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The relativistic dynamic equations are derived for a superfluid-superconducting mixture coupled to
an electromagnetic field. For definiteness, and bearing in mind possible applications of our results to
neutron stars, it is assumed that the mixture is composed of superfluid neutrons, superconducting
protons, and normal electrons. We analyze the proton superconductivity of both types I and II and allow
for the possible presence of neutron and proton vortices (or magnetic domains in the case of type-I
proton superconductivity). The derived equations neglect all dissipative effects except for the mutual
friction dissipation and are valid for arbitrary temperatures (i.e., they do not imply that all nucleons are
paired), which is especially important for magnetar conditions. It is demonstrated that these general
equations can be substantially simplified for typical neutron stars, for which a kind of magneto-
hydrodynamic approximation is justified. Our results are compared to the nonrelativistic formulations
existing in the literature, and a number of discrepancies are found. In particular, it is shown that,
generally, the electric displacement D does not coincide with the electric field E, contrary to what is
stated in previous works. The relativistic framework developed here is easily extendable to account for
more sophisticated microphysics models, and it provides the necessary basis for realistic modeling of
neutron stars.
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I. INTRODUCTION

Assume that we have a relativistic magnetized finite-
temperature plasma (possibly in the strong gravitational
field) composed of superfluid neutral particles, supercon-
ducting positively charged particles, and normal (nonsuper-
conducting) negatively charged particles. Depending on the
density, the positively charged particles may form either a
type-I or type-II superconductor, and the plasmamay contain
topological defects—Feynman-Onsager and/or Abrikosov
vortices. What are the macroscopic dynamic equations
describing such a system?
The question is not as far fetched as it may seem at first

glance. For example, the neutron-proton-electron (npe)
mixture in the outer neutron-star cores meets all the con-
ditions formulated above. First, it is relativistic and magnet-
ized. The typical surface magnetic field is B ∼ 108 ÷ 1015 G
[1,2] and is likely to be larger in the deeper layers [3];
the surface gravitation acceleration is also huge, gs ∼
2 × 1014 cm s−2 [2], electrons are ultrarelativistic, while
neutrons can be moderately relativistic. Second, according
tomicroscopic calculations [4,5], confirmed (to some extent)
by observations of cooling and glitching neutron stars [6–8],
neutrons and protons in their interiors become superfluid/
superconducting at temperatures T ≲ Tci, where Tci ∼
108 ÷ 1010 K is the nucleon critical temperature (i¼ n, p).

Third, in a rotating magnetized neutron star, it can be
energetically favorable to form Feynman-Onsager/
Abrikosov vortices [9] (the latter are formed only if
the protons are type-II superconductor; if, instead, they
are type I, different structures appear; see Sec. V for more
details).
Thus, it is not surprising that the dynamic properties of

magnetized superfluid-superconducting neutron-star
plasma have been the subject of numerous studies in the
past, both in nuclear matter (see, e.g., Refs. [10–20]) and in
quark matter (e.g., Refs. [21–24]). In particular, Vardanyan
and Sedrakyan [12] were the first who generalized hydro-
dynamics of a mixture of two superfluids [25,26] to
charged superfluids coupled to the electromagnetic field.
These equations were further extended by Holm and
Kupershmidt [13] to N charged superfluids, who derived
these equations from the Hamiltonian formalism. Finally,
the most general nonrelativistic finite-temperature equa-
tions, describing charged superfluids and accounting for the
mutual friction forces [27,28] between various liquid
components, were formulated by Mendell and Lindblom
[14], who used in their work the ideas of Refs. [13,25,29].
This important work was subsequently used by Mendell
[15,16] who applied the equations of Ref. [14] to neutron
stars, assuming that all neutrons and protons are paired
(i.e., T ≪ Tci). (A little later, Sedrakian and Sedrakian [17]
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did similar work by extending the results of Ref. [12] to
include dissipation and mutual friction forces in their
equations.) In his work, Mendell formulated a set of
simplified magnetohydrodynamic equations, but, unfortu-
nately, incorrectly identified the magnetic field H with the
magnetic induction B and the electric displacement D with
the electric field E. The first of these inaccuracies (iden-
tification of H with B) was noticed in Ref. [30] and
corrected by Glampedakis, Andersson, and Samuelsson
[19] (hereafter GAS11); the second inaccuracy (identifica-
tion of D with E) is discussed here (see Appendix G 2).
Except for the corrected inaccuracy, the GAS11 version of
magnetohydrodynamics is equivalent (up to notations) to
that of Mendell [15] and is the most advanced treatment of
superfluid-superconducting mixtures in neutron stars to
date. It is derived using the variational framework [20,31]
and assuming T ¼ 0.
All the works discussed by us so far were performed in

the nonrelativistic approximation. This is a rather serious
shortcoming because, as we have already mentioned,
neutron stars are essentially relativistic objects. The
extension of the magnetohydrodynamics of GAS11 (as
well as more general equations of Ref. [14]) to the
relativistic case is not trivial. For uncharged one-
component superfluids, this problem has been addressed
in Refs. [32–39] and has recently been “solved” in
Ref. [40] (hereafter G16). We are aware of only one
attempt [41] to consider charged mixtures in full rela-
tivity. This reference neglected all dissipation effects
(including mutual friction) and studied only the low-
temperature case T ≪ Tci; unfortunately, it did not
provide a nonrelativistic limit for the derived equations
so that it is hard to compare them with the formulations
available in the literature. Note that Ref. [41] adopted the
variational approach similar to that developed in Ref. [36]
in application to uncharged superfluids. This approach
was criticized in G16 (see Appendix F there), where
it was argued that it does not reproduce thewell-established
nonrelativistic Hall-Vinen-Bekarevich-Khalatnikov super-
fluid hydrodynamics [25,29]. We believe the same con-
clusion applies also to the results of Ref. [41].
The aim of the present study is to fill the existing gaps

and derive a set of relativistic finite-temperature equations
describing superfluid-superconducting mixtures, bearing in
mind application of these results to magnetized rotating
neutron stars. As in Refs. [29] and G16, our derivation rests
on the consistency between the conservation laws and the
entropy generation equation. For definiteness, in this paper
we consider a liquid composed of superfluid neutrons (n),
superconducting protons (p), and normal electrons (e).
Extension of our results to more complicated compositions
is straightforward (see, e.g., Refs. [24,38,42,43]). Here we
are mostly interested in the nondissipative equations (but
we allow for mutual friction dissipation; see remark 1 in
Sec. VI). Correspondingly, we assume that neutron and

proton thermal excitations as well as electrons move with
one and the same “normal” four-velocity uμ. In what
follows all thermodynamic quantities are defined in the
frame comoving with the normal (nonsuperfluid) liquid
component, in which uμ ¼ ð1; 0; 0; 0Þ. By default, any
three-dimensional vector appearing in the text (e.g., mag-
netic induction B) is written in that frame.
The paper is organized as follows. Section II introduces

Maxwell’s equations in the medium written both in the
standard and explicitly Lorentz-covariant form. Section III
considers uncharged and charged mixtures in the absence of
vortices and other magnetic domain structures. In Sec. IV we
discuss the strategy for generalization of equations of
Sec. III in order to allow for the topological defects and
related bound charges and currents in the mixture. In Sec. V
this strategy is applied to derive the corresponding dynamic
equations under assumption of type-I superconductivity of
protons. Section VI is devoted to considering type-II proton
superconductivity and accounting for the possible presence
of both neutron (Feynman-Onsager) and proton (Abrikosov)
vortices. Section VII proves that the energy-momentum
tensors obtained in Secs. V and VI are symmetric, and
expresses them through a set of phenomenological coef-
ficients which can be calculated by specifying a microscopic
model for the energy density of the mixture. The general
dynamic equations of Sec. VI are simplified for typical
neutron-star conditions in Sec. VIII. Finally, we sum up
in Sec. IX.
The paper also contains a number of appendixes,wherewe

present technical, more model-dependent, or less important
results. In particular, Appendix A introduces some basic
notation used throughout the paper. Appendix B provides a
correspondence table between our notation and that adopted
in G16. Appendix C contains an example of the energy
density transformation used in Secs. V and VI. Appendix D
reveals the relation between the energy-momentum tensor of
Sec. V and the well-known Abraham tensor. Appendix E
discusses some general relations characterizing isolated
neutron or proton vortices. Appendix F demonstrates that
there exist some bound charges associated with eachmoving
vortex.AppendixG presents two simplemicroscopicmodels
allowingone to determine the phenomenological coefficients
from Sec. VII. Finally, Appendix H contains the full set of
dynamic equations derived in Secs.VandVI, andAppendix I
analyzes the nonrelativistic limit of simplified equations of
Sec. VIII.
Unless otherwise stated, in all sections except for

Sec. II and Appendixes E, F, G, and I, the speed of light
c, the Planck constant ℏ, and the Boltzmann constant kB
are set to unity, c ¼ ℏ ¼ kB ¼ 1. Throughout the
paper, we assume that the spacetime metric is flat,
gμν ¼ diagð−1; 1; 1; 1Þ. Generalization of our results to
arbitrary gμν is straightforward and can be achieved by
replacing ordinary derivatives in all equations with their
covariant counterparts.
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II. MAXWELL’S EQUATIONS IN THE MEDIUM

A. Standard form of Maxwell’s equations

Maxwell’s equations in the medium take the form

divD ¼ 4πρfree; ð1Þ

curlE ¼ −
1

c
∂B
∂t ; ð2Þ

divB ¼ 0; ð3Þ

curlH ¼ 4π

c
Jfree þ

1

c
∂D
∂t ; ð4Þ

whereE and B are the electric field and magnetic induction,
respectively; D and H are the electric displacement and
magnetic field, respectively; ρfree and Jfree are macroscopic
averages of the free charge and current densities in the
medium (e.g., Ref. [44]). In the absence of bound charges
and currents one has D ¼ E and H ¼ B.
Equations (1)–(4) contain the continuity equation for the

electric charge,

∂ρfree
∂t þ divJfree ¼ 0; ð5Þ

and the energy equation,

∂εEM
∂t ¼ −EJfree þ

c
4π

div½H × E�; ð6Þ

where

dεEM ¼ 1

4π
EdDþ 1

4π
HdB ð7Þ

is the differential of the electromagnetic energy
density εEM.

B. Relativistic representation

Maxwell’s equations (1)–(4) can be rewritten in a
manifestly Lorentz-covariant form [45,46]. To see this
let us introduce the tensors Fαβ and Gαβ such that

Fαβ≡∂αAβ−∂βAα ¼

0
BBB@

0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

1
CCCA; ð8Þ

Gαβ ¼

0
BBB@

0 D1 D2 D3

−D1 0 H3 −H2

−D2 −H3 0 H1

−D3 H2 −H1 0

1
CCCA; ð9Þ

where Aα ¼ ðϕ;AÞ is the electromagnetic four-potential.1

Using the definitions (8)–(9), Maxwell’s equations (1)–(4)
can be represented as

∂α
⋆Fαβ ¼ 0; ð10Þ

∂αGαβ ¼ −4πJβðfreeÞ; ð11Þ

where JαðfreeÞ ¼ ðρfree; Jfree=cÞ is the four-current density

of free charges and ⋆Fμν is the tensor dual to Fμν (see
Appendix A).

C. Four-vectors Eμ, Bμ, Dμ, and Hμ

As is shown in Appendix A, for any antisymmetric
tensor it is possible to introduce the corresponding “elec-
tric” and “magnetic” four-vectors [see Eqs. (A3) and (A4)].
In the case of electromagnetic tensors Fμν and Gμν we shall
use the following (standard) notation for these vectors,

Eμ ≡ Fμ
ðEÞ ¼ uνFμν; ð12Þ

Dμ ≡Gμ
ðEÞ ¼ uνGμν; ð13Þ

Bμ ≡ Fμ
ðMÞ ¼ uν⋆Fμν ¼ 1

2
ϵμνληuνFλη; ð14Þ

Hμ ≡Gμ
ðMÞ ¼ uν⋆Gμν ¼ 1

2
ϵμνληuνGλη ð15Þ

instead of, respectively, the universal notations Fμ
ðEÞ, G

μ
ðEÞ,

Fμ
ðMÞ, and Gμ

ðMÞ suggested in Appendix A. In the comoving

frame, in which the four-velocity of normal liquid compo-
nent is uμ ¼ ð1; 0; 0; 0Þ these vectors reduce to
Eμ ¼ ð0;EÞ, Bμ ¼ ð0;BÞ, Dμ ¼ ð0;DÞ, and Hμ ¼ ð0;HÞ.

III. NO VORTICES, BOUND CHARGES,
OR BOUND CURRENTS

In order to establish notations and get some insight into
the problem, we start with the simplest possible situation
and discuss relativistic equations for the superfluid-super-
conducting npe mixture without vortices, bound charges,
or bound currents. The latter assumption means that we set
D ¼ E and H ¼ B in all equations in this section.

A. General structure

The relativistic equations describing the npe mixture
consist of the energy-momentum conservation,

1We remind that in a given coordinate system:

E ¼ −
1

c
∂A
∂t − ∇ϕ;

B ¼ curlA:
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∂μTμν ¼ 0 ð16Þ

and continuity equations for particle species j (here and
hereafter index j ¼ n, p, and e),2

∂μj
μ
ðjÞ ¼ 0: ð17Þ

In Eqs. (16) and (17) Tμν is the total energy-momentum
tensor, which is a sum of fluid and electromagnetic
contributions,

Tμν ¼ Tμν
ðfluidÞ þ Tμν

ðEMÞ; ð18Þ

and jμðjÞ is the current density for particle species j. These

equations should be supplemented by the second law of
thermodynamics, Maxwell’s equations (see Sec. II), as well
as by a number of additional equations and constraints
describing superfluid degrees of freedom (see below).

