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The possibility that the dark matter comprises primordial black holes (PBHs) is considered, with
particular emphasis on the currently allowed mass windows at 1016–1017 g, 1020–1024 g and 1–103M⊙.
The Planck mass relics of smaller evaporating PBHs are also considered. All relevant constraints (lensing,
dynamical, large-scale structure and accretion) are reviewed and various effects necessary for a precise
calculation of the PBH abundance (non-Gaussianity, nonsphericity, critical collapse and merging) are
accounted for. It is difficult to put all the dark matter in PBHs if their mass function is monochromatic but
this is still possible if the mass function is extended, as expected in many scenarios. A novel procedure for
confronting observational constraints with an extended PBH mass spectrum is therefore introduced. This
applies for arbitrary constraints and a wide range of PBH formation models and allows us to identify which
model-independent conclusions can be drawn from constraints over all mass ranges. We focus particularly
on PBHs generated by inflation, pointing out which effects in the formation process influence the mapping
from the inflationary power spectrum to the PBH mass function. We then apply our scheme to two specific
inflationary models in which PBHs provide the dark matter. The possibility that the dark matter is in
intermediate-mass PBHs of 1–103M⊙ is of special interest in view of the recent detection of black-hole
mergers by LIGO. The possibility of Planck relics is also intriguing but virtually untestable.
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I. INTRODUCTION

Primordial black holes (PBHs) have been a source of
intense interest for nearly 50 years [1], despite the fact that
there is still no evidence for them.One reason for this interest
is that only PBHs could be small enough for Hawking
radiation to be important [2]. This has not yet been confirmed
experimentally and there remain major conceptual puzzles
associated with the process, with Hawking himself still
grappling with these [3]. Nevertheless, this discovery is
generally recognized as one of the key developments in
20th century physics because it beautifully unifies general
relativity, quantum mechanics and thermodynamics. The
fact that Hawking was only led to this discovery through
contemplating theproperties ofPBHs illustrates that it canbe
useful to study something even if it may not exist.
PBHs smaller than about 1015 g would have evaporated

by now with many interesting cosmological consequences.
Studies of such consequences have placed useful con-
straints on models of the early Universe and, more
positively, evaporating PBHs have been invoked to explain
certain features: for example, the extragalactic [4] and

Galactic [5] γ-ray backgrounds, antimatter in cosmic rays
[6], the annihilation line radiation from the Galactic center
[7], the reionization of the pregalactic medium [8] and
some short-period gamma-ray bursts [9]. For more com-
prehensive references, see recent articles by Khlopov [10]
and Carr et al. [11] and the book by Calmet, Carr, and
Winstanley [12]. However, there are usually other possible
explanations for these features, so there is no definitive
evidence for evaporating PBHs.
Attention has therefore shifted to the PBHs larger than

1015 g, which are unaffected by Hawking radiation. Such
PBHs might have various astrophysical consequences, such
as providing seeds for the supermassive black holes in
galactic nuclei [13], the generation of large-scale structure
through Poisson fluctuations [14] and important effects on
the thermal and ionization history of the Universe [15].
For a recent review, in which a particular PBH-producing
model is shown to solve these and several other observa-
tional problems, see Ref. [16]. But perhaps the most
exciting possibility—and the main focus of this paper—
is that they could provide the dark matter which comprises
25% of the critical density, an idea that goes back to
the earliest days of PBH research [17]. Since PBHs formed
in the radiation-dominated era, they are not subject
to the well-known big bang nucleosynthesis (BBNS)
constraint that baryons can have at most 5% of the critical
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density [18]. They should therefore be classed as non-
baryonic and from a dynamical perspective they behave
like any other form of cold dark matter (CDM).
There is still no compelling evidence that PBHs provide

the dark matter, but nor is there for any of the more
traditional CDM candidates. One favored candidate is a
weakly interacting massive particle (WIMP), such as the
lightest supersymmetric particle [19] or the axion [20], but
30 years of accelerator experiments and direct dark-matter
searches have not confirmed the existence of these particles
[21]. One should not be too deterred by this—after all, the
existence of gravitational waves was predicted 100 years
ago, the first searches began nearly 50 years ago [22] and
they were only finally detected by LIGO a few months ago
[23]. Nevertheless, even some theorists have become
pessimistic about WIMPs [24], so this does encourage
the search for alternative candidates.
There was a flurry of excitement around the PBH dark-

matter hypothesis in the 1990s, when the Massive
Astrophysical Compact Halo Object (MACHO) micro-
lensing results [25] suggested that the dark matter could
be in compact objects of mass 0.5M⊙ since alternative
MACHO candidates could be excluded and PBHs of this
mass might naturally form at the quark-hadron phase
transition at 10−5 s [26]. Subsequently, however, it was
shown that such objects could comprise only 20% of the
dark matter and indeed the entire mass range 10−7M⊙ to
10M⊙ was excluded from providing the dark matter [27].
At one point there were claims to have discovered a critical
density of 10−3M⊙ PBHs through the microlensing of
quasars [28] but this claim was met with skepticism [29]
and would seem to be incompatible with other lensing
constraints. Also femtolensing of γ-ray bursts excluded
1017–1020 g PBHs [30], microlensing of quasars con-
strained 10−3–60M⊙ PBHs [31] and millilensing of com-
pact radio sources excluded 106–109M⊙ PBHs [32] from
explaining the dark matter. Dynamical constraints associ-
ated with the tidal disruption of globular clusters,
the heating of the Galactic disk and the dragging of halo
objects into the Galactic nucleus by dynamical friction
excluded PBHs in the mass range above 105M⊙ [33].
About a decade ago, these lensing and dynamical

constraints appeared to allow three mass ranges in which
PBHs could provide the dark matter [34]: the subatomic-
size range (1016–1017 g), the sublunar mass range
(1020–1026 g) and what is sometimes termed the inter-
mediate-mass black-hole (IMBH) range (10–105M⊙).1 The

lowest range may now be excluded by Galactic γ-ray
observations [35] and the middle range—although the first
to be proposed as a PBH dark-matter candidate [17]—is
under tension because such PBHs would be captured by
stars, whose neutron star or white dwarf remnants would
subsequently be destroyed by accretion [36]. One problem
with PBHs in the IMBH range is that such objects would
disrupt wide binaries in the Galactic disk. It was originally
claimed that this would exclude objects above 400M⊙ [37]
but more recent studies may reduce this mass [38], so the
narrow window between the microlensing and wide-binary
bounds is shrinking. Nevertheless, this suggestion is topical
because PBHs in the IMBH range could naturally arise in
the inflationary scenario [39] and might also explain the
sort of massive black-hole mergers observed by LIGO [40].
The suggestion that LIGO could detect gravitational waves
from a population of IMBHs comprising the dark matter
was originally proposed in the context of the population III
“VMO” scenario by Bond and Carr [41]. This is now
regarded as unlikely, since the precursor stars would be
baryonic and therefore subject to the BBNS constraint, but
the same possibility applies for IMBHs of primordial
origin.
Most of the PBH dark-matter proposals assume that the

mass function of the black holes is very narrow (i.e. nearly
monochromatic). However, this is unrealistic and in most
scenarios one would expect the mass function to be
extended. In particular, this arises if they form with the
low-mass tail expected in critical collapse [42]. Indeed, it
has been claimed that this would allow PBHs somewhat
above 1015 g to contribute to both the dark matter and the γ-
ray background [43]. However, this assumes that the “bare”
PBH mass function (i.e. without the low-mass tail) has a
monochromatic form and recently it has been realized that
the tail could have a wider variety of forms if one drops this
assumption [44]. There are also many scenarios (e.g. PBH
formation from the collapse of cosmic strings) in which
even the bare mass function may be extended.
This raises two interesting questions: (i) Is there still a

mass window in which PBHs could provide all of the dark
matter without violating the bounds in other mass ranges?
(ii) If there is no mass scale at which PBHs could provide
all the dark matter for a nearly monochromatic mass
function, could they still provide it by being spread out
in mass? In this paper we will show how to address these
questions for both a specific extended mass function and
for the more general situation. As far as we are aware, this
issue has not been discussed in the literature before and we
will apply this methodology to the three mass ranges
mentioned above. There are subtleties involved when
applying differential limits to models with extended mass
distributions, especially when the experimental bounds
come without a mention of the bin size or when different
limits using different bin sizes are combined. In order to
make model-independent statements, we also discuss

1This term is commonly used to describe black holes inter-
mediate between those which derive from the collapse of ordinary
stars and the supermassive ones which derive from general
relativistic instability, perhaps the remnants of a first generation
of population III stars larger than 102M⊙. Here we use it in a
more extended sense to include the Oð10ÞM⊙ black holes
detected by LIGO.
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which physical effects need to be taken into account in
confronting a model capable of yielding a significant PBH
abundance with relevant constraints. This includes critical
collapse, nonsphericity and non-Gaussianity, all of which
we investigate quantitatively for two specific inflationary
models. We also discuss qualitatively some other exten-
sions of the Standard Model. In principle, this approach
could constrain the primordial curvature perturbations even
if PBHs are excluded as dark-matter candidates [45].
The plan of this paper is as follows: In Sec. II we review

the PBH formation mechanisms. In Sec. III we give a more
detailed description of two inflationary models for PBH
formation, later used to demonstrate our methodology. In
Sec. IV we consider some issues which are important in
going from the initial curvature or density power spectrum
to the PBH mass function. Many of these issues are not
fully understood, but they may have a large impact on the
final mass function, so their proper treatment is crucial in
drawing conclusions about inflationary models from PBH
constraints. In Sec. V we review the constraints for PBHs in
the nonevaporating mass ranges above 1015 g, concentrat-
ing particularly on the weakly constrained region around
Oð10ÞM⊙. In Sec. VI we explore how an extended mass
function can still contain all the dark matter. In order to
make model-independent exclusions, we develop a meth-
odology for applying arbitrary constraints to any form of
extended mass function. In Sec. VII we discuss the new
opportunities offered by gravitational-wave astronomy and
the possible implications of the LIGO events. In Sec. VIII
we summarize our results and outline their implications for
future PBH searches.

II. INTRODUCTION TO PBH FORMATION

PBHs could have been produced during the early
Universe due to various mechanisms. For all of these,
the increased cosmological energy density at early times
plays a major role [46,47], yielding a rough connection
between the PBH mass and the horizon mass at formation:

M ∼
c3t
G

∼ 1015
�

t
10−23 s

�
g: ð1Þ

Hence PBHs could span an enormous mass range: Those
formed at the Planck time (10−43 s) would have the Planck
mass (10−5 g), whereas those formed at 1s would be as
large as 105M⊙, comparable to the mass of the holes
thought to reside in galactic nuclei. By contrast, black holes
forming at the present epoch (e.g. in the final stages of
stellar evolution) could never be smaller than about 1M⊙.
In some circumstances PBHs may form over an extended
period, corresponding to a wide range of masses. Even
if they form at a single epoch, their mass spectrum could
still extend much below the horizon mass due to “critical
phenomena” [42–44,48–54], although most of the PBH

density would still be in the most massive ones. We return
to these points in Sec. IV.

A. Formation mechanisms

The high density of the early Universe is a necessary but
not sufficient condition for PBH formation. One possibility
is that there were large primordial inhomogeneities, so that
overdense regions could stop expanding and recollapse. In
this context, Eq. (1) can be replaced by the more precise
relationship [11]

M ¼ γMPH ≈ 2.03 × 105γ

�
t
1s

�
M⊙: ð2Þ

Here γ is a numerical factor which depends on the details
of gravitational collapse. A simple analytical calculation
suggests that it is around ð1= ffiffiffi

3
p Þ3 ≈ 0.2 during the radi-

ation era [55], although the first hydrodynamical calcu-
lations gave a somewhat smaller value [56]. The favored
value has subsequently fluctuated as people have per-
formed more sophisticated computations but now seems
to have settled at a value of around 0.4 [57].
It has been claimed that a PBH cannot be much larger

than the value given by Eq. (1) at formation, else it would
be a separate closed universe rather than a part of our
Universe [47,58]. While there is a separate-universe scale
and Eq. (1) does indeed give an upper limit on the PBH
mass, the original argument is not correct because the PBH
mass necessarily goes to zero on the separate-universe scale
[59,60]. However, the effective value of γ in Eq. (2) could
exceed 1 in some circumstances. In particular, if a PBH
grows as a result of accretion, its final mass could well be
larger than the horizon mass at formation.
As discussed in numerous papers, the quantum fluctua-

tions arising in various inflationary scenarios are a possible
source of PBHs. In some of these scenarios the fluctuations
generated by inflation are “blue” (i.e. decrease with
increasing scale) and this means that the PBHs form shortly
after reheating [61–64]. Others involve some form of
“designer” inflation, in which the power spectrum of the
fluctuations—and hence PBH production—peaks on some
scale [65–90]. In other scenarios, the fluctuations have a
“running index,” so that the amplitude increases on
smaller scales but not according to a simple power law
[44,63,91–103]. PBH formation may also occur due to
some sort of parametric resonance effect before reheating
[104–109]. In this case, the fluctuations tend to peak on a
scale associated with reheating. This is usually very small
but several scenarios involve a secondary inflationary phase
which boosts this scale into the macroscopic domain.
Recently there has been a lot of interest in the formation
of intermediate-mass PBHs in the “waterfall” scenario
[39,110–112] and the generation of PBH dark matter in
supergravity inflation models is discussed in Ref. [113]. It
has been claimed [114] that any multiple-field inflationary

PRIMORDIAL BLACK HOLES AS DARK MATTER PHYSICAL REVIEW D 94, 083504 (2016)

083504-3



model which generates enough PBHs to explain the dark
matter is ruled out because it also generates an unaccept-
ably large isocurvature perturbation due to the inherent
non-Gaussianities in these models. We will discuss this in
more detail in Sec. IV.
Whatever the source of the inhomogeneities, PBH

formation would be enhanced if there was a sudden
reduction in the pressure—for example, at the QCD era
[115–117]—or if the early Universe went through
a dustlike phase at early times as a result of either being
dominated by nonrelativistic particles for a period
[118–120] or undergoing slow reheating after inflation
[62,121]. Another possibility is that PBHs might have
formed spontaneously at some sort of phase transition, even
if there were no prior inhomogeneities, for example from
bubble collisions [122–128] or from the collapse of cosmic
strings [129–137], necklaces [138,139] or domain walls
[140–145]. Braneworld scenarios with a modified-gravity
scale of ∼1 TeV may lead to the production of lunar-mass
PBHs [146].

