MCMC parameter estimation analysis with COSMOMC

[52] (see Appendix A for details). We summarize our
constraints on the early-time decaying modified gravity
model of Sec. II in Table I. It is easily noticeable that the
constraining power of the data over the model changes
significantly the later we introduce the oscillations between
the Newtonian potentials (z ≤ zon).
For zon ¼ 1000, allowing both signs for fRi ≡

fRðzi ¼ 1000Þ, we infer a one-dimensional-marginalized
constraint of jfRij < 1.3 × 10−2 (95% C.L.), where we
adopt a flat symmetric prior fRi ∈ ½−0.1; 0.1�. We stress,
however, that positive values of fRi are affected by the
ghost instability discussed in Sec. II D. Considering the
stable branch only with a negative flat prior, we find
jfRij < 1.1 × 10−2. These values are comparable to the
constraints obtained in Ref. [34] on fðRÞ models that
deviate from the ΛCDM expansion history, using back-
ground data alone. Although we note that these constraints
have been inferred for initial modifications at much higher
redshift, ΛCDM is clearly the favored model and we find
no evidence for early-time modifications in the observa-
tions. The constraints we found are mostly driven by two
prominent effects on the CMB that we have observed in
Sec. III A 2: a modification of the Sachs-Wolfe plateau and
of the amplitude of the first peak. However, there is also a
non-negligible contribution of CMB lensing, which is
sensitive to percent-level modifications at high l [53]

TABLE I. Current constraints (95% C.L.) on fRðzi ¼ 1000Þ
from the combination of surveys discussed in Sec. III B 1. Note
that models with a positive sign of fR suffer from a ghost
instability (see Sec. II D) and models with zon ¼ 100 cannot be
constrained within the prior jfRij < 0.1 required for the viability
of the approximations performed in Sec. II B 2. However, a
constraint of jfRij≲ 10−3 on all models will be achievable with
21-cm intensity mapping (see Sec. III C). We also present
constraints on the value of fR at the redshift of decoupling,
zon, and at the present time, z ¼ 0.

zon sgnðfRÞ jfRij≡ jfRðziÞj jfRðzonÞj jfRðz ¼ 0Þj
1000 � < 1.3 × 10−2 < 1.3 × 10−2 < 1.3 × 10−8

500 � < 4.7 × 10−2 < 1.2 × 10−2 < 4.7 × 10−8

100 � � � � � � � � � �
1000 � � � < 1.1 × 10−2 < 1.1 × 10−2 < 1.1 × 10−8

500 � � � < 4.8 × 10−2 < 1.2 × 10−2 < 4.8 × 10−8

100 � � � � � � � � � � � �
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and can constrain the effects of zon ¼ 1000 shown in
Fig. 4. We also note that the present absolute value of
the scalar field, jfR0j≡ jfRðz ¼ 0Þj, is very small and of
order 10−8. This implies that modifications are strongly
suppressed at the smallest scales, where these are propor-
tional to the background value of the scalar field [26] (see
Sec. II B).
Finally, decreasing zon leads to a considerable weakening

of the constraints on the early-time deviation from GR.
With zon ¼ 500, constraints on the scalar field value at
equal redshift weaken by a factor of approximately 4. For
zon ¼ 100, we can no longer constrain the scalar field value
within the prior jfRij < 0.1. This is due to the oscillations
on the slip between the gravitational potentials being
significantly damped out by z ¼ 100, hence only introduc-
ing very small deviations from GR.

C. Outlook: 21-cm and gravitational waves

Finally, we provide rough estimates of the constraints
on early decaying modified gravity that will be achievable
with 21-cm intensity mapping [54–56] and standard
sirens [17,57,58] using gravitational waves emitted by
events at cosmological distances. To estimate constraints
obtainable with 21-cm surveys, we compare deviations
in the matter power spectrum between the model and
ΛCDM to bounds on modified gravity reported in
Ref. [55] at z ¼ 11 and Ref. [56] at z ¼ 2.5. We find
that jfRij≲ 10−3 and jfRij≲ 5 × 10−2 for zon ¼ 1000,
which is competitive with the CMB constraints in Table I.
Standard sirens will constrain the luminosity distance at
z ∼ ð1–2Þ at the ∼1% level, and at the ∼10% level for
z ∼ 7 [59,60]. In modified gravity models, this constraint
can be used to set a bound on the evolution of the Planck
mass [17], which for our model corresponds to a con-
straint of jfRij ≲ 103, which will not be competitive with
the constraints in Table I.