B. Uncharged mixtures

Assume for a moment that all the mixture components
(n, p, and e) are uncharged. The corresponding non-
dissipative hydrodynamics has been extensively studied,
e.g., in Refs. [47–50]. It consists of the second law of
thermodynamics

dεfluid ¼ TdSþ μidni þ μedne þ
Yik

2
dðwα

ðiÞwðkÞαÞ ð19Þ

and Eqs. (16), (17), in which the energy-momentum tensor,
Tμν ¼ Tμν

ðfluidÞ, is given by

Tμν
ðfluidÞ ¼ ðPfluid þ εfluidÞuμuν þ Pfluid gμν

þ Yikðwμ
ðiÞw

ν
ðkÞ þ μiw

μ
ðkÞu

ν þ μkwν
ðiÞu

μÞ; ð20Þ

and the particle four-currents are

jμðiÞ ¼ niuμ þ Yikw
μ
ðkÞ; ð21Þ

jμðeÞ ¼ neuμ: ð22Þ

Here and below, the subscripts i and k refer to nucleons:
i, k ¼ n, p. Unless otherwise stated, a summation is
assumed over repeated spacetime indices μ; ν;… (Greek
letters) and nucleon species indices i and k (Latin letters).
In Eqs. (19)–(22), εfluid and S are the fluid energy density

and entropy density, respectively; T is the temperature; μj
and nj are the relativistic chemical potential and number
density for particles j ¼ n, p, and e, respectively; Pfluid is
the pressure given by the standard formula

Pfluid ≡ −
∂ðεfluidVÞ

∂V ¼ −εfluid þ μene þ μini þ TS; ð23Þ

where V is the system volume and the partial derivative is
taken at fixed total number of particles njV (j ¼ n, p, e)
total entropy SV, and fixed scalars wðiÞμw

μ
ðkÞ [25,26,40].

Further, Yik in Eqs. (19)–(21) is the relativistic entrain-
ment matrix [47,51–53], analogue of the superfluid or
mass-density matrix ρik of the nonrelativistic theory
[26,54–57]. In the nonrelativistic limit both matrices are
related by the formula [47]: Yik ¼ ρik=ðmimkc2Þ, where mi
is the bare nucleon mass (i ¼ n or p). Finally, the normal
four-velocity uμ is normalized by the condition

uμuμ ¼ −1; ð24Þ

and the four-vectors wμ
ðiÞ in Eqs. (19)–(21) describe the

superfluid degrees of freedom and are subject to condition

uμw
μ
ðiÞ ¼ 0; ð25Þ

which ensures that all the thermodynamic quantities are
indeed defined (measured) in the comoving frame in which
uμ ¼ ð1; 0; 0; 0Þ [see G16 for a detailed discussion]. In
particular, using Eq. (25) one finds from Eqs. (20) and (21)

uμuνT
μν
fluid ¼ εfluid; ð26Þ

uμj
μ
ðiÞ ¼ −ni: ð27Þ

To close the system of hydrodynamic equations we need
two additional conditions relating the four-vectors wμ

ðiÞ with
the wave function phases Φi of the nucleon Cooper-pair
condensates. These conditions are (i ¼ n, p)

wμ
ðiÞ ≡ ∂μϕi − μiuμ; ð28Þ

where the scalar ϕi ¼ Φi=2. Equations (28) can be refor-
mulated exclusively in terms of wμ

ðiÞ as

∂μ½wðiÞν þ μiuν� − ∂ν½wðiÞμ þ μiuμ� ¼ 0: ð29Þ

It is simply a statement that ∂μ∂νϕi − ∂ν∂μϕi ¼ 0 (or,
equivalently, ∂μ∂νΦi − ∂ν∂μΦi ¼ 0).
The system of hydrodynamic equations is now closed

and contains, in particular, the entropy generation equation,
which can be obtained by composing a vanishing combi-
nation, uν∂μTμν ¼ 0, and following the same derivation as
that discussed in G16. Ignoring for the moment the
“superfluid” equations (28) [or (29)], one obtains

T∂μðSuμÞ ¼ uνYikw
μ
ðkÞf∂μ½wðiÞν þ μiuν�

− ∂ν½wðiÞμ þ μiuμ�g: ð30Þ
2We neglect, for clarity, possible sources in these equations due

to beta-processes, thus assuming that the latter are effectively
frozen. They can be easily accounted for if necessary.
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The right-hand side of this equation vanishes in view of
Eq. (29), so that the system entropy does not increase3

and is carried with the same velocity uμ as the normal
(nonsuperfluid) liquid component.

C. Charged mixtures

How should equations of the previous section be
modified for charged mixtures? Concerning the continuity
equations (17), the corresponding particle current densities
are still given by Eqs. (21) and (22), and should be
considered as definitions of the four-vectors uμ and wμ

ðiÞ
[uμ is still being normalized by Eq. (24)]. The condition
(25) also remains unchanged since it directly follows from
the comoving frame definition (see Sec. II A of G16 for a
thorough discussion of this issue). Next, the second law of
thermodynamics (19) and the pressure definition (23) retain
their form, because they are written for the fluid energy
density and fluid pressure, and hence should not include
field contributions.4 In contrast, the energy-momentum
tensor Tμν in Eq. (16) should be modified in order to
account for the electromagnetic field contribution. It is now
given by Eq. (18) with

Tμν
ðEMÞ ¼

1

4π

�
Fμ

γFνγ −
1

4
gμνFγδFγδ

�
: ð31Þ

This standard [58] electromagnetic tensor is obtained under
assumption D ¼ E and H ¼ B [and hence Gαβ ¼ Fαβ, see
Eqs. (8) and (9)]. It does not include any “mixed” terms
depending on both fluid and field degrees of freedom
because of the same reason as that discussed in the
footnote 4. A more general situation, in which such a
decoupling is ambiguous (not well-defined), is considered
in Secs. V and VI.
It remains to find out how the presence of charges affects

the superfluid equations (28) and/or (29). For that, it is
instructive to repeat the derivation of the entropy generation
equation, now taking into account the electromagnetic
contribution (31). Again, composing a vanishing combi-
nation uν∂μTμν ¼ uν∂μT

μν
ðfluidÞ þ uν∂μT

μν
ðEMÞ ¼ 0 and noting

that ∂μT
μν
ðEMÞ ¼ −FνμJðfreeÞμ on account of Maxwell’s equa-

tions (10) and (11) (see, e.g., § 8, Chapter 2 of Ref. [58]),
one gets

T∂μðSuμÞ ¼ uνYikw
μ
ðkÞf∂μ½wðiÞν þ μiuν�

− ∂ν½wðiÞμ þ μiuμ�g − uνFνμJ
μ
ðfreeÞ; ð32Þ

where the four-current density of free charges is given by
the formula [we use Eqs. (21) and (22)],

JμðfreeÞ ¼ ejj
μ
ðjÞ ¼ JμðnormÞ þ eiYikw

μ
ðkÞ; ð33Þ

in which ej is the charge of particle j and

JμðnormÞ ¼ ejnjuμ ¼ epðnp − neÞuμ ð34Þ

is the normal (nonsuperconducting) part of the four-current
density. Correspondingly, noticing that Fνμ ¼ ∂νAμ − ∂μAν

[see Eq. (8)] and Eμ ¼ uνFμν [Eq. (12)], Eq. (32) can be
rewritten as

T∂μðSuμÞ ¼ uνYikw
μ
ðkÞf∂μ½wðiÞν þ μiuν þ eiAν�

− ∂ν½wðiÞμ þ μiuμ þ eiAμ�g þ EμJ
μ
ðnormÞ: ð35Þ

The last term in the rhs of this equation equals zero,

EμJ
μ
ðnormÞ ¼ 0; ð36Þ

in view of the definitions (12), (34), and the equality

uμuνFμν ¼ 0; ð37Þ

following from the antisymmetry property of the tensor
Fμν. Equation (35) then becomes

T∂μðSuμÞ ¼ uνYikw
μ
ðkÞf∂μ½wðiÞν þ μiuν þ eiAν�

− ∂ν½wðiÞμ þ μiuμ þ eiAμ�g: ð38Þ

The rhs of this equation must vanish identically because, by
assumption, there should be no entropy generation in the
system (we disregard all the dissipative corrections). Using
this requirement, it is tempting to conclude that the new
form of the superfluid equation in the presence of the
electromagnetic field is

∂μ½wðiÞν þ μiuν þ eiAν� − ∂ν½wðiÞμ þ μiuμ þ eiAμ� ¼ 0

ð39Þ

or, equivalently,

wμ
ðiÞ ¼ ∂μϕi − μiuμ − eiAμ; ð40Þ

where, again, the scalar ϕi ¼ Φi=2. This is indeed the
correct equation that could be obtained immediately from
the requirement of gauge invariance of the resulting super-
fluid hydrodynamics (see, e.g., Ref. [47]). As follows from
the microscopic theory [59], the wave function phase Φi
and the four-potential Aμ transform as

Aμ → Aμ þ ∂μχ; ð41Þ

3We remind the reader that in this work we are mainly
interested in the nondissipative dynamics.

4We remind the reader that the situation considered in this
section (superfluid-superconducting mixture in the absence of
vortices and not in the intermediate state) allows us to separate
fluid and field degrees of freedom.

RELATIVISTIC DYNAMICS OF SUPERFLUID- … PHYSICAL REVIEW D 94, 083006 (2016)

083006-5



Φi → Φi þ 2eiχ ð42Þ

under gauge transformations ( χ is an arbitrary scalar
function). The four-vectors wμ

ðiÞ and hence Eqs. (39),

(40), and other equations in this section are thus
manifestly gauge invariant.5 The system of relativistic
equations formulated here reduces to the vortex-free
equations of Mendell [15] and Sedrakian et al. [17] in
the nonrelativistic limit (see also Ref. [60]).
Remark 1. As noted above, a simple problem considered

by us here allows to decouple the fluid and field degrees of
freedom. In this approach εfluid and Pfluid are, respectively,
the fluid energy density and pressure, while field contri-
butions are treated separately. Such a decoupling is
hampered in more general situations (see Secs. V and
VI). To facilitate comparison with the results of Secs. Vand
VI it is worth to reformulate the equations discussed here in
terms of the total energy density ε,

ε ¼ εfluid þ εEM ð43Þ

and the “pressure” P, defined as [cf. Eq. (23)]

P≡ −
∂ðεVÞ
∂V ¼ −εþ μene þ μini þ TS; ð44Þ

where the partial derivative is taken at constant njV (j ¼ n,
p, e), SV, wðiÞμw

μ
ðkÞ, B

μ, and Dμ (¼ Eμ in this section). In

Eq. (43) εEM is the energy density of the electromagnetic
field measured in the comoving frame,

εEM ¼ E2

8π
þ B2

8π
¼ EαEα

8π
þ BαBα

8π
; ð45Þ

where the four-vectors Eα and Bα are given by Eqs. (12)
and (14); in the comoving frame they equal, respectively,
ð0;EÞ and ð0;BÞ. Using Eq. (45), it follows from Eq. (44)
that

P ¼ Pfluid −
1

8π
ðEαEα þ BαBαÞ: ð46Þ

Before reformulating the dynamic equations it is instruc-
tive to note that the energy-momentum tensor Tμν

ðEMÞ of the
electromagnetic field can generally be rewritten as

Tμν
ðEMÞ ¼ −

1

8π
ðEαEα þ BαBαÞgμν þ Tμν

ðEÞ þ Tμν
ðMÞ; ð47Þ

where the “electric” part of the tensor equals

Tμν
ðEÞ ¼ −

1

4π
ðEμEν −⊥μνEαEαÞ ð48Þ

and the “magnetic” part is

Tμν
ðMÞ ¼

1

4π
ð⊥δαFμδFνα − uμuνuγuβFαβFαγÞ: ð49Þ

Here ⊥μν ≡ gμν þ uμuν is the projection operator. Using
Eqs. (43)–(49) the second law of thermodynamics takes the
form [cf. Eq. (19)]

dε ¼ TdSþ μidni þ μedne þ
Yik

2
dðwα

ðiÞwðkÞαÞ

þ 1

4π
EαdEα þ 1

4π
BαdBα; ð50Þ

while the tensor Tμν becomes [cf. Eq. (18)]

Tμν ¼ ðPþ εÞuμuν þ Pgμν þ Yikðwμ
ðiÞw

ν
ðkÞ þ μiw

μ
ðkÞu

ν

þ μkwν
ðiÞu

μÞ þ Tμν
ðEÞ þ Tμν

ðMÞ: ð51Þ

Because

uμuνT
μν
ðEÞ ¼ 0; ð52Þ

uμuνT
μν
ðMÞ ¼ 0; ð53Þ

it satisfies the condition

uμuνTμν ¼ ε: ð54Þ

All other hydrodynamic equations remain unchanged.

