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We study a testable dark-matter (DM) model outside of the standard weakly interacting massive particle
paradigm in which the observed ratio Ωdark ≃ Ωvisible for visible and dark-matter densities finds its natural
explanation as a result of their common QCD origin when both types of matter (DM and visible) are formed
at the QCD phase transition and both are proportional to ΛQCD. Instead of the conventional “baryogenesis”
mechanism, we advocate a paradigm when the “baryogenesis” is actually a charge separation process
which always occurs in the presence of the CP odd axion field aðxÞ. In this scenario, the global baryon
number of the Universe remains zero, while the unobserved antibaryon charge is hidden in the form of
heavy nuggets, similar to Witten’s strangelets and compromise the DM of the Universe. In the present
work, we study in great detail a possible formation mechanism of such macroscopically large heavy
objects. We argue that the nuggets will be inevitably produced during the QCD phase transition as a result
of Kibble-Zurek mechanism on formation of the topological defects during a phase transition. Relevant
topological defects in our scenario are the closed bubbles made of the NDW ¼ 1 axion domain walls. These
bubbles, in general, accrete the baryon (or antibaryon) charge, which eventually results in the formation of
the nuggets and antinuggets carrying a huge baryon (antibaryon) charge. A typical size and the baryon
charge of these macroscopically large objects are mainly determined by the axion mass ma. However, the
main consequence of the model, Ωdark ≈ Ωvisible, is insensitive to the axion mass which may assume any
value within the observationally allowed window 10−6 eV≲ma ≲ 10−3 eV. We also estimate the baryon-
to-entropy ratio η≡ nB=nγ ∼ 10−10 within this scenario. Finally, we comment on implications of these
results to the axion search experiments, including the microwave cavity and the Orpheus experiments.
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I. INTRODUCTION

The origin of the observed asymmetry between matter
and antimatter is one of the largest open questions in
cosmology. The nature of the dark matter (DM) is another
open question in cosmology. In this paper, we advocate an
idea that these two, apparently unrelated, problems are in
fact two sides of the same coin. Furthermore, both
mysterious effects are originated at one and the same
cosmological epoch from one and the same QCD physics.
Normally, it is assumed that the majority of dark matter is
represented by a new fundamental field coupled only
weakly to the standard model particles; these models
may then be tuned to match the observed dark-matter
properties. We take a different perspective and consider the
possibility that the dark matter is in fact composed of well-
known quarks and antiquarks but in a new high-density
phase, similar to Witten’s strangelets; see the original work
[1] and some related studies [2].
There are few new crucial elements in proposal [3,4], in

comparison with previous studies [1,2]. First of all, the
nuggets could be made of matter as well as antimatter in our
framework as a result of the separation of charges; see a few
comments below. Second, the stability of the DM nuggets
is provided by the axion domain walls with extra pressure,
in contrast with original studies when stability is assumed
to be achieved even in vacuum, at zero external pressure.

Finally, an overall coherent baryon asymmetry in the entire
Universe is a result of the strong CP violation due to the
fundamental θ parameter in QCD which is assumed to be
nonzero at the beginning of the QCD phase transition. This
source of strong CP violation is no longer available at
the present epoch as a result of the axion dynamics; see the
original papers [5–7] and recent reviews [8–15] on the
subject. We highlight the basic ideas of this framework in
the present Introduction, while we elaborate on these new
crucial elements in details in Sec. III.
It is generally assumed that the Universe began in a

symmetric state with zero global baryonic charge and later
(through some baryon number-violating process) evolved
into a state with a net positive baryon number. As an
alternative to this scenario, we advocate a model in which
“baryogenesis” is actually a charge separation process in
which the global baryon number of the Universe remains
zero. In this model, the unobserved antibaryons come to
comprise the dark matter. A connection between dark
matter and baryogenesis is made particularly compelling
by the similar energy densities of the visible and dark
matter with Ωdark ≃ 5 ·Ωvisible. If these processes are not
fundamentally related, the two components could exist at
vastly different scales.
In the model [3,4], baryogenesis occurs at the QCD

phase transition. Both quarks and antiquarks are thermally
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abundant in the primordial plasma, but in addition to
forming conventional baryons, some fraction of them is
bound into heavy nuggets of quark matter in a color
superconducting phase. Nuggets of both matter and anti-
matter are formed as a result of the dynamics of the axion
domain walls as originally proposed in Refs. [3,4]. A
number of very hard dynamical questions in strongly
coupled QCD which are related to the nuggets’s formation
have not been studied in any details in the original papers.
The main goal of the present work is to make the first step
in the direction to address these hard questions.
If the fundamental θ parameter were identically zero at

the QCD phase transition in the early Universe, an equal
number of nuggets made of matter and antimatter would be
formed. It would result in the vanishing of the visible
baryon density at the present epoch. However, the funda-
mentalCP-violating processes associated with the θ term in
QCD (which is assumed to be small but still nonzero at the
very beginning of the QCD phase transition) result in the
preferential formation of antinuggets over the nuggets. This
preference is essentially determined by the dynamics of
coherent axion field θðxÞ at the initial stage of the nugget’s
formation. The resulting asymmetry is not sensitive to a
small magnitude of the axion field θðxÞ at the QCD phase
transition as long as it remains coherent on the scale of the
Universe; see Sec. VII for details.
The remaining antibaryons in the plasma then annihilate

away, leaving only the baryons of which the antimatter
counterparts are bound in the excess of antinuggets and
thus unavailable to annihilate. All asymmetry effects are
order of 1, irrespective of the magnitude of θðxÞ at the
moment of formation. This is precisely the main reason of
why the visible and dark-matter densities must be the same
order of magnitude

Ωdark ≈ Ωvisible ð1Þ

as they are both proportional to the same fundamental ΛQCD

scale, and they both originated at the same QCD epoch. In
particular, if one assumes that the nuggets and antinuggets
saturate the dark-matter density, then the observed matter-
to-dark-matter ratio Ωdark ≃ 5 · Ωvisible corresponds to a
specific proportion when the number of antinuggets is
larger than number of nuggets by a factor of ∼3=2 at the
end of the nugget’s formation. This would result in a matter
content with baryons, quark nuggets, and antiquark nuggets
in an approximate ratio,

jBvisiblej∶jBnuggetsj∶jBantinuggetsj≃ 1∶2∶3; ð2Þ

with no net baryonic charge. If these processes are not
fundamentally related, the two components Ωdark and
Ωvisible could easily exist at vastly different scales.
Though the QCD phase diagram at θ ≠ 0 as a function of

T and μ is basically unknown, it is well understood that θ is

in fact the angular variable and therefore supports various
types of the domain walls, including the so-calledNDW ¼ 1
domain walls when θ interpolates between one and the
same physical vacuum state θ → θ þ 2π. Furthermore, it is
expected that the closed bubbles made of these NDW ¼ 1
axion domain walls are also produced during the QCD
phase transition with a typical wall tension σa ∼m−1

a where
ma is the axion mass. Precisely this scale determines the
size and the baryon charge of the nuggets; see Eqs. (3)
and (4) below.
The collapse of these close bubbles is halted due to the

Fermi pressure acting inside of the bubbles. The crucial
element which stops the collapse of the bubbles from
complete annihilation is the presence of the QCD sub-
structure inside the axion domain wall. This substructure
forms immediately after the QCD phase transition as
discussed in Ref. [3]. The equilibrium of the obtained
system has been analyzed in Ref. [3] for a specific axion
domain wall tension within the observationally allowed
window 10−6 eV ≤ ma ≤ 10−3 eV consistent with the
recent constraints [8–15]. It has been also argued in
Ref. [3] that the equilibrium is typically achieved when
the Fermi pressure inside the nuggets falls into the region
when the color superconductivity (CS) indeed sets in.1

The size and the baryon charge of the nuggets scale with
the axion mass as follows:

σa ∼m−1
a ; R ∼ σa; B ∼ σ3a: ð3Þ

Therefore, when the axion mass ma varies within the
observationally allowed window 10−6 eV≲ma≲10−3 eV,
the nuggets parameters also vary as

10−6 cm≲ R≲ 10−3 cm; 1023 ≲ B≲ 1032; ð4Þ

where the lowest axion massma ≃ 10−6 eV approximately2

corresponds to the largest possible nuggets with hBi≃ 1032.
Variation of the axion mass by 3 orders of magnitude results
in variation of the nugget’s baryon charge by 9 orders of
magnitude according to relation (3). The corresponding
allowed region is essentially unconstrained by present
experiments; see details in Sec. II below.

1There is no requirement on the first-order phase transition (in
contrast with original proposal [1]) for the bubble formation in
this framework because the NDW ¼ 1 axion domain walls are
formed irrespective of the order of the phase transition. Needless
to say, the phase diagram in general and the order of the phase
transition in particular at θ ≠ 0 are still unknown because of the
longstanding “sign problem” in the QCD lattice simulations at
θ ≠ 0; see a few comments and related references in the
Conclusion.

2There is no one-to-one correspondence between the axion
massma and the baryon charge of the nuggets B because for each
given ma there is an extended window of stable solutions
describing different nuggets’ sizes [3].
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The fact that the CS may be realized in nature in the cores
of neutron stars has been known for some time [16,17]. A
new element which was advocated in proposal [3] is that a
similar dense environment can be realized in nature due to the
axion domain wall pressure playing the role of a “squeezer,”
similar to the gravity pressure in the neutron star physics.
Another fundamental ratio (along with Ωdark ≈Ωvisible

discussed above) is the baryon-to-entropy ratio at the present
time,

η≡ nB − nB
nγ

≃ nB
nγ

∼ 10−10: ð5Þ

If the nuggets were not present after the phase transition, the
conventional baryons and antibaryons would continue to
annihilate each other until the temperature reaches T ≃
22 MeV when density would be 9 orders of magnitude
smaller than observed (5). This annihilation catastrophe is
normally thought to be resolved as a result of baryogenesis as
formulated by Sakharov [18]; see also review [19]. In this
framework, the ratio (5) is highly sensitive to many specific
details of the models such as the spectrum of the system in
general and the coupling constants and the strength of CP
violation in particular; see, e.g., review [19].
In our proposal (in contrast with conventional frame-

works on baryogenesis), this ratio is determined by a single
parameter with a typical QCD scale, the formation temper-
ature Tform. This temperature is defined by a moment in
evolution of the Universe when the nuggets and antinuggets
basically have completed their formation and not much
annihilation would occur at lower temperatures T ≤ Tform.
The exact magnitude of temperature Tform ∼ ΛQCD in our
proposal is determined by many factors: transmission/
reflection coefficients, evolution of the nuggets, expansion
of the Universe, cooling rates, evaporation rates, viscosity
of the environment, the dynamics of the axion domain wall
network, etc. All these effects, in general, equally contrib-
ute to Tform at the QCD scale. Technically, the correspond-
ing effects are hard to compute from the first principles as
even basic properties of the QCD phase diagram at nonzero
θ ≠ 0 are still unknown.3 We plot three different conjec-
tured cooling paths on Fig. 1.

However, the estimate of Tform up to factor 2 is quite a
simple exercise as Tform must be proportional to the gap
Δ ∼ 100 MeVwhen the CS phase sets in inside the nuggets.
The observed ratio (5) corresponds to Tform ≃ 40 MeV; see
Ref. [4] for details. This temperature indeed represents a
typical QCD scale, slightly below the critical temperature
TCS ≃ 0.6Δ≃ 60 MeV, according to standard estimates on
color superconductivity; see reviews [16,17].
Unlike conventional dark-matter candidates, such as

weakly interacting massive particles (WIMPs), the dark-
matter/antimatter nuggets are strongly interacting but
macroscopically large. They do not contradict any of the
many known observational constraints on dark matter or
antimatter for three main reasons [20]:

(i) They carry a huge (anti)baryon charge jBj≳ 1025

and so have an extremely tiny number density.
(ii) The nuggets have nuclear densities, so their effective

interaction is small, σ=M ∼ 10−10 cm2=g, well be-
low the typical astrophysical and cosmological
limits which are on the order of σ=M < 1 cm2=g.

(iii) They have a large binding energy ∼Δ, such that
the baryon charge in the nuggets is not available
to participate in big bang nucleosynthesis at
T ≈ 1 MeV.

To reiterate, the weakness of the visible-dark matter inter-
action is achieved in this model due to the small geometrical
parameter σ=M ∼ B−1=3 rather than due to a weak coupling
of a new fundamental field with standard model particles. In
other words, this small effective interaction ∼σ=M ∼ B−1=3

replaces a conventional requirement of sufficiently weak
interactions of the visible matter with WIMPs.

FIG. 1. The conjectured phase diagram. Possible cooling paths
are denoted as path 1, 2, or 3. The phase diagram is in fact much
more complicated as the dependence on the third essential
parameter, the θ, is not shown as it is largely unknown. Therefore,
the paths should be thought as lines in three-dimensional para-
metrical space, not as lines on the two-dimensional ðμ; TÞ slice at
θ ¼ 0 as shown on the present plot. It is assumed that the final
destination after the nuggets are formed is the region with
Tform ≈ 41 MeV, μ > μc and θ ≈ 0, corresponding to the pres-
ently observed ratio (5); see the text for the details.

3The basic consequences (1) as well as (5) of this proposal are
largely insensitive to the absolute value of the initial magnitude of
the θ parameter. In other words, a fine-tuning of the initial θ
parameter is not required in this mechanism. The same comment
(on the “insensitivity” of the initial conditions) also applies to the
efficiency of the nugget’s formation. This is because the baryon
density at the present time is 10 orders of magnitude lower than
the particle density at the QCD phase transition epoch according
to the observations (5). Therefore, even a sufficiently low
efficiency of the nugget’s formation (still larger than 10−7; see
the estimates in Sec. VII C) cannot drastically modify the generic
relations (1), (5) due to a long evolution which eventually washes
out any sensitivity to the initial conditions. The only crucial
parameter which determines the final outcome (1), (5) is the
formation temperature Tform as estimated below.
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As we already mentioned, this model when DM is
represented by quark and antiquark nuggets is consistent
with fundamental astrophysical constraints as highlighted
above. Furthermore, there is a number of frequency bands
where some excess of emission was observed but not
explained by conventional astrophysical sources. Our com-
ment here is that this model may explain some portion, or
even the entire excess, of the observed radiation in these
frequency bands. This phenomenological part of the pro-
posal is the key ingredient in our advocacy of the model and
may play a very important role for the interpretation of the
present and future observations. Therefore, we devote the
Sec. II to reviewing the original results [21–30] where
predictions of the model have been confronted with the
observations in specific frequency bands coveringmore than
11 orders of magnitude, from radio frequency with
ω ∼ 10−4 eV to γ rays with ω ∼ 10 MeV. We also mention
in Sec. II some interesting results [31–35], which are
presently perfectly consistent with the model. However, in
the future, the same studies with modest improvements will
provide a powerful test of the viability of the quark nugget
dark-matter model.
One should emphasize here that the corresponding

analysis [21–30] is determined by conventional physics,
and as such all effects are calculable from the first
principles. In other words, the model contains no tuneable
fundamental parameters, except for a single mean baryon
number of a nugget hBi ∼ 1025 which enters all the
computations [21–30] as a single normalization factor.
At the same time, the crucial assumptions of the model,
such as specific mechanisms on the baryon charge sepa-
ration, dynamics of the nugget formation, etc., have never
been explored in our previous studies.
We believe that the phenomenological success [21–30]

of the model warrants further theoretical studies of this
framework, in spite of its naively counterintuitive nature.
Therefore, the present work should be considered as the
first step in this direction where we attempt to develop the
theoretical framework to address (and hopefully answer)
some of the hardest questions about a possible mechanism
for the nugget’s formation during the QCD phase transition
in the strongly coupled regime when even the phase
diagram at θ ≠ 0 as a function of the chemical potential
μ and temperature T is still unknown; see footnote 1.
The structure of this work is as follows. In Sec. II, we

briefly review the observational constraints on the model.
In Sec. III, we highlight the basic assumptions and
ingredients of this framework, while in Secs. IV and V,
we present some analytical estimates which strongly
substantiate the idea that such heavy objects indeed can
be formed and survive until the present epoch during the
QCD phase transition in the early Universe. Section VI as
well as Appendixes A and B are devoted to a number of
technical details which support our basic claim.

In Sec. VII, we argue that there will be the preferential
formation of one species of nuggets over another. This
preference is determined by the dynamics of the axion field
θðxÞ which itself is correlated on the scales of the Universe
at the beginning of the nugget’s formation. Finally, in
Sec. VIII we comment on implications of our studies to
direct axion search experiments.
To conclude this long Introduction, the nuggets in our

framework play the dual role: they serve as the DM
candidates, and they also explain the observed asymmetry
between matter and antimatter. These two crucial elements
of the proposal lead to a very generic consequence of the
entire framework expressed by Eq. (1). This basic generic
result is not very sensitive to any specific details of the
model but rather entirely determined by two fundamental
ingredients of the framework:

(i) the contribution toΩ for both types of matter (visible
and dark) are proportional to one and the same
fundamental scale ∼ΛQCD;

(ii) the preferential formation of one species of nuggets
over another is correlatedonhuge cosmological scales
where CP-violating axion phase θðxÞ remains coher-
ent just a moment before the QCD phase transition.

The readers interested in the cosmological conse-
quences, rather than in technical computational details,
may directly jump to Sec. III where we formulate the basics
ingredients of the proposal, to Sec. VII B where we explain
the main model-independent consequence (1) of this
framework, and to Sec. VIII where we make a few
comments on implications to other axion search experi-
ments, including microwave cavity [8–10,13] and the
Orpheus experiments [14].