IV. CONCLUSIONS

In this work we explore the current cosmological
constraints that can be inferred on modifications of gravity
which may become significant at early times after recom-
bination and decay toward the present. We choose the
designer hybrid metric-Palatini model as a specific example
of an early-time modification of gravity. Fixing the back-
ground evolution to exactly match ΛCDM, we are able to
separate background constraints from constraints inferred
from the modified dynamics of linear perturbations due to
the impact that these have on the CMB. We also describe
how this model can be realized in the more general context
of the effective field theory formalism of Horndeski gravity,
and study its stability. We conclude that the model is stable
as long as the additional scalar degree of freedom intro-
duced by the hybrid metric-Palatini theory remains negative

with an amplitude smaller than unity, which implies an
effective enhancement of the gravitational coupling.
In order to perform efficient numerical computations,

we develop an approximation for the evolution of the
slip between the Newtonian potentials that is valid beyond
the standard quasistatic subhorizon approximation. This
extension becomes important at high redshifts, where we
show that a quasistatic approach alone breaks down due to
the known oscillations of the linear perturbations of the
model [33].
Using a combination of observational data on the

background evolution and of the CMB anisotropies, we
infer constraints on the allowed early-time deviations from
GR. The results we obtain are dependent on the redshift at
which we introduce the oscillations in the slip between the
gravitational potentials. If these are set at zon ¼ 1000, we
are able to constrain the absolute deviation from GR at zon
to ≲10−2 at the 95% confidence level. This result is
comparable to the constraints obtained from background
data alone in Ref. [34] for fðRÞmodels that depart from the
ΛCDM expansion history.
The constraints we obtain at this redshift can be

attributed to noticeable effects on the CMB power spec-
trum.We are able to observe a substantial shift in the Sachs-
Wolfe plateau due to a modification of the Newtonian
potential Φ at a time close to recombination. There is also a
significant suppression of the first peak due to comple-
mentary variation of the gravitational potentials close to
the epoch of recombination that, together with the non-
negligible presence of radiation, contributes to an early
integrated Sachs-Wolfe effect that can alter the amplitude
and position of the peaks. Smaller contributions to the
constraints can be attributed to CMB lensing, which is
sensitive to the percent-level modifications we observe at
high l. Finally, we find that future 21-cm survey data will
significantly improve upon the CMB constraints, whereas
using gravitational wave events as standard sirens will not
provide competitive bounds.
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APPENDIX A: IMPLEMENTATION
IN MGCAMB

In order to compute the CMB observables, we imple-
ment our early decaying modified gravity model in the
publicly available MGCAMB code [61], a modified version
of the also public CAMB code [62] that allows us to
study the effects of modified gravity models on the
CMB through modifications of the linear equations
describing the growth of perturbations. MGCAMB works
by parametrizing the evolution of the gravitational poten-
tials simply through two time- and scale-dependent func-
tions: the ratio of the metric potentials γða; kÞ≡ Φ=Ψ and
the effective modified gravitational coupling in the Poisson
equation, μða; kÞ ¼ Geff=G. The framework of MGCAMB

is general enough to include possible early-time effects,
hence it is well suited for testing the hybrid metric-Palatini
theory. Moreover, we choose to work with MGCAMB

as it allows us to use the approximations described in
Secs. II B 1 and II B 2 to improve computational efficiency
without loss of accuracy.
We implement our model by modifying both γ and μ

in the code. For γ we use the subhorizon approximation
described in Eq. (19) and add an oscillatory term described
by δfR to account for the early-time oscillations. From
Ref. [33] we note that the gravitational potentials can be
expressed as