IV. SETTING UP THE PROBLEM

Simple examples considered in the previous section
suggest a possible general approach to the problem of
formulation of the macroscopic (smooth-averaged)
dynamic equations in various interesting situations (e.g.,
in the system with vortices or in the system with small-scale
domain structure of the magnetic field). The approach is
based on using the entropy generation equation to constrain
the dynamics of superfluid-superconducting mixtures; it
has been applied recently in G16 (see also Ref. [29]) and
we refer the interested reader to those references for more
details. All the quantities in this and subsequent sections are
assumed to be averaged over the volume containing large
amount of inhomogeneities (vortices or magnetic domains).
Assume that the second law of thermodynamics takes the

form

5The four-vectors wμ
ðiÞ (i ¼ n, p) are observables (i.e., must be

gauge invariant) since they define the particle current density
jμðiÞ in the comoving frame [see Eq. (21)].
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dε ¼ TdSþ μidni þ μedne þ
Yik

2
dðwα

ðiÞwðkÞαÞ þ dεadd;

ð55Þ

where ε is the total energy density of the system. All the
terms in the rhs of this equation except for the last one are
the standard terms of superfluid hydrodynamics [see
Eq. (19) and Refs. [40,47,48,50]]; an additional term
dεadd contains vortex or electromagnetic contribution to
dε, or both.
Accounting for this term in Eq. (55) should not affect

most of the dynamic equations due to the very same reasons
as those discussed in the beginning of Sec. III C (see also
Sec. III B in G16, where a similar problem is discussed in
detail). In particular, the expressions (21) and (22) for the
free four-current densities jμðnÞ, j

μ
ðpÞ, and jμðeÞ [which satisfy

the continuity equation (17)] should be considered as the
definitions of the four-vectors wμ

ðnÞ, w
μ
ðpÞ, and the four-

velocity uμ, normalized by the condition (24). Thus, they
remain unchanged. Next, the requirement that all the
thermodynamic quantities are measured in the (comoving)
frame, in which uμ ¼ ð1; 0; 0; 0Þ,6 unambiguously leads to
the same constraints (25). Finally, the free-charge
four-current density JμðfreeÞ and the pressure P will still

be defined by Eqs. (33) and (44), respectively; Maxwell’s
equations (1)–(4) or (10)–(11) will also, of course, retain
their form.
The only equations that should be modified are the

expression for the total energy-momentum tensor Tμν,

Tμν ¼ ðPþ εÞuμuν þ Pgμν þ Yikðwμ
ðiÞw

ν
ðkÞ þ μiw

μ
ðkÞu

ν

þ μkwν
ðiÞu

μÞ þ ΔTμν: ð56Þ
[which still satisfies Eq. (16)], and the “superfluid”
equations for neutrons and protons [Eqs. (39) or (40) in
the simple example of Sec. III C]. The correction ΔTμν in
Eq. (56) must be symmetric; it includes vortex and/or
electromagnetic contributions to Tμν and is absent in the
standard superfluid hydrodynamics [see Eq. (20)]. Because
in the comoving frame the component T00 of the tensor Tμν

equals, by definition, ε,7 one should have there ΔT00 ¼ 0,
or, in an arbitrary frame,

uμuνΔTμν ¼ 0: ð57Þ
To determine the correction ΔTμν and the form of

superfluid equations, we, as was already mentioned, utilize
the entropy generation equation. It can be derived using the
equations discussed above in this section. The result is
[cf. Eq. (38) and also equation (65) in G16]

T∂μðSuμÞ ¼ uνYikwðkÞμ ~V
μν
ðiÞ − uμ∂μεadd þ uν∂μΔTμν; ð58Þ

where

~Vμν
ðiÞ ≡ ∂μ½wν

ðiÞ þ μiuν� − ∂ν½wμ
ðiÞ þ μiuμ�: ð59Þ

As one sees, Eq. (58) depends on εadd, which is assumed to
be specified, and on ΔTμν, which is unknown. Because
entropy is conserved in the absence of dissipation, the rhs
of this equation should vanish identically. As shown in
Secs. V and VI, this requirement is sufficient to fully
reconstruct dynamics of superfluid-superconducting npe
mixture.

V. RELATIVISTIC DYNAMIC EQUATIONS
FOR THE NPE MIXTURE: TYPE-I PROTON

SUPERCONDUCTIVITY

In this section, we consider a nonrotating superfluid-
superconducting npe mixture in the absence of Feynman-
Onsager and Abrikosov (single flux quantum) vortices.
However, in contrast to Sec. III C we formally assume that
the magnetic field H does not necessarily coincide with the
magnetic induction B; i.e., there are some bound currents in
the system. One can imagine that these currents can be
generated either due to (very weak, in reality) magnetic
response of particles in the mixture (e.g., electrons) to an
applied external magnetic field (case 1), or due to appear-
ance of various inhomogeneous structures of the (micro-
scopic) magnetic field in the mixture similar to those
appearing in the intermediate state of ordinary type-I
superconductors (see, e.g., Ref. [61] and Sec. V B below;
case 2). The dynamic equations in this latter case are a bit
more complicated since the proton phase winding around
such structures can be nonzero. Thus, for pedagogical
reasons we start with the simplest (but unrealistic) situation
of a homogeneous npe mixture with well-behaved phases
Φi and B ≠ H (case 1). In what follows we, for generality,
assume also that the electric displacement D is not equal to
the electric field E (although we set D ¼ E in the final
equations, see Sec. VII A).

A. Case 1: Homogeneous npe mixture with B ≠ H

The starting point of our consideration is the expression
for the electromagnetic contribution dεadd to the second law
of thermodynamics,

dεadd ¼
1

4π
EμdDμ þ 1

4π
HμdBμ: ð60Þ

This formula is specialized to the comoving frame, which
is, generally, noninertial, because uμ changes in time and
space. In the absence of bound charges and currents one has
Dμ ¼ Eμ and Hμ ¼ Bμ, so that Eq. (60) reduces to the last
two electromagnetic terms in the rhs of Eq. (50). In the

6Mathematically, this requirement is expressed by the
condition (27).

7In an arbitrary frame this requirement translates into
uμuνTμν ¼ ε, see Eq. (54).
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special case when the comoving frame is inertial, Eq. (60)
is transformed to the standard form (7) [see the definitions
(12)–(15)]. Using Eqs. (12)–(15), the last term in Eq. (60)
can be rewritten as

1

4π
HμdBμ ¼ 1

4π
Hμ

1

2
ϵμναβuνdFαβ þ

1

4π
Hμ

1

2
ϵμναβFαβduν

¼ 1

8π
⊥GαβdFαβ

þ 1

8π
ðHμϵ

μναβFαβ þ uνGαβFαβÞduν

¼ 1

8π
ð⊥GαβdFαβ þ 2FαβGαγuβduγÞ; ð61Þ

where the added underlined term vanishes on account of
normalization condition (24) (hence uνduν ¼ 0) and we
used the notation from Appendix A. Similarly,

1

4π
EμdDμ

¼ 1

4π
½dðDμEμÞ −DμdEμ�

¼ 1

4π
½dðDμEμÞ −DμuνdFμν −DμFμνduν�

¼ 1

4π

�
dðDμEμÞ − 1

2
ðDμuν −DνuμÞdFμν −DμFμνduν

�

¼ 1

4π

�
dðDαEαÞ þ 1

2
ð∥GαβdFαβ − 2DαFαγduγÞ

�

¼ 1

4π

�
dðDαEαÞ þ 1

2
ð∥GαβdFαβ − 2GαβFαγuβduγÞ

�
: ð62Þ

Equations (61) and (62) can be further transformed as
described in Appendix C. For that, we identify

Oαβ ¼ 1

4π
⊥Gαβ;

F αβ ¼ Fαβ;

Bαβ ¼ Fαβ;

Aαβ ¼ 1

4π
Gαβ

in case of Eq. (61) and

Oαβ ¼ 1

4π
∥Gαβ;

F αβ ¼ Fαβ;

Bαβ ¼ −
1

4π
Gαβ;

Aαβ ¼ Fαβ

in case of Eq. (62). As a result, the second term in the rhs of
Eq. (58) can be presented as [see Eq. (C7)]

−uμ∂μεadd ¼ uνFμν∂α

�
1

4π
∥Gμα þ 1

4π
⊥Gμα

�

− ∂μ½uνðT μ
ðEÞν þ T μ

ðMÞνÞ�
þ ∂μuνðT μ

ðEÞν þ T μ
ðMÞνÞ; ð63Þ

where the “electric” and “magnetic” tensors are given,
respectively, by

T μ
ðEÞν ¼

1

4π
ð∥GμαFνα þ uμuγ⊥νβFαβGαγ þ gμνDαEαÞ;

ð64Þ

T μ
ðMÞν ¼

1

4π
ð⊥GμαFνα − uμuγ⊥νβGαβFαγÞ: ð65Þ

It can be verified that if Gμν ¼ Fμν then these tensors
reduce to the tensors Tμν

ðEÞ and Tμν
ðMÞ from Sec. III C [see

Eqs. (48) and (49) there], T μν
ðEÞ ¼ Tμν

ðEÞ and T μν
ðMÞ ¼ Tμν

ðMÞ.
For actual calculations, it is convenient to represent the
tensors (64) and (65) in the form

T μν
ðEÞ ¼

1

4π
ð⊥μνDαEα −DμEνÞ; ð66Þ

T μν
ðMÞ ¼

1

4π
ð⊥Gμα⊥Fν

α þ uν⊥GμαEα þ uμ⊥GναEαÞ: ð67Þ

The first term in the rhs of Eq. (63) can be further
simplified by making use of Eqs. (A9), (11), (33), (34),
and (36),

uνFμν∂α

�
1

4π
∥Gμα þ 1

4π
⊥Gμα

�
¼ uνFμν∂α

�
1

4π
Gμα

�

¼ uνFμνJ
μ
ðfreeÞ

¼ uνFμνeiYikw
μ
ðkÞ: ð68Þ

Substituting now Eq. (63) into Eq. (58), one gets

T∂μðSuμÞ ¼ uνYikwðkÞμð ~Vμν
ðiÞ þ eiFμνÞ

− ∂μ½uνðT μ
ðEÞν þ T μ

ðMÞν − ΔTμ
νÞ�

þ ∂μuνðT μ
ðEÞν þ T μ

ðMÞν − ΔTμ
νÞ; ð69Þ

from which one can conclude that8

~Vμν
ðiÞ þ eiFμν ¼ 0 ð70Þ

and, correspondingly, in order to vanish identically the rhs
of Eq. (69),

8Equation (70) coincides with the superfluid Eq. (39) from
Sec. III C, see the definition (59).
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ΔTμν ¼ T μν
ðEÞ þ T μν

ðMÞ: ð71Þ

Note that ΔTμν automatically satisfies the condition (57);
the fact that the tensor ΔTμν is symmetric will be proven in
Sec. VII A. The physical meaning of Eq. (70) is trans-
parent. Using the definition (59) it can be rewritten in the
form of the superfluid Eq. (39) from Sec. III C, or as a
gauge-invariant expression (40) for the four-vector wμ

ðiÞ,
wμ
ðiÞ ¼ ∂μϕi − μiuμ − eiAμ, where the scalar ϕi ¼ Φi=2

and Φi is the smooth-averaged wave function phase of
the Cooper-pair condensate.9 Equation (70) thus states that

ð∂μ∂ν − ∂ν∂μÞΦi ¼ 0; ð72Þ

which is quite natural since we assume in this section that
there are no vortices and nonsuperconducting domains in
the system (the phases Φi are well defined everywhere in
the mixture).

B. Case 2: The npe mixture in the intermediate state

Now let us discuss how the equations of the previous
section should be modified in order to apply them to npe
mixture in the intermediate state. But first let us clarify
what we mean by the term “intermediate.”
According to some estimates (e.g., GAS11), protons in

the inner cores of neutron stars can form a type-I super-
conductor. Upon neutron star cooling the superconducting
region expands, but it is generally believed that this process
is not accompanied by the magnetic flux expulsion (the
Meissner effect) because of the huge electric conductivity
of the outer core and crust (see Refs. [62,63] and a
comment 8 in Ref. [22]). As a result, it becomes energeti-
cally favorable for npe mixture to find itself in the
“intermediate” state, consisting of alternating domains of
superconducting (field-free) regions and nonsuperconduct-
ing regions hosting the magnetic field. The topology of
these domains can be very diverse and depends, in
particular, on their nucleation history [61,64–66]. This
complicates substantially the problem of calculation of
the total energy density ε for such matter. However, we
neglect below the relatively small surface and boundary
contributions to ε [45,67]. In this approximation the actual
domain structure is not important for the energy calcu-
lation. We further assume that the produced magnetic
structures have a closed topology; i.e., normal domains
are completely surrounded by the superconducting phase
[61]. This assumption seems reasonable since the magnetic
field of a typical neutron star, B ∼ 1012 G, is much smaller

than the critical thermodynamic field, Hc ∼ 1014–1015 G
[66], while it is well known [45,61,65–67] that it is
advantageous for a relatively weak field to penetrate the
superconductor in the form of flux tubes, each containing
many flux quanta. For definiteness, this very form of
normal domains (flux tubes) will be assumed by us in
what follows. Note, however, that the actual form of normal
domains is not really important for the subsequent con-
sideration (what is important is the closed topology
assumption).
The distance between the neighboring flux tubes can be

estimated as [66,67] b ∼
ffiffiffiffiffiffi
Rδ

p
, where R is the typical size of

the intermediate-state region and δ is the typical width of
the normal-superconducting boundary [67]. Taking δ ∼
ξp ∼ 10−11 cm (ξp is the proton coherence length) and
R∼5km, one obtains b∼2×10−3 cm. Then the flux tube
radius is a ≈ bðB=HcÞ1=2 ∼ 6 × 10−5 cm and the number of
flux quanta in a single flux tube Nϕ ≈ πa2Hc=ϕ̂p0≈
6 × 1013, where ϕ̂p0 is given by Eq. (G13), and we choose
B ¼ 1012 G and Hc ¼ 1015 G.
From these estimates, one can conclude that the flux

tubes are rather large objects that should interact efficiently
with the surrounding normal matter (electrons and nucleon
Bogoliubov excitations), and hence should move (at least,
in the nondissipative limit) with the normal liquid compo-
nent. In the terminology of the Hall-Vinen-Bekarevich-
Khalatnikov (HVBK) hydrodynamics, one can say that the
system is in the “strong-drag” regime (see G16). Using the
strong-drag assumption, one can try to derive the dynamic
equations for the npe mixture in the intermediate state.
First, note that all consideration of Sec. VA up to and
including Eq. (69) is applicable to the intermediate state as
well since it only uses, as a starting point, the expression
(60) for the energy density, which remains correct. From
Eq. (69), one then deduces the same Eq. (70) for neutrons
(by assumption, there are no Feynman-Onsager vortices in
the system) and Eq. (71) for the electromagnetic correction
to the energy-momentum tensor. However, for protons,
Eq. (70) cannot be applied and must be modified. The
reason is, as suggested by the London argument (e.g.,
Ref. [59]), there is a nonzero proton phase windingH ∂μΦpdxμ around each flux tube; i.e., the phase Φp,
averaged over the volume containing many flux tubes,
does not satisfy the “potentiality condition” (72). This
situation is reminiscent of that observed in the HVBK-
hydrodynamics (see, e.g., Ref. [25] and G16). In particular,
in G16 it is shown that the strong-drag regime we are
interested in, is realized if one replaces Eq. (70) for protons
with the less restrictive condition,10

9The fact that wμ
ðiÞ (and hence all other dynamic equations)

appears to be gauge-invariant, is not trivial and is directly related
to the adopted expression (60) for dεadd, in particular, to the
assumption thatHμ in this expression is indeed the magnetic field
four-vector given by Eq. (15).