II. QUARK (ANTI)NUGGET DM CONFRONTING
THE OBSERVATIONS

While the observable consequences of this model are on
average strongly suppressed by the low number density of
the quark nuggets ∼B−1=3 as explained above, the inter-
action of these objects with the visible matter of the Galaxy
will necessarily produce observable effects. Any such
consequences will be largest where the densities of both
visible and dark matter are largest such as in the core of the
Galaxy or the early Universe. In other words, the nuggets
behave as a conventional cold DM in the environment
where the density of the visible matter is small, while they
become interacting and emit radiation objects (i.e., effec-
tively become visible matter) when they are placed in the
environment with sufficiently large density.
The relevant phenomenological features of the resulting

nuggets are determined by properties of the so-called
electrosphere as discussed in Refs. [21–30]. These proper-
ties are, in principle, calculable from first principles using
only the well-established and known properties of QCD
and QED. As such, the model contains no tunable funda-
mental parameters, except for a single mean baryon number
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hBi which itself is determined by the axion mass ma as we
already mentioned.
A comparison between emissions with drastically

different frequencies from the center of the Galaxy is
possible because the rate of annihilation events (between
visible matter and antimatter DM nuggets) is proportional
to the product of the local visible and DM distributions at
the annihilation site. The observed fluxes for different
emissions thus depend on one and the same line-of-sight
integral

Φ ∼ R2

Z
dΩdl½nvisibleðlÞ · nDMðlÞ�; ð6Þ

where R ∼ B1=3 is a typical size of the nugget which
determines the effective cross section of interaction between
DM and visible matter. As nDM ∼ B−1, the effective inter-
action is strongly suppressed ∼B−1=3 as we already men-
tioned in the Introduction. The parameter hBi ∼ 1025 was
fixed in this proposal by assuming that this mechanism
saturates the observed 511 keV line [21,22], which resulted
from annihilation of the electrons from visible matter and
positrons from antinuggets. It has been also assumed that the
observed dark-matter density is saturated by the nuggets and
antinuggets. It corresponds to an average baryon charge
hBi ∼ 1025 for typical density distributions nvisibleðrÞ;
nDMðrÞ entering (6). Other emissions from different bands
are expressed in terms of the same integral (6), and therefore
the relative intensities are completely determined by the
internal structure of the nuggets which is described by
conventional nuclear physics and basic QED. We present
a short overview of these results below.
Some galactic electrons are able to penetrate to a

sufficiently large depth of the antinuggets. These events
no longer produce the characteristic positronium decay
spectrum (511 keV line with a typical width of order ∼few
keVaccompanied by the conventional continuum due to 3γ
decay) but a direct nonresonance e−eþ → 2γ emission
spectrum. The transition between the resonance positro-
nium decays and nonresonance regime is determined by
conventional physics and allows us to compute the strength
and spectrum of the MeV-scale emissions relative to that of
the 511 keV line [23,24]. Observations by the COMPTEL

satellite indeed show some excess above the galactic
background consistent with our estimates.
Galactic protons incident on the antinugget will pen-

etrate some distance into the quark matter before annihilat-
ing into hadronic jets. This process results in the emission
of bremsstrahlung photons at x-ray energies [25].
Observations by the CHANDRA observatory apparently
indicate an excess in x-ray emissions from the Galactic
center.
Hadronic jets produced deeper in the nugget or emitted

in the downward direction will be completely absorbed.
They eventually emit thermal photons with radio

frequencies [26,27]. Again, the relative scales of these
emissions may be estimated and are found to be in
agreement with observations.
These apparent excess emission sources have been cited

as possible support for a number of dark-matter models as
well as other exotic astrophysical phenomenon. At present,
however, they remain open matters for investigation and,
given the uncertainties in the galactic spectrum and the
wide variety of proposed explanations, are unlikely to
provide clear evidence in the near future. Therefore, it
would be highly desirable if some direct detection of such
objects is found, similar to direct searches of the WIMPs.
While direct searches forWIMPs require large sensitivity,

a search for very massive dark matter nuggets requires large
area detectors. If the darkmatter consists of quark nuggets at
the B ∼ 1025 scale, they will have a flux of

dN
dAdt

¼ nv ≈
�
1025

B

�
km−2 yr−1: ð7Þ

Though this flux is far below the sensitivity of conventional
dark matter searches, it is similar to the flux of cosmic rays
near the Greisen Zatsepin Kuzmin (GZK) limit. As such,
present and future experiments investigating ultrahigh
energy cosmic rays may also serve as search platforms
for dark matter of this type.
It has been suggested that large-scale cosmic-ray detec-

tors may be capable of observing quark (anti)nuggets
passing through the Earth’s atmosphere either through
the extensive air shower such an event would trigger
[28] or through the geosynchrotron emission generated
by the large number of secondary particles [29]; see also
Ref. [30] for review.
It has also been estimated in Ref. [31] that, based on

Apollo data, nuggets of mass from ∼10 kg to 1 ton
(corresponding to B ∼ 1028–30) must account for less than
an order of magnitude of the local dark matter. While our
preferred range of B ∼ 1025 is somewhat smaller and is not
excluded by Ref. [31], we still believe that B ≥ 1028 is not
completely excluded by the Apollo data, as the correspond-
ing constraints are based on specific model-dependent
assumptions about the nugget mass distribution.
It has also been suggested that the ANITA experiment

may be sensitive to the radio band thermal emission
generated by these objects as they pass through the
Antarctic ice [32]. These experiments may thus be capable
of adding direct detection capability to the indirect evi-
dence discussed above; see Fig. 2 taken from Ref. [32],
which reviews these constraints.
It has been also suggested recently [33] that the inter-

actions of these (anti)nuggets with normal matter in the
Earth and Sun will lead to annihilation and an associated
neutrino flux. Furthermore, it has been claimed [33] that the
antiquark nuggets cannot account for more than 20% of the
dark-matter flux based on constraints for the neutrino flux
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in the 20–50 MeV range where the sensitivity of the
underground neutrino detectors such as SuperK have their
highest signal-to-noise ratio.
However, the claim [33] was based on the assumption

that the annihilation of visible baryons with antiquark
nuggets generates the neutrino spectrum similar to conven-
tional baryon-antibaryon annihilation spectrum when the
large number of produced pions eventually decay to muons
and consequently to highly energetic neutrinos in the
20–50 MeV energy range. Precisely these highly energetic
neutrinos play the crucial role in analysis [33]. However, in
most CS phases, the lightest pseudo-Goldstone mesons
(the pions and kaons) have masses in the 5–20 MeV range
[16,17], in huge contrast with hadronic confined phase
where mπ ∼ 140 MeV. Therefore, such light pseudo-
Goldstone mesons in the CS phase cannot produce highly
energetic neutrinos in the 20–50 MeV energy range and
thus are not subject to the SuperK constraints [35].
We conclude this brief overview on observational con-

straints of the model with the following remark. This model
which has a single fundamental parameter (the mean
baryon number of a nugget hBi ∼ 1025, corresponding to
the axion mass ma ≃ 10−4 eV) and which enters all the
computations is consistent with all known astrophysical,
cosmological, satellite, and ground-based constraints as
highlighted above. Furthermore, in a number of cases, the
predictions of the model are very close to the presently

available limits, and very modest improving of those
constraints may lead to a discovery of the nuggets. Even
more than that, there is a number of frequency bands where
some excess of emission was observed, and this model may
explain some portion, or even the entire excess, of the
observed radiation in these frequency bands.
In light of this (quite optimistic) assessment of the

observational constraints of this model, it is quite obvious
that further and deeper studies of this model are worth
pursuing. The relevant developments may include, but are
not limited to, such hard problems as formation mecha-
nisms during the QCD phase transition in the early
Universe, even though many key elements for properly
addressing those questions at θ ≠ 0; μ ≠ 0; T ≠ 0 are still
largely unknown in strongly coupled QCD as shown on
Fig. 1. This work is the first step in the direction toward
exploring a possible mechanism of the formation of the
nuggets.

III. FORMATION OF THE NUGGETS:
THE CRUCIAL INGREDIENTS OF

THE PROPOSAL

1. First important element of this proposal is the presence
of the topological objects, the axion domain walls [36]. As
we already mentioned, the θ parameter is the angular
variable and therefore supports various types of the domain
walls, including the so-calledNDW ¼ 1 domainwalls when
θ interpolates between one and the same physical vacuum
statewith the same energy θ → θ þ 2πn. The axion domain
walls may form at the same moment when the axion
potential gets tilted, i.e., at the moment Ta when the axion
field starts to roll due to the misalignment mechanism. The
tilt becomes much more pronounced at the phase transition
when the chiral condensate forms at Tc. In general, one
should expect that the NDW ¼ 1 domain walls form once
the axion potential is sufficiently tilted, i.e., anywhere
between Ta and Tc.
One should comment here that it is normally assumed

that for the topological defects to be formed the Peccei-
Quinn (PQ) phase transition must occur after inflation. This
argument is absolutely correct for a generic type of domain
walls with NDW ≠ 1. The conventional argument is based
on the fact that few physically different vacua with the
same energy must be present inside of the same horizon for
the domain walls to be formed. TheNDW ¼ 1 domain walls
are unique and very special in the sense that θ interpolates
between one and the same physical vacuum state. Such
NDW ¼ 1 domain walls can be formed even if the PQ phase
transition occurred before inflation and a unique physical
vacuum occupies entire Universe; see some elaboration of
this point at the end of this section.
It has been realized many years after [36] that the walls,

in general, demonstrate a sandwichlike substructure on the
QCD-scale Λ−1

QCD ≃ fm. The arguments supporting the
QCD-scale substructure inside the axion domain walls

FIG. 2. Limits on quark nugget mass and fluxes based on
current constraints, taken from Ref. [32]. Our preferable value
hBi ∼ 1025 is translated to the axion mass ma ≃ 10−4 eV accord-
ing to the scaling relation (3). The corresponding constraints
expressed in terms of ma have an important implication for the
direct axion search experiments as discussed in Sec. VIII.
Orpheus experiment “B” is designed to be sensitive exactly to
this value of the axion mass ma ≃ 10−4 eV; see Fig. 3.
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are based on analysis [37] of QCD in the large-N limit with
the inclusion of the η0 field4 and independent analysis [39]
of supersymmetric models where a similar θ vacuum
structure occurs.
One should remark here that the described structure is a

classically stable configuration. In particular, the η0 field
cannot decay to 2γ simply due to the kinematical reasons
when the η0 field is off shell and cannot be expressed as a
superposition of on-shell free particles. It can only decay
through the tunnelling, and therefore such NDW ¼ 1
domain walls are formally metastable rather than absolutely
stable configurations.
2. Second important element is that, in addition to these

known QCD substructures [37–39] of the axion domain
walls expressed in terms of the η0 and gluon fields, there is
another substructure with a similar QCD scale which
carries the baryon charge. Precisely this novel feature of
the domain walls which was not explored previously in the
literature will play a key role in our proposal because
exactly this new effect will be eventually responsible for the
accretion of the baryon charge by the nuggets. Both the
quarks and antiquarks can accrete on a given closed domain
wall, making eventually the quark nuggets or antinuggets,
depending on the sign of the baryon charge. The sign is
chosen randomly such that an equal number of quark and
antiquark nuggets are formed if the external environment is
CP even, which is the case when fundamental θ ¼ 0. One
can interpret this phenomenon as a local spontaneous
symmetry-breaking effect, when on the scales of order
the correlation length ξ the nuggets may acquire the
positive or negative baryon charge with equal probability,
as discussed in great detail in Sec. IV.
3. Next important ingredient of the proposal is the

Kibble-Zurek mechanism, which gives a generic picture
of the formation of the topological defects during a phase
transition; see the original papers in Ref. [40], the review in
Ref. [41], and the textbook in Ref. [42]. In our context, the
Kibble-Zurek mechanism suggests that, once the axion
potential is sufficiently tilted, the NDW ¼ 1 domain walls
form. The potential becomes much more pronounced when
the chiral condensate forms at Tc. Some time after Ta, the
system is dominated by a single, percolated, highly folded,
and crumpled domain wall of very complicated topology.
In addition, there will be a finite portion of the closed walls
(bubbles) with typical size of order correlation length ξðTÞ,
which is defined as an average distance between folded
domain walls at temperature T. It is known that the
probability of finding closed walls with very large size
R ≫ ξ is exponentially small. Furthermore, numerical

simulations suggest [42] that approximately 87% of the
total wall area belongs to the percolated large cluster, while
the rest is represented by relatively small closed bubbles
with sizes R ∼ ξ.
The key point for our proposal is the existence of these

finite closed bubbles made of the axion domain walls.5 One
should remark here that these closed bubbles form some-
time after Ta when the original θ parameter has not settled
yet to its minimum value. It implies that the domain wall
evolution starts at the time when the θ parameter is not yet
zero.6 Normally, it is assumed that these closed bubbles
collapse as a result of the domain wall pressure and do not
play any significant role in the dynamics of the system.
However, as we already mentioned in the Introduction, the
collapse of these closed bubbles is halted due to the Fermi
pressure acting inside of the bubbles. Therefore, they may
survive and serve as the dark-matter candidates.
The percolated network of the domain walls will decay

to the axion in a conventional way as discussed in
Refs. [43,45,46]. Those axions (along with the axions
produced by the conventional misalignment mechanism
[43,44]) will contribute to the dark-matter density today.
The corresponding contribution to dark-matter density is
highly sensitive to the axion mass as Ωdark ∼m−1

a . It may
saturate the observed dark-matter density if ma ≃ 10−6 eV
[8–15], while it may contribute very little to Ωdark if the
axion mass is slightly heavier than ma ≃ 10−6 eV. In
contrast, in our framework, an approximate relationΩdark ≈
Ωvisible holds irrespectively of the axion mass ma.
We shall not elaborate on the production and spectral

properties of these axions in the present work. Instead, the
focus of the present paper is the dynamics of the closed
bubbles, which is normally ignored in computations of the
axion production. Precisely these closed bubbles, according
to this proposal, will eventually become the stable nuggets
and may serve as the dark-matter candidates.
As we already mentioned, the nugget’s contribution to

Ωdark is not very sensitive to the axion mass but rather is
determined by the formation temperature Tform as explained
in Introduction; see also footnote 3 with a few important

4The η0 field has special property that it enters the effective
Lagrangian in unique combination ½θ − η0ðxÞ� where the θ
parameter in the present context plays the role of the axion
dynamical field θðxÞ. A similar structure is known to occur in CS
phase as well. The corresponding domain walls in the CS phase
have been also constructed [38].

5The presence of such closed bubbles in numerical simulations
in the context of the axion domain wall has been mentioned in
Ref. [10], where it was argued that these bubbles would oscillate
and emit gravitational waves. However, we could not find any
further details on the fate of these closed bubbles in the literature.

6This θ parameter in our work is defined as the value of θ at the
moment when the domain walls form. It is not exactly the same
value as the misalignment angle, which normally enters all the
computations due to the conventional misalignment mechanism
[43,44]. This is because the temperature when the domain walls
form and the temperature Ta when the axion field starts to roll do
not exactly coincide though both effects are due to the same axion
tilted potential. The crucial point is that the θ parameter, as
defined above, could be numerically small, but, nevertheless, it
preserves its coherence over entire Universe; see item 5 below
and Sec. VII for details.
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comments on this. The time evolution of these nuggets after
their formation is the subject of Sec. V.
4. There existence of the CS phase in QCD represents the

next crucial element of our scenario. The CS has been an
active area of research for quite some time; see review papers
[16,17] on the subject. The CS phase is realizedwhen quarks
are squeezed to the density which is a few times nuclear
density. It has been known that this regimemay be realized in
nature in neutron star interiors and in the violent events
associated with the collapse of massive stars or collisions of
neutron stars, so it is important for astrophysics.
The force which squeezes quarks in neutron stars is

gravity; the force which does an analogous job in the early
Universe during the QCD phase transition is a violent
collapse of a bubble of size R ∼ ξðTÞ formed from the axion
domain wall as described in item 3 above. If the number
density of quarks trapped inside of the bubble (in the bulk)
is sufficiently large, the collapse stops due to the internal
Fermi pressure. In this case, the system in the bulk may
reach the equilibrium with the ground state being in a CS
phase. As we advocate in Sec. V, this is a very plausible fate
of a relatively large size bubbles of size R ∼ ξðTÞ made of
the axion domain walls which were produced after the
QCD phase transition.
5. If θ vanishes, then an equal number of nuggets and

antinuggets would form. However, the CP-violating θ
parameter (the axion field), which is defined as value of
θ at the moment of domain wall formation, generically is
not zero, though it might be numerically quite small.
Precisely the dynamics of the coherent axion field θðxÞ
leads to preferences in the formation of one species of
nuggets, as discussed in Sec. VII. This sign preference is
correlated on the scales where the axion field θðxÞ is
coherent, i.e., on the scale of the entire Universe at the
moment of the domain wall formation. In other words, we
assume that the PQ phase transition happened before
inflation. One should emphasize that this assumption on
the coherence of the axion field on very large scales is
consistent with formation of NDW ¼ 1 domain walls; see
item 1 above. This coherence obviously cannot be satisfied
for a generic type of the domains walls withNDW ≠ 1when
NDW physically distinct vacuum states with the same
energy must be present in the system.
There are few arguments supporting this claim. First of

all, one should remember that the axion domain wall with
NDW ¼ 1 corresponds to the configuration when the θ field
interpolates between θ ¼ 0 and θ ¼ 2π. It implies that the
axion field, describing the domain wall, interpolates
between a topologically distinct but physically identical
and unique vacuum state. We present a few strong argu-
ments below suggesting that the topological sectors must be
always present in the system everywhere in space, and
inflation does not remove different topological sectors from
the system. Therefore, NDW ¼ 1 can be formed even if the
PQ phase transition happened before inflation.

The simplest way to explain this claim is to analyze the
expression for vacuum energy [47,48] in the limit of a large
number of colors Nc → ∞, though it is known that the
arguments still hold for finite Nc as well.