Φ ¼ Φþ þ δfR
2ð1þ fRÞ

;

Ψ ¼ Φþ −
δfR

2ð1þ fRÞ
; ðA1Þ

which uses the observation that the early-time oscillations
in δfR do not affect the lensing potential Φþ for small-
enough values of the amplitude of the oscillations. Φþ has
an approximately constant value of unity throughout the
matter-dominated era. Therefore, with Φþ ≫ δfR one can
perform a Taylor expansion on the ratio between the
potentials that results in

γ ¼ Φ
Ψ
≈ 1 −

δfR
ð1þ fRÞ

: ðA2Þ

We compare this approximation against numerical results
in Fig. 5, finding good agreement between the two, at an
accuracy comparable to that observed in Fig. 3 for the slip
between the metric potentials. Given this result, we general-
ize γQS with the simple modification

γMG ≈ γQS þ
δfR

1þ fR
; ðA3Þ

where γQS can be found in Eq. (19). Correspondingly, we
modify μ to include the effect of the oscillations in the
Poisson equation such that

μMG ¼ μQS þ
δfR

2ð1þ fRÞ
; ðA4Þ

where μQS is given in Eq. (16).
Finally, note that the initial conditions required to

solve for the background evolution of our models are
always set at the redshift zi ¼ 1000. As described in
Secs. II C and II D through an embedding in the
effective field theory of Horndeski gravity, the model
is designed to behave as ΛCDM at the level of linear
perturbations down to a redshift zon, at which point the
modifications are introduced. At redshift zi we set
δfR ¼ 0, with its subsequent evolution being deter-
mined by Eq. (21).

APPENDIX B: ANALYTIC SOLUTION
FOR THE INTEGRATED SPRING TERM

Using Eq. (22), we can simplify the w term of Eq. (21)
as

w ≈
�
k2a−2

H2
0E

þ ðaaux −
ffiffiffi
d

p Þ2
2

þ Ωm

Ωm þ ΩΛa3

�1=2
; ðB1Þ

where we have neglected the presence of radiation in
the Hubble factor H ≡H0

ffiffiffiffi
E

p
since applying this

approximation only for redshifts deep within the
matter-dominated era. For k ≫ aH, Eq. (B1) can be
further approximated by

FIG. 5. Relative difference between the numerical evolution of
γ ≡ Φ=Ψ and the approximation in Eq. (A2). (Top panel)
jfRij ¼ 10−4. (Lower panel) jfRij ¼ 10−2. We have again fixed
Ωm ¼ 0.30.
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w ≈
�

k2

a2H2
0E

�
1=2
�
1þ ba2H2

0E
2k2

�
; ðB2Þ

where b ¼ ðaaux −
ffiffiffi
d

p Þ2=2þ Ωm=ðΩm þΩΛa3Þ, which
allows us to perform an analytic integration of
Eq. (21). The result depends on hypergeometric functions
that can, however, be approximated as unity. For sim-
plicity, we therefore present the result without the
presence of these functions:

Z
wd ln a ≈ 2

�
k2a

H2
0Ωm

�
1=2

þ ½aaux −
ffiffiffi
d

p �2
4

�
ΩmH2

0

k2a

�
1=2

×

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm

ΩΛ
a3 þ 1

s
− 3

!
−Ωm

�
H2

0

k2a

�
1=2

:

ðB3Þ

In the limit of k ≪ aH, we can instead approximate
w as

w ≈
ffiffiffi
b

p �
1þ 1

2

k2

a2H2
0Eb

�
: ðB4Þ

To perform an analytic integration, we use the
approximation b ≈ ðaaux −

ffiffiffi
d

p Þ2=2þ 1, which results
in Z

wd ln a ≈
ffiffiffi
b

p
þ 1

2
ffiffiffi
b

p k2a
H2

0Ωm
: ðB5Þ

We compare the implementation of the approxima-
tions in Eqs. (wappsamllk) and (B5) against numerical
results in Fig. 3, finding good agreement between
the two.