B. Collapse fraction

The fraction of the mass of the Universe in PBHs on
some mass-scale M is epoch dependent but its value at the
formation epoch of the PBHs is denoted by βðMÞ. The
current density parameter ΩPBH (in units of the critical
density) associated with unevaporated PBHs which form at
a redshift z or time t is roughly related to β by [55]

ΩPBH ≃ βΩrð1þ zÞ ∼ 106β

�
t
1 s

�
−1=2

∼ 1018β

�
M

1015 g

�
−1=2

ðM > 1015 gÞ; ð3Þ

where Ωr ∼ 10−4 is the density parameter of the cosmic
microwave background (CMB) and we have used Eq. (1).
The (1þ z) factor arises because the radiation density
scales as ð1þ zÞ4, whereas the PBH density scales as
ð1þ zÞ3. Any limit on ΩPBH therefore places a constraint
on βðMÞ. The parameter ΩPBH must be interpreted with
care for PBHs which have already evaporated, since they no
longer contribute to the cosmological density. Note that
Eq. (3) assumes that the PBHs form in the radiation-
dominated era, in which case β is necessarily small.
We can determine the relationship (3) more precisely

for the standard ΛCDM model, in which the age of the
Universe is t0 ¼ 13.8 Gyr, the Hubble parameter is h ¼
0.68 [147] and the time of photon decoupling is tdec ¼
380 kyr [148]. If the PBHs have a monochromatic mass
function, then the fraction of the Universe’s mass in PBHs
at their formation time ti is related to their number density
at ti and t0 by [11]

βðMÞ≡MnPBHðtiÞ
ρðtiÞ

≈ 7.98 × 10−29γ−1=2
�

g�i
106.75

�
1=4

×

�
M
M⊙

�
3=2

�
nPBHðt0Þ
1 Gpc−3

�
; ð4Þ

where we have used Eq. (2) and g�i is the number of
relativistic degrees of freedom at PBH formation. g�i is
normalized to its value at around 10−5 s since it does not
increase much before that in the Standard Model and that is
the period in which most PBHs are likely to form. The
current density parameter for PBHs which have not yet
evaporated is therefore

ΩPBH ¼ MnPBHðt0Þ
ρcrit

≈
�

βðMÞ
1.03 × 10−8

��
h

0.68

�
−2
γ1=2

×

�
g�i

106.75

�
−1=4

�
M
M⊙

�
−1=2

; ð5Þ

which is a more precise form of Eq. (3). Since β always
appears in combination with γ1=2g−1=4�i h−2, we follow
Ref. [11] in defining a new parameter

β0ðMÞ≡ γ1=2
�

g�i
106.75

�
−1=4

�
h

0.68

�
−2
βðMÞ; ð6Þ

where g�i and h can be specified very precisely but γ is
rather uncertain.
An immediate constraint on β0ðMÞ comes from the limit

on the CDM density parameter, ΩCDMh2 ¼ 0.110� 0.006
with h ¼ 0.72, so the 3σ upper limit is ΩPBH < ΩCDM <
0.25 [149]. This implies

β0ðMÞ < 2.04 × 10−18
�
ΩCDM

0.25

��
M

1015 g

�
1=2

ðM ≳ 1015 gÞ:

ð7Þ

However, this relationship must be modified if the
Universe ever deviates from the standard radiation-
dominated behavior. The expression for β0ðMÞ may also
be modified in some mass ranges if there is a second
inflationary phase [150] or if there is a period when the
gravitational constant varies [151] or there are extra
dimensions [152].
Any proposed model of PBH formation must be con-

fronted with constraints in the mass range where the
predicted PBH mass function peaks. These constraints
are discussed in Sec. V and expressed in terms of the ratio
of the current PBH mass density to that of the CDM
density:

f≡ ΩPBH

ΩCDM
≈4.8ΩPBH¼4.11×108β0ðMÞ

�
M
M⊙

�
−1=2

; ð8Þ
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where we assume ΩCDM ¼ 0.21. We can also write this as

f ¼ βeq=Ωeq
CDM ≈ 2.4βeq; ð9Þ

where βeq is the PBH mass fraction at matter-radiation
equality. This procedure will be applied in Sec. IV to two
specific models, the axionlike curvaton model and running-
mass inflation (specified in detail in the next section). We
will also demonstrate the influence of critical collapse,
nonsphericity and non-Gaussianity on the PBH dark-matter
fraction.

C. Extended versus monochromatic mass functions

As regards the representation of constraints for extended
mass functions, one approach is to integrate the differential
mass function dn=dM over a mass window of width M at
each M, giving the continuous function

nðMÞ ¼ M
dn
dM

¼ dn
d lnM

: ð10Þ

Here nðMÞ can be interpreted as the number density of
PBHs in the mass range (M, 2M). One can then define the
quantities

ρðMÞ ¼ M2
dn
dM

; fðMÞ ¼ ρðMÞ
ρCDM

; ð11Þ

which correspond to the mass density and dark-matter
fraction, respectively, in the same mass range. This is
equivalent to breaking the mass up into bins and has the
advantage that one can immediately see where most of
the mass is. If one knows the expected mass function, one
can plot nðMÞexp or ρðMÞexp in the same figure as the
constraints to see which one is strongest. Alternatively, one
can define nðMÞ, ρðMÞ and fðMÞ as integrated values for
PBHs with mass larger or smaller than M. However, these
are only simply related to the functions defined above for a
power-law spectrum.
The above representations are problematic if the width of

the mass function is less than M. Indeed, one might define
an extended mass function as one with a width larger than
M, in which case we have seen that one can always specify
an effective value fðMÞ at each mass scale. The situation
for monochromatic mass functions is generally more
complicated, although it is straightforward if the mass
function is a delta function (i.e. exactly monochromatic).
The problem arises if it is nearly monochromatic (i.e. with
width ΔM ≪ M). This is discussed in more detail in
Ref. [35].
Although a precisely monochromatic mass spectrum is

clearly unphysical, one would only expect the mass
function to be very extended if the PBHs formed from
exactly scale-invariant density fluctuations [55] or from the
collapse of cosmic strings [130]. In this case, one has

dn
dM

∝ M−5=2; nðMÞ ∝ M−3=2;

ρðMÞ ∝ fðMÞ ∝ M−1=2; βðMÞ ¼ const: ð12Þ

This is not expected in the inflationary scenario but in most
circumstances the spectrum would still be extended enough
to have interesting observational consequences, since the
constraint on one mass scale may also imply a constraint on
neighboring scales. We have mentioned that the mono-
chromatic assumption fails badly if PBHs form through
critical collapse and the way in which this modifies the
form of βðMÞ has been discussed by Yokoyama [43]. This
will be discussed in more detail in Sec. IV.

III. SPECIFIC MODELS

For a large fraction of PBH formation scenarios, an
extended feature in the primordial density power spectrum
is generic. This leads to a nonmonochromatic PBH mass
spectrum. As demonstrated in the next section, even an
initially peaked spectrum of density perturbation will
acquire a significant broadening. In light of the recent
detection of merging black holes in the intermediate-mass
range 10 M⊙ < M < 102M⊙ by the LIGO and Virgo
Collaboration [23,153], we consider below some models
which are capable of producing PBHs in this or one of the
other two possible mass intervals. We look first at running-
mass inflation and the axionlike curvaton model. These are
chosen because their parameters can be tuned so as to give a
peak in PBH production in any of the three ranges we
would like to investigate. They also have the advantage of
not being ruled out by non-Gaussianity effects. We will
determine the mass functions explicitly in Sec. IV and
confront them with recent observational bounds in Sec. VI.
We will also briefly review scale-invariant mass functions.

A. Running-mass inflation

PBH formation in the running-mass model [93,94] has
been intensively studied in Refs. [101–103]; see also
Ref. [63] for a discussion of constraints and Ref. [44] for
an investigation of critical collapse in these models. Perhaps
the simplest realisation of this is the inflationary potential

VðϕÞ ¼ V0 þ
1

2
m2

ϕðϕÞϕ2; ð13Þ

where ϕ is the scalar field andV0 is a constant. There exists a
plethora of embeddings of this model in various frameworks,
such as hybrid inflation [154], which lead to different
functions mϕðϕÞ. These yield distinct expressions for the
primordial density power spectra whose variance can be
recast into the general form [102]

½σðkÞ�2 ≃ 8

81
Pðk⋆Þ

�
k
k⋆

�
nðkÞ−1

Γ
�
nsðkÞ þ 3

2

�
; ð14Þ
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where the spectral indices nðkÞ and nsðkÞ are given by

nðkÞ ¼ nsðk⋆Þ −
1

2!
a ln

�
k
k⋆

�
þ 1

3!
b ln2

�
k
k⋆

�

−
1

4!
c ln3

�
k
k⋆

�
þ � � � ; ð15aÞ

nsðkÞ ¼ nsðk⋆Þ − a ln

�
k
k⋆

�
þ 1

2
b ln2

�
k
k⋆

�

−
1

6
c ln3

�
k
k⋆

�
þ � � � ; ð15bÞ

with real parameters a, b, and c.
As the spectral index and amplitude of the primordial

power spectrum at the pivot scale k⋆ ¼ 0.002 Mpc−1 have
been measured [147,155,156] to be nsðk⋆Þ ≈ 0.96 < 1 and
Pðk⋆Þ ¼ Oð10−9Þ, respectively, models without running
cannot produce an appreciable PBH abundance.
Furthermore, with the measurement of a ¼ −0.003�
0.007 ≪ 1 [147], running alone cannot give sufficient
increase of the power spectrum at early times. One needs
to include at least a running-of-running term, this being
subject only to the weak constraint b≃ 0.02� 0.02
[147,156]. In order to avoid overproduction of PBHs
on the smallest scales, a running-of-running-of-running
parameter is also needed, so a minimal viable model has all
three parameters a, b and c.

B. Axion-curvaton inflation

The original curvaton scenario was introduced by Lyth
et al. [80,81]. The model we investigate here is a variant of
this and was introduced by Kasuya and Kawasaki [82]
(cf. [83,84]). It describes a curvaton moving in an axion
or natural inflation-type potential. For a recent study of
PBH production in this model, including critical collapse,
see Ref. [44].
In this model, the inflaton ϕ is the modulus and the

curvaton χ is related to the phase θ of a complex superfield
Φ. In practice, the inflaton rolls down a potential of the
form

VðϕÞ ¼ 1

2
λH2ϕ2; ð16Þ

where H is the Hubble rate and λ is a constant derived
from combinations of parameters in supergravity theory.
Because of its large mass, the inflaton rolls fast towards
its minimum ϕmin. After this, the curvaton becomes well
defined as χ ¼ ϕminθ ∼ fθ and this becomes the primary
degree of freedom of the superfield. The curvaton is
assumed to move in an axionlike potential, similar to that
of natural inflation [157],

Vχ ¼ Λ4

�
1 − cos

�
χ

f

��
≃ 1

2
m2

χχ
2; ð17Þ

where the last equality holds when χ is close to its
minimum at 0 and the curvaton mass is mχ ¼ Λ2=f. The
particular shape of this potential, which preserves the shift
symmetry peculiar to axions, is what makes this curvaton
axionlike.
The power spectrum of primordial perturbations is

generated by the combined effect of the inflaton and the
curvaton:

PζðkÞ ¼ Pζ;infðkÞ þ Pζ;curvðkÞ: ð18Þ
The first term is dominant on large scales (small k) and the
second on small scales (large k). The inflaton perturbation is
assumed to yield a near scale-invariant spectrum with
Pζ;infðkÞ≃ 2 × 10−9, in accordance with CMB observations
[147,155,156]. This contribution should dominate up to at
least k ∼ 1 Mpc−1. We define kc as the crossing scale at
which the curvaton and inflaton contributions to the power
spectrum are equal and kf as the scale at which the inflaton
reaches its minimum, ϕmin ∼ f, so that the curvaton becomes
well defined.Mc andMf are the horizon masses when these
scales cross the horizon. PBHs cannot form before these
horizon-crossing times, because the perturbations are too
small when MH > Mc, and no curvaton perturbations exist
for MH > Mf. Here Mf can be found explicitly from the
parameters of the theory and has the value

Mf ≈ 1013−12=ðnχ−1Þ
�

gf
100

�
−1=6

�
kc

Mpc−1

�
−2

×

�
Pζ;curvðkfÞ
2 × 10−3

�−2=ðnχ−1Þ
M⊙; ð19Þ

where nχ is the curvaton spectral index and gf is the number
of radiative effective degrees of freedom at the scale kf .
Throughout our considerations, we will follow Ref. [84] in
assuming kc ¼ 1 Mpc−1 and gf ¼ 100.
PBHs cannot form from the inflationary density pertur-

bations, as these are constrained by CMB observations. By
contrast, when the curvaton power spectrum becomes
dominant, it can have much more power and still evade
the CMB bounds, allowing the production of large PBHs.
However, the curvaton perturbations are assumed not to
collapse to PBHs before the inflaton has decayed to
Standard-Model particles. Hence PBHs can only form
with the minimum mass Mmin, these being produced at or
after the curvaton decay time. The exact value for the decay
time—and hence the minimum mass Mmin—is not known,
but it should be smaller than the horizon mass at BBNS
(1038 g), in order not to interfere with this process, and
smaller than Mf to yield PBH production. In Ref. [84],
Mmin=Mf ¼ 10−8 and 10−3 are considered, so we will do
the same here.
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It can be shown that the variance of the density power spectrum due to the curvaton perturbations in a model with an
axionlike curvaton is [84]

σ2δðMHÞ ¼
8

81
Pζ;curvðkfÞ

��
Mf

MH

�ðnχ−1Þ=2
γ

�
nχ − 1

2
;
MH

Mf

�
þ E1

�
MH

MH0

��
ð20Þ

for a horizon mass MH > Mmin. For MH < Mmin, we
assume the curvaton power spectrum which can transform
into PBHs is zero. Due to inhomogeneities of the curvaton
decay, this is not strictly true. However, as in Ref. [84],
we will take this to be a reasonable approximation. The
curvaton spectral index is controlled by the parameter λ:

nχ − 1 ¼ 3 − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

9
λ

r
: ð21Þ

By setting λ ∈ ð1; 9=4�, we can obtain a sufficiently blue
power spectrum of curvature perturbations for the curvaton
to produce PBHs at some scale without violating the CMB
constraints. The minimummassMmin, defined by the decay
time of the curvaton, protects the model from overproduc-
ing PBHs at very small scales in spite of the blue power
spectrum. The functions γ and E1 are given by

γða; xÞ≡
Z

x

0

dt ta−1e−t; ð22aÞ

E1ðxÞ≡
Z

∞

x
dt
e−t

t
; ð22bÞ

which are the lower incomplete gamma function and the
exponential integral, respectively.