7 The main point
is that the vacuum energy as a function of θ assumes the
form

EvacðθÞ ∼min
k
ðθ þ 2πkÞ2 þO

�
1

Nc

�
; ð8Þ

where θ in the present context plays the role of the axion
field. This formula explicitly shows that for each given θ
the vacuum state is unique. However, there are a number
of different branches, classified by parameter k such that
when θ ¼ �π the system becomes double degenerate,
and one branch replaces another branch at θ ¼ �π.
Precisely this pattern provides the required 2π periodic-
ity of the system. This picture of the θ dependence is
commonly accepted by the community and in fact
emerges in many different gauge theories where exact
computations can be carried out, including the holo-
graphic description [48].
The key point in these arguments is the presence of k

different branches, which must be present in the system
everywhere in space in order to provide the 2π periodicity
of the vacuum energy (8). There is only one physical
vacuum in the system, which, however, is always accom-
panied by k different branches. Inflation cannot remove
different k branches outside the horizon because they are
inherent elements of the system at each point in space. The
domain wall solution with NDW ¼ 1 corresponds to inter-
polation between different topological sectors k ¼ 1 and
k ¼ 0, which are always present in the system inside the
same horizon.
Another argument which leads to the same conclusion

goes as follows. The NDW ¼ 1 is formed as a result of the
twisting of the axion field in configurational space when the
axion field returns to its initial physical vacuum state after
making a full circle as explained above. Topologically, it is
identical to the creation of solitons in the two-dimensional
Sine-Gordon model ∼ cosϕ in condensed matter physics
when the ϕ field interpolates between one and the same
physical, but topologically distinct, states ϕ ¼ 0 and
ϕ ¼ �2π. In the dual picture, the Sine-Gordon solitons
can be thought of as ψ fermions; see Sec. IV for references
on this duality relation. In this dual picture, the production
of solitons corresponds to production of the fermi ψ
fields. It is quite obvious that the production of the ψ
fields is a perfectly allowed process at T ≠ 0 irrespectively
of whether inflation happened before or after the PQ

7For finite Nc in some simple models, the computations for the
vacuum energy can be exactly carried out. In many cases,
formula (8) assumes the form EvacðθÞ ∼minkð−N2

cÞ cosðθþ2πk
Nc

Þ,
which is obviously reduced to (8) in the large-Nc limit.
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symmetry breaking occurred. Formally, the mere existence
of the ψ field in the system is due to k topological sectors in
the theory when ϕ enters the Lagrangian in combination
ðϕþ 2πkÞ. The inflation obviously cannot remove k
sectors from the system because it would violate the
fundamental properties of the theory, such as duality
between ψ and ϕ descriptions.
For our system, it implies that the NDW ¼ 1 correspond-

ing to the interpolation between k ¼ 1 and k ¼ 0 is an
allowed configuration, irrespectively of inflation, as all k
topological sectors must be present in the system in every
point of space-time.
To conclude this section, as we argue below, the generic

consequence of this framework (1) is not very sensitive
to an absolute value of θ at the moment of the domain
wall formation; see the comment in footnote 3 on this
matter. One can say that the coherent axion field θðxÞ ≠ 0,
being numerically small, plays the role of the CP-violating
catalyst, which determines a preferred direction for
separation of the baryon charges on the Universe scale.
This role of CP violation in our proposal is quite different
from the role it plays in conventional baryogenesis
mechanisms.

IV. FORMATION OF THE NUGGETS:
ACCRETION OF THE BARYON

CHARGE

From now on and until Sec. VII, we focus on the
dynamics of a single closed bubble produced during
the domain wall formation as described in item 3,
Sec. III. The correlation length ξðTÞ is defined as an
average distance between folded domain walls at temper-
ature T. We assume that the initial size of the bubble ξðTÞ is
sufficiently large, a few times larger than the axion domain
wall width ∼m−1

a , such that one can locally treat the surface
of the closed bubble being flat.
The main goal of this section is to demonstrate that such

a bubble will generically acquire a baryon (or antibaryon)
charge in very much the same way as the η0 field was
dynamically accreted as originally discussed in Ref. [37]
and briefly explained in item 2, Sec. III above. In other
words, we shall argue in this section that the bubbles with
baryon or antibaryon charge will be copiously produced
during the phase transition as they are very generic
configurations of the system. In both cases, the effect
emerges as a result of the nontrivial boundary conditions
formulated far away from the domain wall core when the
field assumes physically the same but topologically distinct
vacuum states on opposite sides of the axion domain wall.
The technique we shall adopt in this section has been

previously used to study the generation of the magnetic
field in the domain wall background [49]. This method
makes the approximation that the domain wall is flat and
that translational and rotational symmetries are preserved in
the plane of the wall (which we take to be the x–y plane).

These approximations are marginally justified in our case
because the initial curvature R ∼ ξðTÞ is assumed to be few
times larger that the width of the wall ∼m−1

a .
Once this approximation is made, we can reformulate the

problem in 1þ 1 dimensions (z and t) and calculate the
density of the bulk properties along the domain wall. To
regain the full four-dimensional bulk properties, we shall
estimate the density of the particles in the x − y plane to
obtain the appropriate density and degeneracy factors for
the bulk density.
We proceed to demonstrate this technique by computing

the accumulation of baryon charge along the wall. We take
the standard form for the interaction between the pseudo-
scalar fields and the fermions which respect all relevant
symmetries:

L4 ¼ Ψði∂ −mei½θðzÞ−ϕðzÞ�γ5 − μγ0ÞΨ: ð9Þ

Here, θðzÞ and ϕðzÞ are the dimensionless axion and η0
domain wall solution. Parameterm is the typical QCD scale
of the problem, while μ is the typical chemical potential at a
specific time in the evolution of the system; see below for
more precise explanations. We also simplify the problem by
ignoring all flavor and color indices as well as an effective
four-fermion interaction, as our main goal is to explain the
basic idea with a simplified setting.
The parameter m in Eq. (9) should not be literally

identified with the quark mass nor with the nucleon mass.
Instead, this dimensional parameter m ∼ ΛQCD should be
thought of as an effective coupling in our model when
parameter m effectively describes the interaction with
fermion field Ψ in all phases during the formation time,
including the quark gluon plasma as well as hadronic and
CS phases.8 The same comment also applies to a numerical
value of the chemical potential μ: it vanishes during initial
time and becomes very large when the CS phase sets in
inside the nugget.
The strategy is to breakEq. (9) into two1þ 1-dimensional

components by setting ∂x ¼ ∂y ¼ 0 (this is the approxima-
tion that the physics in the z direction decouples from the
physics in the x − y plane) and then by manipulating the
system of equations that result.

8In quark gluon phase, the color singlet η0 field does not exist.
However, the singlet phase which accompanied the quark field is
still present in the system. The coefficient m in this phase can be
computed using the instanton liquid model. At very high temper-
ature, the parameter m is proportional to the quark masses and is
indeed very small. When temperature decreases, the instanton
contribution grows very fast. At this point, parameter m is
proportional to the vacuum expectation value of the ’t Hooft
determinant. When the temperature further decreases, the param-
eter m is proportional to the diquark condensate in the CS phase
or the chiral condensate in the hadronic phase; see Fig. 1. We
shall not elaborate along this line by assuming m ∼ ΛQCD for all
our estimates which follow.
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First, we introduce the following chiral components of
the Dirac spinors,9

Ψþ ¼ 1ffiffiffi
S

p
�
χ1

χ2

�
; Ψ− ¼ 1ffiffiffi

S
p

�
ξ1

ξ2

�
; ð10Þ

Ψ ¼ 1ffiffiffiffiffiffi
2S

p

0
BBB@

χ1 þ ξ1

χ2 þ ξ2

χ1 − ξ1

χ2 − ξ2

1
CCCA ¼ 1ffiffiffi

2
p

�
Ψþ þΨ−

Ψþ −Ψ−

�
; ð11Þ

where S is the area of the wall. This normalization factor
cancels the degeneracy factor proportional to S added in the
text below.
The associated Dirac equation is

�
−meiðϕ−θÞ ið∂t þ ∂zÞ − μ

ið∂t − ∂zÞ − μ −me−iðϕ−θÞ

��
χ1

ξ1

�
¼ 0; ð12aÞ

�
−meiðϕ−θÞ ið∂t − ∂zÞ − μ

ið∂t þ ∂zÞ − μ −me−iðϕ−θÞ

��
χ2

ξ2

�
¼ 0; ð12bÞ

where we decouple the z coordinates from x and y by
setting ∂x ¼ ∂y ¼ 0. Remember that we are looking for a
two-dimensional Dirac equation, and thus we want the
kinetic terms to look the same. For this reason, we should
flip the rows and columns of the second equation. Doing
this and defining the two two-dimensional spinors

Ψð1Þ ¼
�
χ1

ξ1

�
;

Ψð2Þ ¼
�
ξ2

χ2

�
; ð13Þ

the equations have the structure

ðiγ̂ν∂ν −meþiðθ−ϕÞγ̂5 − μγ̂0ÞΨð1Þ ¼ 0 ð14aÞ

ðiγ̂ν∂ν −me−iðθ−ϕÞγ̂5 − μγ̂0ÞΨð2Þ ¼ 0 ð14bÞ

where the index ν ∈ ft; zg, the Lorentz signature is ð1;−1Þ,
and we define the following two-dimensional version of the
gamma matrices:

γ̂t ¼ σ1; γ̂z ¼ −iσ2; γ̂5 ¼ σ3:

These satisfy the proper two-dimensional relationships
γ̂5 ¼ γ̂tγ̂z and γ̂μγ̂ν ¼ gμν þ ϵμνγ̂5. We can reproduce
Eq. (14) from the effective two-dimensional Lagrangian
density

L2 ¼ Ψð1Þðiγ̂μ∂μ −meþiðθ−ϕÞγ̂5 − μγ̂0ÞΨð1Þ

þΨð2Þðiγ̂μ∂μ −me−iðθ−ϕÞγ̂5 − μγ̂0ÞΨð2Þ; ð15Þ

where two different species of fermion with opposite chiral
charge interact with the axion domain wall background
determined by the θðzÞ and ϕðzÞ fields. Note that, due to the
normalization factor 1=

ffiffiffi
S

p
we introduced above, the

two-dimensional fields ΨðiÞ have the correct canonical
dimension 1=2.
We have thus successfully reduced our problem to a two-

dimensional fermionic system. It is known that for several
systems in 1þ 1 dimensions the fermionic representation is
equivalent to a 1þ 1-dimensional bosonic system through
the following equivalences [50,51]:

ΨðjÞiγ̂μ∂μΨðjÞ →
1

2
ð∂μθjÞ2; ð16aÞ

ΨðjÞγ̂μΨðjÞ →
1ffiffiffi
π

p ϵμν∂νθj; ð16bÞ

ΨðjÞΨðjÞ → −m0 cosð2
ffiffiffi
π

p
θjÞ; ð16cÞ

ΨðjÞiγ̂5ΨðjÞ → −m0 sinð2
ffiffiffi
π

p
θjÞ: ð16dÞ

The constant m0 in the last two equations is a dimensional
parameter of order m0 ∼m ∼ ΛQCD. The exact coefficient
of this factor depends on the renormalization procedure and
is only known for few exactly solvable systems but in all
cases is of order unity.
After making these replacements, we are left with the

following two-dimensional bosonic effective Lagrangian
density describing the two fields θ1 and θ2 in the domain
wall background determined by ϕðzÞ and θðzÞ,

L2 ¼
1

2
ð∂μθ1Þ2 þ

1

2
ð∂μθ2Þ2 −Uðθ1; θ2Þ þ

μffiffiffi
π

p ∂ðθ2 þ θ1Þ
∂z ;

ð17Þ

where the effective potential is

Uðθ1; θ2Þ ¼ −mm0½cosð2
ffiffiffi
π

p
θ1 − ϕþ θÞ�

−mm0½cosð2
ffiffiffi
π

p
θ2 þ ϕ − θÞ�: ð18Þ

The conventional procedure to study the system (17) is to
add the kinetic terms for the axion θ and the η0 field ϕ

9We are using the standard representation here:

γ0 ¼
�
I 0

0 −I

�
; γj ¼

�
0 σj

−σj 0

�
; γ5¼

�
0 I

I 0

�
;

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i

i 0

�
; σ3 ¼

�
1 0

0 −1

�
:
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into (17) and study a resulting solution depending on four
dynamical fields by specifying all possible boundary
conditions when the potential energy (18) assumes its
minimal value.10 In other words, one should take into
account the dynamics of the θ and ϕ fields together with θ1,
θ2 because the typical scales for ϕ, θ1, θ2 are roughly the
same order of magnitude and of order of ΛQCD. To
recapitulate it, one cannot study the dynamics of the θ1,
θ2 field by neglecting their backreaction on the background
axion and ϕ fields.
For our present purposes, however, we do not really need

explicit profile functions for a large number of different
domain walls determined by various boundary conditions
controlled by Eq. (18). The only important element relevant
for our future discussions is the observation that some of
the domain walls may carry the baryon (antibaryon) charge.
Indeed, the domain walls which satisfy the boundary
conditions

2
ffiffiffi
π

p
θ1ðz ¼ þ∞Þ − 2

ffiffiffi
π

p
θ1ðz ¼ −∞Þ ¼ 2πn1

2
ffiffiffi
π

p
θ2ðz ¼ þ∞Þ − 2

ffiffiffi
π

p
θ2ðz ¼ −∞Þ ¼ 2πn2 ð19Þ

carry the baryon charge N defined for one particle Dirac
equation,

N ¼
Z

d3xΨγ0Ψ ¼
Z

dzðΨ1γ̂0Ψ1 þΨ2γ̂0Ψ2Þ

¼ −
1ffiffiffi
π

p
Z þ∞

−∞
dz

∂
∂z ðθ1 þ θ2Þ ¼ −ðn1 þ n2Þ; ð20Þ

where we express the final formula in terms of the auxiliary
two-dimensional fields θ1 and θ2 and corresponding boun-
dary conditions given by Eq. (19). Factor S also cancels with
our normalization for the four-dimensional Ψ field.
To complete the computations for four-dimensional

baryon charge B accumulated on the domain wall, we
need to multiply (20) by the degeneracy factor in the
vicinity of the domain wall, which can be estimated as

B ¼ N · g ·
Z

d2x⊥d2k⊥
ð2πÞ2

1

expðϵ−μT Þ þ 1
; ð21Þ

where g is an appropriate degeneracy factor, e.g., g≃ NcNf

in the CS phase. We note that an additional degeneracy
factor 2 due to the spin is already accounted for by
parameter N defined in Eq. (20). For high chemical
potential μ ≫ T corresponding to the CS phase, the baryon
charge per unit area accreted in the vicinity of the domain
wall can be approximated as

B
S
≃ N ·

gμ2

4π
: ð22Þ

In the opposite limit of high temperature μ ≪ T which
corresponds to the quark gluon plasma phase, the corre-
sponding magnitude can be estimated as follows:

B
S
≃ N ·

gπT2

24
: ð23Þ

It is instructive to compare the estimate (23) with number
densityN =V of all degrees of freedom in the vicinity of the
domain wall. Assuming that the baryon charge in the
domain wall background is mainly concentrated on dis-
tances of order m−1 from the center of the domain wall, we
arrive at the estimate for the ratio of the baryon number
density bound to the wall in comparison with the total
number density of all degrees of freedom responsible for
the thermodynamical equilibrium in this phase,

r ∼
ðB=SÞ ·m
N =V

∼ N

�
m
T

��
π3g

18ζð3Þg�
�
; ð24Þ

where effective degeneracy factor g� for quark gluon
plasma is g� ≃ ½3

4
4NcNf þ 2ðN2

c − 1Þ� and ζð3Þ≃ 1.2 is
the Riemann zeta function. Ratio (24) shows that the
accreted quark density bounded to the domain wall at high
temperature represents a parametrically small contribution
to all thermodynamical observables mainly because of a
small parameter m=T ≪ 1 in this phase. The situation
drastically changes as we discuss in Sec. V when the
temperature slowly decreases due to the expansion of the
Universe and the system enters the hadronic or CS phase, as
shown on Fig. 1. At this point, the baryon charge
accumulation in the domain wall background becomes
the major player of the system, which eventually leads to
the formation of the CS nuggets or antinuggets when
quarks (antiquarks) fill the entire volume of the nuggets
(antinuggets).
We conclude this section with the following important

comments. First, we argued that the domain walls in
general accrete the baryon (or antibaryon) charge in vicinity
of the center of the domain wall. The effect in many
respects is similar to fractional charge localization on
domain walls, while the rest of the charge is delocalized
in the rest of volume of the system as discussed in the
original paper [52]. The effect is also very similar to the
previously discussed phenomenon on the dynamical gen-
eration of the η0 field in the domain wall background. The
key point is that at sufficiently high temperature theNDW ¼
1 domain walls form by the usual Kibble-Zurek mechanism
as explained in Sec. III. The periodic fields θ, ϕ, θ1, θ2 may
assume physically identical but topologically distinct
vacuum values (20) on opposite sides of the walls.
When the system cools down, the corresponding fields

10In fact, it was precisely the procedure which has been
adopted in Ref. [37] for a similar problem of computing of
the profile functions of the axion, π meson and η0 domain wall
described by the θ − π − η0 fields.

AXION FIELD AND THE QUARK NUGGET’S FORMATION … PHYSICAL REVIEW D 94, 083502 (2016)

083502-11



inevitably form the domain wall structure, similar to
analysis in hadronic [37] and CS phases [38].
We advocate the picture that the closed bubbles will be

also inevitably formed as discussed in Sec. III. The collapse
of these bubbles halts as a result of Fermi pressure due to
the quarks accumulated inside the nugget during the
evolution of the domain wall network. Section V is devoted
precisely the question on the time evolution of these closed
bubbles made of the NDW ¼ 1 domain wall.
The most important lesson of this section is that there is a

variety of acceptable boundary conditions determined by
potential (18) when the energy assumes its vacuum values.
Some of the domain walls will carry zero baryon charge
when the combination ðn1 þ n2Þ vanishes according to
Eq. (20). However, generically, the domainwallswill acquire
the baryon or antibaryon charge. This is because the domain
wall tension is mainly determined by the axion field while
corrections due to the QCD substructure will lead to a small
correction of order ∼m=fa ≪ 1, similar to studies of the
(axion -η0 − π) domain wall [37]. Therefore, the presence of
the QCD substructure with nonvanishing ðn1 þ n2Þ ≠ 0

increases the domain wall tension only slightly. In other
words, accumulation of the baryon charge in the vicinity of
the wall does not lead to any suppression during the
formation stage. Consequently, this implies that the domain
closed bubbles carrying the baryon or antibaryon chargewill
be copiously produced during the phase transition as they are
very generic configurations of the system. Furthermore, the
baryon charge cannot leave the system during the evolution
as it is strongly bound to the wall due to the topological
reasons.The correspondingbindingenergyper quark is order
of μ and increaseswith time aswe discuss in the next section.
This phenomenon of the “separation of the baryon

charge” can be interpreted as a local version of spontaneous
symmetry breaking of the baryon charge. This symmetry
breaking does not occur in the entire volume in the ground
state determined by the potential (18). Instead, the sym-
metry breaking occurs on scale ξðTÞ in the vicinity of the
field configurations which describe the interpolation
between physically identical but topologically distinct
vacuum states (19). One should add that a similar phe-
nomenon occurs with the accumulation of the η0 field in the
vicinity of the axion domain wall as described in Ref. [37].
However, one could not term that effect as a “local
spontaneous violation” of the Uð1ÞA symmetry because
the Uð1ÞA symmetry is explicitly broken by anomaly, in
contrast with our present studies when the baryon charge is
the exact symmetry of QCD. Nevertheless, the physics is
the same in a sense that the closed bubble configurations
generically acquire the axial as well as the baryon charge.
This phenomenon is therefore as generic as the formation
of the topological domain walls themselves. On the
correlation lengths of order ξ, the three periodic fields
ϕ; θ1; θ2 may randomly assume the corresponding vacuum

values which are physically identical but topologically
distinct.
Finally, one should also mention here that the very

similar effect of the “local CP violation” can be exper-
imentally tested in heavy ion collisions in an event by event
basis where the so-called induced θind domain with a
specific sign in each given event can be formed. This
leads to the “charge separation effect,” which can be
experimentally observed in relativistic heavy ion collisions
[53]. This charge separation effect in all respects is very
similar to the phenomenon discussed in the present section.
In fact, the main motivation for one of the authors (A. Z.)
for studies [53] was a possibility to test the ideas advocated
in this work by performing a specific analysis in the
controllable “little bang” heavy ion collision experiments,
in contrast with “big bang,” which happened billions of
years ago. This field of research initiated in Ref. [53]
became the hot topic in recent years as a result of many
interesting theoretical and experimental advances; see the
recent review papers [54–56] on the subject.