10Equation (73) is a special case of the more general Eq. (93)
from the next section, which, although describes a different
system (npe mixture with type-II proton superconductivity), has
some mathematical resemblance to what is studied here.
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uνð ~Vμν
ðpÞ þ epFμνÞ ¼ 0: ð73Þ

It is easily verified that, with this equation, the rhs of
Eq. (69) is still zero, as it should be. Summarizing, we find
that, to model the npemixture in the intermediate state, one
should use superfluid Eqs. (70) for neutrons and (73) for
protons; the correction ΔTμν to the energy-momentum
tensor Tμν is given by Eq. (71). The last thing to do in
order to close the system of dynamic equations discussed
here is to specify the relation between the tensors Gμν and
Fμν, and to prove that the resulting tensor ΔTμν is indeed
symmetric. This is done in Sec. VII A. A complete system
of equations is summarized in Appendix H.
Remark 1. It may be noted that exactly the same

derivation of the tensor (71) can be made also for normal
(nonsuperfluid) matter if we put Yik ¼ 0 in all relevant
equations. This indicates that the tensor ΔTμν must be well
known in the electrodynamics of continuous media. As
shown in Appendix D, this is indeed the case and it is
directly related to the so-called Abraham electromagnetic
tensor in the medium (see, e.g., Refs. [46,68,69]).

VI. RELATIVISTIC DYNAMIC EQUATIONS FOR
NPE MIXTURE WITH NEUTRON AND PROTON

VORTICES: TYPE-II PROTON
SUPERCONDUCTIVITY

In this section, we consider a region of densities where
protons form a type-II superconductor and allow for the
possible presence of neutron and proton vortices in the
system. Since our consideration is very similar to that in
G16 we will be brief here and refer the interested reader to
this reference for more details.11 In the system with
vortices, the condition ð∂μ∂ν − ∂ν∂μÞΦi ¼ 0 is not satisfied
at the vortex lines. Hence, as in Sec. V B, the macroscopic
(smooth-averaged) superfluid Eq. (39) [or (70)] should be
replaced by a weaker constraint [see Eq. (93) below]. In
what follows, it will be convenient to use the vorticity
tensor Vμν

ðiÞ,

Vμν
ðiÞ ≡ ~Vμν

ðiÞ þ eiFμν

¼ ∂μ½wν
ðiÞ þ μiuν þ eiAν� − ∂ν½wμ

ðiÞ þ μiuμ þ eiAμ�;
ð74Þ

with the obvious property [cf. Eq. (10)]

∂μ
⋆Vμν

ðiÞ ¼ 0: ð75Þ

The tensor Vμν
ðiÞ is equivalent to micurlVsi þ eiB of the

nonrelativistic HVBK-hydrodynamics (Vsi is the superfluid

velocity).12 The geometrical meaning of this tensor is quite
transparent. Assume we have a surface spanned by some
closed contour. Then Vμν

ðiÞ is related to the number Ni of

neutron (i ¼ n) or proton (i ¼ p) vortices piercing the
surface by the formula (see G16 for more details13)

1

2

Z
dfμνVðiÞμν ¼ πNi; ð76Þ

where an integral is taken over the surface area. In the
absence of vortices, one has Vμν

ðiÞ ¼ 0 [see Eqs. (39) and

(74)]. With the tensor Vμν
ðiÞ, one can construct, using

Eqs. (A3) and (A4), the “electric” and “magnetic” four-
vectors Vμ

ðEiÞ and Vμ
ðMiÞ, respectively,

Vμ
ðEiÞ ≡ uνV

μν
ðiÞ; ð77Þ

Vμ
ðMiÞ ≡

1

2
ϵμναβuνVðiÞαβ: ð78Þ

In addition to modifying the superfluid equation, vorti-
ces affect also the second law of thermodynamics (55),
because a certain amount of energy is associated with each
vortex. This energy should be accounted for in Eq. (55)
together with the electromagnetic contribution. The expres-
sion for dεadd, that includes the vortex contribution, reads

dεadd ¼
1

4π
EμdDμ þ 1

4π
HμdBμ þ Vμ

ðEiÞdWðEiÞμ

þWðMiÞμdV
μ
ðMiÞ; ð79Þ

where the four-vectors Wμ
ðEiÞ and Wμ

ðMiÞ are analogous to

Dμ and Hμ, respectively. As shown in Sec. VII B (see
below), they can generally be presented as

Wμ
ðEiÞ ≡ uνW

μν
ðiÞ; ð80Þ

Wμ
ðMiÞ ≡

1

2
ϵμναβuνWðiÞαβ: ð81Þ

Here Wμν
ðiÞ is some auxiliary antisymmetric tensor, which

plays the same role with respect to Vμν
ðiÞ as the tensor Gμν

with respect to Fμν. It is easy to see that the third and fourth
terms in the rhs of Eq. (79) are written in full analogy with,
respectively, the first and second electromagnetic terms.
This coincidence is not accidental. As detailed in
Appendix G 2 the fourth term here is basically responsible
for the vortex energy (including its magnetic energy), while

11Note that G16 uses somewhat different notation. The
correspondence table between our notation and that of G16 is
provided in Appendix B.

12To be more precise, the vector Vμ
ðMiÞ [see Eq. (78) below],

constructed with the help of this tensor, is equivalent to
micurlVsi þ eiB.13Note that the factor 1=2 was inadvertently omitted in the
corresponding equation (42) in that reference.
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the third term comes into play if one takes into account the
electric field generated by moving vortices. Note that in
G16 only the fourth term has been allowed for, since that
reference analyzed uncharged superfluids. In addition, in
that reference it was from the very beginning assumed that
Wμ

ðMiÞ is directly proportional to Vμ
ðMiÞ, Wμ

ðMiÞ ∝ Vμ
ðMiÞ,

which is the only viable option in the absence of other
magnetic vectors in the problem [cf. Eq. (115) in
Sec. VII B].
Our next step will be to transform the energy dεadd in a

way similar to how it was done in Sec. V. The first two
terms in the rhs of Eq. (79) are transformed exactly as in
Sec. V, the result is given by Eq. (63). Let us analyze the
fourth term. It reads [cf. Eq. (61)]

WðMiÞμdV
μ
ðMiÞ ¼ WðMiÞμ

1

2
ϵμναβuνdVðiÞαβ

þWðMiÞμ
1

2
ϵμναβVðiÞαβduν

¼ 1

2
⊥Wαβ

ðiÞdVðiÞαβ þ
1

2
ðWðMiÞμϵμναβVðiÞαβ

þ uνWðiÞαβV
αβ
ðiÞÞduν

¼ 1

2
ð⊥Wαβ

ðiÞdVðiÞαβ þ 2VðiÞαβW
αγ
ðiÞu

βduγÞ;
ð82Þ

where the underlined term vanishes because uνduν ¼ 0;
⊥Wαβ

ðiÞ is defined by Eq. (A5). To further transform this

equation we make use of Appendix C. Comparing Eq. (82)
with (C1) allows us to identify

Oαβ ¼ ⊥Wαβ
ðiÞ;

F αβ ¼ Vαβ
ðiÞ;

Bαβ ¼ Vαβ
ðiÞ;

Aαβ ¼ Wαβ
ðiÞ;

hence,

− uμWðMiÞα∂μVα
ðMiÞ

¼ uνVðiÞμν∂α
⊥Wμα

ðiÞ

− ∂μ½uνð⊥Wμα
ðiÞVðiÞνα − uμuγ⊥νβW

αβ
ðiÞVðiÞαγÞ�

þ ∂μuνð⊥Wμα
ðiÞVðiÞνα − uμuγ⊥νβW

αβ
ðiÞVðiÞαγÞ: ð83Þ

Looking at Eqs. (82) and (83), it may be noted that the
transformation of the fourth and second terms in Eq. (79)
are identical provided that one replaces Wμ

ðMiÞ → Hμ=ð4πÞ
and Vμ

ðMiÞ → Bμ [compare Eqs. (61) and (82)]. Similarly,

the transformation of the third and first terms in Eq. (79)
can be obtained from one another by replacing Wμ

ðEiÞ →
Dμ=ð4πÞ and Vμ

ðEiÞ → Eμ. With these replacements, one can

use Eq. (62) to transform the third term in Eq. (79). The
result is

−uμVðEiÞα∂μWα
ðEiÞ ¼ uνVðiÞμν∂α

∥Wμα
ðiÞ − ∂μ½uνð∥Wμα

ðiÞVðiÞνα þ uμuγ⊥νβV
αβ
ðiÞWðiÞαγ þ gμνWðEiÞαVα

ðEiÞÞ�
þ ∂μuνð∥Wμα

ðiÞVðiÞνα þ uμuγ⊥νβV
αβ
ðiÞWðiÞαγ þ gμνWðEiÞαVα

ðEiÞÞ: ð84Þ

Collecting together the electromagnetic terms (63) and
the vortex terms (83) and (84), one obtains

−uμ∂μεadd ¼ uνFμν∂α

�
1

4π
∥Gμα þ 1

4π
⊥Gμα

�

þ uνVðiÞμν∂αð∥Wμα
ðiÞ þ ⊥Wμα

ðiÞÞ
− ∂μ½uνðT μ

ðEÞν þ T μ
ðMÞν þ T μ

ðVEÞν þ T μ
ðVMÞνÞ�

þ ∂μuνðT μ
ðEÞν þ T μ

ðMÞν þ T μ
ðVEÞν þ T μ

ðVMÞνÞ;
ð85Þ

where the tensors T μ
ðEÞν and T μ

ðMÞν are given by Eqs. (64)
and (65), and

T μ
ðVEÞν¼ ∥Wμα

ðiÞVðiÞναþuμuγ⊥νβV
αβ
ðiÞWðiÞαγþgμνWðEiÞαVα

ðEiÞ;

ð86Þ

T μ
ðVMÞν ¼ ⊥Wμα

ðiÞVðiÞνα − uμuγ⊥νβW
αβ
ðiÞVðiÞαγ ð87Þ

are, respectively, the “electric” and “magnetic” vortex
contributions to the energy-momentum tensor (note a
summation over i ¼ n, p here). Similarly to tensors (64)
and (65), these tensors can be represented as [cf. Eq. (66)
and (67)]

T μν
ðVEÞ ¼ ⊥μνWα

ðEiÞVðEiÞα −Wμ
ðEiÞV

ν
ðEiÞ; ð88Þ

T μν
ðVMÞ ¼ ⊥Wμα

ðiÞ
⊥Vν

ðiÞα þ uν⊥Wμα
ðiÞVðEiÞα þ uμ⊥Wνα

ðiÞVðEiÞα:

ð89Þ

Using Eq. (85), as well as Eq. (68), the definition (74),
and the equality Wμα

ðiÞ ¼ ∥Wμα
ðiÞ þ ⊥Wμα

ðiÞ [see Eq. (A9)], the
entropy generation equation (58) becomes
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T∂μðSuμÞ ¼ uνVðiÞμν½Yikw
μ
ðkÞ þ ∂αW

μα
ðiÞ�

− ∂μ½uνðT μ
ðEÞν þ T μ

ðMÞν þ T μ
ðVEÞν

þ T μ
ðVMÞν − ΔTμ

νÞ� þ ∂μuνðT μ
ðEÞν þ T μ

ðMÞν
þ T μ

ðVEÞν þ T μ
ðVMÞν − ΔTμ

νÞ: ð90Þ

The rhs of this equation has the same structure as Eq. (77)
in G16. Correspondingly, its analysis and the resulting
equations are very similar. Using the argumentation of that
reference, one finds that, in order for the entropy to be
conserved, it is necessary to have

uνVðiÞμν½Yikw
μ
ðkÞ þ ∂αW

μα
ðiÞ� ¼ 0; ð91Þ

ΔTμν ¼ T μν
ðEÞ þ T μν

ðMÞ þ T μν
ðVEÞ þ T μν

ðVMÞ: ð92Þ

Note that ΔTμν satisfies the required constraint (57) and is
symmetric (see Sec. VII B). As demonstrated in G16, the
condition (91) is equivalent to the following equation,
which replaces the superfluid Eq. (39) [or (70)] of the
vortex-free system,

uνVðiÞμν ¼ μinifðiÞμ; ð93Þ

where

fμðiÞ ¼ αi⊥μνVðiÞνλWðiÞδ⊥λδ; ð94Þ

Wμ
ðiÞ ≡

1

ni
½Yikw

μ
ðkÞ þ ∂αW

μα
ðiÞ�; ð95Þ

and αi is a nondissipative mutual friction coefficient [note
that there are no summation over i in Eqs. (93)–(95)]. The
lhs of Eq. (93) is simply the four-vector Vμ

ðEiÞ, so that it can

be rewritten as (now in the dimensional form)