[1] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys.
Rep. 513, 1 (2012).

[2] K. Koyama, Rep. Prog. Phys. 79, 046902 (2016).
[3] A. Joyce, L. Lombriser, and F. Schmidt, Annu. Rev. Nucl.

Part. Sci. 66, annurev-nucl-102115-044553 (2016).
[4] T. Abbott et al. (Dark Energy Survey Collaboration), arXiv:

astro-ph/0510346.
[5] K. S. Dawson et al., Astron. J. 151, 44 (2016).
[6] R. Laureijs et al., European Space Agency Report No. ESA/

SRE(2011)12, 2011.
[7] A. G. Riess et al., Astron. J. 116, 1009 (1998).
[8] S. Perlmutter et al., Astrophys. J. 517, 565 (1999).
[9] A. G. Riess et al., Astrophys. J. 659, 98 (2007).

[10] R. Amanullah et al., Astrophys. J. 716, 712 (2010).
[11] T. Padmanabhan, Phys. Rep. 380, 235 (2003).
[12] L. Lombriser and N. A. Lima, arXiv:1602.07670.
[13] C. H. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).
[14] A. Nicolis, R. Rattazzi, and E. Trincherini, Phys. Rev. D 79,

064036 (2009).
[15] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451

(2010).
[16] G.W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
[17] L. Lombriser and A. Taylor, J. Cosmol. Astropart. Phys. 03

(2016) 031.
[18] L. Lombriser, Phys. Rev. D 83, 063519 (2011).
[19] P. Brax, C. van de Bruck, S. Clesse, A.-C. Davis, and G.

Sculthorpe, Phys. Rev. D 89, 123507 (2014).
[20] K. Kohri, Y. Oyama, T. Sekiguchi, and T. Takahashi,

arXiv:1608.01601.
[21] M. G. Santos et al., arXiv:1501.03989.
[22] J. Gleyzes, D. Langlois, and F. Vernizzi, Int. J. Mod. Phys. D

23, 1443010 (2014).
[23] L. Pogosian and A. Silvestri, Phys. Rev. D 77, 023503

(2008).

[24] B. Jain and J. VanderPlas, J. Cosmol. Astropart. Phys. 10
(2011) 032.

[25] L. Lombriser, F. Simpson, and A. Mead, Phys. Rev. Lett.
114, 251101 (2015).

[26] T. Harko, T. S. Koivisto, F. S. N. Lobo, and G. J. Olmo,
Phys. Rev. D 85, 084016 (2012).

[27] S. Capozziello, T. Harko, F. S. N. Lobo, and G. J. Olmo, Int.
J. Mod. Phys. D 22, 1342006 (2013).

[28] S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and
G. J. Olmo, Universe 1, 199 (2015).

[29] G. J. Olmo, Int. J. Mod. Phys. D 20, 413 (2011).
[30] T. Koivisto and H. K.-Suonio, Classical Quantum Gravity

23, 2355 (2006).
[31] S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo,

and G. J. Olmo, J. Cosmol. Astropart. Phys. 04 (2013) 011.
[32] S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and

G. J. Olmo, J. Cosmol. Astropart. Phys. 07 (2013) 024.
[33] N. A. Lima, Phys. Rev. D 89, 083527 (2014).
[34] N. A. Lima and V. S.-Barreto, Astrophys. J. 818, 186

(2016).
[35] K.-i. Umezu, K. Ichiki, and M. Yahiro, Phys. Rev. D 72,

044010 (2005).
[36] S. Galli, A. Melchiorri, G. F. Smoot, and O. Zahn, Phys.

Rev. D 80, 023508 (2009).
[37] L. Lombriser and A. Taylor, Phys. Rev. Lett. 114, 031101

(2015).
[38] L. Lombriser and A. Taylor, J. Cosmol. Astropart. Phys. 11

(2015) 040.
[39] J. Khoury and A. Weltman, Phys. Rev. Lett. 93, 171104

(2004).
[40] W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007).
[41] P. Brax, C. van de Bruck, A.-C. Davis, and D. J. Shaw, Phys.