V. FORMATION OF THE NUGGETS:
TIME EVOLUTION

We assume that a closed NDW ¼ 1 domain wall has been
formed as discussed in Sec. III. Furthermore, we also
assume that this domain wall is classified by a nonvanish-
ing baryon number ðn1 þ n2Þ according to Eq. (20). Our
goal now is to study the time evolution of the obtained
configuration. As we argue below, the contraction of the
bubbles halts as a result of the Fermi pressure due to baryon
charge accreted during the evolution. As a result, the
system comes to the equilibrium at some temperature
Tform when the nuggets complete their formation. We want
to see precisely how it happens and what the typical time
scales relevant for these processes are.
We start with the following effective Lagrangian describ-

ing the time evolution of the closed spatially symmetric
domain wall of radius RðtÞ:

L ¼ 4πσR2ðtÞ
2

_R2ðtÞ − 4πσR2ðtÞ

þ 4πR3ðtÞ
3

½PinðμÞ − PoutðtÞ� þ ½other terms�: ð25Þ

Here, σ is the key dimensional parameter, the domain
wall tension σ ∼ fπmπfa ∼m−1

a as reviewed in the
Introduction; see Eq. (3). The tension σ, in principle,
is also a time-dependent parameter because the axion
mass depends on time, but for qualitative analysis of
this section, we ignore this time dependence for now.
We return to this question later in the text. Parameters
Pin½μðtÞ� and PoutðtÞ represent the pressure inside and
outside the bubble. The outside pressure in the quark
gluon plasma (QGP) phase at high temperature can be
estimated as
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Pout ≃ π2gout

90
T4
out; Tout ≃ T0

�
t0
t

�
1=2

;

gout ≃
�
7

8
4NcNf þ 2ðN2

c − 1Þ
�
; ð26Þ

where gout is the degeneracy factor, while T0 ≃ 100 MeV
and t0 ∼ 10−4 s represent the initial temperature and time
determined by the cosmological expansion. We also
assume that the thermodynamical equilibrium is main-
tained at all times between inside and outside regions such
that the temperature inside the bubble approximately
follows the outside temperature ToutðtÞ≃ T inðtÞ. Very
quick equilibration indeed is known to take place even
in much faster processes such as heavy ion collisions. The
fast equilibration in our case can be justified because the
heat transport between the phases is mostly due to the light
Nambu-Goldstone (NG) bosons which can easily penetrate
the domain wall with little on no interaction, in contrast
with quarks and baryons discussed in the previous section.
This assumption will be justified a posteriori; see Eq. (55)
on the flux exchange rate between interior and exterior
regions. Therefore, we believe our approximation
ToutðtÞ≃ T inðtÞ is sufficiently good, at least for qualitative
estimates, which is the main goal of this work.
The expression for the pressure inside the bubble PinðtÞ

depends on a number of quite nontrivial features of QCD
such as the bag vacuum energy, corrections due to the gap
in the CS phase, and many other phenomena, to be
discussed later in the text.
The equation of motion which follows from (25) is

σR̈ðtÞ ¼ −
2σ

RðtÞ −
σ _R2ðtÞ
RðtÞ þ ΔPðμÞ − 4η

_RðtÞ
RðtÞ ; ð27Þ

where ΔP½μðtÞ�≡ ½PinðμÞ − PoutðtÞ�. We also inserted an
additional term [which cannot be expressed in the
Lagrangian formulation (25)], the shear viscosity η to
the right-hand side of the equation, which effectively
describes the “friction” of the system when the domain
wall bubble moves in an “unfriendly” environment.11 On
the microscopical level, this term effectively accounts for a
large number of different effects which do occur during the

time evolution. Such processes include but are not limited
to different scattering process by quarks, gluons, or
Nambu-Goldstone bosons in different phases. All these
particles and quasiparticles interact among themselves and
also with a moving domain wall. Furthermore, the anni-
hilation processes which take place inside the bubble and
which result in the production of a large number of strongly
interacting quasiparticles also contribute to η.
Having discussed an expression for PoutðTÞ and viscous

term ∼η, we now wish to discuss the structure of the
internal pressure PinðμÞ which enters (27). It has a number
of contributions which originate from very different phys-
ics. We represent PinðμÞ as as a combination of three terms
to be discussed one by one in order,

PinðμÞ≃ PðFermiÞ
in ðμÞ þ Pðbag constÞ

in ðμÞ þ PðothersÞ
in : ð28Þ

In this formula, PðFermiÞ
in can be represented as

PðFermiÞ
in ðμÞ ¼ E

3V
¼ gin

6π2

Z
∞

0

k3dk

½expðϵðkÞ−μT Þ þ 1�
; ð29Þ

where we assume that quarks are massless and the chemical
potential μðtÞ implicitly depends on time as a result of the
bubble’s evolution (shrinking). The degeneracy factor in
this formula is

gin ≃ 2NcNf; ð30Þ

where we keep only the quark contribution by neglecting
the antiquarks. In other words, we simplify the problem by
ignoring the time dependence of the degeneracy factor
ginðtÞ which effectively varies as a result of μðtÞ variation.
Now, we are in position to discuss Pðbag constantÞ

in from
(28), which can be represented as

Pðbag constÞ
in ðμÞ≃ −EB · θ½μ − μ1�

�
1 −

μ21
μ2

�
; ð31Þ

where positive parameter EB ∼ ð150 MeVÞ4 is the famous
“bag constant” from the MIT bag model; see Ref. [3] for
references and numerical estimates for this parameter in the
given context of the nugget structure. The bag constant can
be expressed in terms of the gluon and quark condensates in
QCD. We shall not elaborate on this problem in the present
work by referring to Ref. [3] with relevant studies in the
given context.
The bag “constant” EB describes the differences of

vacuum energies (and therefore, vacuum pressure) in the
interior and exterior regions of the nuggets. This difference
occurs in our context because the phases realized outside
and inside of the nugget are drastically distinct. For
example, at the end of formation, the outside region of
the nugget is in a cold hadronic phase, while the inside

11We use conventional normalization factor of 4η _RðtÞ=RðtÞ for
the viscous term. This normalization factor is the same as that
which appears in the Rayleigh-Plesset equation in the classical
hydrodynamics when the viscous term, the surface tension term
2σ=RðtÞ, and the pressure termΔP enter the equation in a specific
combination as presented in (27). One should emphasize that our
equation (27) describes the dynamics of the 2D surface charac-
terized by the same surface tension σ in contrast with classical
equation of the Rayleigh-Plesset equation describing a 3D
spherical bubble in a liquid of infinite volume. This difference
explains some distinctions between the kinetic terms proportional
to factor ∼σ in our case (27) in contrast with the classical
Rayleigh-Plesset equation.
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region is in the CS phase. The vacuum energies in these two
phases are known to be drastically different. This term
works as a squeezer, similar to the role it plays in the MIT
bag model, when the vacuum energy outside of the nugget
is lower than the vacuum energy inside the nugget.
Therefore, it enters with the same sign minus as the domain
wall pressure.
A specific μ dependence used in (31) is an attempt to

model a known feature of QCD in which the absolute value
of the vacuum energy decreases when the chemical
potential increases. This feature is well established and
tested in conventional nuclear matter physics, and it was
analytically derived in a simplified version of QCD with
number of colors Nc ¼ 2; see Ref. [3] for references and
details. Our parametrization (31) corresponds to the behav-

ior when Pðbag constantÞ
in ðμÞ ¼ 0 for small chemical potentials

μ ≤ μ1 when the vacuum energies inside and outside of the
nuggets are approximately equal. This term becomes the
very important squeezer at large chemical potential at
μ ≥ μ1 when the system outside is in the hadronic vacuum
state while inside it is in a CS phase. The numerical value
for parameter μ1 can be estimated as μ1 ∼ 330 MeV [3]
when the baryon density is close to the nuclear matter
density.
The last term entering (28) and coined as PðothersÞ

in ðμÞ is
due to a large number of other effects which we ignore in
the present work. In particular, there is a conventional
contribution due to the boson degrees of freedom which
cancels the corresponding portion of gout from (26) at high
temperature, T ≫ μ. It does not play any important role in
our analysis because we are mainly concerned with analysis
of fermion degrees of freedom and building the chemical
potential inside the bubble. Another effect which is worth
mentioning is the formation of the gap in the CS phase due
to the quark pairing, similar to the formation of the gap in
conventional superconductors. The generation of the gap
obviously decreases the energy of the system. There are
many other phenomena which are known to occur in the CS
phase [16]. However, we expect that these effects are less
important in comparison with the dominating contributions
which are explicitly written down, Eqs. (29) and (31).
Equation (27) can be numerically solved for RðtÞ if time

variation of the chemical potential μðtÞ entering (29) and
(31) is known. To study the corresponding time evolution
for the chemical potential μðtÞ, we use expression (21) for
the baryon charge bounded to the domain wall. We assume
that the thermodynamical equilibrium is maintained
between internal and external parts of the nugget such that
T inðtÞ≃ ToutðtÞ. This assumption will be justified a poste-
riori; see the discussions after Eq. (55). At the same time,
the chemical potential is quickly increasing with time
inside the nugget due to the decreasing of the nugget’s
size. We also assume a fast equilibration for the chemical
potential within the nugget in its entire volume. In other
words, we describe the system using one and the same

chemical potential in the vicinity of the wall and deep
inside the bubble. Justification for this assumption will be
given later in the text.
With this picture in mind, we proceed by differentiating

Eq. (21) with respect to time to arrive at the implicit
equation relating μðtÞ and RðtÞ at fixed temperature T,

_B ¼ Ng
4π2

_SðtÞ
Z

d2k⊥
½expðϵ−μðtÞT Þ þ 1�

þ NgS
4π2

_μðtÞ
T

Z
d2k⊥½expðϵ−μðtÞT Þ�
½expðϵ−μðtÞT Þ þ 1�2

þ ðfluxesÞ ¼ 0; ð32Þ

where the term “fluxes” in (32) describes the loss of
baryonic matter due to annihilation and other processes
describing incoming and outgoing fluxes, to be discussed
later in the text. The relation (32) gives an implicit relation
between μðtÞ and RðtÞ which can be used for numerical
studies of our Eq. (27) describing the time evolution of the
system.
We shall discuss the physics related to incoming and

outgoing fluxes in Appendix A. If we neglect this term
which describes the loss of baryonic matter, we can
analytically solve (32) for small μ ≪ T when one can
use the Taylor expansion of the integrals entering (32).
The result is

ðμðtÞ − μ0Þ≃ π2T
6 ln 2

ln

�
R0

RðtÞ
�
; ð33Þ

where R0 is the initial size of the system at t ¼ t0, while
μ0 ≃ 0 is the initial chemical potential. One can explicitly
see that the chemical potential builds in very fast when the
nugget reduces its size only slightly. This formula (33) is
only justified for very small μðtÞ. For larger values of μ, one
should use the exact formula (32).
Finally, one should note that at the end of formation at

time t → ∞ when temperature T ≪ μ the evolution stops,
in which case all derivatives vanish, R̈form ¼ _Rform ¼
_μform ¼ 0. At this point, the nugget assumes its final
configuration with size R≃ Rform, and Eq. (27) assumes
the form

2σ

Rform
¼ Pin ¼

ginμ4

24π2
− EB

�
1 −

μ21
μ2

�
; μ ≥ μ1: ð34Þ

This condition is precisely the equilibrium condition
studied in Ref. [3] with a few neglected contributions
(such as the quark-quark interaction leading to the gap).
This is of course the expected result as the time evolution,
which is the subject of the present work, must lead to the
equilibrium configuration when the free energy assumes its
minimum determined by (34).
One should recall that analysis of the equilibrium

presented in Ref. [3] with typical QCD parameters strongly
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suggests that the system indeed falls into the CS phase
when the axion domain wall pressure σ assumes its
conventional value. At the same time, the equilibrium is
not likely to emerge with the same typical QCD parameters
without an additional external pressure related to the axion
domain wall. In this sense, the axion domain wall with
extra pressure due to σ ≠ 0 plays the role of an additional
squeezer stabilizing the nuggets.
The key element of this section is Eq. (32), which is the

direct consequence of a spontaneous accretion of the
baryon (or antibaryon) charge in the domain wall back-
ground as discussed in Sec. IV. Precisely this equation
explicitly shows that the chemical potential μðtÞ grows very
fast when the domain wall shrinks as a result of the domain
wall pressure σ. The presence of a nonvanishing chemical
potential in the vicinity of the domain wall obviously
implies the generation of the binding forces between the
fermions and the domain wall, such that a typical bound
energy of a single fermion to the domain wall is of order
of μ.
A generic solution of Eqs. (27) and (32), as we discuss in

the next section, shows an oscillatory behavior of RðtÞ with
a slow damping of the amplitude such that the system
eventually settles down at the equilibrium point (34).
However, even the very first oscillation with initial μ0 ≈
0 leads to very fast growth of the chemical potential
μðtÞ ≈ T as analytical estimates represented by Eq. (33)
show. In next section, we develop a quantitative framework
which allows us to analyze our basic equation (27) for RðtÞ
where time dependence μðtÞ is implicitly expressed in
terms of the same variable RðtÞ as determined by (32).

VI. FORMATION OF THE NUGGETS:
QUALITATIVE ANALYSIS

Our goal in this section is to solve for RðtÞ and therefore
μðtÞ by solving (27) and (32), which implicitly relate both
variables. We shall observe that a nugget experiences a
large number of oscillations during its evolution with slow
damping rate and eventually settles down at the equilibrium
point (34). This behavior of the system will be coined as
“underdamped oscillations.” In Sec. VI A, we formulate
some assumptions and present the technical details, while
the interpretation of the obtained results will be presented in
Sec. VI B. We want to make a number of simplifications in
our analysis in the present section to demonstrate the
generic features of these oscillations. The numerical studies
presented in Appendixes A, B, and C support our basic
picture of oscillatory behavior advocated in this section.

A. Assumptions, approximations, and simplifications

Exact analytical analysis of either (27) or (32) can be
obtained only during the first moment of the initial stage of
the evolution of the system when μ is sufficiently small
(33). We need to understand the behavior of the system for

a much longer period of time. Thus, we make two
important technical simplifications to proceed with our
qualitative analysis. The first one is to neglect the term in
(32) describing the fluxes. This assumption will be sup-
ported by some estimates presented in Appendix A, which
show that incoming and outgoing fluxes cancel each other
with very high accuracy, such that net flux is indeed quite
small. Hence, Eq. (32) is now simplified to

_B ¼ d
dt

�
Ng
4π2

S
Z

d2k⊥
expðϵ−μT Þ þ 1

�
¼ 0; ð35Þ

which means in this approximation that the baryonic charge
is roughly conserved in the domain wall background at all
times during the evolution of the system.
As our second simplification, we neglect the mass of the

fermions in comparison with temperature T and the
chemical potential μ; i.e., we use the dispersion relation
ϵ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

p ≃ k⊥ in the vicinity of the domain wall.
This approximation is somewhat justified in the QGP and
CS phases and is therefore along path 3 as shown on Fig. 1.
It is not literally justified for paths 1 and 2 as in the hadronic
phase where the quark massm should be identified with the
so-called constituent quark mass which is proportional to
the chiral condensate. Nevertheless, to simplify the prob-
lem, we neglect the mass mðTÞ for all paths in our
qualitative analysis of the time evolution as we do not
expect any drastic changes in our final outcome as a result
of this technical simplification. With these assumptions, we
can approximate the integral entering Eq. (35) as

Z
∞

0

dk⊥ · k⊥
e
ϵðk⊥Þ−μ

T þ 1
¼ T2 · I

�
μ

T

�

I
�
μ

T

�
≃ π2

6
þ 1

2

�
μ

T

�
2

−
π2

12
e−μ=T

þO
�
μ

T
e−μ=T

�
; ð36Þ

where the omitted terms ∼ μ
T e

−μ=T will be neglected there-
after, as they will never dominate in either the small nor
large limit of μ. One can numerically check that approxi-
mation (36) describes the relevant integral IðμTÞ sufficiently
well in the entire parametrical space of μ=T; see
Appendix C for a corresponding analysis. As a quick test
of this approximation, one can check that the approximate
expression (36) reproduces an exact (in the small-μ limit)
expression (33) with an accuracy of order 15%, which is
more than sufficient for our qualitative studies of this
section.
As mentioned above, if flux term (32) is neglected, the

curly bracket term in (35) is a conserved quantity. Equating
it to its initial values where Sðt ¼ 0Þ ¼ 4πR2

0, μðt ¼ 0Þ ¼
μ0 ≃ 0, one arrives at
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T2R2

�
π2

6
þ 1

2

�
μ

T

�
2

−
π2

12
e−μ=T

�
¼ π2

12
T2
0R

2
0: ð37Þ

In what follows, we assume that the thermodynamical
equilibration is established very quickly such that one can
approximate T ≃ T0 during the time evolution as we
already discussed in Sec. V. To simplify the system further,
we wish to represent the equation relating R and μ=T in the
form

fðRÞ≡ π2

6

�
1

2

�
R0

R

�
2

− 1

�
¼ 1

2

�
μ

T

�
2

−
π2

12
e−μ=T; ð38Þ

where we introduced function fðRÞ for convenience of the
analysis which follows. Essentially, the idea here is to
simplify the basic equation (27) as much as possible to
express the μðtÞ-dependent terms entering through the
pressure (28) in terms of RðtÞ such that Eq. (27) would
assume a conventional differential equation form for a
single variable RðtÞ.
Our next step is to simplify the expression for the Fermi

pressure (29) entering (28) using the same procedure we
used to approximate formula (36), i.e.,