C. Scale-invariant mass functions

For a scale-invariant PBH mass function [i.e. with βðMÞ
independent of M], one has ΩPBHðMÞ ∝ M−1=2 and so the
largest contribution to the dark-matter density comes from
the smallest holes. One therefore needs to specify the lower
mass cutoff Mmin and then check that the implied value of
βðMÞ on scales above Mmin does not violate any of the
other PBH constraints. For Mmin < 1015 g, the strongest
constraint is likely to come from the γ-ray background limit
βðM�Þ < 3 × 10−27 [11].
Cosmic strings produce PBHs with a scale-invariant-

mass function, with the lower cutoff being associated with
the symmetry-breaking scale [129–137]. Since ΩPBHðMÞ
decreases with increasing M and ΩPBHð1015 gÞ < 10−8

from the γ-ray background limit, such PBHs cannot provide
the dark matter unless Mmin exceeds 1015 g, which seems
implausible. On the other hand, if evaporating black holes
leave stable Planck-mass relics, these might also contribute
to the dark matter. The discussion in Sec. VI D shows that
the γ-ray background limit excludes relics from providing
all of the dark matter unless M < ð15κÞ2=3MPl.

IV. EXTENDED MASS FUNCTIONS:
CRITICALITY, NONSPHERICITY

AND NON-GAUSSIANITY

The simplest model of PBH formation assumes that the
mass spectrum is monochromatic—with mass comparable
to the horizon mass at formation—and that the PBHs derive
from the collapse of overdensities which are spherical and
have a Gaussian distribution. Given the large uncertainties
in the PBH formation process and the plethora of models
for it, this naïve approach has been adopted in many papers.
This includes Ref. [11], which discusses the numerous
constraints on the PBH abundance as a function of mass on
the assumption that the mass spectrum has a width ΔM of
orderM. As the bounds on the allowed PBH density at each
epoch have become more refined, and since PBHs of
intermediate mass may even have been observed [40], a
more precise treatment of the formation process is neces-
sary. In this section we therefore go beyond the usual
assumptions and attempt a more realistic treatment.

A. Monochromaticity

The monochromatic assumption is a good starting point
if the spread in mass is narrow enough, but this is not very
likely for most inflationary models which produce PBHs
[83,102,111]. As reviewed below, although models exist
with a narrow spectrum, such as the axion-curvaton model
[84] or some phase transition models [117,124,142], more
realistic treatments—involving critical collapse—yield
extended mass functions. This applies even if the PBHs
derive from a very narrow feature in the original power
spectrum, as illustrated in Fig. 1. This can lead to the
misinterpretation of observational constraints, since these
are mostly derived for monochromatic mass functions.
We shall discuss how to treat constraints for extended
mass functions in Sec. VI (cf. a related discussion in
Ref. [35]).

B. Critical collapse

Early research assumed that a sufficiently large over-
density reenters the horizon and collapses to a black hole of
order the horizon mass MH almost immediately. However,
under the assumption of spherical symmetry, it has been
shown [48–50,158,159] that the functional dependence of
the PBH mass M on δ and MH follows the critical scaling
relation
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M ¼ kMHðδ − δcÞγ ð23Þ

for δ > δc. The constant k, the threshold δc and the critical
exponent γ all depend on the nature of the fluid containing
the overdensity δ at horizon crossing [54]. Careful numeri-
cal work [52–54] has confirmed the scaling law (23). In
particular, Fig. 1 of Ref. [53] suggests that it applies over
more than 10 orders of magnitude in density contrast.
Soon after the first studies of critical collapse [158,159],

its application to PBH formation was studied and incorpo-
rated in concrete models [160,161]. The conclusion was
that the horizon-mass approximation was still reasonably
good. However, this conclusion depended on the
assumption that the mass function would otherwise be
monochromatic. As shown in [44] for a variety of infla-
tionary models, when a realistic model of the power
spectrum underlying PBH production is used, the inclusion
of critical collapse can lead to a significant shift, lowering
and broadening of the PBH mass spectra—sometimes by
several orders of magnitude.
Regarding Eq. (23), it has been shown that the critical

exponent γ is independent of the perturbation profile
[54,162], though δc and k may depend on this.
Throughout this work we shall follow the pioneering work
of Ref. [55] and later Ref. [57] in applying the Press-
Schechter formalism [163] for spherical collapse. As a first
approximation, we assume a Gaussian perturbation profile

PðδÞ≡ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−

δ2

2σ2

�
; ð24Þ

which accords well with current CMBmeasurements [164].
As detailed below, this should be generalized to include
simple non-Gaussian profiles, as even the slight non-
Gaussianities permitted by observation may alter the final

PBH abundance [114,165]. The quantity σ is the variance
of the primordial power spectrum of density perturbations
generated by the model of inflation. In radiation-dominated
models, which are the focus of this paper, repeated studies
have shown that γ ≃ 0.36 [50,52–54,159] and δc ≃ 0.45
[52–54]. In accordance with Ref. [42], we set k ¼ 3.3.
As mentioned in Sec. II, a convenient measure of how

many PBHs are produced is the ratio of the PBH energy
density to the total energy density at PBH formation. Using
the Press-Schechter formalism, we can express this as

β ¼
Z

∞

δc

dδ kðδ − δcÞγPðδÞ ≈ kσ2γerfc

�
δcffiffiffi
2

p
σ

�
; ð25Þ

where we assume σ ≪ δc. We have numerically confirmed
the validity of this approximation for our purposes but some
subtleties are involved here. These concern the validity of
the Press-Schechter formalism, the use of the density rather
than curvature power spectrum, and the upper integration
limit. We discuss these points more thoroughly below but
none of them changes the main signatures of critical
collapse, which are the broadening, lowering and shifting.
Nevertheless, these small effects should be accounted for in
obtaining precise constraints on inflationary models.
Following Ref. [42], we next derive the PBH initial mass

function g. We define this as the black-hole number dNPBH
per normalized mass interval dμ, where μ≡M=ðkMHÞ,
within each collapsing horizon2:
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FIG. 1. Effect of critical collapse on the fraction f as a function of black-hole mass in units of solar mass for a quasimonochromatic
mass function (left panel) and for axionlike curvaton (red line) as well as running-mass inflation (blue line) (right panel). The latter
models are specified in Sec. III. Solid lines show the PBH abundances for the horizon-mass collapse estimate; dashed lines show the
same models with critical collapse included.

2Note the slight difference in the definition of the initial mass
function compared to the one in Ref. [42]. The latter is expressed
in terms of a logarithmic derivative, whereas Eq. (26) involves an
ordinary derivative, corresponding to an extra inverse power of μ
on the right-hand side.
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g≡ dNPBH

dμ
≡ 1

β
Pðδ½μ�Þ dδ½μ�

dμ

≃ μ
1
γ−1 exp ½−ðδþ μ

1
γÞ2=ð2σ2Þ�ffiffiffiffiffiffi

2π
p

γσ erfcð δffiffi
2

p
σ
Þ : ð26Þ

Here the factor 1=β is required to normalize g so thatR
dμgðμÞ ¼ 1. In deriving Eq. (26), we have used the

Gaussian profile (24) for the amplitude of the fluctuations,
the last relation holding for σ ≪ δc. When we apply the
critical-collapse scenario in the subsequent sections, we
will follow the procedure outlined at the end of Sec. II in
Ref. [44]. In particular, given a certain horizon mass, this
means that we must consider how the PBH mass distribu-
tion is spread around the initial mass function g. Each
contribution has to be evolved from the time of PBH
formation to the time of radiation-matter equality, so that
the dark-matter fraction f, given by Eq. (9), can be
evaluated by summing over the individual contributions
from each horizon mass.
Examples of how critical collapse affects the abundance

and mass distribution of PBHs can be seen in Fig. 1. The
left panel shows the application of the above scheme for
critical collapse to a nearly monochromatic feature in the
initial density perturbations. As can be seen, the resulting
mass function is far from monochromatic and yields PBHs
over a wide range of masses. In the right panel of Fig. 1 our
scheme has been applied to initial perturbation spectra from
two inflationary models, the axionlike curvaton model and
a running-mass model, the details of which have been
discussed in Sec. III. In all cases, the change in shape and
mass range due to critical collapse is clearly visible. This is
particularly true for the axionlike curvaton model or the
critical-collapse version of the monochromatic function
where the slope for masses smaller than its initial peak is
entirely due to critical collapse. Figure 7 of Ref. [35] shows
the same behavior; i.e. the power-law tails towards lower
masses are equivalent.

C. Nonsphericity

The above results rely on the assumption of spherical
collapse. The inclusion of nonsphericity is significantly
more complicated and has not been subject to extensive
numerical studies of the kind in Ref. [54]. Inspired by
related work on gravitational collapse in the context of
galactic halo formation. where it has been known for a long
time (cf. [166]) that nonzero ellipticity leads to possibly
large effects, Ref. [167] shows that this also holds for
PBH mass spectra. One essential consequence is that the
threshold value is increased and can generically be
approximated as

δec
δc

≃ 1þ κ

�
σ2

δ2c

�
γ

; ð27Þ

with δc being the threshold value for spherical collapse and
σ2 the amplitude of the density power spectrum at the given
scale. In Ref. [166] the above result was derived and
numerically confirmed for a limited class of cosmologies,
mostly relevant to structure formation, where κ and γ were
found to be 0.47 and 0.62, respectively. In particular, this
does not include the case of ellipsoidal collapse in a
radiation-dominated model, which is most relevant for
PBH formation.
In Ref. [167] it was argued that a relation of the form of

Eq. (27) should hold for ellipsoidal gravitational collapses
in arbitrary environments. Schematically, the argument
goes as follows: The collapse starts along the smallest
axis and thereafter the longer axes collapses faster than
linearly [168]. The mass dependence of the overdensity
δðMÞ suggests that the density perturbation in the primary
collapsing sphere—with radius equal to the shortest axis—
will be smaller by δðΔMÞ. Here ΔM accounts for the
difference in mass M of a sphere and an ellipsoid. By
considering Gaussian-distributed overdensities, it can be
shown that the expectation values for the shape of over-
densities are [168–170]

hei ¼ 3σffiffiffiffiffiffiffiffi
10π

p
δ
; hpi ¼ 0; ð28Þ

where e is the ellipticity and p the prolateness, which runs
from p ¼ e in the maximally prolate case to p ¼ −e in the
maximally oblate case. Since the collapse is initiated along
the shortest axis, it may be compared to that of the largest
sphere contained within it. The volume of the ellipsoid is
then Ve ¼ Vsð1þ 3eÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3e
p

. Taking the ellipsoid to be
of uniform density, combined with the demand that the
density threshold should be exceeded in the enclosed
sphere, leads to an increase in mass Me ¼ MsVe=Vs. As
the density contrast associated with a given mass roughly
scales as δðMÞ ∼M2=3 in the PBH case [55], to first order in
the ellipticity this leads to Eq. (27) with κ ¼ 9=

ffiffiffiffiffiffiffiffi
10π

p
and γ ¼ 1=2.
In more realistic situations, these values will not be

exact and a thorough numerical investigation is needed to
precisely determine the change of the threshold for fully
relativistic nonspherical collapse. In particular, the above
derivation assumes a uniform density in the ellipsoid,
whereas a density profile with higher density in the central
regions seems more realistic. This should lead to a less
pronounced effect. However, the effect will always be an
increase in the threshold, leading to a general suppression
of the mass spectrum.
The left panel of Fig. 2 shows the effect of nonsphericity

on the PBH mass fraction f, which is given as a function of
black-hole mass for the axionlike curvaton model (red
curve) and the running-mass model (blue curve). (These
will be discussed in detail in Sec. VI.) For both models, the
solid lines involve only critical collapse, while the dotted
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lines also include the effect of ellipticity according to our
naïve model with κ ¼ 9=

ffiffiffiffiffiffiffiffi
10π

p
and γ ¼ 1=2. One can see a

significant global shift downwards. This general behavior is
expected because nonspherical effects raise the formation
threshold, making it harder for PBHs to form.
Although the exact amount of suppression due to non-

sphericity is not known, the functional form of the mass
spectrum is essentially unchanged. Also there is degen-
eracy with the effects of other parameters. Therefore we
will not include this effect explicitly when comparing
models with observational constraints in Sec. VI.
Nevertheless, if one wants to use PBH constraints on
concrete inflationary theories, the suppression due to
nonsphericity should be properly accounted for. In fact,
for precise constraints, numerical relativistic modeling of
ellipticity is required.
Note also that if the overdensities are non-Gaussian, the

ellipticity is no longer given by Eq. (28) and one should pay
attention to the interplay between these two effects. We will
not take this into account here, as an exact knowledge of the
non-Gaussianities is needed, but the main effect will again
be to change the amount by which the amplitude is shifted.
These uncertainties will hence be degenerate with uncer-
tainties in the ellipticity effects.