Rev. D 78, 104021 (2008).
[42] L. Lombriser, Ann. Phys. (Berlin) 526, 259 (2014).

LIMA, SMER-BARRETO, and LOMBRISER PHYSICAL REVIEW D 94, 083507 (2016)

083507-12

http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1088/0034-4885/79/4/046902
http://dx.doi.org/10.1146/annurev-nucl-102115-044553
http://dx.doi.org/10.1146/annurev-nucl-102115-044553
http://arXiv.org/abs/astro-ph/0510346
http://arXiv.org/abs/astro-ph/0510346
http://dx.doi.org/10.3847/0004-6256/151/2/44
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1086/510378
http://dx.doi.org/10.1088/0004-637X/716/1/712
http://dx.doi.org/10.1016/S0370-1573(03)00120-0
http://arXiv.org/abs/1602.07670
http://dx.doi.org/10.1103/PhysRev.124.925
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1007/BF01807638
http://dx.doi.org/10.1088/1475-7516/2016/03/031
http://dx.doi.org/10.1088/1475-7516/2016/03/031
http://dx.doi.org/10.1103/PhysRevD.83.063519
http://dx.doi.org/10.1103/PhysRevD.89.123507
http://arXiv.org/abs/1608.01601
http://arXiv.org/abs/1501.03989
http://dx.doi.org/10.1142/S021827181443010X
http://dx.doi.org/10.1142/S021827181443010X
http://dx.doi.org/10.1103/PhysRevD.77.023503
http://dx.doi.org/10.1103/PhysRevD.77.023503
http://dx.doi.org/10.1088/1475-7516/2011/10/032
http://dx.doi.org/10.1088/1475-7516/2011/10/032
http://dx.doi.org/10.1103/PhysRevLett.114.251101
http://dx.doi.org/10.1103/PhysRevLett.114.251101
http://dx.doi.org/10.1103/PhysRevD.85.084016
http://dx.doi.org/10.1142/S0218271813420066
http://dx.doi.org/10.1142/S0218271813420066
http://dx.doi.org/10.3390/universe1020199
http://dx.doi.org/10.1142/S0218271811018925
http://dx.doi.org/10.1088/0264-9381/23/7/009
http://dx.doi.org/10.1088/0264-9381/23/7/009
http://dx.doi.org/10.1088/1475-7516/2013/04/011
http://dx.doi.org/10.1088/1475-7516/2013/07/024
http://dx.doi.org/10.1103/PhysRevD.89.083527
http://dx.doi.org/10.3847/0004-637X/818/2/186
http://dx.doi.org/10.3847/0004-637X/818/2/186
http://dx.doi.org/10.1103/PhysRevD.72.044010
http://dx.doi.org/10.1103/PhysRevD.72.044010
http://dx.doi.org/10.1103/PhysRevD.80.023508
http://dx.doi.org/10.1103/PhysRevD.80.023508
http://dx.doi.org/10.1103/PhysRevLett.114.031101
http://dx.doi.org/10.1103/PhysRevLett.114.031101
http://dx.doi.org/10.1088/1475-7516/2015/11/040
http://dx.doi.org/10.1088/1475-7516/2015/11/040
http://dx.doi.org/10.1103/PhysRevLett.93.171104
http://dx.doi.org/10.1103/PhysRevLett.93.171104
http://dx.doi.org/10.1103/PhysRevD.76.064004
http://dx.doi.org/10.1103/PhysRevD.78.104021
http://dx.doi.org/10.1103/PhysRevD.78.104021
http://dx.doi.org/10.1002/andp.201400058


[43] E. Bellini and I. Sawicki, J. Cosmol. Astropart. Phys. 07
(2014) 050.