PðFermiÞ
in ¼ gin

6π2

Z
∞

0

k3dk

expðϵðkÞ−μT Þþ1

≃ginT4

6π2

�
7π4

60
þπ2

2

�
μ

T

�
2

−
7π4

120
e−μ=T

þ1

4

�
μ

T

�
4

þO
�
μ

T
e−μ=T

��

≃ginT4

6

(
7π2

60
þ
�
1

2

�
μ

T

�
2

−
π2

12
e−μ=T

�
þ 1

4π2

�
μ

T

�
4
)

þginT4

6

�
π2

40
e−μ=TþO

�
μ

T
e−μ=T

��
: ð39Þ

In what follows, we neglect the last line in Eq. (39). The
justification for this procedure is the same as before: it
produces a small contribution in entire region of μ in
comparison with accounted terms. The technical advantage
for this procedure is the possibility to rewrite (39) in terms of
the function of RðtÞ, rather than μðtÞ using our relation (38).
The formula in the square bracket in (39) is just fðRÞ

defined by (38). The remaining ðμTÞ4 term can be also
expressed in terms of R by taking the square of (38),

f2ðRÞ ¼
�
1

2

�
μ

T

�
2

−
π2

12
e−μ=T

�
2

≃ 1

4

�
μ

T

�
4

þ
�
π2

12

�
2

þO
�
μ

T
e−μ=T

�
; ð40Þ

where the correction term ∼Oðμe−μ=TÞ will be dropped in
what follows, as before. Furthermore, we approximated a

numerically small term as follows: ðπ2
12
e−μ=TÞ2 ∼ ðπ2

12
Þ2. This

approximation is obviously justified for small μ, while for
large μ, this correction is negligible anyway in comparison

with the leading terms in the expression for PðFermiÞ
in ; see the

expression below. With these simplifications in mind, we

approximate PðFermiÞ
in in terms of RðtÞ as follows:

PðFermiÞ
in ≃ ginT4

6

�
7π2

60
þ fðRÞ þ f2ðRÞ

π2
−

π2

144

�
: ð41Þ

The expression for the Fermi pressure PðFermiÞ
in ðRÞ is now

expressed in terms of R rather than in terms of μ as in the
original expression (29).
We wish to simplify the expression for Pðbag constÞ

in ðμÞ
entering (28) in a similar manner to express Pðbag constÞ

in in
terms of R. This contribution becomes important as
discussed after Eq. (31) only for sufficiently large μ. In
this region, fðRÞ can be well approximated as

fðRÞ≃ 1

2

�
μ

T

�
2

; μ ≫ T ð42Þ

so that we have

Pbag
in ≃ −EB · θ

� ffiffiffiffiffiffiffiffiffiffiffiffi
2fðRÞ

p
−
μ1
T

��
1 −

μ21
2T2fðRÞ

�
: ð43Þ

As a result of these simplifications and approximations,
the pressure term which enters the basic equation (27),
ΔPðμÞ≡ ½PinðμÞ − PoutðtÞ�, which was initially formulated
in terms of the chemical potential μ inside the bubble, can
be now written entirely in terms of a single variable, the size
of the bubble RðtÞ,

ΔP½fðRÞ�≃ ginπ2

6
T4

�
79

720
−

gout

15gin
þ fðRÞ

π2
þ f2ðRÞ

π4

�

− EB · θ

� ffiffiffiffiffiffiffiffiffiffiffiffi
2fðRÞ

p
−
μ1
T

��
1 −

μ21
2T2fðRÞ

�
;

ð44Þ

where fðRÞ is defined by Eq. (38). With these technical
simplifications, the basic equation (27) can now be written
as a second-order differential equation entirely in terms of
RðtÞ rather than μ,

σR̈ðtÞ ¼ −
2σ

R
−
σ _R2

R
þ ΔP½fðRÞ� − 4η

_R
R
; ð45Þ

with ΔP½fðRÞ� determined by Eq. (44).
This equation can be solved numerically. In fact, it is

precisely the subject of Appendix B. However, the most
important quantitative features of the obtained solution can
be understood without any numerical studies but rather
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using a simplified analytical analysis, which is precisely the
subject of the next section.

B. Time evolution: Qualitative analysis

As we already mentioned, a nugget assumes its final form
at t → ∞ when all time derivatives vanish and the equation
for the equilibrium is given by (34) at T ¼ 0. In this section,
we generalize this equation for the equilibrium by defining
RformðTÞ as the solution of Eq. (46), see below, at T ≠ 0. In
otherwords, the startingpoint of the present analysis atT ≠ 0
is the equilibrium condition when the “potential” energy
assumes its minimal value. The corresponding minimum
condition is determined by the equation

2σ

Rform
¼ ΔPðRformÞ; ð46Þ

where ΔPðRformÞ is defined by Eq. (44). This condition
obviously reduces to Eq. (34) at t → ∞ when μ ≫ T.
We follow the conventional technique and expand (45)

around the equilibrium value RformðTÞ to arrive to an
equation for a simple damping oscillator,

d2ðδRÞ
dt2

þ 2

τ

dðδRÞ
dt

þ ω2ðδRÞ ¼ 0; ð47Þ

where δR≡ ½RðtÞ − Rform� describes the deviation from the
equilibrium position, while new parameters τ and ω
describe the effective damping coefficient and frequency
of the oscillations. Both new coefficients are expressed
in terms of the original parameters entering (45) and are
given by

τ ¼ σ

2η
Rform ð48aÞ

ω2 ¼ −
1

σ

dΔPðRÞ
dR

				
Rform

−
2

R2
form

: ð48bÞ

The expansion (47) is justified, of course, only for small
oscillations about the minimum determined by Eq. (46),
while the oscillations determined by the original equa-
tion (45) are obviously not small. However, our simple
analytical treatment (47) is quite instructive and gives a
good qualitative understanding of the system. Our numeri-
cal studies presented in Appendix B fully support the
qualitative picture presented below.
We start our qualitative analysis with estimates of the

parameter ω which depends on dΔPðRÞ
dR computed at R ¼

Rform according to (48b). First of all, in this qualitative

analysis, we neglect the bag constant term Pðbag constantÞ
in

because it only starts to play a role for sufficiently large
μ ≥ μ1 ∼ 330 MeV, when formation is almost completed.
This term obviously cannot change the qualitative behavior
of the system discussed below. Our numerical studies

presented in Appendix B (where the bag constant term
∼EB is included in the analysis) support this claim.
The key element for our simplified analysis is the

observation that the ratio ðR0=RformÞ2 ≥ 14 is expected
to be a numerically large number. This expectation will be
soon confirmed a posteriori. This observation considerably
simplifies our qualitative analysis because in this case
ΔPðRformÞ defined by (44) can be approximated by a single
term ∼f2ðRÞ in square brackets in (44) as this term
essentially saturates ΔPðRformÞ. This is because the func-
tion fðRÞ=π2 becomes numerically large in the relevant
region fðRÞ=π2 ∼ ðR0=RformÞ2 according to (38).
With these simplifications, we can now estimate ω2 as

follows:

ω2 ≈
�
ginπ2

216

�
·

�
T4

σRform

�
·

�
R0

Rform

�
4

−
�

2

R2
form

�
: ð49Þ

To simplify the analysis further, one can represent the last
term as

�
2

R2
form

�
¼

�
1

Rform

�
·

�
ΔPðRformÞ

σ

�
ð50Þ

and keep the leading term ∼f2ðRÞ in the expression for
ΔPðRformÞ. One can easily convince oneself that ω2 > 0
is always positive in this approximation such that the
condition for the desired underdamped oscillations assumes
a simple form,

fðRformÞ
π2

≳ 1 ⇒

�
R0

Rform

�
≳ ffiffiffiffiffi

14
p

; ð51Þ

when ΔPðRformÞ defined by (44) is dominated by a single
term ∼ð f

π2
Þ2, which itself can be approximated by the

leading quadratic term ∼ðR0

R Þ2 according to (38). Our
numerical studies presented in Appendix B support the
numerical estimate (51).
One can also check that if condition (51) is not satisfied

then the system shows an “overdamped” behavior when
very few oscillations occur before the complete collapse of
the system, in which case the nuggets obviously do not
form. These short-lived bubbles will never get to a stage
when the temperature drops below the critical value TCS.
Therefore, a CS phase cannot form in these “short-lived”
bubbles. It should be contrasted with “long-lived” bubbles
with much longer formation time of order τ; see the
comments below.
The condition (51) is extremely important for our analysis.

It essentially states that the initial size of a closed bubble R0

must be sufficiently large for a successful formation of a
nugget of sizeRform. On other hand, a formation of very large
closed bubbles is strongly suppressed ∼ exp½−ðR0=ξÞ2� by
the Kibble-Zurek (KZ) mechanism as reviewed in Sec. III.
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This constraint will be important in our estimation of
a suppression factor in Sec. VII C due to the necessity to
forma sufficiently large bubble (51) during the initial stage of
formation.
Assuming that condition (51) is satisfied, we estimate a

typical frequency oscillations as

ω ∼
1

Rform
∼ma; tosc ≃ ω−1 ≃m−1

a ; ð52Þ

where we used the scaling properties (3) to relate the
nugget’s size Rform with the axion mass ma. One should
emphasize that the estimate (52) is not sensitive to any
approximations and simplifications we have made in our
qualitative treatment of the time evolution in this section. In
fact, all parameters entering relation (52) are expressible in
terms of the QCD-scale ΛQCD and a single “external”
parameter, the axion mass ma, which we keep unspecified
at this point. Of course, we always assume that the axion
mass may take any value from the observationally allowed
window 10−6 eV≲ma ≲ 10−3 eV.
We now turn our attention to the damping coefficient

defined in terms of the original parameters by Eq. (48a).
It is convenient to estimate the dimensionless combination
ωτ as

ωτ≃ 1

Rform
·
�
σ

2η
Rform

�
≃ σ

2η
∼
mπ

ma
∼ 1011; ð53Þ

where we substituted ω ∼ R−1
form according to (52) and

assumed that η ∼m3
π has conventional QCD scale of order

fm−3 while the wall tension σ can be approximated with
high accuracy as σ ≃m4

π=ma. This relation implies that the
damping is extremely slow on the QCD scales. Therefore,
the solution describing the time evolution of a long-lived
bubble can be well approximated as

RðtÞ ¼ Rform þ ðR0 − RformÞe−t=τ cosωt; ð54Þ

which is obviously a solution of the approximate
equation (47). This solution represents an under-damped
oscillating RðtÞ with frequency ω ∼ 1

Rform
and damping time

τ ∼ σ
2ηRform. Precisely these long-lived bubbles will even-

tually form the DM nuggets.
The time scale (53) is very suggestive and implies that

the damping term starts to play a role on very large scales
when the cosmological expansion of the Universe with the
typical scale t0 ≃ 10−4s must be taken into account. We
have not included the corresponding temperature variation
in our studies because on the QCD scales (which is the
subject of the present studies) the corresponding variations
are negligible. However, the estimate (53) shows that for a
proper analysis of the time scales τ the expansion of the
Universe (and related to the expansion the temperature
variation) must be included. The corresponding studies are

beyond the scope of the present work. However, the
important comment we would like to make here is that
the emergent large time scale (53) is fully consistent with
our anticipation that the temperature of the Universe drops
approximately by a factor of ∼3 or so when a CS phase
forms in the interior of the nugget during the formation
period. It is quite obvious that if the time scale (53) were
considerably shorter than the cosmological time scale
t0 ≃ 10−4s then the temperature T ∼ t−1=2 inside the nugget
could not drop sufficiently deep into the region where the
CS sets in as plotted on Fig. 1. Fortunately, the time scale
(53) is long enough and automatically satisfies this
requirement.
Now, we want to elaborate on one more element of the

dynamics which is also important for a successful for-
mation of the nuggets. To be more specific, we want to
discuss the flux of particle exchange, which was ignored in
our qualitative analysis in this section and which is
estimated in Appendix A. This flux describes the rate of
the number of particles flowing between inside and outside
the system, which can be appreciably large even if the net
baryonic flux is negligibly small. To be more precise, there
are two kinds of fluxes, both investigated in Appendix A,
that we are discussing in this paper: the net flux of baryonic
chargeΔΦ≡ Φ⇒ − Φ⇐ and the average flux of the particle
number hΦi≡ 1

2
ðΦ⇒ þ Φ⇐Þ. The first one corresponds to

the flux term entering Eq. (32), while the latter is important
in understanding what is the typical time scale for a
complete “refill” of the particles during the time evolution.
The last question is important for understanding the time
scale for thermal equilibration.
We start our analysis with discussions of an average flux

hΦi at small chemical potential. It is estimated to be hΦi≃
1 fm−3 according to Appendix A. The magnitude of this
flux can be fully appreciated by computing the total number
of particle exchange per one cycle of the oscillation,

2π

ω
· 4πR2

form · hΦi ∼ R3
formfm

−3 ∼ jBj; ð55Þ

where ω is a typical frequency oscillation estimated in (52)
while jBj is the total number of particles (quarks and
antiquarks) stored in the nugget. The physical meaning of
this estimate is that a nugget can in principle entirely refill
its interior with “fresh” particles within a few cycles of
exchange. A similar estimate for the net baryon flux which
includes ΔΦ is suppressed; see Appendix A.
The main reason for emergence of this large scale in

expression (55) is a long time scale of a single cycle (52)
which is determined by the axion mass ma rather than by
QCD physics. Nevertheless, estimate (55) is quite remark-
able and shows that even for a very low rate of chemical
potential accretion of (anti)quarks being tracked per oscil-
lation, the high exchange rate (55) is still sufficient enough
to turn a baryonically neutral nugget into one completely
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filled with (anti)quarks. When the quarks become effec-
tively massive as happens in hadronic and CS phases, the
flux for the exchange of the baryon charge is drastically
decreased by a factor ∼ expð−m=TÞ.
The same estimate (55) essentially holds for the

exchange of almost massless Nambu-Goldstone bosons
for sufficiently high temperature. In fact, the lightest
degrees of freedom play a crucial role in the cooling
processes of the interior of the nugget as these particles
can easily penetrate the sharp domain wall structure.
Therefore, the high exchange rate between the exterior
and interior of a nugget essentially implies that the thermal
equilibrium is maintained in our system with very high
precision due to a huge rate per cycle (55) when a large
number of degrees of freedom ∼B have a chance of order 1
to interact with fresh particles from the exterior during a
single cycle. Therefore, our assumption on the thermal
equilibrium between the interior and exterior is justified
a posteriori.
We conclude this section with few important comments.

The most important result of this section is that the nuggets
can be formed during the QCD phase transition, provided
the initial size of the nuggets is sufficiently large as stated in
Eq. (51), in which case they survive the evolution. The key
role in this successful formation plays, of course, the effect
of local spontaneous violation of the baryon symmetry as
discussed in Sec. IV and explicitly expressed by Eqs. (19)
and (20). One should emphasize that our qualitative
analyses in this section are fully supported by numerical
studies presented in Appendixes A and B. Therefore, we do
not expect that any numerical simplifications in our
analysis may drastically change the basic qualitative results
presented in this section.
Another important point is the observation (52) that a

typical time scale for the oscillations is of order
tosc ≃ ω−1 ≃m−1

a . Both these estimates will be crucial
elements in our analysis presented in Sec. VII: Eq. (51)
will be important in the estimate for the efficiency of a
bubble formation with a large size ∼R0, while Eq. (52) will
play a key role in our arguments, suggesting a coherent
preferential formation of one type of nuggets (baryonic or
antibaryonic) on the largest possible scale of the visible
Universe.

VII. BARYON CHARGE SEPARATION:
CORRELATION ON COSMOLOGICAL

SCALES

Until this section, we mostly concentrated on the time
evolution of a single nugget (or antinugget). The main
lesson of our previous discussions is that such nuggets can
be formed, remain stable configurations, and therefore can
serve as the dark-matter candidates. In other words, the
focus of our previous studies was a problem of a local
separation of charges on small scales of order the nugget’s
size. The key element of that separation of charges is

Eq. (19), which can be thought of as a local version of the
spontaneous symmetry breaking of the baryon charge as
explained in Sec. IV. However, on a larger scale, it is quite
obvious that an equal number of nuggets and antinuggets
will be formed as a result of an exact symmetry as we
discuss below.
This symmetry, however, does not hold anymore on large

scales if the axion CP-odd coupling is included in the
consideration, which eventually leads to a very generic,
essentially insensitive to most parameters, consequence of
this framework represented by Eq. (1), which is the subject
of Secs. VII A and VII B. Section VII C is devoted to some
more specific and model-dependent consequences of this
framework. In particular, we want to estimate a suppression
factor related to a necessity to form a large size bubble (51)
in the KZ mechanism.