D. Non-Gaussianity

As PBHs form from the extreme high-density tail of the
spectrum of fluctuations, their abundance is acutely sensi-
tive to non-Gaussianities in the density-perturbation profile
[165,171]. For certain models—such as the hybrid water-
fall or simple curvaton models [110,172,173]—it has even
been shown that no truncation of non-Gaussian parameters
can be made to the model without changing the estimated
PBH abundance [165]. However, non-Gaussianity-induced

PBH production can have serious consequences for the
viability of PBH dark matter. PBHs produced with non-
Gaussianity lead to isocurvature modes that could be
detected in the CMB [114,174]. With the current Planck
exclusion limits [147], this leads to a constraint on the non-
Gaussianity parameters for a PBH-producing theory of
roughly jfNLj; jgNLj < 10−3. For theories like the curvaton
and hybrid inflation models [111,154], this leads to the
immediate exclusion of PBH dark matter, as the isocurva-
ture effects would be too large. Reference [175] claims this
isocurvature production is generic to PBHs, since they
represent very large perturbations. However, the analysis
was probably not appropriate for PBHs from a generic
source. It is important to note that these constraints can
change somewhat if the non-Gaussianities are nonlocal or
non-scale-invariant. They are also weakly dependent on
the PBH mass, so care should be taken in making definite
statements about particular theories when the magnitude
of the non-Gaussianities lies close to the bound (see
Ref. [114] for details).
Even if PBHs are produced in the multifield models, they

do not give isocurvature modes on the CMB scale if the
CMB and PBH scale are sufficiently decoupled (so that one
effectively has a single-field model on the CMB scale).
This is because the CMB-scale isocurvature modes are
caused by the non-Gaussian correlation between the CMB
and PBH scales. Although the non-Gaussian constraints
jfNLj, jgNLj < 10−3 apply in the isocurvature case, these
parameters should be evaluated as a correlation between the
CMB and PBH scales and this is generally unrelated to the
values of fNL and gNL on the CMB scale [174].
In order to be realistic, non-Gaussianities should be

taken properly into account when considering a model
for PBH production. If a certain model with a manifest
inflationary origin is considered, the non-Gaussianity
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FIG. 2. Fraction f as a function of black-hole mass in units of solar mass for axionlike curvaton (red curve) as well as running-mass
inflation (blue curve); the models are specified in Sec. VI. Left panel: Effect of nonsphericity (dotted lines), with parameters κ ¼
9=

ffiffiffiffiffiffiffiffi
10π

p
and γ ¼ 1=2 [see Eq. (27)]. Right panel: Effect of non-Gaussianity (dot-dashed curves), where we chose fNL ¼ þ0.005 (lower

curve) and fNL ¼ −0.005 (upper curve). In both cases the parameter choices are made for illustrative purpose (see main text for details).
Critical collapse is assumed throughout the plots.
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parameters should first be obtained. If their values are
higher than the above bound, the model is already excluded
as a producer of PBH dark matter. In fact, for a realistic
treatment of PBH dark-matter production from an infla-
tionary model, this should be the first constraint to consider,
as no further investigation of the model is necessary if the
non-Gaussianity is too large. If it falls below this limit, it
should still be taken into account when calculating abun-
dances. Examples of how this is done in practice can be
found in Refs. [114,165].
We show an example of the effect of non-Gaussianity in

the right panel of Fig. 2 for the axionlike curvaton (red curve)
and running-mass inflation (blue curve) models (to be
specified in Sec. VI). Again, the solid curves include only
critical collapse, while the dot-dashed curves are for
fNL ¼ �0.005. Here, the lower and upper curves corre-
spond to the plus and minus signs, respectively. We have
checked that the inclusion of gNL does not have a large effect.
The chosen values are of course not precisely accurate for
these models; rather they demonstrate the qualitative effect
of non-Gaussianity 5 times larger than the allowed values. In
general, the effect is similar to that seen for ellipticity in the
left panel of Fig. 2. However, for reasonable values of the
non-Gaussianity, the effect is much smaller.
To obtain more precise results, the full nature of the non-

Gaussianity should be accounted for. In this work, however,
rather than focusing on particular models, we will consider
the possibility of nonconstrained windows for PBHs to
comprise all of the dark matter. We will therefore neglect
non-Gaussian effects in our subsequent analysis. More
importantly, although not visible directly in our plots,
constraints from non-Gaussianity-induced isocurvature
must also be considered. This excludes at the outset the
production of PBH dark matter in multifield models.
However, the two models discussed in this paper are not
affected by this claim: Our running-mass model is not
multifield and our axion-curvaton model does not produce
curvaton fluctuations on the CMB scale.

E. Miscellaneous caveats

In addition to the issues mentioned above, some more
technical issues concerning the PBH mass spectrum
expected from inflationary models have been discussed
in the literature. However, none of them are expected to
lead to effects which are quantitatively large.
First, we have chosen to use the Press-Schechter for-

malism for obtaining the mass spectrum from the pertur-
bations. Alternatively, one could calculate the mass fraction
using peaks theory [170]. Recently, there has been some
discussion [176] of whether these two formalisms predict
different values for f. If precise constraints on inflationary
models are to be obtained from PBH production, this issue
should be resolved. However, the signature of this effect
would not be a shift or broadening, so the critical collapse
effects would be distinguishable from this. In addition, the

difference will presumably be much less than the uncer-
tainty in the nonspherical collapse situation. As the issue is
currently unresolved, we use Press-Schechter here but
attention should be paid to this in the future.
A second (related) subtlety concerns the cloud-in-cloud

problem [177], which involves the overcounting of small
PBHs contained in larger PBHs. This would lead to
suppression at the low-mass end of the spectrum. This
might counteract the effect of critical collapse but would
not occur for spectra deriving from very localized features
in the perturbation spectrum. How to account for this is not
settled and it is better addressed using peaks theory. Here
we will ignore this issue but for precise constraints it should
be dealt with properly.
Third, there is the claim [47] that an overdense region

represents a separate closed universe rather than a part of
our Universe if δ exceeds 1. In integral (25) we have
extended the upper integration above δ ¼ 1, in contrast to
what was done in Ref. [42]. However, Ref. [59] claims that
there is no separate-universe constraint. This is because the
meaning of the density perturbation needs to be specified
very carefully on large scales: δ necessarily goes to zero on
the separate-universe scale, even though the curvature
perturbation diverges. A subsequent discussion [60] agrees
with this conclusion but stresses that the separate-universe
scale is still interesting because it relates to the maximum
mass of a PBH forming at any epoch. In any case, the
integrand for large values of δ is so small that this does not
make much difference in practice.
Fourth, there are in principle two choices of power

spectra from the inflationary models: the curvature power
spectrum ζ and the density power spectrum δ. We choose
the latter as this seems to be more accurate for an in-depth
discussion (cf. [176]). This might also link with the
separate-universe and cloud-in-cloud issues [59,178].
Furthermore, Young, Byrnes, and Sasaki [176] have argued
that using ζ instead of δ to calculate the PBH abundance
may yield Oð1Þ errors due to the spurious influence of
superhorizon modes.
Fifth, when we evolve our PBH densities through the

radiation-dominated epoch, we use a simplified model of
cosmic expansion, assuming complete radiation domina-
tion until matter-radiation equality. A more refined treat-
ment should be applied if we are trying to exclude an
inflationary model on account of the overproduction of
dark matter. However, for the purposes of this paper, this
assumption has very little impact. Also this type of
modeling would be problematic if one produced more
PBHs than there is cold dark matter, as this would change
the time of matter-radiation equality, leading to other
problems. Careful consideration of this effect may be
needed when considering otherwise unconstrained models
for the production of evaporating PBHs.
Sixth, once produced, PBHs not only lose mass through

Hawking radiation but can also grow by accreting matter
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and/or radiation or by merging with other PBHs. While
Hawking radiation is completely negligible for
intermediate-mass PBHs, their growth can be very impor-
tant in the matter-dominated epoch [47,179,180]. For
instance, it has been conjectured that PBHs with a mass
of 102–104M⊙ could provide seeds for the supermassive
black holes of up to 1010M⊙ in the centers of galaxies
[181]. However, this involves a growth of many orders of
magnitude and careful numerical integration is required to
study this, allowing for the dilution of the PBHs due to
cosmic expansion and the merger of the smaller ones
originating from critical collapse. The clustering of PBHs
will also have significant effects on their merger rates
[55,182,183]. In particular, Chisholm [175] showed that
the clustering would produce an inherent isocurvature
perturbation and used this to constrain the viability of
PBHs as dark matter. Later he studied the effect of
clustering on mergers [184] and found that these could
dominate over evaporation, causing PBHs with mass below
1015 g to combine and form heavier long-lived black holes
rather than evaporating. So far, no compelling study of this
effect has been carried out for a realistic mass spectrum, so
we will not include it in our discussion below.

V. SUMMARY OF CONSTRAINTS ON
MONOCHROMATIC NONEVAPORATED

BLACK HOLES

We now review the various constraints associated with
PBHs which are too large to have evaporated yet, updating
the equivalent discussion which appeared in Carr et al. [11].
All the limits assume that PBHs cluster in the Galactic halo
in the same way as other forms of CDM. In this case, the
fraction fðMÞ of the halo in PBHs is related to β0ðMÞ by
Eq. (8). Our limits on fðMÞ are summarized in Fig. 3,
which is an updated version of Fig. 8 of Ref. [11]. A list of
approximate formulas for these limits is given in Table I.
Both Fig. 3 and Table I are intended merely as an overview
and are not exact. A more precise discussion can be found
in the original references. Many of the constraints depend
on other physical parameters, not shown explicitly. In
general, we show only the most stringent constraints in
each mass range, although constraints are sometimes
omitted when they are contentious. Further details of these
limits and similar figures can be found in other papers:
for example, Table 1 of Josan, Green, and Malik [45], Fig. 4
of Mack, Ostriker, and Ricotti [185], Fig. 9 of Ricotti,
Ostriker, and Mack [15], Fig. 1 of Capela, Pshirkov, and
Tinyakov [36] and Fig. 1 of Clesse and Garcia-Bellido
[186]. We group the limits by type and discuss those within
each type in order of increasing mass. Since we are also
interested in the mass ranges for which the dark-matter
fraction is small, where possible we express each limit in
terms of an analytic function fmaxðMÞ over some mass
range. We do not cover Planck-mass relics, since the only

constraint on these is that they must have less than the
CDM density, but we do discuss them further in Sec. VI.

A. Evaporation constraints

A PBH of initial mass M will evaporate through the
emission of Hawking radiation on a time scale τ ∝ M3

which is less than the present age of the Universe forM less
than M� ≈ 5 × 1014 g [35]. PBHs with M > M� could still
be relevant to the dark-matter problem, although there is a
strong constraint on fðM�Þ from observations of the
extragalactic γ-ray background [4]. Those in the narrow
band M� < M < 1.005M� have not yet completed their
evaporation but their current mass is below the mass
Mq ≈ 0.4M� at which quark and gluon jets are emitted.
For M > Mc, there is no jet emission.
For M > 2M�, one can neglect the change of mass

altogether and the time-integrated spectrum dNγ=dE of
photons from each PBH is just obtained by multiplying the
instantaneous spectrum d _Nγ=dE by the age of the Universe
t0. From Ref. [11] this gives

FIG. 3. Constraints on fðMÞ for a variety of evaporation
(magenta), dynamical (red), lensing (cyan), large-scale structure
(green) and accretion (orange) effects associated with PBHs. The
effects are extragalactic γ-rays from evaporation (EG) [11],
femtolensing of γ-ray bursts (F) [187], white-dwarf explosions
(WD) [188], neutron-star capture constraints (NS) [36], Kepler
microlensing of stars (K) [189], MACHO/EROS/OGLE micro-
lensing of stars [27] and quasar microlensing (broken line) [190]
(ML), survival of a star cluster in Eridanus II (E) [191], wide binary
disruption (WB) [37], dynamical friction on halo objects (DF) [33],
millilensing of quasars (mLQ) [32], generation of large-scale
structure through Poisson fluctuations (LSS) [14] and accretion
effects (WMAP and FIRAS) [15]. Only the strongest constraint is
usually included in each mass range, but the accretion limits are
shown with broken lines since they are highly model dependent.
Where a constraint depends on some extra parameter which is not
well known, we use a typical value. Most constraints cut off at high
M due to the incredulity limit. See the original references for more
accurate forms of these constraints.
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dNγ

dE
∝
�
E3M3 ðE < M−1Þ;
E2M2e−EM ðE > M−1Þ. ð29Þ

This peaks at E ∼M−1 with a value independent ofM. The
number of background photons per unit energy per unit
volume from all the PBHs is obtained by integrating over
the mass function:

EðEÞ ¼
Z

Mmax

Mmin

dM
dn
dM

dNγ

dE
ðm;EÞ; ð30Þ

where Mmin and Mmax specify the mass limits. For a
monochromatic mass function, this gives

EðEÞ ∝ fðMÞ ×
�
E3M2 ðE < M−1Þ;
E2Me−EM ðE > M−1Þ; ð31Þ

and the associated intensity is

IðEÞ≡ cEEðEÞ
4π

∝ fðMÞ ×
�
E4M2 ðE < M−1Þ;
E3Me−EM ðE > M−1Þ;

ð32Þ

with units s−1 sr−1 cm−2. This peaks at E ∼M−1 with a
value ImaxðMÞ ∝ fðMÞM−2. The observed extragalactic
intensity is Iobs ∝ E−ð1þϵÞ ∝ M1þϵ, where ϵ lies between

0.1 (the value favored in Ref. [192]) and 0.4 (the value
favored in Ref. [193]). Hence putting ImaxðMÞ ≤ IobsðMÞ
gives [11]

fðMÞ ≲ 2 × 10−8
�
M
M�

�
3þϵ

ðM > M� ¼ 5 × 1014 gÞ:

ð33Þ
In Fig. 3 we plot this constraint for ϵ ¼ 0.2. The Galactic
γ-ray background constraint could give a stronger limit [35]
but this requires the mass function to be extended and
depends sensitively on its form, so we do not discuss it
here. The reionizing effects of 1016–1017 g PBHs might
also be associated with interesting constraints [8].