Vμ
ðEiÞ ¼

μini
c3

fμðiÞ: ð96Þ

Equations (92) and (93) [or (96)] are the main results of
this section. They show how the energy-momentum tensor
and superfluid equation should be modified in the presence
of vortices. These equations depend on the tensors Gμν and
Wμν

ðiÞ, which will be found in Sec. VII B. The symmetry of

the tensor ΔTμν will be demonstrated in the same section.
The whole system of dynamic equations in the presence of
vortices is summarized in Appendix H.
Remark 1. In this work we are mainly interested in

the nondissipative dynamic equations. In particular, we
assumed that normal (nonsuperfluid) components of all
particle species move with one and the same velocity uμ. In
principle, this condition does not guarantee that there is no
dissipation in the system. Indeed, the entropy can be
produced, e.g., because of scattering of nucleon thermal

excitations and/or electrons off the vortex cores. This
mechanism is known as the “mutual friction”
[15,17,25,27–29,70]. Only this dissipative mechanism
has been taken into account in GAS11. To include mutual
friction dissipation into consideration, we start with
Eq. (90) and require positive definiteness of its right-hand
side. Then, following the consideration of G16 [see the text
after Eq. (77) in that reference], we find that Eq. (91) should
be replaced with the inequality

uνVðiÞμν½Yikw
μ
ðkÞ þ ∂αW

μα
ðiÞ� ≥ 0; ð97Þ

from which one obtains the same superfluid equation (93),
but with fμðiÞ given by

fμðiÞ ¼ αi⊥μνVðiÞνλWðiÞδ⊥λδ

þ βi − γi
VðMiÞ

⊥μη⊥νσVðiÞησVðiÞλνWðiÞδ⊥λδ

þ γiVðMiÞWðiÞδ⊥μδ; ð98Þ

where αi is the same nondissipative coefficient as in
Eq. (94); βi ≥ 0 and γi ≥ 0 are the positive dissipative
mutual friction coefficients and

VðMiÞ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vμ
ðMiÞVðMiÞμ

q
: ð99Þ

Note that Eq. (98) is not the most general form of fμðiÞ
satisfying the inequality (97). In principle, there could be
cross terms depending on both Vμν

ðnÞ and Vμν
ðpÞ (see, e.g.,

Ref. [15] for a nonrelativistic analogue of such terms).
These terms are ignored in Eq. (98) since we do not see any
plausible physical interpretation behind them. Anyway,
one should bear in mind the possibility that Eq. (98) is not
complete. In the nonrelativistic limit a more general
expression for fμðiÞ is contained in the Appendix of

Ref. [15]. Generalization of that result to the relativistic
case is straightforward.
Remark 2. Expression (98) for fμðiÞ can be rewritten in

terms of the magnetic four-vector Vμ
ðMiÞ as [see a similar

formula (53) in G16]

fμðiÞ ¼ −αiX
μ
ðiÞ − βiϵ

μνληuνeðiÞλXðiÞη þ γie
μ
ðiÞW

λ
ðiÞVðMiÞλ;

ð100Þ

where eμðiÞ ≡ Vμ
ðMiÞ=VðMiÞ and Xμ

ðiÞ ≡ ϵμνληuνVðMiÞλWðiÞη.
Remark 3. As it is argued in Refs. [17,25], the coef-

ficients γi (i ¼ n or p) in Eq. (98) are most likely very small
and the corresponding terms can be neglected. Assume that
it is indeed the case and that the tensor Vμν

ðiÞ satisfies Eq. (93)
with fμðiÞ defined by Eq. (98). Then it can be shown (see
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remark 2 in Sec. III A of G16) that a four-vector vμðLiÞ exists,
given by,

vμðLiÞ ¼ uμ − μiniαiWðiÞν⊥μν þ μiniβi
VðMiÞ

⊥μα⊥νβVðiÞαβWðiÞν;

ð101Þ

such that the combination vνðLiÞVðiÞμν is identically zero,

vνðLiÞVðiÞμν ¼ 0 ð102Þ

(no summation over i here). Equation (102) is analogous to
the vorticity conservation equation of the nonrelativistic
HVBK-hydrodynamics (see Appendix A of G16) and the
four-vector vμðLiÞ has the meaning of (non-normalized)

vortex velocity.
Using Eqs. (96), (100), and (101), it is straightforward to

show that the spatial components vLi=c, VEi, and VMi of
the four-vectors vμðLiÞ, V

μ
ðEiÞ, and Vμ

ðMiÞ are related, in the

comoving frame, by the condition

VEi ¼
1

c
VMi × vLi: ð103Þ

For future convenience the latter equation is written in the
dimensional form.
Remark 4. It is notable that the vortex energy-momen-

tum tensors (86) and (87) are obtained in the same way
and have exactly the same structure as, respectively, the
electromagnetic tensors (64) and (65). This is a direct
consequence of the striking similarity of the electromag-
netic and vortex contributions to the energy density dεadd
in Eq. (79).

VII. SYMMETRY OF THE
ENERGY-MOMENTUM TENSOR

The symmetry of the energy-momentum tensors
obtained in Secs. V and VI is not manifest. In this section,
we prove that they are indeed symmetric. To do this it is
necessary to express the tensors Gμν and Wμν

ðiÞ in Eqs. (66),

(67), and (88), (89) through the tensors Fμν and Vμν
ðiÞ. This

can be done by specifying the expression for the energy
density dεadd [see Eqs. (60) and (79)], which is different for
the situations considered in Secs. V and VI.

A. The npe mixture in the intermediate state
(type-I proton superconductivity)

We start with the intermediate state model of Sec. V B.
Generally, since there are no vortices in the system, the
energy density ε can be a function of S, ni, ne, wðiÞμw

μ
ðkÞ,

and various invariants composed of the four-vectors Dα

and Bα in combination with the four-vectors uμ and wμ
ðiÞ

characterizing the system in the field-free case.14 In what
follows, we assume that there are no bound charges in
the system (i.e., nonsuperconducting domains move with
the normal liquid component), so that Eμ ¼ Dμ, that is ε
depends on Dμ through the term DμDμ=ð8πÞ. Concerning
magnetic contribution, the simplest (and largest) invariant
allowed by the symmetry15 is x≡ BμBμ=ð8πÞ [the factor
1=ð8πÞ is introduced for further convenience]. We, thus,
have for dε the same equation (55) with

dεadd ¼
1

4π
DμdDμ þ 1

4π

∂ε
∂xBμdBμ; ð104Þ

where the partial derivative is taken at constant S, ni, ne,
wðiÞμw

μ
ðkÞ, and Dμ. Comparing this equation with Eq. (60),

one finds that, indeed,

Eμ ¼ Dμ ð105Þ

and

Hμ ¼ γBμ with γ ≡ ∂ε
∂x : ð106Þ

Equations (105) and (106) completely determine the
tensors ∥Gμν ¼ ∥Fμν and ⊥Gμν ¼ γ⊥Fμν, and hence the
tensorGμν ¼ ∥Gμν þ ⊥Gμν [see Eqs. (A6), (A5), and (A9)].
Using them, the electromagnetic tensor (71) can be
presented in the manifestly symmetric form,

ΔTμν ¼ −
1

4π
ðEμEν −⊥μνEαEαÞ

þ γ

4π
ð⊥δαFμδFνα − uμuνuγuβFαβFαγÞ: ð107Þ

The phenomenological coefficient γ is calculated for a
simple model in Appendix G 1.

B. The npe mixture with neutron and proton vortices
(type-II proton superconductivity)

In this case ε can depend on additional invariants
composed of the four-vectors Dμ, Bμ, Wμ

ðEnÞ, Wμ
ðEpÞ,

Vμ
ðMnÞ, and Vμ

ðMpÞ [see Eq. (79)]. One can construct the

14We remind the reader that ε is a scalar defined in the comoving
frame; it is thus invariant under Lorentz transformations.

15Other possible invariants, for example, Bμw
μ
ðiÞBνwν

ðkÞ,
ϵαβγδuβw

γ
ðiÞB

δϵαbcdubwðiÞcBd etc. are small, because the four-
vector wμ

ðiÞ is proportional to the generally small difference
between the normal and superfluid velocities, see, e.g., G16.
Note also that the invariant uμBμ, which could be used as a
building brick for constructing other invariants, is zero,
uμBμ ¼ 0; see Eq. (14).
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following invariants from these vectors16: z ¼ DμDμ=ð8πÞ, zi ¼ DμW
μ
ðEiÞ, zik ¼ WðEiÞμW

μ
ðEkÞ=2, x ¼ BμBμ=ð8πÞ,

xi ¼ BμV
μ
ðMiÞ, and xik ¼ VðMiÞμV

μ
ðMkÞ=2 (i, k ¼ n or p). Correspondingly, the differential of the energy density

εðS; ni; ne; wðiÞμw
μ
ðkÞ; z; zi; zik; x; xi; xikÞ is given by Eq. (55), in which

dεadd ¼
1

4π

∂ε
∂zDμdDμ þ ∂ε

∂zi d½DμW
μ
ðEiÞ� þ

∂ε
∂zik WðEkÞμdW

μ
ðEiÞ þ

1

4π

∂ε
∂xBμdBμ þ ∂ε

∂xi d½BμV
μ
ðMiÞ� þ

∂ε
∂xik VðMkÞμdV

μ
ðMiÞ

¼ 1

4π
½γðEÞDμ þ 4πΓðEÞ

i WðEiÞμ�dDμ þ ½ΓðEÞ
ik WðEkÞμ þ ΓðEÞ

i Dμ�dWμ
ðEiÞ

þ 1

4π
½γðMÞBμ þ 4πΓðMÞ

i VðMiÞμ�dBμ þ ½ΓðMÞ
ik VðMkÞμ þ ΓðMÞ

i Bμ�dVμ
ðMiÞ; ð108Þ

where

γðEÞ ≡ ∂ε
∂z ; γðMÞ ≡ ∂ε

∂x ; ð109Þ

ΓðEÞ
i ≡ ∂ε

∂zi ; ΓðMÞ
i ≡ ∂ε

∂xi ; ð110Þ

ΓðEÞ
ik ¼ ΓðEÞ

ki ≡ ∂ε
∂zik ; ΓðMÞ

ik ¼ ΓðMÞ
ki ≡ ∂ε

∂xik : ð111Þ

Comparing Eqs. (108) and (79), one identifies

Eμ ¼ γðEÞDμ þ 4πΓðEÞ
i Wμ

ðEiÞ; ð112Þ

Vμ
ðEiÞ ¼ ΓðEÞ

ik Wμ
ðEkÞ þ ΓðEÞ

i Dμ; ð113Þ

Hμ ¼ γðMÞBμ þ 4πΓðMÞ
i Vμ

ðMiÞ; ð114Þ

Wμ
ðMiÞ ¼ ΓðMÞ

ik Vμ
ðMkÞ þ ΓðMÞ

i Bμ: ð115Þ

The system of Eqs. (112) and (113) can be inverted and the
four-vectors Dμ and Wμ

ðEiÞ can be presented as

Dμ ¼ ~γðEÞEμ þ 4π ~ΓðEÞ
i Vμ

ðEiÞ; ð116Þ

Wμ
ðEiÞ ¼ ~ΓðEÞ

ik Vμ
ðEkÞ þ ~ΓðEÞ

i Eμ; ð117Þ

where the quantities ~γðEÞ, ~ΓðEÞ
i , and ~ΓðEÞ

ik can easily be

expressed through γðEÞ, ΓðEÞ
i , and ΓðEÞ

ik using Eqs. (112) and
(113). From Eqs. (115) and (117) one now sees that the
four-vectors Wμ

ðEiÞ and Wμ
ðMiÞ indeed have the form

assumed in Eqs. (80) and (81).
Using Eqs. (114)–(117), as well as Eqs. (A5), (A6), and

(A9), one can find the tensors Gμν and Wμν
ðiÞ,

17 and to

present the tensor ΔTμν (92) in the manifestly symmet-
ric form,

ΔTμν ¼ −
~γðEÞ

4π
ðEμEν −⊥μνEαEαÞ − ~ΓðEÞ

i ½ðVμ
ðEiÞE

ν þ EμVν
ðEiÞÞ − 2⊥μνEαVα

ðEiÞ� −
~ΓðEÞ
ik

2
½ðVμ

ðEiÞV
ν
ðEkÞ þ Vμ

ðEkÞV
ν
ðEiÞÞ

− 2⊥μνVðEiÞαVα
ðEkÞ� þ

γðMÞ

4π
ð⊥δαFμδFνα − uμuνuγuβFαβFαγÞ þ ΓðMÞ

i ½⊥δαðVμδ
ðiÞF

να þ FμδVνα
ðiÞÞ − 2uμuνuγuβV

αβ
ðiÞFαγ�

þ ΓðMÞ
ik

2
½⊥δαðVμδ

ðiÞV
να
ðkÞ þ Vμδ

ðkÞV
να
ðiÞÞ − 2uμuνuγuβV

αβ
ðiÞVðkÞαγ�: ð118Þ

In the absence of vortices this tensor reduces to that in
Sec. VII A [see Eq. (107)]. In another limiting case of only
one neutral superfluid particle species (e.g., i ¼ n) it
reproduces the tensor presented in G16 if one sets all

the coefficients except for ΓðMÞ
nn to zero [see equation (79)

in that reference]. A simple microscopic model allowing
to calculate the phenomenological coefficients ~γðEÞ, γðMÞ,
~ΓðEÞ
i , ΓðMÞ

i , ~ΓðEÞ
ik , and ΓðMÞ

ik in Eq. (118) is considered in

16Of course, the number of possible invariants is much larger.
Here we only write out those invariants whose physical meaning
is clear to us (see Appendix G 2), but one should bear in mind that
it is straightforward to consider other possibilities.