A. Coherent axion field as the source
of CP violation

First of all, let us show that the baryon charge hidden in
nuggets on average is equal to the baryon charge hidden in
antinuggets, of course with the sign minus. Indeed, the
analysis of the antinuggets can be achieved by flipping the
sign of the chemical potential in Eq. (17), i.e., μ → −μ. One
can restore the original form of the μ term in Lagrangian
(17) by replacing θ1 → −θ1 and θ2 → −θ2. Finally, one
should change the signs for the axion θ and the pseudo-
scalar singlet η0 meson represented by the ϕ field in the
interaction term (18) to restore the original form of the
Lagrangian. These symmetry arguments imply that as long
as the pseudoscalar axion field fluctuates around zero as
conventional pseudoscalar fields (as π, η0 mesons, for
example) the theory remains invariant under P and CP
symmetries. Without this symmetry, the number density
and size distribution of the nuggets and antinuggets could
be drastically different.12

Therefore, the symmetry arguments suggest that on
average an equal number of nuggets and antinuggets would
form if the axion field is represented by a conventional
quantum fluctuating field oscillating around the zero point.
If it were the case, the baryons and antibaryons would
continue to annihilate each other as well as annihilate with
the nuggets and antinuggets in our framework. Eventually,
it would lead to the Universe with large amount of dark
matter in the form of nuggets and antinuggets (they are far
away from each other, and therefore they do not annihilate
each other) and no visible matter. However, the axion
dynamics which is determined by the axion field correlated
on the scale of the entire Universe leads to a preferential

12If π meson condensation were to occur in nuclear matter, it
would unambiguously imply that the CP invariance is broken in
such a phase. Some of the phases in the CS systems indeed break
the CP invariance as a result of condensation of pseudoscalar
Nambu-Goldstone bosons.
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formation of a specific type of nuggets on the same large
scales where the axion field is correlated as we argue below.
Such a coherent axion field emerges if the PQ phase
transition occurs before or during inflation as discussed in
items 1 and 5, Sec. III.
First of all, wewant to argue that the time-dependent axion

field implies that there is an additional coupling to fermions
(56). Indeed, by making the time-dependent Uð1ÞA chiral
transformation in the path integral, one can always represent
the conventional θ term in the following form:

ΔL4 ¼ μ5ðtÞΨγ0γ5Ψ μ5 ≡ _θ: ð56Þ
In this formula, μ5 ≡ _θ can be thought of as the chiral
chemical potential.Many interesting properties emerge in the
systems if μ5 is generated. In fact, it has been an active area of
research in recent years, mostly due to very interesting
experimental data suggesting that the μ5 term can be
generated in heavy ion collisions; see the original paper
[53] and recent reviews [54–56] for details. In the present
context, the μ5 term is generated as a result of the axion
dynamics. As a matter of fact, the original studies [53] were
motivated by the proposal that the separation of the baryon
charges which may occur in early Universe, as advocated in
this paper, could be tested in laboratory experiments with
heavy ion collisions.
Now, we are prepared to formulate the main claim of this

section which can be stated as follows. When interaction
(18), (56) is introduced into the system, there will be a
preferential evolution in the system of the nuggets vs
antinuggets, provided that nuggets and antinuggets had been
already formed and the chemical potentialμ had been already
generated locally inside the nuggets as described in Sec. VI.
As we already explained earlier, the generation of μ can be
interpreted as a local violation of C invariance in the system.
This preferential evolution is correlated with the CP-odd

parameter on the scales where the axion field θðxÞ is
coherent. In our arguments presented below, we make a
standard assumption that the initial value of θðxÞ and its
time derivative _θðxÞ are correlated on the entire observable
Universe, such that μ5 ≡ _θ is also correlated on the same
large scale. Such a large-scale correlation is guaranteed if
the PQ phase transition occurs before inflation; see items 1
and 5, Sec. III for details. This is the standard assumption
in most studies on axion physics when one computes
the present density of axions due to the misalignment
mechanism; see Refs. [8–15].
For our present studies, the key element is that the

dynamics of the axion field until the QCD phase transition
is determined by the coherent state of axions at rest such
that [8–15]

θðtÞ ∼ C

t3=4
cos

Z
t
dt0ωaðt0Þ; ω2

aðtÞ ¼ m2
aðtÞ þ

3

16t2
;

ð57Þ

where C is a constant and t ¼ 1
2H is the cosmic time. This

formula suggests that for maðtÞt ≫ 1 when the axion
potential is sufficiently strongly tilted the chiral chemical
potential is essentially determined by the axionmass at time t:

μ5ðtÞ ¼ _θðtÞ ∼ ωaðtÞ≃maðtÞ: ð58Þ

The crucial point is that θðtÞ is one and the same in the entire
Universe as it is correlated on theUniverse size scale.Another
important remark is that the axion field θðtÞ continues to
oscillatewith frequency (58) until theQCDphase transition at
Tc, though its absolute value jθ=θ0j ∼ 0.01 might be few
orders of magnitude lower at Tc ≃ 170 MeV than its original
value θ0 at T ≃ 1 GeV when the axion field only started to
roll; see, e.g., Ref. [43]. As we discuss below, the relevant
physics is not very sensitive to an absolute value of jθðtÞj in
this regime, and therefore we do not elaborate further on this
rather technical and computational element of the axion
dynamics; see footnote 13below for comments on thismatter.
In the context of the nugget’s evolution (accretion of the

baryon charge), this claim implies that on the entire
Universe size scale with one and the same sign of θðtÞ a
specific single type of nuggets will prevail in terms of the
number density and sizes. Indeed, one can present the same
arguments (see the beginning of this section) with flipping
the sign μ → −μ with the only difference being that the
interaction (18) prevents us from making the variable
change θðiÞ ↔ −θðiÞ for a given θðtÞ because it changes
its form under θðiÞ ↔ −θðiÞ. In other words, slow varying
(on the QCD scale) CP-violating terms (18), (56) leads to a
preferential evolution of the system for a specific species of
the nuggets with a given sign of μ.
Indeed, it has been known for quite some time, see, e.g.,

Refs. [57,58], that in the presence of θ ≠ 0 a large number of
different CP-violating effects take place. In particular, the
Nambu-Goldstone bosons become amixture of pseudoscalar
and scalar fields, and their masses are drastically different
from θ ¼ 0 values. Furthermore, the quark chiral hψψi and
the gluon hG2i condensates become the superposition with
their pseudoscalar counterparts hψγ5ψi and hG ~Gi such that
entire hadron spectrum and their interactions are modified in
the presence of θ ≠ 0. All these strong effects, of course, are
proportional to θ and therefore numerically suppressed in the
case under consideration (57) by a factor jθ=θ0j ∼ 10−2 in the
vicinity of the QCD phase transition. Naively, this small
numerical factor jθ=θ0j ∼ 10−2 may lead only to minor
effects ∼10−2. However, the crucial point is that, while
the coupling (18) of the axionbackground fieldwithquarks is
indeed relatively small on the QCD scales, it is nevertheless
effectively long ranged and long lasting, in contrast with
conventional QCD interactions. As a result, this coherent
CP-odd coupling may produce large effects of order of 1, as
we argue below.
Indeed, as we discussed in Sec. VI, a typical oscillation

time tosc when the baryon charge accretes on the wall is of
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order tosc ∼m−1
a according to Eq. (52). But this time scale

tosc ∼m−1
a is precisely the time scale when _θ ¼ maðtÞ varies

according to (58). Therefore, while the dynamical fermion
fields θ1, θ2 defined by (16) fluctuate with typical scale of
order ΛQCD ≫ ma, the coherent variation of these fields
will occur during a long (on the QCD scales) coherent
process when a nugget makes a single cycle. These
coherent corrections are expected to be different for
nuggets (positive μ) and antinuggets (negative μ) as a
result of many C and CP-violating effects such as scatter-
ing, transmission, reflection, annihilation, evaporation,
mixing of the scalar and pseudoscalar condensates, etc.,
which are all responsible for the accretion of the baryon
charge on a nugget during its long evolution.
An important comment here is that each quark experi-

ences a small difference in interacting with the domain wall
surrounding nuggets or antinuggets during every single
QCD event (mentioned above) with typical QCD time scale
Λ−1
QCD. However, the number of the coherent QCD events

ncoherent during a long single cycle is very large,

ncoherent ∼ ΛQCDtosc ∼
ΛQCD

ma
∼ 1010 ≫ 1: ð59Þ

Therefore, a net effect during every single cyclewill be order
of 1, in spite of the fact that each given QCD event is
proportional to the axion field θðtÞ and could be quite small.
The argument presented above holds as long as the axion

field remains coherent; see also a comment at the very end
of this subsection. In other words, a small but nonvanishing
coherent CP-violating parameter θðtÞ plays the role of
catalyst, which determines a preferred direction for the
separation of the baryon charges on the Universe scale; see
the few comments in Sec. III on the justification of this
assumption. This role of CP violation in our framework is
very different from conventional “baryogenesis” mecha-
nisms when a CP-violating parameter explicitly enters the
final expression for the baryon charge production.
The corresponding large coherent corrections during a

single cycle tosc imply that the fast fluctuating fields θ1, θ2
[which effectively describe the dynamics of the fermions
living on the wall according to (16)] receive large correc-
tions during every single cycle,

Δθ1ðtÞ ∼ Δθ2ðtÞ ∼ 1: ð60Þ
These changes of order 1 of the strongly interacting θ1, θ2
fields lead to modification of the accreted baryon charge
per single cycle per single degree of freedom,

ΔN ∼ ðΔθ1 þ Δθ2Þ ∼ 1; ð61Þ

on the nuggets according to (20). One should emphasize
that the corrections (61) are expected to be different for
nuggets and antinuggets because the interaction (56), (18)
which is responsible for these corrections (61) breaks the

symmetry between nuggets and antinuggets when μ → −μ,
as discussed above.
Precise computations of these coherent CP-violating

effects are hard to carry out explicitly as they require a
solution of many-body problem of the coherent wall fer-
mions with surrounding environment in the background of
the axion field (57) when a large number of C and CP-
violating effects take place and drastically modify the
evolution of nuggets vs antinuggets. A large number of
cycles of every individual nugget (antinugget) also introdu-
ces a hugeuncertainty in computations ofΔN during the time
evolution when a single cycle leads to the effect of order 1,
with a possible opposite sign for a consequent cycle. In other
words, it is very hard to predict what would be the final
outcome of the system after a large number of cycles when
each cycle produces the effect of order 1. We expect that the
final result would be again of order 1. Such a computation is
beyond the scope of the present work. Therefore, in what
follows,we introduce a phenomenological parameter cðTÞ of
order 1 to account for these effects. All the observables will
be expressed in terms of this single phenomenological
parameter cðTÞ ∼ 1; see Eq. (62).
Our final comment in this subsection is as follows. The

charge separation effect on the largest possible scales is only
possiblewhen the axion field (57) is coherent on the scales of
the Universe. This coherence is known to occur in conven-
tional studies on the dynamics of the axion field in the
vicinity of the QCD phase transition if the PQ phase
transition occurs before inflation; see the few comments in
Sec. III on this matter. At the same time, soon after the QCD
phase transition, the dominant part of the axion field transfers
its energy to the free propagating on-shell axions (which is
the subject of axion search experiments [8–13,15]). These
randomly distributed free axions are not in the coherent state
anymore. Therefore, the coherent accumulation effect which
leads to a preferential formation of one species of nuggets, as
discussed above, ceases to be operational at the moment of
decoherence tdec when the description in terms of the
coherent axion field (57) breaks down.13 The baryon asym-
metry we observe today in this framework is a result of
accumulation of the charge separation effect from the
beginning of the nugget’s formation until this very last
“freeze-out” moment determined by tdec.

B. Nuggets vs antinuggets on the large scale:
Generic consequences

As we already mentioned, to make any precise dynami-
cal computations of ΔN ∼ 1 due to the coherent axion

13The decoherence time tdec is not entirely determined by the
absolute value of the amplitude of the axion field (57). In fact, the
amplitude could be quite small, but the field remains coherent on
large scales. The computation of the decoherence time tdec is a
hard problem of Quantum field theory (QFT), similar to a
problem in quantum optics when initially coherent light becomes
a decoherent superposition of uncorrelated photons.
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field (57) is a hard problem of strongly coupled QCD at
θ ≠ 0. To effectively account for these coherent effects, one
can introduce an unknown coefficient cðTÞ of order 1 as

Bantinuggets ¼ cðTÞ · Bnuggets; where jcðTÞj ∼ 1; ð62Þ

where cðTÞ is obviously a negative constant of order 1. We
emphasize that the main claim of this section represented
by Eq. (62) is not very sensitive to the axion mass maðTÞ
nor to the magnitude of θðTÞ at the QCD phase transition
when the bubbles start to oscillate and slowly accrete the
baryon charge. The only crucial factor in our arguments is
that the typical variation of θðtÞ is determined by the axion
mass (58), which is the same order of magnitude as t−1osc, and
furthermore this variation is correlated on the scale where
the axion field (57) can be represented by the coherent
superposition of the axions at rest.
The key relation of this framework (62) unambiguously

implies that the baryon charge in the form of the visible
matter can be also expressed in terms of the same
coefficient cðTÞ ∼ 1 as follows:

Bvisible ¼ −Bantinuggets − Bnuggets: ð63Þ

Using Eq. (62), it can be rewritten as

Bvisible ≡ ðBbaryons þ BantibaryonsÞ
¼ −½1þ cðTÞ�Bnuggets

¼ −
�
1þ 1

cðTÞ
�
Bantinuggets: ð64Þ

The same relation can be also represented in terms of the
measured observables Ωvisible and Ωdark at later times when
only the baryons (and not antibaryons) contribute to the
visible component,14

Ωdark ≃
�
1þ jcðTÞj
j1þ cðTÞj

�
· Ωvisible at T ≤ Tform: ð65Þ

One should emphasize that the relation (64) holds as long
as the thermal equilibrium is maintained, which we assume
to be the case. Another important comment is that each
individual contribution jBbaryonsj ∼ jBantibaryonsj entering
(64) is many orders of magnitude greater than the baryon
charge hidden in the form of the nuggets and antinuggets at
earlier times when Tc > T > Tform. It is just their total

baryon charge which is labeled as Bvisible, and representing
the net baryon charge of thevisiblematter is the sameorder of
magnitude (at all times) as the net baryon chargehidden in the
form of the nuggets and antinuggets according to (63).
The baryons continue to annihilate each other (as well as

the baryon charge hidden in the nuggets) until the temper-
ature reaches Tform when all visible antibaryons get annihi-
lated, while visible baryons remain in the system and
represent the visible matter we observe today. It corresponds
to cðTformÞ≃ −1.5 as estimated below if one neglects the
differences in gaps in the CS and hadronic phases; see
footnote 14. After this temperature, the nuggets essentially
assume their final form and do not loose or gain much of the
baryon charge from outside. The rare events of the annihi-
lation between antinuggets and visible baryons continue to
occur. In fact, the observational excess of radiation in
different frequency bands, reviewed in Sec. II, is a result
of these rare annihilation events at the present time.
The generic consequence of this framework represented

by Eqs. (62), (64), and (65) takes the following form at this
time Tform for cðTformÞ≃ −1.5, which corresponds to the
case when the nuggets saturate the entire dark-matter
density,

Bvisible ≃ 1

2
Bnuggets ≃ −

1

3
Bantinuggets;

Ωdark ≃ 5 ·Ωvisible; ð66Þ

which is identically the same relation (2) presented in the
Introduction. The relation (66) emerges due to the fact that
all components of matter, visible and dark, are proportional
to one and the same dimensional parameter ΛQCD; see
footnote 14 with a comment on this approximation. In
formula (66), Bnuggets and Bantinuggets contribute to Ωdark,
while Bvisible obviously contributes to Ωvisible. The coef-
ficient ∼5 in relation Ωdark ≃ 5 ·Ωvisible is obviously not
universal, but relation (1) is universal and a very generic
consequence of the entire framework, which was the main
motivation for the proposal [3,4].
For example, if cðTformÞ≃ −2, then the corresponding

relation (65) between the dark matter and the visible matter
would assume the form Ωdark ≃ 3 ·Ωvisible. Such a relation
implies that there is plenty of room for other types of dark
matter to saturate the observed ratioΩobserved

dark ≃ 5 · Ωobserved
visible .

This comment will be quite important in our discussions in
Sec. VIII, where we comment on implications of this
framework for other axion search experiments.
One should emphasize once again that the generic

consequences of the framework represented by (1) and
(65) are not sensitive to any specific parameters such as
the efficiency of the domain wall production or the magni-
tude of θ at the QCD phase transition, which could be quite
small; see footnote 13 for few comments on that.
Nevertheless, precisely the coupling with the coherent
CP-odd axion field plays a crucial role in the generation

14In Eq. (65), we neglect the differences (due to different gaps)
between the energy per baryon charge in the hadronic and CS
phases to simplify notations. The corresponding corrections in
energy per baryon charge in the hadronic and CS phases, in
principle, can be explicitly computed from the first principles.
However, we ignore these modifications in the present work. This
correction obviously does not change the main claim of this
proposal stating that Ωvisible ≈ Ωdark.
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of jcðTÞj ≠ 1; i.e., the axion plays the role of catalyst in the
baryon charge separation effect on the largest possible scales.
Some other observables which are sensitive to the dynamical
characteristics (e.g., the efficiency of the domain wall
production) will be discussed below.