B. Lensing constraints

Constraints on MACHOs with very low M come from
the femtolensing of γ-ray bursts. Assuming the bursts are
at a redshift z ∼ 1, early studies [30,194] excluded f ¼ 1 in
the mass range 10−16–10−13M⊙ but more recent work [187]
gives a limit which can be approximated as

fðMÞ < 0.1 ð5 × 1016 g < M < 1019 gÞ: ð34Þ

The precise form of the limit is shown in Fig. 3.

TABLE I. Summary of dominant constraints on the fraction of dark matter in PBHs in various mass ranges. These correspond to or are
special cases of the constraints in Fig. 3; see main text for details. Only limits stronger than fðMÞ < 1 are listed.

Mass range Constraint Source

M < 1018 g fðMÞ < 2 × 10−8ð M
5×1014 gÞ3þϵ Extragalactic γ-ray background

5 × 1016g < M < 1019 g fðMÞ < 0.1 Femtolensing of GRB from Fermi
2.5 × 1018g < M < 1025 g fðMÞ < M

4.7×1018 g ð1 − exp ½− M
2.9×1017 g�Þ−1 Neutron-star capture

2 × 10−9M⊙ < M < 10−7M⊙ fðMÞ < 0.3 Microlensing from Kepler
10−6M⊙ < M < M⊙ fðMÞ < 0.1 MACHO and EROS (OGLE II)
10−3M⊙ < M < 0.1M⊙ fðMÞ < 0.04 MACHO and EROS (OGLE II)
0.1M⊙ < M < 0.4M⊙ fðMÞ < 0.06 OGLE III and OGLE IV
0.1M⊙ < M < 20M⊙ fðMÞ < 0.2 OGLE III and OGLE IV
M > M⊙ fðMÞ < 3.7M⊙

M ð1.1þ 0.1 ln½M⊙
M �Þ−1 Eridanus II star cluster

500M⊙ < M < 103M⊙ fðMÞ < 500M⊙
M

Wide-binary stability

103M⊙ < M < 108M⊙ fðMÞ < 0.4 Wide-binary stability
10M⊙ < M < ×104M⊙ fðMÞ < ð M

10M⊙Þ−2 WMAP3 accretion

M > 104M⊙ fðMÞ < max ½10−5; ð M
1016M⊙

Þ� WMAP3 accretion

M > 104M⊙ fðMÞ < max½104M⊙
M ; M

1010M⊙
� Lyman-α clouds

M < 5 × 105M⊙ fðMÞ < ð M
2×104M⊙

Þ−10=7 Dynamical friction

5 × 105M⊙ < M < 2 × 106M⊙ fðMÞ < ð M
4×104M⊙

Þ−2 Dynamical friction

M > 2 × 106M⊙ fðMÞ < max ½ð M
0.1M⊙Þ−1=2; M

3×1012M⊙
� Dynamical friction

M < 105M⊙ fðMÞ < ð M
2×104M⊙

Þ−2 Millilensing of quasars

105M⊙ < M < 108M⊙ fðMÞ < 0.06 Millilensing of quasars
M > 108M⊙ fðMÞ < ð M

4×108M⊙
Þ2 Millilensing of quasars
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Microlensing observations of stars in the Large and
Small Magellanic Clouds probe the fraction of the Galactic
halo in MACHOs of a certain mass range [195]. The optical
depth of the halo towards LMC and SMC, defined as the
probability that any given star is amplified by at least 1.34
at a given time, is related to the fraction f by

τðSMCÞ
L ¼ 1.4τðLMCÞ

L ¼ 6.6 × 10−7f ð35Þ
for the S halo model [196]. Although the initial motivation
for microlensing surveys was to search for brown dwarfs
with 0.02M⊙ < M < 0.08M⊙, the possibility that the halo
is dominated by these objects was soon ruled out by the
MACHO experiment [197]. However, MACHO observed
17 events and claimed that these were consistent with
compact objects of M ∼ 0.5M⊙ contributing 20% of the
halo mass [196]. This raised the possibility that some of the
halo dark matter could be PBHs formed at the QCD phase
transition [115–117]. However, later studies suggested that
the halo contribution ofM ∼ 0.5M⊙ PBHs could be at most
10% [198]. The EROS experiment obtained more stringent
constraints by arguing that some of the MACHO events
were due to self-lensing or halo clumpiness [27] and
excluded 6 × 10−8M⊙ < M < 15M⊙ MACHOs from
dominating the halo. Combining the earlier MACHO
[199] results with the EROS-I and EROS-II results
extended the upper bound to 30M⊙ [27]. The constraints
from MACHO and EROS about a decade ago may be
summarized as follows:

fðMÞ <

8>><
>>:

1 ð6 × 10−8M⊙ < M < 30M⊙Þ;
0.1 ð10−6M⊙ < M < 1M⊙Þ;
0.04 ð10−3M⊙ < M < 0.1M⊙Þ:

ð36Þ

Similar limits were obtained by the POINT-AGAPE
Collaboration, which detected six microlensing events in
a survey of the Andromeda galaxy [200]. Since then
further limits have come from the OGLE experiment.
The OGLE-II data [201–203] yielded somewhat weaker
constraints but data from OGLE-III [204] and OGLE-IV
[205] gave stronger results for the high-mass range:

fðMÞ <

8>><
>>:

0.2 ð0.1M⊙ < M < 20M⊙Þ;
0.09 ð0.4M⊙ < M < 1M⊙Þ;
0.06 ð0.1M⊙ < M < 0.4M⊙Þ:

ð37Þ

We include this limit in Fig. 3 and Table I but stress that it
depends on some unidentified detections being attributed
to self-lensing. Later (comparable) constraints combining
EROS and OGLE data were presented in Ref. [206].
Recently Kepler data have improved the limits considerably
in the low-mass range [189,207]:

fðMÞ < 0.3 ð2 × 10−9M⊙ < M < 10−7M⊙Þ: ð38Þ

It should be stressed that many papers give microlensing
limits on fðMÞ but it is not easy to combine these limits
because they use different confidence levels. Also one must
distinguish between limits based on positive detections and
null detections. The only positive detection in the high-
mass range comes from Dong et al. [208].
Early studies of the microlensing of quasars [31] seemed

to exclude all the dark matter being in objects with
10−3M⊙ < M < 60 M⊙. However, this limit does not apply
in the ΛCDM picture and so is not shown in Fig. 3. More
recent studies of quasar microlensing suggest a limit [190]

fðMÞ < 0.05 ð0.1 M⊙ < M < 10 M⊙Þ: ð39Þ
In this context, Hawkins [28] once claimed evidence for a
critical density of Jupiter-mass objects from observations of
quasar microlensing and associated these with PBHs formed
at the quark-hadron transition. However, the status of his
observations is no longer clear [29], so this is not included
in Fig. 3. Millilensing of compact radio sources [32] gives a
limit which can be approximated as

fðMÞ <

8>><
>>:

ðM=2 × 104M⊙Þ−2 ðM < 105M⊙Þ;
0.06 ð105M⊙ < M < 108M⊙Þ;
ðM=4 × 108M⊙Þ2 ðM > 108M⊙Þ:

ð40Þ
Though weaker than other constraints in this mass range, we
include this limit in Fig. 3 and Table I. The lensing of fast
radio bursts could imply strong constraints in the range
above 10M⊙ but these are not shown in Fig. 3, since they are
only potential limits [209].

C. Dynamical constraints

The effects of PBH collisions on astronomical objects—
including Earth [210]—have been a subject of long-
standing interest [33]. For example, Zhilyaev [211] has
suggested that collisions with stars could produce γ-ray
bursts and Khriplovich et al. [212] have examined whether
terrestrial collisions could be detected acoustically.
Gravitational-wave observatories in space might detect
the dynamical effects of PBHs. For example, eLISA could
detect PBHs in the mass range 1014–1020 g by measuring
the gravitational impulse induced by any nearby passing
one [213,214]. However, we do not show these constraints
in Fig. 3 since they are only potential.
Roncadelli, Treves, and Turolla [215] have suggested that

halo PBHs could be captured and swallowed by stars in the
Galactic disk. The stars would eventually be accreted by the
holes, producinga lotof radiationandapopulationof subsolar
black holes which could only be of primordial origin. They
argue that every disk star would contain such a black hole if
the dark matter were in PBHs smaller than 3 × 1026 g and
the following analytic argument [11] gives the form of the
constraint. Since the time scale onwhich a star captures aPBH
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scales as τcap ∝ n−1PBH ∝ MfðMÞ−1, requiring this to exceed
the age of the Galactic disk implies

f < ðM=3 × 1026 gÞ; ð41Þ

which corresponds to a lower limit on the mass of objects
providing the dark matter. A similar analysis of the collisions
of PBHs with main-sequence stars, red-giant cores, white
dwarfs and neutron stars byAbramowicz et al. [216] suggests
that collisions are too rare forM > 1020 g orproduce too little
power to be detectable forM < 1020 g. However, in a related
argument, Capela et al.have constrainedPBHs as dark-matter
candidates by considering their capture bywhite dwarfs [217]
and neutron stars [36]. The survival of these objects implies a
limit which can be approximated as

fðMÞ < M
4.7 × 1024 g

�
1 − exp

�
−

M
2.9 × 1023 g

��
−1

ð2.5 × 1018 g < M < 1025 gÞ: ð42Þ

This is similar toEq. (41)at thehigh-massend, theuppercutoff
at1025 g corresponding to the conditionf ¼ 1. There is also a
lower cutoff at 2 × 1018 g because PBHs lighter than this will
nothave timetoconsumetheneutronstarsduringtheageof the
Universe. This argument assumes that there is dark matter at
the centers of globular clusters and is sensitive to the dark-
matter density there (taken to be 104 GeV cm−3). Pani and
Loeb [218] have argued that this excludes PBHs from
providing the dark matter throughout the sublunar window,
although this has been disputed [219,220]. In fact, the dark-
matter density is limited to much lower values than assumed
above for particular globular clusters [221,222].Another limit
shown in Fig. 3 is associated with the capture of PBHs in the
massrange1019 − 1020 gbywhitedwarfs, this leading to their
exploding as supernovae [188].
Binary star systems with wide separation are vulnerable

to disruption from encounters with MACHOs [223,224].
Observations of wide binaries in the Galaxy therefore
constrain the abundance of halo PBHs. By comparing the
results of simulations with observations, Yoo, Chaname, and
Gould [225] originally ruled outMACHOs withM > 43M⊙
from providing the dark matter. However, a careful analysis
by Quinn et al. [37] of the radial velocities of these binaries

found that the widest-separation one was spurious, so that
the constraint became

fðMÞ<
�ðM=500M⊙Þ−1 ð500M⊙<M≲103M⊙Þ;
0.4 ð103M⊙≲M<108M⊙Þ:

ð43Þ

It flattens off above 103M⊙ because the encounters are
nonimpulsive there. Although not shown in Fig. 3, more
recent studies by Monroy-Rodriguez and Allen reduce the
mass at which f can be 1 from 500M⊙ to 21–78M⊙ or even
7–12M⊙ [38]. The narrow window between the micro-
lensing lower bound and the wide-binary upper bound is
therefore shrinking and may even have been eliminated
altogether (see Sec. VI).
A variety of dynamical constraints come into play at

higher mass scales. These have been studied by Carr and
Sakellariadou [33] and apply providing there is at least one
PBH per galactic halo. This corresponds to the condition

fðMÞ > ðM=MhaloÞ; Mhalo ≈ 3 × 1012M⊙; ð44Þ

which they term the “incredulity limit.” An argument
similar to the binary disruption one shows that the survival
of globular clusters against tidal disruption by passing
PBHs gives a limit (not shown in Fig. 3)

fðMÞ<

8>><
>>:
ðM=3×104M⊙Þ−1 ð3×104M⊙<M<106M⊙Þ;
0.03 ð106M⊙<M<1011M⊙Þ;
ðM=MhaloÞ ðM>1011M⊙Þ;

ð45Þ

although this depends sensitively on the mass and the
radius of the cluster. The limit flattens off above 106M⊙
because the encounter becomes nonimpulsive (cf. the
binary case). The upper limit of 3 × 104M⊙ on the mass
of objects dominating the halo is consistent with the
numerical calculations of Moore [226]. In a related limit,
Brandt [191] claims that a mass above 5M⊙ is excluded by
the fact that a star cluster near the center of the dwarf galaxy
Eridanus II has not been disrupted by halo objects. His
constraint can be written as

fðMÞ≲
� ðM=3.7M⊙Þ−1=½1.1 − 0.1 lnðM=M⊙Þ� ðM < 103M⊙Þ;
ðM=106M⊙Þ ðM > 103M⊙Þ;