17In particular, Wμν
ðiÞ ¼ ⊥Wμν

ðiÞ þ ∥Wμν
ðiÞ, where ⊥Wμν

ðiÞ ¼
ϵαβμνuβðΓðMÞ

ik VðMkÞα þ ΓðMÞ
i BαÞ ¼ ΓðMÞ

ik
⊥Vμν

ðkÞ þ ΓðMÞ
i

⊥Fμν and

∥Wμν
ðiÞ ¼ ~ΓðEÞ

ik
∥Vμν

ðkÞ þ ~ΓðEÞ
i

∥Fμν.
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Appendix G 2. This model is analogous to the model
discussed in detail in GAS11.

VIII. “MAGNETOHYDRODYNAMIC”
APPROXIMATION FOR NPE MIXTURE WITH
NEUTRON AND PROTON VORTICES (TYPE-II

PROTON SUPERCONDUCTIVITY)

General equations of Secs. VI and VII B can be sub-
stantially simplified if the magnetic induction B is much
larger than the fields E, D, and H in the comoving frame
(hereafter the magnetohydrodynamic approximation).18

As it is discussed in Appendix G 2 (see remark 1 there),
as well as in GAS11, this is a typical situation in real
neutron stars. Note also that in the comoving frame VðEiÞ ≡
ðVðEiÞμV

μ
ðEiÞÞ1=2 ∼ ð1=cÞVðMiÞ and can be neglected in

comparison to VðMiÞ [this follows from the analysis of
the superfluid Eq. (96) and its nonrelativistic counterpart in
Appendix I]. In addition, one can neglect the neutron-
related four-vector Vμ

ðMnÞ in comparison to the proton four-

vector Vμ
ðMpÞ in Eq. (114), because the lengths of these

vectors are proportional to the vortex density NVi [see
Eq. (G7)], which is larger for protons by more than ten
orders of magnitude. Using these facts, a number of
simplifications are possible:
(1) One can omit Hμ (and Vμ

ðMnÞ, as we have already
mentioned) in Eq. (114). This leads to the
condition relating Bμ and Vμ

ðMpÞ (here and below

in this section we, for definiteness, use the param-

eters γðMÞ, ΓðMÞ
i , ΓðMÞ

ik , etc. calculated for a simple
microscopic model of Appendix G 2),

Vμ
ðMpÞ ≈ −

γðMÞ

4πΓðMÞ
p

Bμ ¼ π

ϕ̂p0

Bμ ¼ epBμ: ð119Þ

Physically, this condition means that almost all the
magnetic induction is produced by the proton
vortices. Note that, from Eq. (74) it follows

Vμ
ðMpÞ ¼ ~Vμ

ðMpÞ þ epBμ: ð120Þ

Comparing this equation with Eq. (119)
one sees that in the adopted approximation the
vector ~Vμ

ðMpÞ, which reduces to ð0; mpcurlVspÞ in
the nonrelativistic limit (see footnote 12), should be
neglected in comparison to epBμ.

(2) Because H and D are small by assumption, one can
discard Maxwell’s equation (11), setting to zero the
four-current density JμðfreeÞ in all other equations,

JμðfreeÞ ¼ ejj
μ
ðjÞ ¼ epðnp − neÞuμ þ eiYikw

μ
ðkÞ ¼ 0;

ð121Þ

that is, since uμw
μ
ðiÞ ¼ 0 [see Eq. (25)],

ne ¼ np; ð122Þ

eiYikw
μ
ðkÞ ¼ 0: ð123Þ

(3) One can ignore the first three terms in the rhs of
the expression (79) for the energy density dεadd,
because they depend on small four-vectors Eμ, Dμ,
Hμ, Vμ

ðEiÞ, and Wμ
ðEiÞ.

19 The last term in Eq. (79) is

large in comparison to the neglected terms, since it is
independent of these small vectors, as is shown
below. Using Eq. (114) with Hμ ¼ 0, as well as
Eqs. (115), and (G29)–(G32), one obtains (no
summation over i here)20

Wμ
ðMiÞ ¼

λi
miVðMiÞ

Vμ
ðMiÞ; ð124Þ

so that this last term can be approximately
presented as

dεadd ≈
X
i¼n;p

λi
miVðMiÞ

VðMiÞμdV
μ
ðMiÞ; ð125Þ

where λp and λn are given, respectively, by
Eqs. (G10) and (G11).21 Note that the proton-related
term (i ¼ p) in Eq. (125) reduces to epλp=
ðmpBÞBμdBμ in view of Eq. (119) [here
B≡ ðBμBμÞ1=2].

(4) One can repeat the derivation of Sec. VI with dεadd
from Eq. (125). As a result, one will derive Eqs. (92)
and (93) with the following modifications: (i) The

18In what follows we assume that the relative velocity between
the normal and superfluid components is much smaller than the
speed of light c. As is argued in G16 (see Appendix D there), this
is not a very restrictive requirement.

19The four-vector Wμ
ðEiÞ is expressed through Vμ

ðEiÞ and Eμ by

Eq. (117) and hence is small. Note that the tensor ∥Wμν
ðiÞ is also

small since it is in turn related to Wμ
ðEiÞ by Eq. (80).

20We emphasize once again that the relation (124) is only valid
in the (usually adopted) approximation of noninteracting vortices,
see Appendix G 2.

21In principle, the term with i ¼ n in Eq. (125) could be
neglected in comparison to the i ¼ p term, since in neutron stars
VðMnÞ ≪ VðMpÞ and λn ∼ λp. However, we prefer to retain this
term here in order to describe situations when protons are normal
and i ¼ p term is absent.
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first three tensors in the rhs of Eq. (92) will not
appear in the approximation adopted here, since they
are smaller than the fourth term (in principle, this can
be independently checked by direct comparison of
the elements of four these tensors). We thus left with

ΔTμν ¼ T μν
ðVMÞ: ð126Þ

(ii) The four-vector Wμ
ðiÞ, entering the definition of

fμðiÞ in Eq. (93), will be modified (no summation

over i is assumed),

Wμ
ðiÞ ¼

1

ni
½Yikw

μ
ðkÞ þ ∂αW

μα
ðiÞ�

¼ 1

ni
fYikw

μ
ðkÞ þ ∂α½⊥Wμα

ðiÞ þ ∥Wμα
ðiÞ�g

≈
1

ni
½Yikw

μ
ðkÞ þ ∂α

⊥Wμα
ðiÞ�

¼ 1

ni
fYikw

μ
ðkÞ þ ∂α½ϵγβμαuβWðMiÞγ�g ð127Þ

[see the footnote 19, Eqs. (A5), (A6), and (A9)
and note that we neglect the small term depending
on Wμ

ðEiÞ here]. All other equations remain exactly

the same.
Summarizing, the system of simplified “magnetohydro-

dynamic” equations for npe mixture consists of the
energy-momentum and particle conservation laws (16)
and (17) with jμðjÞ given by Eqs. (21), (22) and Tμν given

by Eq. (56) with ΔTμν from Eq. (126). When calculating
ΔTμν one should express ⊥Wμν

ðiÞ throughW
μ
ðMiÞ, which is in

turn should be found from Eq. (124). These equations
should be supplemented by Maxwell’s equation (10), the
second law of thermodynamics (55) with dεadd defined in
Eq. (125), and by the conditions (24), (25), (122), and
(123). Finally, the system is closed by the neutron and
proton superfluid equations (93) [or (96)], in which fμðiÞ is
defined by Eq. (98) [or, equivalently, by Eq. (100)] andWμ

ðiÞ
is given by Eq. (127). The nonrelativistic version of some
of these equations is presented in Appendix I.
Remark 1. It is interesting that, using Eqs. (100) and

(119), the proton four-vector fμðpÞ can be represented in

terms of Bμ,

fμðpÞ ≈ −αpX
μ
ðpÞ − βpϵ

μνληuνeðpÞλXðpÞη þ epγpe
μ
ðpÞW

λ
ðpÞBλ;

ð128Þ

where eμðpÞ ≈ Bμ=B and Xμ
ðiÞ ≈ epϵμνληuνBλWðiÞη.

Remark 2. Note that the proton four-vector wμ
ðpÞ can be

found from the condition (123). The proton superfluid
equation can thus be used to express the electric four-vector

Eμ. Using Eq. (74) in order to present Vμ
ðEiÞ as Vμ

ðEiÞ ¼
~Vμ
ðEiÞ þ eiEμ, and substituting this expression (for i ¼ p)

into Eq. (96), one finds

Eμ ¼ −
1

ep
~Vμ
ðEpÞ þ

μpnp
ep

fμðpÞ; ð129Þ

where fμðpÞ is given by Eq. (128). Together with Maxwell’s

equation (10), this equation allows one, in principle, to
exclude Eμ and obtain a closed equation for Bμ only (see
remark 1 in Appendix I, where such an equation is derived
in the nonrelativistic limit).

IX. SUMMARY AND CONCLUSIONS

This paper is devoted to studying the dynamic properties
of superfluid-superconducting mixtures in neutron stars
accounting for the possible presence of electric and
magnetic fields, as well as neutron (Feynman-Onsager)
and proton (Abrikosov) vortices. Our results and main
conclusions are summarized as follows:
(1) Using the method and ideas from Refs. [29] and

G16, we derived a set of fully relativistic equations
(see Appendix H) describing a charged mixture
composed of superfluid neutrons, superconducting
protons, and electrons (the simplest neutron-star
composition). Generalization of these equations to
more exotic compositions (including, e.g., muons,
hyperons, etc.) is straightforward [24,38,42,43].

(2) The proposed equations can be used at finite temper-
atures; i.e., they allow for the possible presence of
neutron and proton (Bogoliubov) thermal excita-
tions. This is especially important for a sufficiently
hot neutron stars, such as magnetars, whose internal
temperatures can be ∼108 K, i.e., of the order of
the nucleon critical temperatures Tci [1,71] (we
remind that at T > Tci nucleon species i ¼ n, p is
completely nonsuperfluid).

(3) The derived dynamic equations are “nondissipative”
in a sense that to obtain them we assume that normal
(nonsuperfluid) liquid components (electrons, nu-
cleon thermal excitations, and entropy) move with
one and the same velocity (i.e., diffusion effects
are ignored). However, we do take into account
the mutual friction dissipation [see Eqs. (97) and
(98)]. Extension of our results to a fully dissipative
problem is rather easy and will be reported
elsewhere.

(4) Estimates show that protons form type-II super-
conductor in the outer neutron-star core, but become
of type-I in the inner core (e.g., GAS11, [66,72–74]).
The dynamic equations are derived and analyzed
in both these cases with the special emphasis on
the more elaborated type-II case. It seems that the
dynamics of the type-I superconductor is discussed
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for the first time (in the astrophysical context), but
the analysis presented is rather brief and simplified
and should be considered as a first step towards the
solution of this complex problem.

(5) Our main results include the “electromagnetic”
energy-momentum tensors T μν

ðEÞ (H20) and T μν
ðMÞ

(H21), and the nucleon “vortex” energy-momentum
tensors T μν

ðVEÞ (H27) and T
μν
ðVMÞ (H28), as well as the

“superfluid” equations for the cases of type-I (H23),
(H24) and type-II (H30) proton superconductivities.
Remarkably, the vortex energy-momentum tensors
have the same structure and are obtained exactly in
the same way as the electromagnetic tensors (H20)
and (H21) (see remark 4 in Sec. VI).

(6) As a byproduct of ourwork, it is shown that for normal
matter the sum T μν

ðEÞ þ T μν
ðMÞ of the electromagnetic

energy-momentum tensors is directly related to the
so-called Abraham tensor Tμν

Abraham of the standard
electrodynamics of continuous media [46,68,69].
Thus, our results can be considered as one more
derivation of this tensor based on the conservation
laws and the requirement that the entropy of a non-
dissipative closed system remains constant.

(7) The equations derived in this paper [in particular,
the expressions for the electromagnetic and vortex
energy-momentum tensors T μν

ðEÞ, T
μν
ðMÞ, T

μν
ðVEÞ, and

T μν
ðVMÞ] depend on the four-vectors Eμ, Bμ, Vμ

ðEiÞ,
Vμ
ðMiÞ and the complementary four-vectors Dμ, Hμ,

Wμ
ðEiÞ, W

μ
ðMiÞ. The physical meaning of these four-

vectors is described in detail in the text. For example,
the spatial components of Eμ, Bμ, Dμ, and Hμ

reduce, respectively, to the electric field, magnetic
induction, electric displacement, and magnetic field
in the comoving frame moving with the normal
liquid component (see Sec. II C); the other four-
vectors are related to vortices.
The four-vectors mentioned above are not all

independent. To express the quantities Dμ, Hμ,
Wμ

ðEiÞ, Wμ
ðMiÞ through Eμ, Bμ, Vμ

ðEiÞ, Vμ
ðMiÞ, one

should specify, as in the usual electrodynamics of
continuous media, the microphysics model for the
mixture. This is done, for two simple models, in
Appendix G (in particular, one of these models
analyzes the system of noninteracting vortices).
However, it is important to point out that the general
equations obtained here will likely remain un-
changed if one considers more complex models.
The only thing that should be modified in the latter
case is the relations between the fields Dμ, Hμ,
Wμ

ðEiÞ, W
μ
ðMiÞ and Eμ, Bμ, Vμ

ðEiÞ, V
μ
ðMiÞ.

(8) It is instructive to compare our results with the most
advanced nonrelativistic magnetohydrodynamics
of GAS11, describing superfluid-superconducting

mixtures. In comparison to GAS11, we (i) take
into account the relativistic and finite-temperature
effects, (ii) provide a general framework allowing
one to easily incorporate new physics into the
existing dynamic equations, and (iii) demonstrate
that the electric displacement field D is not generally
equal to the electric field E, contrary to what was
assumed in GAS11 and some other papers starting
from the work by Mendell [15] (see also Ref. [17]).