C. nB=nγ ratio: Model dependent estimates

The time evolution of the dark matter within this
framework is amazingly simple. The relations (62), (63),
and (64) hold at all times. The baryon charge of the nuggets
(antinuggets) vary until its radius RðTÞ assumes its equi-
librium value as described in Secs V and VI. It happens
approximately at the time when the CS phase forms in the
interior of the nuggets, which can be estimated as
TCS ≃ 0.6Δ≃ 60 MeV, where Δ≃ 100 MeV is the gap
of the CS phase. After this temperature, the nuggets
essentially assume their final form, with very little variation
in size (and baryon charge). The rare events of the
annihilation of course continue to occur even for lower
temperatures. In fact, the observational consequences
reviewed in Sec. II are a result of these annihilation events
at the present time.
The variation of the visible matter Bvisible demonstrates

much more drastic changes after the QCD phase transition
at Tc because the corresponding number density is propor-
tional to expð−mN=TÞ such that at the moment of formation
Tform ≈ 40 MeV the baryon-to-entropy ratio assumes its
present value (5), which we express as follows:

η≡ nB
nγ

≃ Bvisible=V
nγ

∼ 10−10; nB ≡ Bvisible

V
: ð67Þ

If the nuggets and antinuggets were not present at this
temperature, the conventional baryons and antibaryons
would continue to annihilate each other until the density
would be 9 orders of magnitude smaller than observed (67)
when the temperature would be around T ≃ 22 MeV.
Conventional baryogenesis resolves this “annihilation
catastrophe” by producing extra baryons in early times;
see, e.g., Ref. [19], while in our framework, extra baryons
and antibaryons are hidden in form of the macroscopically
large nuggets.
In our framework, the ratio (67) can be rewritten in terms

of the nugget’s density as the baryon charges in the form of
the visible matter and in the form of the nuggets are related
to each other according to (64). This relation allows us to
infer what efficiency is required for the bubbles to form and
survive until the present time when the observed ratio is
measured (67).
One should emphasize that any small factors which

normally enter the computations in conventional baryo-
genesis (such as C- and CP-violating parameters) do not
enter in the estimates presented below in our framework as
a result of two effects. First, the C violation enters the
computation as a result of generation of the chemical

potential μ as described in Sec. IV. It is expressed in terms
of spontaneous accretion of the baryon charge on the
surface of the nuggets as given by Eq. (20), which
effectively generates the chemical potential (33), which
can be thought of as the local violation of the symmetry on
the scale of a single nugget. Second, theCP violation enters
the computation in the form of the coupling with the
coherent axion field (56). Precisely this coupling as we
argued above leads to removing of the degeneracy between
nuggets and antinuggets formally expressed as cðTÞ ∼ 1 in
Eq. (62). Therefore, the only small parameter we anticipate
in our estimates below is due to some suppression of the
closed bubbles which must be formed with sufficiently
large sizes during the QCD phase transition.
We cannot compute the probability for the bubble

formation as it obviously requires the numerical simula-
tions, which is beyond the scope of the present work.
Instead, we go backward and ask the question of what sthe
efficiency of the bubble formation at the QCD phase
transition should be in order to accommodate the observed
ratio (67).
With these comments in mind, we proceed with our

estimates as follows. First, from (64) and (66), we infer that
the baryon charge hidden in the nuggets and antinuggets is
the same order of magnitude as the baryon charge of the
visible baryons at Tform at the end of the formation, i.e.,

Bnuggets=V

nγ
≳ 10−10; ð68Þ

where we use sign ≳ instead of ≈ used in Eq. (67) to
emphasize that there is long time for equilibration between
the moment TCS ≃ 0.6Δ≃ 60 MeV when the CS phase
forms in the interior of the nuggets and Tform ≃ 40 MeV
when all antibaryons of the visible matter get annihilated,
corresponding to the present observed value (67). During
this period, the equilibrium between the visible matter and
the baryons from nuggets is maintained, and some portion
of the nugget’s baryon charge might be annihilated by the
visible matter. This explains our sign ≳ used in Eq. (68).
The relation (68) implies that the number density of

nuggets and antinuggets can be estimated as

hBinnuggets
nγ

≳ 10−10; hBinnuggets ≡ Bnuggets

V
; ð69Þ

where hBi is the average baryon charge of a single nugget
at Tform.
Now, we want to estimate the same ratio (69) using the

KZ mechanism [40–42] reviewed in Sec. III. The basic idea
of the KZ mechanism is that the total area of the crumpled,
twisted, and folded domain wall is proportional to the
volume of the system and can be estimated as

Sðtotal DWÞ ¼
V

ξðTÞ ; ð70Þ
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where ξðTÞ is the correlation length, which is defined as an
average distance between crumpled domain walls at tem-
perature T. The largest part of the wall belongs to the
percolated large cluster. It is known that some closed walls
(bubbles) with typical size ξðTÞ will be also formed. These
bubbles with sufficiently large size R ∼ ξðTÞ will even-
tually become nuggets. We introduce parameter γ to
account for the suppression related to the closed bubble
formation. In other words, we define

Snuggets ¼ γSðtotal DWÞ ¼
γV
ξðTÞ ; γ ≪ 1: ð71Þ

At the same time, the total area of the nuggets Snuggets can
be estimated as

Snuggets ¼ 4πR2
0ðTÞ½V · nnuggets�; ð72Þ

where R0 is the size of a nuggets at the initial time, while
½V · nnuggets� represents the total number of nuggets in
volume V. Comparison (71) with (72) gives the following
estimate for the nugget’s density when bubbles just formed:

nnuggets ≃ γ

4πR2
0ξ

: ð73Þ

The last step in our estimates is the computation of the
average baryon charge of a nugget at TCS when CS sets in
inside the nugget. The corresponding estimates were
worked out long ago [3] and reproduced in Sec. V in
the course of the time evolution by taking t → ∞; see (34).
The baryon number density inside the nuggets depends on a
model being used [3], but typically it is a few times the
nuclear saturation density n0 ≃ ð108 MeVÞ3, which is
consistent with conventional computations for the baryon
density in CS phases. Therefore, we arrive at

hBi≃ ð2 − 6Þn0 ·
4πR3

form

3
; ð74Þ

where Rform is the final size of the nuggets. By substituting
(74) and (73) into (69), we arrive at the constraint on the
efficiency of the bubble formation represented by param-
eter γ,

ð2 − 6Þ · γ
3

�
Rform

ξðTÞ
��

Rform

R0

�
2
�
n0
nγ

�
≳ 10−10; ð75Þ

where the expression for nγðTÞ should be taken at the
formation time,

nγ ¼
2ζð3Þ
π2

T3
form; ζð3Þ≃ 1.2; ð76Þ

while the correlation length ξðTÞ should be evaluated at
much earlier times, close to Tc when the domain wall

network only started to form. Typically, bubbles form with
R0 ∼ ξ. However, the bubbles shrink approximately 3–5
times according to (51) before they reach equilibrium
during the time evolution as discussed in Sec. VI.
Therefore, to be on the safe side, we make the very
conservative assumption that

Rform

R0

∼ 0.1; R0 ≃ ξ: ð77Þ

To proceed with numerical estimates, it is convenient to
separate γ on two pieces,

γ ≡ γformation · γevolution; γformation ∼ 0.1; ð78Þ

where the first part, γformation ∼ 0.1, has been estimated
using numerical simulations; see Ref. [42] for a review. The
second suppression factor γevolution is unknown and includes
a large number of different effects. In particular, many
small closed bubbles with R0 ≤ ξ are very likely to be
formed but may not survive the evolution, as we discussed
in Sec. VI. Furthermore, there are many effects such as
evaporation and annihilation inside the nuggets, which may
also lead to the collapse of relatively small nuggets.
Furthermore, the formation probability of large closed
bubbles with R0 ≫ ξ (which are most likely to survive)
is highly suppressed ∼ expð−R2

0=ξ
2Þ. All these effects are

included in unknown parameter γevolution. Our constraint
(from observations on nB=nγ within our mechanism) can be
inferred from (75)

γevolutionðTformÞ ≳ 10−7: ð79Þ

One suppression factor which obviously contributes to
suppression (79) is related to the necessity to produce a
sufficiently large initial bubble for successful nugget
formation as given by Eq. (51).
Now, we can interpret the estimate (79) in two compli-

mentary ways.15 First, the interpretation of estimate (79) is
as follows. Small numerical value (79) implies that only
sufficiently large nuggets survive the evolution in the
unfriendly environment mentioned above. It is hard to
estimate all the QCD effects mentioned above (evaporation,
annihilation inside the nuggets, etc.), but the dominant
suppression factor is related to formation suppression
∼ expð−R2

0=ξ
2Þ. The observed abundance (67) can be

interpreted in this case as a specific value for the formation
size R0 which satisfies the constraint (79). There is an
exponential sensitivity to R0 within this interpretation. In
particular, if R0 ∼ ð3 − 4Þξ,

15We are thankful to an anonymous referee, who hinted at the
possibility of the first interpretation. The second interpretation of
estimate (79) is our original and preferable interpretation.
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exp

�
−
R2
0

ξ2

�
∼ ð10−4 − 10−7Þ: ð80Þ

This estimate is consistent with the observational constraint
as the unaccounted-for QCD effects mentioned above may
saturate (79).
We do not consider this sensitivity to R0 as a fine-tuning

problem. Indeed, in many cases, the physics is highly
sensitive to some parameters of the theory, which, however,
cannot be interpreted as a fine-tuning problem. In particu-
lar, in the context of this paper, the conventional for-
mula (81) for the dark-matter density that resulted from the
misalignment mechanism is highly sensitive to the axion
massma. However, we do not interpret this dependence as a
fine-tuning problem.
Our second (and preferable) interpretation can be

explained as follows. The observed ratio (67) is highly
sensitive to Tform ≈ 40 MeV due to the exponential depend-
ence of the baryon number density ∼ expð−mN=TÞ. This
formation temperature in our framework is defined as the
temperature when the nuggets complete their formation.
This value for the temperature is very reasonable as it lies
slightly below TCS when the CS phase sets in inside the
nuggets. Obviously, we do not interpret this sensitivity to
the formation temperature Tform ≈ 40 MeV as a fine-tuning
problem.
The crucial point here is that the saturation of the

observed ratio (67) can be interpreted in terms of Tform,
or it can be interpreted in terms of R0, which is the key
parameter in our first interpretation. A small variation of
Tform can be thought of as small variations of R0, which,
however, lead to very large changes of the observed ratio
(67) due to the exponential sensitivity. In other words, a
small increase of Tform when nuggets complete the for-
mation can be interpreted as a small decrease of survival
size R0 in our first interpretation given above.
We do not call this effect a fine-tuning. This is because

the equilibration of the baryon charge from the nuggets
with visible baryons always leads to generic relations (1),
(64). These relations are the direct consequence of our
framework when all contributions are the same orders of
magnitude. A small observed ratio (67) is determined by a
precise and specific moment in evolution of the Universe
when the nuggets complete their formation at temperature
Tform ∼ ΛQCD, which is again perfectly consistent with the
main paradigm of the entire framework that all dimensional
parameters are of order ΛQCD. This Tform corresponds to a
very specific value R0 for nuggets to complete their
formation at time Tform.
How can one understand the result (79), which essentially

states that even a very tiny probability of the formation of the
closed bubbles is still sufficient to saturate the observed ratio
(67)? The answer lies in the observation that the baryon
density nB ≃ nB was 10 orders of magnitude larger at the
moment of the bubble formation. Therefore, even a tiny

probability at the moment of formation of a closed bubble
with sufficiently large sizewill lead to effects of order 1 at the
moment when the baryon number density drops 10 orders in
magnitude. Another reason why a very tiny probability of
the formation of the closed bubbles nevertheless is sufficient
to saturate the observed ratio (67) is that typical “small
factors” which normally accompany the conventional bar-
yogenesis mechanisms such asCP- andC-odd couplings do
not appear in estimate (79) due to the reasons already
explained after Eq. (67).
We conclude this section with the following comment:

The basic consequences of this framework represented by
Eqs. (1), (64), and (65) are very generic. These features are
not very sensitive to the efficiency of the closed domain
wall formation nor to the absolute value of θ as long as
coherence is maintained; see footnote 13. These generic
features hold for an arbitrary value of the axion mass
10−6 eV ≤ ma ≤ 10−3 eV, in contrast with the conven-
tional treatment of the axion as the dark-matter candidate,
when ΩDM can be saturated by the axions only when the
axion mass assumes a very specific and definite value
ma ≃ 10−6 eV; see the next section for details.
The derivation of the observed ratio (67) from the first

principles (which is determined by parameter R0 in the first
interpretations or parameter Tform in the second interpre-
tation) is a hard computational problem of strongly coupled
QCD when all elements such as the cooling rate, annihi-
lation rate, charge separation rate, damping rate, evapora-
tion rate, and many other effects equally contribute to Tform.
However, it is important that the “observational” value
Tform ≃ 40 MeV lies precisely in the region where it should
be, Tform < TCS, i.e., slightly below the temperature at
which CS sets in. Therefore, any fine-tuning procedures
have never been required in this framework to accommo-
date the observed ratio presented by Eq. (1).

VIII. IMPLICATIONS FOR THE AXION
SEARCH EXPERIMENTS

The goal of this section is to comment on the relation
of our framework and the direct axion search experiments
[8–15]. We start with the following comment we made in
Sec. II: This model which has a single fundamental
parameter (a mean baryon number of a nugget hBi ∼
1025 entering all the computations) is consistent with all
known astrophysical, cosmological, satellite, and ground-
based constraints as reviewed in Sec. II. For discussions of
this section, it is convenient to express this single normali-
zation parameter hBi ∼ 1025 in terms of the axion mass
ma ∼ 10−4 eV as these two parameters are directly related
according to the scaling relations (3). The corresponding
relation between these two parameters occurs because the
axion mass ma determines the wall tension σ ∼m−1

a which
itself enters the expression for the equilibrium value of
the size of the nuggets, Rform, at the end of the formation.
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One should emphasize that it is quite nontrivial that the
cosmological constraints on the nuggets as shown on Fig. 2
and formulated in terms of hBi are compatible with known
upper limit on the axion mass ma < 10−3 eV within our
framework. One could regard this compatibility as a non-
trivial consistency check for this proposal.
The lower limit on the axion mass, as it is well known, is

determined by the requirement that the axion contribution to
the dark-matter density does not exceed the observed value
Ωdark ≈ 0.23. There are a number of uncertainties in the
corresponding estimates. We shall not comment on these
subtleties by referring to the review papers [8–15]. The
corresponding uncertainties are mostly due to the remaining
discrepancies between different groups on the computations
of the axion production rates due to the differentmechanisms
such as the misalignment mechanism vs domain wall/string
decays. Inwhat follows, to bemore concrete in our estimates,
we shall use the following expression for the dark-matter
density in terms of the axion mass resulting from the
misalignment mechanism [15]:

ΩðDM axionÞ ≃
�
6 × 10−6 eV

ma

�7
6

: ð81Þ

This formula essentially states that the axion of mass ma ≃
2 × 10−5 eV saturates the dark-matter density observed
today, while the axion mass in the range of ma ≥ 10−4 eV
contributes very little to the dark-matter density. This claim,
of course, is entirely based on estimate (81), which accounts
only for the axions directly produced by the misalignment
mechanism suggested originally in Ref. [44].
There is another mechanism of the axion production

when the Peccei-Quinn symmetry is broken after inflation.
In this case, the string-domain wall network produces a
large number of axions such that the axion mass ma ≃
10−4 eV may saturate the dark-matter density; see rela-
tively recent estimates [43,46,59]with some comments and
references in previous papers. The corresponding formula
from Refs. [43,46,59] is also highly sensitive to the
axion mass with ma dependence being very similar
to Eq. (81).
The main lesson to be learned from the present work is

that, in addition to these well-established mechanisms
previously discussed in the literature, there is an additional
contribution to the dark-matter density also related to the
axion field. However, the mechanism which is advocated in
the present work contributes to the dark-matter density
through the formation of the nuggets, rather than through
the direct axion production. The corresponding mechanism
as argued in Sec. VII B always satisfies the relation Ωdark ≈
Ωvisible and, in principle, is capable of saturating the dark-
matter density Ωdark ≈ 5Ωvisible by itself for an arbitrary
magnitude of the axion mass ma as the corresponding
contribution is not sensitive to the axion mass, in contrast
with conventional mechanisms mentioned above. A precise

coefficient in ratio Ωdark ≈Ωvisible is determined by a
parameter of order 1, jcðTÞj ∼ 1, which unfortunately is
very hard to compute from the first principles, as discussed
in Sec. VII B.
Our choice for ma ≃ 10−4 eV which corresponds to

hBi ∼ 1025 is entirely motivated by our previous analysis of
astrophysical, cosmological, satellite, and ground-based
constraints, as reviewed in Sec. II. As we mentioned in
Sec. II, there are a number of frequency bands for which
some excess of emission was observed, and this model may
explain some portion, or even the entire excess, of the
observed radiation in these frequency bands. Our normali-
zation hBi ∼ 1025 was fixed by Eq. (6) with the assumption
that the observed dark matter is saturated by the nuggets.
Relaxing this assumption obviously modifies the coeffi-
cient cðTÞ as well as hBi.
Interestingly enough, this range of the axion mass ma ≃

10−4 eV is perfectly consistent with the recent claim
[60,61] that the previously observed small signal in the
resonant S/N/S Josephson junction [62] is a result of the
dark-matter axions with the mass ma ≃ 1.1 × 10−4 eV.
Furthermore, it has been also claimed that similar anoma-
lies have been observed in other experiments [63–65]
which all point toward an axion mass ma ≃ 1.1 ×
10−4 eV if interpreted within the framework [60,61].
The only comment we would like to make here is that if
the interpretation [60,61] of the observed anomalies
[62–65] is indeed due to the dark-matter axions then the
corresponding axion mass is perfectly consistent with our
estimates (based on cosmological observations) of the
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FIG. 3. Cavity/ADMX experimental constraints on the axion
mass are shown in green. The expected sensitivity for the
Orpheus axion search experiment [14] is shown by blue regions
A, B, C, and D. In particular, experiment B, covers the most
interesting region of the parametrical space with ma ≃ 10−4 eV
corresponding to the nuggetswithmean baryon charge hBi≃ 1025

which itself satisfies all known astrophysical, cosmological,
satellite, and ground-based constraints; see Fig. 2. The plot is
taken from Ref. [14].
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average baryon charge of the nuggets hBi≃ 1025 as
reviewed in Sec. II.
We conclude this section on an optimistic note with a

remark that the most interesting region of the parametric
space corresponding to the nuggets with mean baryon
charge hBi≃ 1025 might be tested by the Orpheus axion
search experiment [14] as shown in Fig. 3.

IX. CONCLUSION: FUTURE DIRECTIONS

First, we want to list the main results of the present
studies, while comments on possible future developments
will be presented at the end of this Conclusion:
(1) The first key element of this proposal is the

observation (20) that the closed axion domain walls
are copiously produced and generically will acquire
the baryon or antibaryon charge. This phenomenon
of the separation of the baryon charge can be
interpreted as a local version of spontaneous sym-
metry breaking. This symmetry breaking occurs not
in the entire volume of the system but on the
correlation length ξðTÞ ∼m−1

a , which is determined
by the folded and crumpled axion domain wall
during the formation stage. Precisely this local
charge separation eventually leads to the formation
of the nuggets and antinuggets serving in this
framework as the dark-matter component Ωdark.

(2) The number density of nuggets and antinuggets will
not be identically the same as a result of the coherent
(on the scale of the Universe) axion CP-odd field.
We parametrize the corresponding effects of order 1
by phenomenological constant cðTÞ ∼ 1. It is im-
portant to emphasize that this parameter of order 1 is
not afundamental constant of the theory but calcu-
lable from the first principles. In practice, however,
such a computation could be quite a challenging
problem when even the QCD phase diagram is not
known. The fundamental consequence of this frame-
work, Ωdark ≈Ωvisible, which is given by (1) is
universal and not sensitive to any parameters as
both components are proportional to ΛQCD. The
observed ratio (2), (66) corresponds to a specific
value of cðTformÞ≃ −1.5, as discussed in Sec. VII B.

(3) Another consequence of the proposal is a natural
explanation of the ratio (5) in terms of the formation
temperature Tform ≃ 40 MeV, rather than in terms of
specific coupling constants which normally enter
conventional baryogenesis computations. This ob-
served ratio is expressed in our framework in terms
of a single parameter Tform when nuggets complete
their formation. This parameter is not a fundamental
constant of the theory and, as such, is calculable
from the first principles. In practice, however, the
computation of Tform is quite a challenging problem,
as explained in Sec. VII C. Numerically, the ob-
served ratio (5) corresponds to Tform ≃ 40 MeV,

which is indeed slightly below the critical temper-
ature TCS ≃ 60 MeV where the color superconduc-
tivity sets in.
The relation Tform ≲ TCS ∼ ΛQCD is universal in

this framework as both parameters are proportional
to ΛQCD. As such, the universality of this framework
is similar to the universality Ωdark ≈Ωvisible men-
tioned in the previous item. At the same time, the
ratio (5) is not universal itself as it is exponentially
sensitive to precise value of Tform due to the conven-
tional suppression factor ∼ expð−mp=TÞ.