ð46Þ

where the density of the dark matter at the center of the
galaxy is taken to be 0.1M⊙ pc−3, the velocity dispersion
there is taken to be 5 km s−1, and the age of the star cluster is
taken to be 3 Gyr. The second expression in Eq. (46) was not

included inRef. [191]but is the incredulity limit, correspond-
ing to having one black hole for the dwarf galaxy.
Halo objects will overheat the stars in the Galactic disk

unless one has [33]
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fðMÞ<
�ðM=3×106M⊙Þ−1 ðM<3×109M⊙Þ;
ðM=MhaloÞ ðM>3×109M⊙Þ;

ð47Þ

where the lower expression is the incredulity limit. The
upper limit of 3 × 106M⊙ agrees with the more precise
calculations by Lacey and Ostriker [227], although they
argued that black holes with 2 × 106M⊙ could explain
some features of disk heating. Constraint (47) bottoms out
at M ∼ 3 × 109M⊙ with a value f ∼ 10−3. Evidence for a

similar effect may come from the claim of Totani [228] that
elliptical galaxies are puffed up by dark halo objects of
105M⊙. These disk-heating limits are not shown in Fig. 3
because they are smaller than other limits in this
mass range.
Another limit in this mass range arises because halo

objects will be dragged into the nucleus of our own Galaxy
by the dynamical friction of the spheroid stars and halo
objects themselves (if they have an extended mass func-
tion), this leading to excessive nuclear mass unless [33]

fðMÞ <

8>>>>><
>>>>>:

ðM=2 × 104M⊙Þ−10=7ðrc=2 kpcÞ2 ðM < 5 × 105M⊙Þ;
ðM=4 × 104M⊙Þ−2ðrc=2 kpcÞ2 ð5 × 105M⊙ ≪ M < 2 × 106ðrc=2 kpcÞM⊙Þ;
ðM=0.1M⊙Þ−1=2 ð2 × 106ðrc=2 kpcÞM⊙ < M < 107M⊙Þ;
ðM=MhaloÞ ðM > 107M⊙Þ:

ð48Þ

The last expression is the incredulity limit and first three
correspond to the drag being dominated by spheroid stars
(low M), halo objects (high M) and some combination of
the two (intermediate M). The limit bottoms out at
M ∼ 107M⊙ with a value f ∼ 10−5 but is sensitive to the
halo core radius rc. Also there is a caveat here in that holes
drifting into the nucleus might be ejected by the slingshot
mechanism if there is already a binary black hole there
[229]. This possibility was explored by Xu and Ostriker
[230], who obtained an upper limit of 3 × 106M⊙.
Each of these dynamical constraints is subject to certain

provisos but it is interesting that they all correspond to an
upper limit on the mass of the objects which dominate the
halo in the range 500 − 2 × 104M⊙, the binary-disruption
limit being the strongest. This is particularly relevant for
constraining models in which the dark matter is postulated
to comprise IMBHs. Apart from the Galactic disk and
elliptical galaxy heating arguments of Refs. [227,228], it
must be stressed that none of these dynamical effects gives
positive evidence for MACHOs. Furthermore, none of them
requires the MACHOs to be PBHs. Indeed, they could
equally well be clusters of smaller objects [231,232] or
ultracompact minihalos (UCMHs) [233]. This is pertinent
in light of the claim by Dokuchaev, Eroshenko, and Rubin
[145] and Chisholm [175] that PBHs could form in tight
clusters, giving a local overdensity well in excess of that
provided by the halo concentration alone. It is also
important to note that the UCMH constraints on the density
perturbations may be stronger than the PBH limits in the
higher-mass range [233]. This is relevant if one wants to
consider the effect of an extended mass function.

D. Large-scale structure constraints

Sufficiently large PBHs could have important conse-
quences for large-scale structure formation because of the

Poisson fluctuations in their number density. This effect
was first pointed out by Mészáros [182] and subsequently
studied by various authors [234–236]. In particular,
Afshordi, McDonald, and Spergel [14] used observations
of the Lyman-α forest to obtain an upper limit of about
104M⊙ on the mass of any PBHs which provide the dark
matter. Although this conclusion was based on numerical
simulations, Carr et al. [11] obtained this result analytically
and extended it to the case where the PBHs only provide a
fraction fðMÞ of the dark matter. Since the Poisson
fluctuation in the number of PBHs on a mass scale
MLyα ∼ 1010M⊙ grows between the redshift of CDM
domination (zeq ∼ 4000) and the redshift at which Lyman-
α clouds are observed (zLyα ∼ 4) by a factor zeq=zLyα ∼ 103,
the clouds will bind too early unless

fðMÞ<
(
ðM=104M⊙Þ−1ðMLyα=1010M⊙Þ ðM<107M⊙Þ;
ðM=1010M⊙ÞðMLyα=1010M⊙Þ−1 ðM>107M⊙Þ:

ð49Þ

The lower expression corresponds to having at least
one PBH per Lyman-α mass, so the limit bottoms out at
M ∼ 107M⊙ with a value f ∼ 0.001. The data from SDSS
are now more extensive [237], so the limiting mass may be
reduced. A similar effect can allow clusters of large PBHs to
evolve into the supermassive black holes in galactic nuclei
[238–240]; if one replaces MLyα with 108M⊙ and zLyα with
10 in the above analysis, the limiting mass in Eq. (49) is
reduced to 600M⊙.
Recently, Kashlinksy has been prompted by the LIGO

observations to consider the effects of the Poisson fluctua-
tions induced by a dark-matter population of 30M⊙ black
holes [241]. This can be seen as a special case of the general
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analysis presented above. However, he adds an interesting
new feature to the scenario by suggesting that the black
holes might also lead to the cosmic infrared background
(CIB) fluctuations detected by the Spitzer/Akari satellites
[242,243]. This is because the associated Poisson fluctua-
tions would allow more abundant early collapsed halos than
in the standard scenario. It has long been appreciated that
the CIB and its fluctuations would be a crucial test of any
scenario in which the dark matter comprises the black-hole
remnants of population III stars [244], but in this case the
PBHs are merely triggering high-redshift star formation and
not generating the CIB directly. We do not attempt to derive
constraints on the PBH scenario from the CIB observations,
since many other astrophysical parameters are involved.

E. Accretion constraints

There are good reasons for believing that PBHs cannot
grow very much during the radiation-dominated era.
Although a simple Bondi-type argument suggests that they
could grow as fast as the horizon [245], this does not
account for the background cosmological expansion and a
fully relativistic calculation shows that such self-similar
growth is impossible [47,179,180]. Consequently there is
very little growth during the radiation era. The only
exception might be if the universe were dominated by a
“dark energy” fluid with p < −ρc2=3, as in the quintes-
sence scenario, since self-similar black-hole solutions do
exist in this situation [246–248]. This may support the
claim of Bean and Magueijo [13] that intermediate-mass
PBHs might accrete quintessence efficiently enough to
evolve into the SMBHs in galactic nuclei.
Even if PBHs cannot accrete appreciably in the radia-

tion-dominated era, massive ones might still do so in the
period after decoupling and the Bondi-type analysis should
then apply. The associated accretion and emission of
radiation could have a profound effect on the thermal
history of the Universe, as first analyzed by Carr [249].
This possibility was investigated in more detail by Ricotti,
Ostriker, and Mack [15], who studied the effects of such
accreting PBHs on the ionization and temperature evolution
of the Universe. The emitted x-rays would produce
measurable effects in the spectrum and anisotropies of
the CMB. Using FIRAS data to constrain the first and
WMAP data to constrain the second, they improve the
constraints on fðMÞ by several orders of magnitude for
M > 1M⊙. The WMAP limit can be approximated as

fðMÞ<

8>><
>>:
ðM=30M⊙Þ−2 ð30M⊙<M≲104M⊙Þ;
10−5 ð104M⊙≲M<1011M⊙Þ;
M=M1¼100 ðM>1011M⊙Þ;

ð50Þ

where the last expression is not included in Ref. [15] but
corresponds to having one PBH on the scale associated
with the CMB anisotropies; for l ¼ 100 modes, this is
M1¼100 ≈ 1016M⊙. TheFIRAS limit canbe approximated as

fðMÞ<

8>><
>>:
ðM=1M⊙Þ−2 ð1M⊙<M≲103M⊙Þ;
0.015 ð103M⊙≲M<1014M⊙Þ;
M=M1¼100 ðM>1014M⊙Þ:

ð51Þ

Although these limits appear to exclude f ¼ 1 down to
massesas lowas1M⊙, theyaremodeldependent (spherically
symmetric Bondi accretion, etc.) and therefore not as secure
as the dynamical ones. In particular, they dependon the duty-
cycle parameter; we assume a smaller value for this than
Ref. [11], which is why our limits are somewhat weaker.
Mack,Ostriker, andRicotti [185]haveconsidered thegrowth
of large PBHs through the capture of dark-matter halos and
suggested that their accretioncouldgiverise toultraluminous
x-ray sources. The latter possibility has also been explored
by Kawaguchi et al. [108].
In Ref. [250] it is claimed that dark matter will cluster

around PBHs from very early times, causing sharp density
spikes. These would be observable as bright γ-ray sources
from the annihilation of dark-matter particles in orbit
around the PBHs. Very stringent constraints on f are
obtained using Fermi-LAT data [251] for M > 10−8M⊙.
As this constraint depends on the assumption that the
dark-matter density is dominated by WIMPs, we do not
include it here. However, such PBH limits must be taken
into account if they are to be used to constrain models of
inflation.

VI. CONFRONTING EXTENDED PBH MASS
FUNCTIONS WITH CONSTRAINTS

The constraints discussed above are usually applied on
the assumption that the PBH mass function is nearly
monochromatic (i.e. with a width ΔM ∼M). However,
this is unrealistic and we discussed in Sec. IV scenarios in
which one would expect the mass function to be extended.
In the context of the dark-matter problem, this is a two-
edged sword. On the one hand, it means that the total PBH
density may suffice to explain the dark matter, even if the
density in any particular mass band is small and within the
observational bounds discussed in Sec. V. On the other
hand, even if PBHs can provide all the dark matter at some
mass scale without violating the constraints there, the
extended mass function may still violate the constraints
at some other scale (even if f is low there). In view of the
numerous constraints in Fig. 3, this problem is particularly
pertinent if the mass function extends over many decades.
In general, a detailed assessment of these two “edges of

the sword” requires a knowledge of the forms of both the
expected PBH mass fraction, fexpðMÞ, and the maximum
fraction allowed by the constraint, fmaxðMÞ. The procedure
is nontrivial even when the forms of these functions can be
expressed analytically. In particular, one cannot just plot
fexpðMÞ for a given model in Fig. 3 and infer that the model
is allowed because it does not intersect fmaxðMÞ, even
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though this procedure is sometimes used in the literature
[111]. For example, if the constraint has the “flat” form
fðMÞ < a over the range Mmin to Mmax, then the total
fraction of PBHs in this mass range cannot exceed a, so one
must integrate the function dfexp=dM from Mmin to Mmax.
A more general constraint can be treated as a sequence of
flat constraints by breaking it up into narrow mass bins.
One starts near the minimum of the constraint and defines
a bin from M1 to M2 around this. The constraint in this
range can be approximated by f < qmax, where qmax is the
maximum value of fmax between these masses, being
chosen so that qmax is very close to the minimum of
fmax and comparable to the integrated mass function fexp in
this region. We then move to the next bin, M3 ≤ M1 to
M4 ≥ M2, and repeat the process. In realistic cases we
need only move one of the boundaries, as the mass function
will have a single feature which fits on one side of the
constraint. We will demonstrate this methodology for
particular mass ranges in the subsections below.
When there are different constraints in the range for

which fexpðMÞ is nonzero, this procedure must be repeated
for each one. However, the interpretation of intersecting
constraints is subtle for an extended mass function. If two
constraints meet at M ¼ Mmeet, there can be a fraction
fmeet ≡ fðMmeetÞ in PBHs both below and above Mmeet,
making the combined constraint f < 2fmeet in the appro-
priate range, unless some other (stronger) constraint applies
there. Hence for a limit which is independent of the PBH
formation mechanism, all the constraints in the relevant
mass range must sum up to f < 1. As discussed below,
unless one invokes an extended mass function with
multiple maxima, all mass ranges could be excluded in
principle. However, there are currently still windows where
the model parameters are insufficiently known to exclude
PBHs from providing all the dark matter.
The discussion in Sec. V shows that there are three such

windows: (A) black holes in the intermediate-mass range
1M⊙ < M < 103M⊙ between the microlensing and wide-
binary limits; (B) sublunar black holes in the range
1020 g < M < 1024 g between the femtolensing and
Kepler microlensing limits; (C) subatomic-size black holes
in the range 1016g < M < 1017 g between the γ-ray back-
ground and femtolensing limits. There is also a fourth

window: (D) Planck-mass relics of Hawking evaporation in
the range aroundM ∼ 10−5 g.Themain constraints in each of
thesemasswindows are indicated inmore detail in Fig. 4 but it
should be stressed that the windows have a different status.
(A) is topical because of the recent LIGO results. (B) may be
excluded by the neutron star andwhite dwarf limits, although
this has been disputed. (C) is perhaps implausible because the
range is so narrow, although this possibility is stressed in
Ref. [11]. (D) is essentially untestable because the relics are
too small (10−33 cm) to be detected nongravitationally. It has
been suggested that PBHs inwindow (A) could naturally arise
invarious inflationary scenarios [39,110–112] but this applies
equally for the other windows since the mass-scale is
essentially arbitrary.
We now discuss each of the mass windows in turn. For the

largest one (A), we will present our analysis in some detail in
order to demonstrate the methodology. For the next twomass
windows (B andC), we have performed a similar analysis but
just state the main results. Finally, the Planck-mass relic
scenario (D) is discussed, although there is only the trivial
constraint f < 1 in this mass range. We stress that we are not
making definite conclusions about the viability of PBH dark
matter in anyparticular range.Wearemerely consideringhow
conclusions can be drawn from certain observational claims
in the literature, which may or may not be justified.