(9) The rather complex general system of equations
derived in this work can be substantially simplified
for typical neutron-star conditions, for which a kind
of “magnetohydrodynamic” approximation is justi-
fied. This approximation is analogous to the usual
magnetohydrodynamic approximation for ordinary
stars. The corresponding equations are derived and
analyzed for a simple model of Appendix G 2 in
Sec. VIII; their nonrelativistic limit is presented in
Appendix I, where we also derive a “magnetic field
evolution equation” (I24). It is shown that the latter
equation coincides with that proposed in Ref. [75],
but differs from the evolution equation derived in
Ref. [76] using magnetohydrodynamics of GAS11.
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APPENDIX A: SOME USEFUL DEFINITIONS

Assume we have an arbitrary antisymmetric tensor Aμν,
which can be represented in the matrix form as

Aμν ¼

0
BBB@

0 A01 A02 A03

−A01 0 A12 A13

−A02 −A12 0 A23

−A03 −A13 −A23 0

1
CCCA: ðA1Þ

Here and below all matrix representations of tensors/
vectors are given in the comoving frame, i.e. in the frame
in which the normal four-velocity is uμ ¼ ð1; 0; 0; 0Þ.
The tensor ⋆Aμν, dual to the tensor Aμν, is

⋆Aμν ≡ 1

2
ϵμναβAαβ

¼

0
BBB@

0 A23 −A13 A12

−A23 0 −A03 A02

A13 A03 0 −A01

−A12 −A02 A01 0

1
CCCA: ðA2Þ
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Using these tensors, one can construct the “electric” Aμ
ðEÞ and “magnetic” Aμ

ðMÞ four-vectors [77]

Aμ
ðEÞ ≡ uνAμν ¼ ð0;A01;A02;A03Þ; ðA3Þ

Aμ
ðMÞ ≡ uν ⋆Aμν ¼ 1

2
ϵμναβuνAαβ ¼ ð0;A23;−A13;A12Þ; ðA4Þ

and two additional tensors

⊥Aμν ¼ ϵαβμνuβAðMÞα ¼ ⊥μα⊥νβAαβ ¼

0
BBB@

0 0 0 0

0 0 A12 A13

0 −A12 0 A23

0 −A13 −A23 0

1
CCCA; ðA5Þ

∥Aμν ¼ −uνAμ
ðEÞ þ uμAν

ðEÞ ¼ −uνuαAμα þ uμuαAνα ¼

0
BBB@

0 A01 A02 A03

−A01 0 0 0

−A02 0 0 0

−A03 0 0 0

1
CCCA ðA6Þ

with the properties

uν⊥Aμν ¼ 0; ðA7Þ

⊥μν
∥Aμν ¼ 0; ðA8Þ

where⊥μν ¼ gμν þ uμuν is the projection operator and ϵαβμν is the Levi-Civita tensor, ϵ0123 ¼ 1. One can see that the tensor
Aμν can be decomposed as

Aμν ¼ ⊥Aμν þ ∥Aμν: ðA9Þ

APPENDIX B: COMPARISON OF NOTATION USED IN THIS PAPER AND IN G16

Some of the parameters introduced in G16 and in the present paper differ only by the index i, since here we have two
superfluid/superconducting particle species [neutrons (i ¼ n) and protons (i ¼ p)], whereas G16 deals with one particle
species. Such parameters are not provided in the table below.

G16 This work Parameter name

Fμν Vμν
ðiÞ Vorticity tensor

Oμν ⊥Vμν
ðiÞ “Magnetic” part of the vorticity tensor

Hμ Vμ
ðMiÞ “Magnetic” vorticity-related vector

−Eμ Vμ
ðEiÞ “Electric” vorticity-related vector

Vμ
ðLÞ vμðLiÞ Vortex four-velocity (non-normalized)

H VðMiÞ Length of the four-vector Vμ
ðMiÞ (or H

μ)

H VMi Spatial part of the four-vector Vμ
ðMiÞ (or H

μ)
−E VEi Spatial part of the four-vector Vμ

ðEiÞ (or −E
μ)

VL vLi Spatial part of the vortex four-velocity vμðLiÞ [or V
μ
ðLÞ]
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APPENDIX C: ENERGY DENSITY
TRANSFORMATION

Assume we have a term in the expression for the energy
density which takes the form

dεpart ¼
1

2
ðOαβdF αβ þ 2BαβAαγuβduγÞ; ðC1Þ

where Oαβ, Aαβ, and Bαβ are some arbitrary antisymmetric
tensors; F αβ is the antisymmetric tensor satisfying the
condition22

∂α
⋆F αβ ¼ 0; ðC2Þ

and uμ is the four-velocity of normal liquid component. Our
aim will be to transform the expression −uμ∂μεpart to some
standard form [see Eq. (C7) in what follows]; this trans-
formation is used several times in the main text of the paper
(see also G16). Using (C1), one has

−uμ∂μεpart ¼ −
1

2
uμOαβ∂μF αβ − uμuδBαδAαν∂μuν: ðC3Þ

The first term in the rhs of Eq. (C3) can be transformed as

−
1

2
uμOαβ∂μF αβ ¼ uνF μν∂αOμα − ∂μðuνOμαF ναÞ

þ ∂μuνðOμαF ναÞ: ðC4Þ

To obtain this expression, we used Eq. (C2), which is
equivalent to

∂μF αβ ¼ ∂αF μβ þ ∂βF αμ; ðC5Þ

and the fact that both tensors F μν and Oμν are
antisymmetric.
The second term in the rhs of Eq. (C3) can be rewritten as

−uμuδBαδAαν∂μuν

¼−½uμuδBαδAανþuμuνuβuγBαβAαγ�∂μuν

¼−uμuγ⊥νβAαβBαγ∂μuν

¼−uμuγ⊥νβAαβBαγ∂μuνþ∂μðuνuμuγ⊥νβAαβBαγÞ; ðC6Þ

where the underlined terms equal zero (because
uν∂μuν ¼ 0 and uν⊥νβ ¼ 0); they are added here in
order to symmetrize the corresponding energy-momentum
tensor Tμν and to satisfy the condition uμuνΔTμν ¼ 0

(see the main text). Combining Eqs. (C4) and (C6), one
obtains

−uμ∂μεpart ¼ uνF μν∂αOμα

− ∂μ½uνðOμαF να − uμuγ⊥νβAαβBαγÞ�
þ ∂μuνðOμαF να − uμuγ⊥νβAαβBαγÞ: ðC7Þ

APPENDIX D: ENERGY-MOMENTUM
TENSOR (71) AND ITS RELATION

TO THE ABRAHAM TENSOR

As mentioned in Sec. V, the derivation of the energy-
momentum tensor (71) can also be applied to ordinary
(nonsuperfluid) matter. In other words, this tensor should
have a well-known counterpart in the literature. Here we
explore this issue in more detail.
We consider a normal (isotropic and homogeneous in

the comoving frame) dielectric “fluid” with the energy-
momentum tensor

Tμν ¼ ðPþ εÞuμuν þ Pgμν þ ΔTμν ðD1Þ

and the second law of thermodynamics

dε ¼ TdSþ μdnþ 1

4π
EμdDμ þ 1

4π
HμdBμ: ðD2Þ

In Eqs. (D1) and (D2) ΔTμν is given by Eq. (71)23; n is
the “particle” number density [it can be composite
particles; in the case of a few particle species j the
second term in Eq. (D2) should be replaced withP

jμjdnj]; μ is the relativistic chemical potential; and P
is the pressure,

P ¼ −εþ μnþ TS: ðD3Þ

Since the medium is isotropic and homogeneous, the
displacement vector D and magnetic induction B can be
presented, in the comoving frame, as

D ¼ ε̂E; ðD4Þ

B ¼ μ̂H; ðD5Þ

where ε̂ and μ̂ are the corresponding permeabilities
(scalars). We assume, in addition, that the permeabilities
are field-independent, but can generally be functions of n
and S. Because the time components of the four-vectorsDμ,
Eμ, Bμ, and Hμ all vanish in the comoving frame, it follows
from Eqs. (D4) and (D5) that

22For example, it can be the electromagnetic tensor Fαβ or the
vorticity tensor Vμν

ðiÞ, see Eqs. (10) and (75).

23Note that for a dielectric fluid the free-charge four-
current density JμðfreeÞ in Eq. (11) equals zero, JμðfreeÞ ¼ 0,
hence the first line in the rhs of Eq. (63) is zero too and
the derivation of Sec. VA can indeed be used to obtain ΔTμν

in the form (71).
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Dμ ¼ ε̂Eμ; ðD6Þ

Bμ ¼ μ̂Hμ: ðD7Þ

Using Eqs. (D6) and (D7), Eq. (D2) can be readily
integrated and presented as

ε ¼ εfluidðn; SÞ þ
1

8π
ðEαDα þHαBαÞ

¼ εfluidðn; SÞ þ
1

8π
ðε̂EαEα þ μ̂HαHαÞ; ðD8Þ

where εfluidðn; SÞ is the fluid energy density, the same
function of n and S as in the absence of the electromagnetic
field. Combining Eqs. (D3) and (D8), one obtains

P ¼ −εfluidðn; SÞ þ μnþ TS −
1

8π
ðEαDα þHαBαÞ: ðD9Þ

The chemical potential μ and temperature T in this equation
still depend on the fields Dα and Bα. As follows from
Eqs. (D2) and (D8),

μðn; S;DαDα; BαBαÞ

¼ ∂εðn; S;DαDα; BαBαÞ
∂n

¼ ∂εfluidðn; SÞ
∂n −

1

8π

�∂ε̂ðn; SÞ
∂n EαEα þ ∂μ̂ðn; SÞ

∂n HαHα

�

≡ μfluidðn; SÞ þ δμ; ðD10Þ

where μfluidðn; SÞ ¼ ∂εfluidðn; SÞ=∂n is the same function
of n and S as in the system without the electromagnetic
field and δμ is

δμ ¼ −
1

8π

�∂ε̂ðn; SÞ
∂n EαEα þ ∂μ̂ðn; SÞ

∂n HαHα

�
: ðD11Þ

Similar formulas can also be written for the temperature,
T ¼ Tfluidðn; SÞ þ δT, where

δT ¼ −
1

8π

�∂ε̂ðn; SÞ
∂S EαEα þ ∂μ̂ðn; SÞ

∂S HαHα

�
: ðD12Þ

Substituting Eq. (D10) and similar equation for T into
Eq. (D3), we arrive at

P ¼ Pfluid þ δμnþ δTS −
1

8π
ðEαDα þHαBαÞ; ðD13Þ

where Pfluid ¼ −εfluid þ μfluidnþ TfluidS. Now, using equa-
tions derived above one can present Eq. (D1) in the form

Tμν ¼ Tμν
ðfluidÞ þ T μν

ðEMÞ; ðD14Þ

where Tμν
ðfluidÞ ¼ ðPfluid þ εfluidÞuμuν þ Pfluidgμν is the fluid

energy-momentum tensor (the same as in the absence of
electromagnetic field) and T μν

ðEMÞ is the electromagnetic

tensor in the medium,

T μ
ðEMÞν ¼ ⊥μ

νðδμnþ δTSÞ − 1

8π
gμνðEαDα þHαBαÞ

þ T μ
ðEÞν þ T μ

ðMÞν

¼ ⊥μ
νðδμnþ δTSÞ þ 1

8π
gμνðEαDα −HαBαÞ

þ 1

4π
½GμαFνα þ uμuγ⊥νβðFαβGαγ −GαβFαγÞ�:

ðD15Þ

It is easily checked that this tensor equals to the so-called
Abraham tensor, Tμν

ðAbrahamÞ [46,68,69],

T μν
ðEMÞ ≡ Tμν

ðAbrahamÞ ¼ Tμν
ðMinkowskiÞ þ ðgμðAÞ − gμðMÞÞuν;

ðD16Þ

where Tμν
ðMinkowskiÞ is the Minkowski tensor [46],

Tμν
ðMinkowskiÞ ≡⊥μνðδμnþ δTSÞ

þ 1

4π

�
Fμ

γGνγ −
1

4
gμνFγδGγδ

�
: ðD17Þ

and the four-vectors gμðAÞ and gμðMÞ are

gμðAÞ ¼
1

4π
ϵμναβuνEαHβ; ðD18Þ

gμðMÞ ¼
1

4π
ϵμναβuνDαBβ. ðD19Þ

The latter four-vectors reduce, in the comoving frame, to

ð0; gAÞ ¼
�
0;
E ×H
4π

�
; ðD20Þ

ð0; gMÞ ¼
�
0;
D × B
4π

�
; ðD21Þ

where gA is the so-called Abraham momentum density (it
coincides with the energy flux density) and gM is the
Minkowski momentum density. In the comoving frame
the tensor T μν

ðEMÞ [¼ Tμν
ðAbrahamÞ] can be schematically

presented as

T μν
ðEMÞ ¼ Tμν

ðAbrahamÞ ¼
�
εEM gA
gA −σlm

�
; ðD22Þ
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where εEM is the energy density and σlm is the stress tensor
of the electromagnetic field (l, m ¼ 1, 2, 3),

εEM ¼ 1

8π
ðε̂E2 þ μ̂H2Þ; ðD23Þ

σlm ¼ 1

4π
ðElDm þHlBmÞ −

�
E2

8π

�
ε̂ − n

∂ε̂
∂n − S

∂ε̂
∂S

�

þH2

8π

�
μ̂ − n

∂μ̂
∂n − S

∂μ̂
∂S

��
δlm; ðD24Þ

and δlm is the Kronecker symbol. To obtain Eq. (D24),
we express δμ and δT with the help of Eqs. (D11) and
(D12). Usually, one accounts only for the dependence
of ε̂ and μ̂ on n [46]. In the latter case Eq. (D22) reduces to
the standard equation for Abraham tensor (see, e.g.,
Refs. [46,69]).