[44] R. K. Sachs and A.M. Wolfe, Astrophys. J. 147, 73 (1967).
[45] M. Betoule et al., Astron. Astrophys. 568, A22 (2014).
[46] A. Conley et al., Astrophys. J. Suppl. 192, 1 (2011).
[47] A. G. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C.

Ferguson, A. V. Filippenko, S. W. Jha, W. Li, and R.
Chornock, Astrophys. J. 730, 119 (2011).

[48] F. Beutler, C. Blake, M. Colless, D. Heath Jones, L.
Staveley-Smith, L. Campbell, Q. Parker, W. Saunders,
and F. Watson, Mon. Not. R. Astron. Soc. 416, 3017 (2011).

[49] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A.
Burden, and M. Manera, Mon. Not. R. Astron. Soc. 449,
835 (2015).

[50] L. Anderson et al., Mon. Not. R. Astron. Soc. 441, 24
(2014).

[51] R. Adam et al. (Planck Collaboration), Astron. Astrophys.
594, A1 (2016).

[52] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002).

[53] E. Calabrese, A. Cooray, M. Martinelli, A. Melchiorri, L.
Pagano, A. Slosar, and G. F. Smoot, Phys. Rev. D 80,
103516 (2009).

[54] P. Madau, A. Meiksin, and M. J. Rees, Astrophys. J. 475,
429 (1997).

[55] P. Brax, S. Clesse, and A.-C. Davis, J. Cosmol. Astropart.
Phys. 01 (2013) 003.

[56] A. Hall, C. Bonvin, and A. Challinor, Phys. Rev. D 87,
064026 (2013).

[57] B. F. Schutz, Nature (London) 323, 310 (1986).
[58] D. E. Holz and S. A. Hughes, Astrophys. J. 629, 15 (2005).
[59] C. Cutler and D. E. Holz, Phys. Rev. D 80, 104009

(2009).
[60] N. Tamanini, C. Caprini, E. Barausse, A. Sesana, A. Klein,

and A. Petiteau, J. Cosmol. Astropart. Phys. 04 (2016) 002.
[61] A. Hojjati, L. Pogosian, and G.-B. Zhao, J. Cosmol.

Astropart. Phys. 08 (2011) 005.
[62] A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538,

473 (2000).

CONSTRAINTS ON DECAYING EARLY MODIFIED … PHYSICAL REVIEW D 94, 083507 (2016)

083507-13

http://dx.doi.org/10.1088/1475-7516/2014/07/050
http://dx.doi.org/10.1088/1475-7516/2014/07/050
http://dx.doi.org/10.1086/148982
http://dx.doi.org/10.1051/0004-6361/201423413
http://dx.doi.org/10.1088/0067-0049/192/1/1
http://dx.doi.org/10.1088/0004-637X/730/2/119
http://dx.doi.org/10.1111/j.1365-2966.2011.19250.x
http://dx.doi.org/10.1093/mnras/stv154
http://dx.doi.org/10.1093/mnras/stv154
http://dx.doi.org/10.1093/mnras/stu523
http://dx.doi.org/10.1093/mnras/stu523
http://dx.doi.org/10.1103/PhysRevD.66.103511
http://dx.doi.org/10.1103/PhysRevD.80.103516
http://dx.doi.org/10.1103/PhysRevD.80.103516
http://dx.doi.org/10.1086/303549
http://dx.doi.org/10.1086/303549
http://dx.doi.org/10.1088/1475-7516/2013/01/003
http://dx.doi.org/10.1088/1475-7516/2013/01/003
http://dx.doi.org/10.1103/PhysRevD.87.064026
http://dx.doi.org/10.1103/PhysRevD.87.064026
http://dx.doi.org/10.1038/323310a0
http://dx.doi.org/10.1086/431341
http://dx.doi.org/10.1103/PhysRevD.80.104009
http://dx.doi.org/10.1103/PhysRevD.80.104009
http://dx.doi.org/10.1088/1475-7516/2016/04/002
http://dx.doi.org/10.1088/1475-7516/2011/08/005
http://dx.doi.org/10.1088/1475-7516/2011/08/005
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1086/309179