A. Scenario A—Intermediate-mass black holes

The constraints in the intermediate-mass range are shown
in Fig. 4, scenario A, and in more detail in Fig. 5. We include
the Eridanus II limits [191] but not the CMB limits [15],
since the validity of these has been disputed [40] and they
anyway depend upon uncertain astrophysical parameters.
We omit the microlensing estimates from Ref. [190] as they
provide only one point in the relevant mass interval. We also
omit the most recent OGLE constraints [201–205], as did the
analysis in Ref. [191], the limit from the lensing of fast radio
bursts [209] and the latest wide-binary constraints [38]
because these cover the same mass range as the Eridanus
II limits. Since the latter are very stringent, we need a more
precise expression than Eq. (46) and care must be taken
when considering the associated parameters. The constraint
can be written as [191]

fðMÞ ≲ 0.5

�
1þ 0.046M⊙ pc−3

ρ

��
10M⊙
M

��
σ

10 km s−1

���
1þ 0.1 ln

�
10M⊙
M

�
σ

10 km s−1

�
2
��

; ð52Þ

where ρ is the density and σ is the velocity dispersion of the
dark matter at the center of the galaxy. This reduces to
Eq. (46) for ρ ¼ 0.1M⊙ pc−3 (a reasonable upper limit) and
σ ¼ 5 km s−1. Equations (46) and (52) assume an age of
3 Gyr for the star cluster. However, it could be as high as

12 Gyr [252], in which case these equations must be
modified and yield tighter constraints [191].
As can be seen from Fig. 5, the least restrictive Eridanus

II constraint, corresponding to ρ ¼ 0.01M⊙ pc−3 and σ ¼
10 km s−1, admits a monochromatic function containing all
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the dark matter at M ∼ 30M⊙ of the kind displayed in the
left panel of Fig. 1. As observations of the dwarf galaxy
and wide binaries improve, this gap may be filled and even
the present ones shrink it according to Ref. [38]. However,
a monochromatic mass function is not very physical. A
model-independent way of assessing the more realistic
extended-mass-function case is to consider where the differ-
ent constraints cross. For ρ¼0.1M⊙ pc−3, σ¼5 kms−1 (red
solid curve), which is also the line chosen in Ref. [191], the
Eridanus II and microlensing constraints cross atM ∼ 10M⊙
and f ≈ 0.4. This means that 40% of the dark matter can be
contained in PBHs with M < 10M⊙, thereby evading the

microlensing bounds, and another 40% in PBHs with
M > 10M⊙, thereby evading the Eridanus II constraints.
Hence the Eridanus II and microlensing constraints together
exclude PBHs from having more than 80% of the dark
matter in this intermediate-mass range. The slightly less
restrictive Eridanus II constraint with ρ ¼ 0.1M⊙ pc−3,
σ ¼ 10 km s−1 (red dashed line) crosses the microlensing
constraints at M ∼ 20M⊙ and f ≈ 0.5, marginally allowing
the dark matter to be in PBHs in this range. However, in this
case the extended mass function has to be perfectly tuned to
fit beneath the bounds, which is unlikely. On the other hand,
for ρ¼0.01M⊙ pc−3, σ ¼ 5 km s−1 (red dot-dashed curve)
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FIG. 4. Four windows in which PBHs could conceivably provide the dark-matter density. Upper left panel: (A) Intermediate-mass
black holes. The constraints in this mass range are EROS and MACHO microlensing bounds [27] (in blue), dynamical constraints (in
red) from the lifetime of the central star cluster in the Eridanus II dwarf galaxy [191], as well as dynamical constraints (in green) from the
existence of wide-binary star systems [37]. Upper right panel: (B) Sublunar black holes. In this case the constraints (in blue) are again the
femtolensing of GRBs from [187], while the limits from neutron-star capture (in green) are taken from [36]. The red-shaded region
denotes microlensing constraints from the Kepler survey [189], while the red-shaded region on the left shows constraints from white-
dwarf explosions [188]. Lower left panel: (C) Subatomic black holes. The constraints here (red-shaded region) stem from nondetections
of extragalactic γ rays that would be observable from the evaporation of PBHs of these masses [11,35] and (in blue) femtolensing of γ-
ray bursts (GRBs) taken from Fermi data [187]. Lower right panel: (D) Planck-mass relics from PBH evaporations. This shows the mass
range of the initial PBHs if they derive from inflation [62] but there are no observational constraints on such relics. Details on all these
regimes and the meaning of the constraints can be found in the subsections on the respective scenarios.
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and ρ ¼ 0.01M⊙ pc−3, σ ¼ 10 km s−1 (red dotted line), one
could certainly envisage a mass function which provides all
the dark matter.
From these and other constraints, an extended mass

function contributing an equal density at all mass scales can
also be excluded. Even without including the Eridanus II
constraints, if such a function extends to the range of
microlensing observations, the most restrictive range for
these indicates that the mass function cannot make up more
than 4% of the dark matter over the 2 orders of magnitude
from 10−3M⊙ to 0.1M⊙. To get the total dark matter in
PBHs, one would then need 50 orders of magnitude,
whereas the widest possible range, ignoring all other
observations, would be from 10−15M⊙ to 1017M⊙, which
is only 32 orders of magnitude. In practice, the upper limit
may be considerably tighter for both observational and
theoretical reasons. Hence some bumpy feature is needed to
provide the dark matter without violating the constraints.
If the strongest Eridanus II constraints are taken seriously,
this bumpy feature cannot be confined to the 30M⊙ region.
Instead, the bump must either be located at a lower mass
or—if restrictive bounds from neutron-star capture [36] and
star formation [217] can be trusted—a (camel-like) feature
with at least two bumps in the appropriate regions might be
necessary to put all the dark matter in PBHs.
To compare the constraints with more realistic models, a

more sophisticated approach is needed. We demonstrate

this by considering the initial mass functions for the
axionlike curvaton and running-mass models shown in
Fig. 6. We divide the mass range into bins. Starting with the
constraints from EROS, one integrates the mass function in
the lowest bin (here called I) to obtain the fraction fðMÞ in
this bin. Then this number is compared to the bound on f at
the upper end of the bin coming from microlensing studies
(i.e. the EROS limit at the right of bin I in Fig. 5). One then
integrates for bins I and II, comparing this to the limit from
the upper end of bin II. One then repeats this procedure,
running through all the bins. (In this case, there is no reason
to go beyond bin VIII.) Similarly, for the Eridanus II
constraint, one starts with the largest mass bin (XVI) and
integrates to find the dark-matter fraction in this bin. This
result is then compared to the constraint at the low end of
the bin (the Eridanus II bound at the intersect of bins XV
and XVI). Next one combines the integrals from the top
two bins (XVand XVI) and compares this to the Eridanus II
bound on the intersection between XIV and XV, etc.
Using this technique, we have shown that both the

axionlike curvaton model and running-mass model featured
in Fig. 6 evade the bounds for the Eridanus II parameters
of ρ¼0.01–0.03M⊙pc−3, σ ¼ 5 km s−1 and ρ¼0.01–
0.03M⊙pc−3, σ ¼ 10 km s−1 but are ruled out for
ρ ¼ 0.1M⊙ pc−3, σ ¼ 5 km s−1 and ρ ¼ 0.1M⊙ pc−3,
σ ¼ 10 km s−1. For the Eridanus II parameters with room
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FIG. 6. The differential dark-matter fraction df=dM in the
intermediate-mass range M⊙ < M < 103M⊙ for the axionlike
curvaton model (red, solid curve) as well as for running-mass
inflation (blue, dashed curve). The parameter choices are
PζðkfÞ ¼ 3.08 × 10−3, Mmin ¼ 6 × 10−7Mf , λ ¼ 1.2 for the ax-
ion-curvaton model (see Sec. III B), and a ¼ 0.011, b ¼ 0.0245,
and c ¼ −0.00304345 for the running-mass model (see
Sec. III A). These choices are made in order to yield a dark-
matter fraction of 1, as well as to be most compatible with the
constraints in the intermediate-mass window (cf. Fig. 5). Critical
collapse, with δc ¼ 0.45, k ¼ 3.3, and γ ¼ 0.36, has been applied
to obtain both of the curves. Featured are also mass bins or ranges
I–XVI used to demonstrate the comparison with constraints as
described in the text. The same mass bins can also be seen in
Fig. 5 showing the constraints.
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FIG. 5. Constraints on the dark-matter fraction of primordial
black holes in the intermediate-mass range M⊙ < M < 103M⊙.
Excluded regions are shaded. EROS constraints are taken from
Ref. [27] and are depicted in blue. Wide-binary (WB) constraints
[225,253] correspond to the green region in the plot. The latest
constraints from the survival of the star cluster near the core of
Eridanus II [191] are shown in the red-shaded areas. For all red
curves we assume a cluster age of 3 Gyr. The various constraints
are due to different choices of values for the velocity dispersion σ
and ρ, the dark-matter density in the center of the galaxy.
Specifically,we chose ðσ; ρÞ ¼ ð5 km s−1; 0.1M⊙ pc−3Þ (red solid
curve), ðσ; ρÞ ¼ ð10 km s−1; 0.1M⊙ pc−3Þ (red dashed curve),
ðσ; ρÞ ¼ ð5 km s−1; 0.01M⊙ pc−3Þ (red dot-dashed curve), and
ðσ; ρÞ ¼ ð10 km s−1; 0.01M⊙ pc−3Þ (red dotted curve).
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for a monochromatic mass function, σ ¼ 10 km s−1 and
ρ ¼ 0.01M⊙ pc−3, we checked whether the critically
collapsed monochromatic mass function is compatible with
the bounds. It turns out that this not only evades the
constraints but is also compatible with the Eridanus II
parameter values of σ ¼ 10 km s−1 and ρ ¼ 0.03M⊙ pc−3,
for which a monochromatic mass function (without critical
collapse) is ruled out. Finally, this technique shows the
correct way to confront any properly obtained PBH
extended mass function with the observational constraints,
regardless of how much of the dark matter is in PBHs. If
appropriate care is taken to include all influences discussed
in Sec. IV, this scheme can be used to constrain the
inflationary potential and other PBH-producing scenarios.
Note that the methodology described here is independent of
the particular constraint or model involved. The same
procedure both for getting model-independent constraints
and confronting models with these constraints can be used
regardless the particular constraint or model.

B. Scenario B—Sublunar-mass black holes

Figure 4, scenario B, shows the constraints from GRB
femtolensing [187] and Kepler microlensing [189]. The
neutron-star (NS) capture constraint [36] is also shown but
this depends on the assumption that there is dark matter in
globular clusters, which is uncertain. If the NS constraint
is omitted, f ¼ 1 at 1020 and 4 × 1024 g, respectively, so
there are over three decades of mass in which PBHs could
provide the dark matter. In this case, it is clear that both
monochromatic and extended mass functions can allow
f ¼ 1. However, the inclusion of the NS constraint [36]
could dramatically alter this situation, depending on the
(very uncertain) dark-matter density ρDM in the core of
globular clusters.
The three lines in Fig. 4, scenario B, correspond to ρDM ¼

4 × 102 GeVcm−3 (solid), ρDM ¼ 2 × 103 GeV cm−3 (bro-
ken) and ρDM ¼ 104 GeVcm−3 (dotted). In all of these
cases, PBHs are excluded from providing all the dark matter
at the lower-mass end, where the NS and femtolensing
bounds meet. So if the NS bounds are believed, only the
window at the upper end is allowed. For the highest dark-
matter density, ρDM ¼ 104 GeVcm−3, the NS constraint
intersects the Kepler constraint at fmeet ≈ 0.35, so PBHs
cannot provide all the dark matter, whatever the shape of the
mass function. For ρDM ¼ 2 × 103 GeV cm−3 which is
suggested by some numerical models [36], the constraints
cross at fmeet ≈ 0.75, so a monochromatic mass function
cannot give all the dark matter but an extended one could
allow a fraction 2fmeet ≈ 1.5. Indeed, if one applies critical
collapse to an initially monochromatic mass function,
one evades the constraints in the mass range
1–2 × 1024 g. For the lowest dark-matter density shown,
ρDM ¼ 4 × 102 GeV cm−3, even a monochromatic mass
function is allowed, so it is important to stress that the

density is known to be as low as 1 GeVcm−3 for some
globular clusters [221,222]. Indeed, according to the sce-
nario of Ref. [36], dark-matter densities below
120 GeV cm−3 always lead to constraints above f ¼ 1.
For an extended mass function we have performed a

similar analysis to that for the intermediate-mass case. For
the axion-curvaton model with PζðkfÞ ¼ 5.7442 × 10−3,
Mmin ¼ 10−8Mf , λ ¼ 1.13, the NS constraint is satisfied for
the two lowest values of the dark-matter density, so all the
dark matter could be in PBHs. For the running-mass model,
the parameter choice a ¼ 0.011, b ¼ 0.00633 and c ¼
−0.0005399 yields the best fit. However, this model could
evade the NS and microlensing constraints only for the
lowest dark-matter density, ρDM ¼ 4 × 102 GeV cm−3. For
both models, a critical collapse mass function with
δc ¼ 0.45, k ¼ 3.3, and γ ¼ 0.36 was assumed. This
demonstrates the “two-edged sword” feature: While the
highly peaked axion-curvaton model can fit between the
tighter constraints, the more extended running-mass mass
model cannot. Of course, a generic running-mass model
with an arbitrary number of parameters could be equally
steep and would then also evade the bounds. Similarly,
while the NS constraint with ρDM ¼ 2 × 103 GeV cm−3

and microlensing constraint exclude a monochromatic
mass function from providing all the dark matter, a mass
function obtained from the critical collapse of a mono-
chromatic overdensity of the kind exemplified in Fig. 1
could do so.