(4) The only new fundamental parameter of this frame-
work is the axion mass ma. Most of our computa-
tions (related to the cosmological observations; see
Sec. II and Fig. 2), however, are expressed in terms
of the mean baryon number of nuggets hBi rather
than in terms of the axion mass. However, these two
parameters are unambiguously related according to
the scaling relations (3). Our claim is that all
universal properties of this framework listed above
still hold for anyma. In other words, there is no fine-
tuning in the entire construction with respect to ma.
The constraints (and possible cosmological obser-
vations) from Sec. II strongly suggest hBi≃ 1025,
which can be translated into the preferred value for
the axion mass ma ≃ 10−4 eV.

(5) This region of the axion mass ma ≃ 10−4 eV cor-
responding to the average size of the nuggets hBi≃
1025 can be tested in the Orpheus axion search
experiment [14] as shown on Fig. 3.

We conclude with few thoughts on future directions
within our framework. It is quite obvious that future
progress cannot be made without a much deeper under-
standing of the QCD phase diagram at θ ≠ 0. In other
words, we need to understand the structure of possible
phases along the third dimension parametrized by θ
in Fig 1.
Presently, very few results are available regarding the

phase structure at θ ≠ 0. First of all, the phase structure is
understood in a simplified version of QCD with two colors,
Nc ¼ 2 at T ¼ 0, μ ≠ 0; see Ref. [66]. In fact, the studies
[66] were mostly motivated by the subject of the present
work and related to the problem of the formation of the
quark nuggets during the QCD phase transition in early
Universe with nonvanishing θ. With few additional
assumptions, the phase diagram can be also conjectured
for the system with large number of colors Nc ¼ ∞, at
nonvanishing T, μ, θ; see Refs. [67,68].
Because of the known “sign problem,” see footnote 1, the

conventional lattice simulations cannot be used at θ ≠ 0.
The corresponding analysis of the phase diagram for
nonvanishing θ started just recently by using some newly
invented technical tricks [69–72].
Another possible development from the “wish list” is a

deeper understanding of the closed bubble formation.
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Presently, very few results are available on this topic. The
most relevant for our studies is the observation made in
Ref. [10] that a small number of closed bubbles are indeed
observed in numerical simulations. However, their detail
properties (their fate, size distribution, etc.) have not been
studied yet. A number of related questions such as an
estimation of correlation length ξðTÞ, the generation of the
structure inside the domain walls, the baryon charge
accretion on the bubble, etc., hopefully can be also studied
in such numerical simulations.
One more possible direction for future studies from the

wish list is a development some QCD-based models where a
number of hard questions such as the evolution of the
nuggets, cooling rates, evaporation rates, annihilation rates,
viscosity of the environment, transmission/reflection coef-
ficients, etc., in an unfriendly environment with nonvanish-
ing T, μ, θ can be addressed, and hopefully answered. All
these andmany other effects, in general, equally contribute to
our parameters Tform and cðTÞ at the ΛQCD scale in strongly
coupled QCD. Precisely these numerical factors eventually
determine the coefficients in the observed relations: Ωdark ≈
Ωvisible given by Eq. (65) and nB=nγ expressed by Eq. (67).
Last but not least, the discoveryof the axion in theOrpheus

experiment [14] would conclude a long and fascinating
journey of searches for this unique and amazing particle
conjectured almost 40 years ago. Such a discovery would be
a strong motivation for related searches of “something else”
as the axionmassma ≃ 10−4 is unlikely to saturate the dark-
matter density observed today.We advocate the idea that this
something else is the “quark nuggets” (where the axion plays
the key role in the entire construction), which could provide
the principle contribution to the dark matter of the Universe
as the relation Ωdark ≈Ωvisible in this framework is not
sensitive to the axion mass.
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APPENDIX A: ESTIMATION OF FLUXES

The main goal of this Appendix is to argue that the
approximation in Eq. (32), which was adopted in the text by
neglecting extra term “fluxes,” is justified, at least on the
qualitative level. In other words, while these flux terms are
obviously present in the system, they, nevertheless, do not
drastically change a key technical element [an implicit
relation between RðtÞ and μðtÞ] which this equation
provides. Precisely this implicit relation between RðtÞ
and μðtÞ eventually allows us to express the μ-dependent
pressure ΔP½μ� in terms of R-dependent function ΔP½fðRÞ�
such that the basic equation (45) describing the time
evolution of the nuggets is reduced to a differential
equation on a single variable RðtÞ.
Our starting point is the observation that the relevant flux

which enters Eq. (32) is ΔΦ ¼ ðΦ⇒ − Φ⇐Þ, counting the

net baryon charge transfer and sensitive to the chemical
potential difference, rather than the total flux hΦi which
counts the exchange of all the particles, including bosons.16

In fact, if the average flux hΦi were entering Eq. (32), one
could explicitly check that this term would be the same
order of magnitude as two other terms of the equation.
However, the key point is that the baryon charge transfer
ΔΦ is numerically suppressed, i.e., ΔΦ ≪ hΦi. In fact, ΔΦ
identically vanishes for μ ¼ 0. Furthermore, one can use
the same technique which has been used in Sec. VI A to
argue that ΔΦ ≪ hΦi in entire region of μ. Numerical
analysis supports this claim.
To reiterate this claim, while a typical flux defined as

Φ ¼ gin

ð2πÞ3
Z

vzd3k

expðk−μT Þ þ 1
þ ðbosonsÞ ∼ ðfmÞ

−3
ðA1Þ

assumes a conventional QCD value, the net baryonic flux
ΔΦ · S through surface S is numerically suppressed and can
be neglected in Eq. (32).
One can explain this result as follows. Consider a single

oscillation of the domain wall evolution. To be more
specific, consider a squeezing portion of this evolution
when RðtÞ decreases. During this process, the chemical
potential (and the baryon charge density) locally grows as
we discussed in Sec. VI A. The major portion of this growth
results from the baryon charge which was already bound to
the domain wall rather than from the baryon charge which
enters the system as a result of the baryonic flux transfer.
On an intuitive level, the dominance of the bound

charges [accounted for in Eq. (32)] in comparison with
flux contribution [neglected in Eq. (32)] can be explained
using pure geometrical arguments. Indeed, the chemical
potential increases very fast as a result of rapid shrinking of
the bubble with speed v≃ c. The corresponding contrac-
tion of a bubble leads to a proportionally rapid increase of
the chemical potential on the domain wall. This happens
because the baryon charges strongly bound to the wall and
cannot leave the system due to the topological reasons as
the boundary conditions effectively lock the charge to the
macroscopically large domain wall. As a result of this
evolution, the binding energy of a quark ∼μ increases when
the bubble contracts. This process represents a highly
efficient mechanism of very rapid growth of the chemical
potential due to the domain wall dynamics. It is very hard to
achieve a similar efficiency with the flux contribution
when the probability for a reflection from the domain wall
is typically much higher than the probability for a

16The dominant contribution to the fluxes normally comes
from the lightest degrees of freedom which are the Nambu-
Goldstone bosons in the hadronic and CS phases. These con-
tributions are crucial for maintaining the thermodynamical
equilibrium between the exterior and interior, but they do not
play any role in the baryon fluxes which enter Eq. (32).
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transmission. Furthermore, a nonvanishing quark mass
make suppression even stronger ∼ expð−m=TÞ.
To conclude, we do expect that an accounting for the flux

contribution modifies our equations relating μðtÞ and RðtÞ
as expressed by Eqs. (32) and (38). However, we do not
expect that this modification may drastically change the
basic qualitative features of Eqs. (32) and (38), which have
been heavily employed in this work.

APPENDIX B: FORMATION OF THE NUGGETS:
NUMERICAL ANALYSIS

This Appendix is devoted to exact numerical computa-
tion in contrast with analytical qualitative arguments
presented in Sec. VI. The basic lesson of this Appendix
is that a number of simplifications which have been made in
Sec. VI are justified, at least, on a qualitative level.
Beforewe proceedwith numerical computations, wewant

to make few comments on parameters entering the basic
dynamical equation (45). In the previous sections, σ was
treated as a constant in order to simplify the analysis. This
approximation is justified as long as a typical curvature of the
domain wall is much smaller than the width of the domain
wall, i.e., R ≫ m−1

a . This condition is only marginally
justified as a typical radius of the bubble is of order m−1

a ,
which is the same order ofmagnitude as thewidth of thewall.
At the same time, the width of the QCD substructure of the
domain wall (including the η0 substructure and the baryon
substructure) is very small in comparison with the curvature,
and it does satisfy the criteria of a thin wall approximation as
m−1 ≪ R ∼m−1

a . Precisely this QCD substructure plays a
crucial role in our analysis in Sec. IV where we studied the
local violation of the baryon charge in the presence of the
domain walls. The broad structure of the domain wall due to
the axion field with the width m−1

a does not play any role.
However, precisely this structure determines the large tension
σ ∼m−1

a of the domain wall.
We want to effectively account for this physics by

assuming that σðRÞ effectively depends on the radius of
the bubble R. On physical grounds, we expect that σðRÞ
approaches its asymptotic value at large Rwhen the domain
wall is almost flat, σðR → ∞Þ → σ0, while σ reduces its
value at smaller R and eventually vanishes at some cutoff
Rcut. A natural choice is Rcut ≃ 0.24R0, which corresponds
to large μcut ≲ 500 MeV from (38), when the chemical
potential assumes its typical CS value. To introduce such an
infrared cutoff smoothly, it is convenient to parametrize σ as

σðRÞ ¼ σ0e−r0=2ðR−RcutÞ; ðB1Þ
where σ0 ≃ 9f2ama is the conventional domain wall tension,
see, e.g., Ref. [10], while r0 is a free phenomenological
parameter, 0<r0≲R0, as we expect σðR0Þ≃σ0. In our
numerical studies, we verified that the physical results (such
as formation sizeRform) are not very sensitive to parameter r0.

Another parameter which requires some comments is the
viscosity η. In the context of the present work, the viscosity
accounts for a number of different QCD effects which
lead to dissipation and friction. Such effects include, but are
not limited to, different scattering processes by quarks,
gluons, or Nambu-Goldstone bosons in different phases.
Furthermore, the annihilation processes which take place
inside the bubble and which result in the production of a
large number of strongly interacting quasiparticles also
contribute to η. The viscosity can be computed from the
first principles in weakly coupled quark-gluon phase [73].
However, we are more interested in the behavior of η below
Tc. In this case, the computations [74] based on chiral
perturbation theory suggest that η ∼m3

π . This numerical
value is quite reasonable in all respects and is consistent
with simple dimensional arguments. It is also known that
ηðTÞ depends on temperature [74]. However, we neglect
this dependence in our estimates which follow.
Now, we can proceed with our numerical studies. Since

σðRÞ is a function of R as explained above, we should start
with a modified differential equation for RðtÞ:

σðRÞR̈ðtÞ ¼ −
2σðRÞ
R

−
σðRÞ _R2

R
þ ΔPðRÞ

−
�
1

2
_R2 þ 1

�
dσðRÞ
dR

− 4η
_R
R
: ðB2Þ

This equation is not identically the sameasEq. (45) discussed
in Sec. VI. This is due to the fact that the tension σðRÞ has
now become an R-dependent function as we discussed
above. Equation (B2) has been solved numerically using
the parameters listed inTable I. The numerical values of these
parameters can be obviously somewhat modified. However,
the basic qualitative features presented in Sec. VI do not
drastically change when the QCD parameters are varied
within a reasonable parametrical region. Our numerical
studies, as we discuss below, do support the analytical
qualitative results presented in Sec. VI.
We start our short description with Fig. 4. It shows a

typical evolution of a bubble with time. The frequencies of
oscillations are determined by the axion mass m−1

a , while
the typical damping time is determined by parameter τ as
discussed in Sec. VI. To make the pattern of oscillations
visible, the viscosity has been rescaled17 At large times,
t → ∞, the solution settles at R0=Rform ≃ 2.9 and

17In this plot, we use η≃ 108η0, which is 8 orders of
magnitude larger than η0 ≃m3

π . We did it on purpose. First, it
simplifies the numerics. Indeed, the η parameter determines the
dumping time scale (53) which is many orders of magnitude
longer than any other scales of the problem. Second, we use
η≃ 108η0 for demonstration purposes. Indeed, a typical oscil-
lation time ω−1 and the damping time scale τ are characterized by
drastically different scales. If we take η according to its proper
QCD value, then the time scale in Fig. 4 would be 8 orders of
magnitude longer than shown.
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μform ≃ 330 MeV ∼ μ1, consistent with the qualitative
analysis of Sec. VI.
We now describe Fig. 5, where we zoom in the first few

oscillations of a typical solution shown in the previous plot
in Fig. 4. We want to emphasize that a seeming cusp
singularity is actually a smooth function near Rmin. It looks
“cuspy” as a result of a large time scale in Fig. 4. The cusp’
is relatively narrow compared to the macroscopic period of
oscillation (δtcusp ∼ 10−3R0). Nevertheless, it actually lasts
much longer in comparison with a typical QCD-scale
(δtcusp ≫ Λ−1

QCD).

In Fig. 6, we demonstrate a (non)sensitivity of the system
to parameter r0 introduced in Eq. (B1). One can explicitly
see that the initial evolution is indeed quite sensitive to
ad hoc parameter r0. However, the final stage of the
evolution is not sensitive to r0. In other words, the physical
parameters Rform and τ are not sensitive to ad hoc parameter
r0. Note that the estimation of damping time τ and period of
oscillation tosc agree well with qualitative estimations
presented in Sec. VI.

APPENDIX C: EVALUATION OF
FERMI-DIRAC INTEGRALS

The main goal of this Appendix is to present some
supporting arguments to suggest that the approximation we
have used in Sec. VI A and which involves the Fermi-Dirac
integrals is qualitatively justified. Indeed, the relevant
integrals which enter Eqs. (36) and (39) have the form

TABLE I. Table for some numerical parameters.

Quantity Symbol Value
QCD units
(mπ ¼ 1)

Flavors Nf 2 2
Colors Nc 3 3
Degeneracy factor
(in) (29)

gin 12 12

Degeneracy factor
(out) (26)

gout 37 37

Baryon charge on
Domain wall (DW)
(20)

N 2 2

Axion decay constant fa 1010 GeV 7 × 1010

Mass of axion ma 6 × 10−4 eV 4 × 10−12

Domain wall tension σ0 5 × 108 GeV3 2 × 1011

Bag constant (31) EB ð150 MeVÞ4 1.5
Squeezer
parameter (31)

μ1 330 MeV 2.4

Cosmological time
scale

t0 10−4 s 1019

Initial μ μ0 1.35 MeV 0.01
Initial radius R0 10−2 cm 1011

Initial temperature T0 100 MeV 0.74
QCD viscosity [74] η0 0.002 GeV3 1
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FIG. 4. Typical underdamped solution of RðtÞ and μðtÞ. The
oscillations with frequencies ∼m−1

a are shown in orange, and the
modulation of RðtÞ is shown in blue. The chemical potential μðtÞ
is shown in red. The initial R0 ¼ 1011 fm and r0 ¼ 0.5R0.
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FIG. 5. The first few oscillations of an underdamped solution
shown in Fig. 4.
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FIG. 6. Dependence on parameter r0 as defined by Eq. (B1).
The zoom in shows small oscillations during the final stage of
formation.
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InðbÞ≡
Z

∞

0

dx · xn−1

ex−b þ 1
; b ¼ μ

T
> 0; ðC1Þ

where n ¼ 2 appears in integral (36), while n ¼ 4 appears
in (39). We will hence focus on the evaluation of I2 and I4
in this Appendix. They can be exactly evaluated as

I2ðbÞ ¼
π2

6
þ 1

2
b2 þ Li2ð−e−bÞ ðC2aÞ

I4ðbÞ ¼
7π4

60
þ π2

2
b2 þ 1

4
b4 þ 6 Li4ð−e−bÞ; ðC2bÞ

where Li2ð−zÞ and Li4ð−zÞ are the polylogarithm functions
of orders 2 and 4, respectively. Polylogarithm functions
are commonly known to represent the Fermi-Dirac and
Bose-Eisterin integrals. The polylogarithm functions are
defined as

Linð−zÞ ¼
X∞
k¼1

ð−1Þk
kn

zk: ðC3Þ

Note that jzj ¼ e−b ≤ 1 for any positive b. In this case,
Linð−zÞ is evidently fast converging, so we can efficiently

estimate it by extracting the leading exponent e−b then use
the Taylor expansion for the remaining piece,

Li2ð−e−bÞ≃ e−b
�
−
π2

12
þ
�
ln 2 −

π2

12

�
bþOðb2Þ

�

Li4ð−e−bÞ≃ e−b
�
−

π4

720
þ
�
3ζð3Þ
4

−
7π4

720

�
bþOðb2Þ

�
;

where ζð3Þ≃ 1.202 is the Riemann zeta function.
Neglecting the terms of order Oðbe−bÞ, which are small
in both limits, at large and small chemical potentials, one
can approximate I2 and I4 as follows:

Ið0Þ2 ≃ π2

6
þ 1

2
b2 −

π2

12
e−b þOðbe−bÞ ðC4aÞ

Ið0Þ4 ≃ 7π4

60
þ π2

2
b2 þ 1

4
b4 −

7π4

120
e−b þOðbe−bÞ: ðC4bÞ

We test our approximation by comparing our approxi-
mate expressions (C4a) and (C4b) with exact formulas
(C2a) and (C2b). As one can see from Fig. 7, our
approximations shown in blue (Ið0Þ2 =I2) and orange

(Ið0Þ4 =I4) are very good with errors less than 3% in the
entire range of b > 0.
On the same plot, we also show the approximation ~Ið0Þ4 for

approximate expression Ið0Þ4 used in themain text in Eq. (39):

~Ið0Þ4 ≃ 7π4

60
þ π2

2
b2 þ 1

4
b4 −

π4

12
e−b: ðC5Þ

The error for ~Ið0Þ4 is quite large for very small chemical
potential b ≪ 0.5, on the level of 40%, shown in green.
The error becomes much smaller after a short period of
time when b ¼ μ=T ≥ 0.5 becomes sufficiently large. To
conclude, the approximations of the integrals in Sec. VI A
are sufficiently good for the qualitative analysis presented
in that section.
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