C. Scenario C—Subatomic-sized black holes

The PBHs considered in this subsection have a radius
in the range 10−12 to 10−10 cm (10–100 Fermi), so we
describe these as “subatomic.” Figure 4, scenario C, shows
the constraint (33) from the extragalactic γ-ray background,
with the dotted curves corresponding to values of ε between
0.1 and 0.4, and the constraint (34) from the femtolensing
of GRBs [187].3 These limits hit f ¼ 1 at around M ¼
1017 g and M ¼ 1016.5 g, respectively, so there is no range
where f ¼ 1 is possible. This means that a monochromatic
mass function cannot provide all the dark matter in this
case. We see that fmeet ≈ 0.4when the slope of the observed
background is taken to be ϵ ¼ 0.1, so PBHs cannot make
up more than 80% of the dark matter in the mass range from
1015 to 1019 g. With ϵ ¼ 0.2, fmeet is just below 0.5, so
PBHs dark matter is marginally excluded in this range.
However, with ϵ ¼ 0.4ð0.3Þ, we have fmeet ≈ 0.55ð0.65Þ,
so a suitably shaped extended mass function could still
provide the dark matter. Several authors have argued that
this would permit PBHs to explain both the γ-ray back-
ground and the dark matter [43,161], with Belotsky,

3There is considerable discrepancy between the constraint
presented in the published and arXiv versions of this paper; we
use the former.

PRIMORDIAL BLACK HOLES AS DARK MATTER PHYSICAL REVIEW D 94, 083504 (2016)

083504-21



Kirillov, and Rubin suggesting that an extended PBH mass
function could simultaneously explain the dark matter,
the reionization of the Universe and the annihilation-line
radiation from the Galactic center [254].
Performing a more detailed analysis, we find that neither

an axion-curvaton nor running-mass model can provide all
the dark matter in this window without violating the
bounds. In fact, not even a mass function resulting from
the critical collapse of a monochromatic overdensity feature
allows this. This is mainly due to the steepness of the
extragalactic γ-ray background constraint at the low-mass
end of this window. In principle, one could envisage other
effects (e.g. accretion or mergers) creating a mass function
with a different shape. However, it is extremely unlikely
that these effects would conspire to allow the mass function
to fit within the bounds. Therefore PBHs are probably
excluded from providing all the dark matter in this region,
although they could still provide some of it. Reference [35]
claims that such PBHs could provide the dark matter but
does not consider the femtolensing limit.

D. Scenario D—Planck-mass relics

If PBH evaporations leave stable Planck-mass relics,
these might also contribute to the dark matter. This was first
pointed out by MacGibbon [255] and has subsequently
been explored in the context of inflationary scenarios by
many authors [34,62,150,256–260]. If the relics have a
mass κMPl, where MPl is the Planck mass and κ ¼ Oð1Þ,
and if reheating occurs at a temperature TR, then the relics
have less than the dark-matter density providing [62]

fðMÞ < 1 ⇒ β0ðMÞ < 2 × 10−28κ−1
�

M
MPl

�
3=2

ð53Þ

for the mass range�
TR

TPl

�
−2

<
M
MPl

< 1011κ2=5: ð54Þ

The lower-mass limit arises because PBHs generated before
reheating are diluted exponentially. The CMB quadrupole
anisotropy implies TR < 1016 GeV, so the lower limit
exceeds 106MPl. The upper-mass limit arises because
PBHs larger than this dominate the total density when
they evaporate, in which case the final cosmological
photon-to-baryon ratio is determined by the baryon asym-
metry associated with their emission.
The mass window is illustrated in Fig. 4, scenario D, for

parameters similar to those used in Ref. [62]. Note that M
here refers to the initial PBH mass and not the relic mass. It
should be stressed that limit (53) applies even if there is no
inflationary period but it then extends all the way down to
the Planck mass. Since Planck-mass relics are not the usual
type of black hole, this scenario is fundamentally different
from the other three. At present there are no constraints for

Planck-mass relics and it is hard to conceive of any in the
future, since the relics are so small. Indeed, since they are
the smallest conceivable objects in nature, they could never
be detected nongravitationally unless perhaps one invokes
TeV quantum-gravity. So this scenario is completely open
and one cannot predict the mass function on the basis of the
arguments used in Sec. IV.

VII. LIGO GRAVITATIONAL-WAVE LIMITS

A population of massive PBHs would be expected to
generate a background of gravitational waves [261]. This
would be especially interesting if there were a population of
binary black holes, coalescing at the present epoch due to
gravitational-radiation losses. This was first discussed by
Bond and Carr [41] in the context of population III black
holes and later in Refs. [262,263] in the context of PBHs.
However, the precise formation epoch of the holes is not
crucial since the coalescence occurs much later. In either
case, the black holes would be expected to cluster inside
galactic halos (along with other forms of dark matter) and
so the detection of the gravitational waves would provide a
unique probe of the halo distribution [146]. The LIGO data
had already placed weak constraints on such scenarios a
decade ago [264].
The suggestion that the dark matter could comprise

PBHs in the IMBH range has attracted much attention
recently as a result of the LIGO detections [23,153] of
merging binary black holes with mass around 30M⊙. Using
slightly different approaches, Refs. [40] and [186] derive
merger rates for particular PBH populations and find them
to be compatible with the range 9–240 Gpc−3 yr−1 obtained
by the LIGO analysis. However, according to Ref. [265],
the PBH merger rates would be highly suppressed by tidal
forces, so that the LIGO results allow only a small fraction
of the dark matter to be in PBHs. This conclusion is also
drawn in Ref. [266], which points out that the lower limit
on the merger rate may be in tension with the CMB
distortion constraints [15] for objects in the IMBH range.
This could exclude PBHs as sources of the observed
mergers. However, the accretion and merger of smaller
PBHs after decoupling might still provide a PBH popula-
tion like GW150914 without violating the CMB con-
straints [186].
Reference [267] suggests a scheme for distinguishing

between black-hole mergers of stellar and primordial
origin, which involves matching their spatial distribution
with galaxy catalog data. However, this could be imple-
mented only if future merger events are more precisely
localized and ascertaining the location and mass distribu-
tion of LIGO events will be difficult [268]. Although it is
unclear whether the black holes associated with the LIGO
events are of primordial or stellar origin, it is important
to stress that the constraints are now based on a clear
detection rather than a null result. Future LIGO and other
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gravitational-wave detector data will provide improved
constraints.
Recently, the prospect of eLISA detecting gravitational

waves from binary black holes like GW150914 in the
Galaxy has been discussed by Seto [269], including a
potential measurement of the eccentricity down to
e ≈ 0.02. Nishizawa et al. also discuss how eLISA eccen-
tricity measurements can constrain stellar binary black-hole
formation scenarios [270]. Kyutoku and Seto [271] claim
that eLISA might observe as many GW150914-type binary
black holes as supermassive binary black holes, although
most of them will not merge within the eLISA observation
period. Apart from eLISA, other future space missions, such
as the Japanese space gravitational-wave antennas (Pre-)
DECIGO (decihertz laser interferometer gravitational-wave
observatory) [272] might be able to distinguish between
binary black holes of population II, population III or
primordial origin [273]. This is because (Pre-)DECIGO will
be able to measure the mass spectrum and z dependence of
the merger rate. For example, 30M⊙ binary mergers like
GW150914 will be detected up to redshifts z ≈ 30 and it
may be able to localize the direction of the binary black holes
at z ¼ 0.1 with an accuracy of 0.3 deg2 [273].
Stochastic gravitational-wave backgrounds from black-

hole binaries offer another way of distinguishing between
the progenitors of binary black-hole mergers [274]
observed by advanced LIGO. However, the PBH profile
has yet to be worked out and the information needed may
be difficult to extract [275]. For an updated analysis
of the presence of such a stochastic background in the
light of the GW150914 and GW151226 merger events, see
Refs. [274,276]. Finally, since PBHs probably do not form
in binaries, their orbital eccentricities might make their
gravitational-wave merger signal distinguishable from that
of astrophysical black-hole binaries [277].
A different type of gravitational-wave constraint on

fðMÞ has been pointed out by Saito and Yokoyama
[278]. This is because the second-order tensor perturbations
generated by the scalar perturbations which produce the
PBHs are surprisingly large. The associated frequency was
originally given as 10−8ðM=103M⊙Þ Hz but this estimate
contained a numerical error [279] and was later reduced by
a factor of 103 [280]. The limit on fðMÞ just relates to the
amplitude of the density fluctuations at the horizon epoch,
which is of order 10−52. This effect has subsequently been
studied in Ref. [281] and by several other authors. In
particular, the limit from pulsar timing data already
excludes PBHs with 0.03M⊙ < M < 10M⊙ from provid-
ing an appreciable amount of dark matter [282] and limits
from LIGO, VIRGO and BBO could potentially cover the
mass range down to 1020 g. Conversely, one can use PBH
limits to constrain a background of primordial gravitational
waves [283–285].
None of these limits is not shown in Fig. 3 because they

apply only if the PBHs are generated by super-Hubble scale

fluctuations, such as arise through inflation. However, this
is the most popular scenario for PBH formation, which is
why these limits were included in Fig. 8 of Carr et al. [11].
We also note that the limiting value of f depends on the
fluctuations being Gaussian. Although this is questionable
in the context of the large-amplitude fluctuations relevant to
PBH formation, the studies in Refs. [286,287] show that
non-Gaussian effects are not expected to be large.

VIII. SUMMARY AND OUTLOOK

In this work we have studied the possibility that PBHs
constitute the dark matter, focusing on the three mass
ranges where PBHs were considered plausible dark-matter
candidates around a decade ago. These include (A) black
holes in the intermediate-mass range 1M⊙ < M < 103M⊙,
(B) sublunar black holes in the range 1020–1024 g and
(C) subatomic-size black holes in the range 1016–1017 g. In
addition, we have discussed (D) Planck-mass relics in the
range around 10−5 g. All relevant constraints in these mass
windows were reviewed in Sec. V, including those from
microlensing, dynamical effects, large-scale structure,
accretion and black-hole mergers of the kind observed
by LIGO. We have found that scenarios (A) and (B) can
still produce all the dark matter, although this depends on
the exact values of the astrophysical parameters involved in
the constraints. So these windows may be closed in the near
future. Scenario (C) is already excluded for all practical
purposes, while (D) is completely unconstrained and will
remain so for the foreseeable future.
Since the precision of the constraints has improved

significantly in recent years, a more refined treatment of
PBH formation appears to be mandatory. In order to tackle
this issue, we discussed in Sec. IV all the necessary
ingredients for a precise calculation of the PBH abundance
from a fundamental early-Universe source, such as non-
Gaussianity, nonsphericity, criticality, merging, the choice
of the appropriate variables, and the different approaches
for estimating the black-hole number density. Regarding
non-Gaussianity, nonsphericity and criticality, we have
performed quantitative calculations, showing how these
effects are expected to change the PBH distribution. In all
cases the mass spectrum will be lowered, while critical
collapse will cause significant broadening, as well as a shift
towards lower masses.
In Sec. VI we introduced a novel scheme for investigat-

ing the compatibility of a general extended PBH mass
function with arbitrary constraints. We also showed which
model-independent conclusions can be drawn from the
constraints for an unknown extended mass function,
illustrating this by the application to constraints in the
intermediate-mass region. Our procedure demonstrated, on
the one hand, that extended mass spectra are more difficult
to analyze than the commonly (and wrongly) used mono-
chromatic ones. On the other hand, we showed that there
are situations in which PBH dark matter is excluded in the
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monochromatic case but allowed in the extended mass case.
We have given explicit examples of this. For definiteness,
we introduced in Sec. II two inflationary models—the
axionlike curvaton model and the running-mass model—
which are capable of producing PBHs in the relevant mass
ranges. In Sec. VI we confronted these models with the
latest constraints in these mass ranges and discussed under
what circumstances they can produce PBHs containing all
the dark matter.
Even though we have presented a rather complete picture

of PBH formation, more work is required for the concrete
implementation of this approach. In particular, for non-
sphericity, precision simulations of fully general-relativistic
collapses for ellipsoidal overdensities are necessary.
Additional clarification of the interplay between ellipticity
and non-Gaussianity, as well as a more thorough under-
standing of merger rates and accretion are needed before
the observational constraints on PBHs can be translated
into constraints on early-Universe physics.
Even before all issues of PBH formation are settled,

model-independent exclusion of PBHs as dark-matter
candidates may be possible in the near future. If care is
taken when applying observational constraints to allow for
uncertainties in the various astrophysical processes (e.g. the
growth of the PBH through accretion), then one may be
able to exclude even PBHs with extended mass functions.
However, this must be done by considering constraints in
the way described in this paper, rather than by focusing on

monochromatic mass functions which contain all the dark
matter.
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Note added in proof.—Recently, Ref. [191] was updated to
include constraints from ultra-faint dwarfs and this may
exclude all the dark matter being in PBHs in the inter-
mediate-mass window. A recent analysis by Green [288],
using the constraints in the second version of Ref. [191] and
a slightly different choice of parameters, also suggests this
window is excluded. She further claims that there is an error
in our methodology but we would argue that this still
provides a good approximation for most constraints, even
though her method may be more accurate in principle. This
relates to the width of the mass bins used in our analysis.
Compared to Green's top-hat analysis, our methodology
will indeed underestimate the constraints if a small number
of bins are employed, so the number must be chosen
carefully.
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