APPENDIX E: GENERAL FORMULAS FOR
ISOLATED NEUTRON AND PROTON VORTICES

Here we briefly review the properties of isolated neutron
and proton vortices taking into account the entrainment
effect [26] and closely following Refs. [11,15], GAS11,
and G16. Note, however, that our consideration differs
from that in Refs. [11,15] and GAS11 in three aspects:
(i) we use a bit different (but equivalent) formulation of
superfluid hydrodynamics; (ii) we consider the relativistic
npe mixture, and thus employ relativistic entrainment
matrix instead of its nonrelativistic counterpart [26]; (iii) we
do not assume the zero-temperature approximation.
Although below we make use of the London equations,
one should bear in mind that it is not a very good
approximation when the particle coherence length becomes
comparable to their London penetration depth [59,67].

1. London equations and their solution

Assume that a neutron i ¼ n or proton i ¼ p vortex is at
rest in the chosen coordinate frame and there are no
external (superfluid and normal) particle currents and
magnetic field at the spatial infinity. We also assume that
all the velocities generated by the vortex are nonrelativistic
(but, at the same time, equation of state is relativistic), so
that one can use nonrelativistic expressions for, e.g.,
particle current densities. All equations below are written
in dimensional units.
Consider, for example, a proton vortex (i ¼ p; the case

i ¼ n can then be obtained by exchanging p ⇌ n in all
formulas). In the presence of the vortex p the gradient of
the scalar ϕp, which is proportional to the wave-function
phase Φp of the Cooper-pair condensate (ϕp ¼ Φp=2), is
given by (e.g., G16)

∂aϕp ¼ eφ
2r

; ðE1Þ

where eφ is the unit vector in the azimuthal direction (φ is
the polar angle); r is the distance from the vortex; and
a ¼ 1, 2, 3 is the space index. Using Eq. (40) one then has

wa
ðpÞ ¼ ℏc∂aϕp − epAa; ðE2Þ

where we make use of the fact that ua ¼ ð0; 0; 0Þ. Similarly,
for neutrons one has

∂aϕn ¼ 0; ðE3Þ

wa
ðnÞ ¼ −enAa; ðE4Þ

(we do not set en ¼ 0 in order to rewrite easily these
formulas for neutron vortex if necessary), so that the total
electric current density is [see Eq. (33)]

Jfree ¼ ceiYikwa
ðkÞ ¼ a1Aa þ a2∂aϕp; ðE5Þ

where the parameters a1 and a2

a1 ¼ −cðe2nYnn þ 2enepYnp þ e2pYppÞ; ðE6Þ

a2 ¼ ℏc2ðenYnp þ epYppÞ ðE7Þ

are constants since we neglect small dependence of Yik on r
(see, e.g., Ref. [25] and G16 where a similar approximation
is discussed). Now, using Maxwell’s equations (3) and (4)
with H ¼ B, one arrives at the following equation for the
vortex magnetic field B

−ΔB ¼ 4π

c
½a1Bþ πa2ezδðrÞ�; ðE8Þ

or

ΔB −
1

δ2p
B ¼ −

ϕ̂p0

δ2p
ezδðrÞ; ðE9Þ

where δðrÞ is the two-dimensional delta-function in polar
coordinate system ðr;ϕÞ; ez is the unit vector along the
vortex axis; and

1

δ2p
≡ −

4πa1
c

¼ 4πðe2nYnn þ 2enepYnp þ e2pYppÞ; ðE10Þ

ϕ̂p0 ≡ −
πa2
a1

¼ πℏcðenYnp þ epYppÞ
e2nYnn þ 2enepYnp þ e2pYpp

: ðE11Þ

Here δp is the London penetration depth and ϕ̂p0 is the
magnetic flux associated with the vortex (see below). The
nonrelativistic limit of these equations can be reproduced
if one takes into account that then Yik → ρik=ðmimkc2Þ,
where ρik is the entrainment (or mass-density) matrix
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[26,54–57]. Equation (E9) can easily be solved [59], the
result is

BðrÞ ¼ ϕ̂p0

2πδ2p
K0

�
r
δp

�
ez; ðE12Þ

where K0ðrÞ is the MacDonald function. One can verify
that, indeed, ϕ̂p0 is the total vortex magnetic flux,R
∞
0 BðrÞ2πrdr ¼ ϕ̂p0. Using (E12), one finds: curlB ¼
ϕ̂p0=ð2πδ3pÞK1ðr=δpÞeφ, and hence from Eqs. (4) and (E5)

AðrÞ ¼ ϕ̂p0

2π

�
1

r
−

1

δp
K1

�
r
δp

��
eφ; ðE13Þ

so that Eqs. (E2) and (E4) can be rewritten as

wa
ðpÞ ¼

ℏc
2r

�
1 −

epϕ̂p0

πℏc

�
eφ þ

epϕ̂p0

2πδp
K1

�
r
δp

�
eφ; ðE14Þ

wa
ðnÞ ¼ −

enϕ̂p0

2π

�
1

r
−

1

δp
K1

�
r
δp

��
eφ: ðE15Þ

For neutron vortex similar formulas can be obtained by
exchanging p ⇌ n in Eqs. (E1)–(E15). Note that, in the
case of protons, the first term in the rhs of Eq. (E14)
equals zero.

2. Vortex energy

Neglecting a small contribution from the vortex core, the
general expression for the vortex energy per unit length is

ÊV ¼
Z

1

2
½Ynnw2

n þ 2Ynpwnwp þ Yppw2
p�rdrdφ

þ
Z

B2

8π
rdrdφ; ðE16Þ

where wi ¼ ½w1
ðiÞ; w

2
ðiÞ; w

3
ðiÞ�. The first integral in this equa-

tion is the kinetic energy of superfluid currents [15,43]; the
second integral is the magnetic energy, it is generally
smaller (e.g., GAS11). Equations (E12), (E14), and (E15)
allow one to calculate the integrals in Eq. (E16) and to
obtain the following approximate expressions for, respec-
tively, proton ÊVp and neutron ÊVn vortex energies per unit
length,

ÊVp ≈
π

4
ℏ2c2Ypp ln

�
δp
ξp

�
; ðE17Þ

ÊVn ≈
π

4
ℏ2c2

ðYnnYpp − Y2
npÞ

Ypp
ln

�
bn
ξn

�
: ðE18Þ

In these formulas ξp and ξn are, respectively, the proton
and neutron coherence lengths [15] (effective sizes of the

vortex cores) and bn is some “external” radius of the order
of the typical intervortex spacing (see, e.g., Refs. [25] and
G16). In the nonrelativistic limit, these formulas reduce
to the corresponding expressions (A12) and (A18) of
Mendell [15].
Equations (E17) and (E18) are derived under assumption

that a neutron (proton) vortex is at rest in the comoving
frame [i.e., in the frame in which uμ ¼ ð1; 0; 0; 0Þ]. As it is
argued in G16 in application to uncharged superfluids, the
same equations also apply to moving vortices, provided
that the difference between the macroscopic (smooth-
averaged) normal and superfluid velocities in the system
is much smaller than the speed of light c. The latter
condition is always satisfied in neutron stars (see G16
for details). Thus, it is justifiable to assume that Eqs. (E17)
and (E18) represent correct vortex energies, independently
of whether vortices move or not.

APPENDIX F: BOUND CHARGES IN THE
PRESENCE OF VORTICES

The aim of this appendix is to explain why the
displacement field D is not generally equal to the electric
field E in the system with vortices. In what follows, it is
assumed that we sit in the comoving frame, i.e. the frame
associated with the normal liquid component. Consider, for
example, a single proton vortex directed along the axis z of
the Cartesian coordinate system xyz and moving with the
velocity vL ¼ vLxex þ vLzez, where ex and ez are the unit
vectors along the axes x and z, respectively. In the rest
frame of the vortex its magnetic field BðrÞ is given by
Eq. (E12). Correspondingly, as follows from Eq. (2), in
the comoving frame it generates the electric field (e.g.,
Ref. [78]),

E ¼ −
1

c
vL × BðrÞ; ðF1Þ

(we assume that jvLj ≪ c, which is always the case [79];
the same formula can be obtained by making Lorentz
transformation from the vortex rest frame to the comoving
frame). An associated charge density, ρc, induced in that
frame, is found from Maxwell’s equation divE ¼ 4πρc,

ρc ¼
vLx
4πc

dBðrÞ
dr

sinφ; ðF2Þ

where φ is the polar angle in the xy-plane.
Correspondingly, the dipole moment of the vortex segment
of length Δz is given by

PV ¼
Z

rρcdV ¼ −
vLx
4πc

ϕ̂p0Δzey; ðF3Þ

where ϕ̂p0 is introduced in Eq. (G13) and ey is the unit
vector along y. Now, assuming that there are many vortices
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moving with one and the same velocity vL, the dipole
moment of the unit volume is

P ¼ PVNVp

Δz
¼ −

vLx
4π2cb2p

ϕ̂p0ey ðF4Þ

[see Eq. (G6) for a definition of NVp]. It is easily checked
that P and the average electric field E, generated by
vortices, are related by the standard condition [45],
E ¼ −4πP, which should take place for any homogeneous
system in which all currents are bound, so that D ¼ 0. We
come to conclusion that the electric field of moving vortices
should be considered as produced by bound charges,
similar to how their magnetic field is produced by (vortex)
bound currents. A further implication of this observation
can be found in Appendix G 2.

APPENDIX G: DETERMINATION OF THE
PHENOMENOLOGICAL COEFFICIENTS

OF SEC. VII FOR TWO SIMPLE
MICROSCOPIC MODELS

Our aim here will be to determine the exact form of
Eq. (55) (or, equivalently, to find an expression for dεadd) in
two situations considered above (the intermediate state and
“vortex” state of npemixture). This aim can be achieved by
specifying a microphysics model for the energy density of
the system. Below, for illustration, we consider two very
simple microphysics models (in particular, the model,
considered in Sec. G 2 was studied in GAS11), but one
should bear in mind that the very same approach can be
used to formulate dynamic equations for more elaborated
models.

1. Intermediate state of a nonrotating npe mixture
(type-I proton superconductivity)

Assume we are sitting in the normal-liquid (comoving)
frame in which nonsuperconducting domains (flux tubes)
are at rest. Let us calculate the coefficient γ in Eq. (106),
which allow us to determine dεadd from Eq. (104). In what
follows, instead of ε it will be more convenient to deal with
the (Helmholtz) free energy density, F≡ ε − TS.
The magnitude of the field in a flux tube coincides

with the critical thermodynamic field Hc [45], it is directed
along the average magnetic induction B, and can be found
from the following approximate formula [67],

Fnonsp − Fsp ≈
H2

c

8π
; ðG1Þ

where Fnonsp is the free energy density of nonsupercon-
ducting matter in the flux tube24 and Fsp is the free energy
density of the surrounding (superconducting) matter, it is

the same function of thermodynamic quantities as in the
absence of the magnetic field.
Now, introducing the volume fraction occupied by

nonsuperconducting domains, xnonsp, and following the
consideration of Refs. [45,67] (in particular, neglecting
all striction effects), it is easy to obtain an expression for
the macroscopically averaged free energy density F of the
npe mixture in the intermediate state,

F ≈ Fsp þ
H2

c

4π
xnonsp: ðG2Þ

On the other hand, magnetic flux conservation requires
that the average magnetic induction B to be given by
jBj ¼ Hcxnonsp. Hence, Eq. (G2) can be represented as [45]

F ≈ Fsp þ
HcjBj
4π

¼ Fsp þ
Hc

4π
ðBμBμÞ1=2: ðG3Þ

The latter equality is written in an explicitly Lorentz-
invariant form; Bμ is given by Eq. (14). Now, using
Eqs. (55), (104), (G3), and the definition F≡ ε − TS,
one can find that the macroscopic parameter Hμ of the
phenomenological theory of Sec. VII A is

Hμ ¼ γBμ; ðG4Þ

where

γ ¼ Hc

ðBμBμÞ1=2 : ðG5Þ

Remark 1. The model discussed here and in Sec. VII A
is designed for describing the nonrotating npe mixture in
the intermediate state. Generalization of the model to
allow for rotation and neutron vortices is rather straight-
forward and can be done along the lines discussed in
Appendix G 2.

2. The npe mixture with neutron and proton
vortices (type-II proton superconductivity)

We follow here the approach similar to that described in
Sec. IV. 2 of GAS11 and in Appendix D of G16. We work
in the comoving frame and neglect vortex-vortex inter-
actions in all calculations. Assume we have a bunch of
parallel neutron or proton vortices with the intervortex
spacing bi (i ¼ n or p). The parameter bi is related to the
average number of vorticesNVi per unit area by the formula
(see, e.g., Ref. [25] and G16),

πb2i ¼
1

NVi
: ðG6Þ

On the other hand, as follows from Eqs. (76) and (78)
[cf. Eq. (D9) of G16],24It does not include the energy of the magnetic field [67].
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NVi ¼
jϵabcVðiÞbcj

2πℏ
¼ 1

πℏ
jVa

ðMiÞj; ðG7Þ

where a, b, and c are the space indices and we use
dimensional units. To obtain this formula we perform
integration in Eq. (76) over the unit area in the plane
perpendicular to vortex lines. The areal density NVi is
defined in the comoving frame. It is thus a Lorentz invariant
and it can be rewritten in an explicitly Lorentz-invariant
form as

NVi ¼
1

πℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðMiÞμV

μ
ðMiÞ

q
¼ 1

πℏ
VðMiÞ ðG8Þ

[see Eq. (99) for the definition of VðMiÞ]. For an uncharged
fluid VðMiÞ reduce, in the nonrelativistic limit, to
mijcurlVsij, where mi is the mass of particle species i
and Vsi is the superfluid velocity.
Using Eqs. (G6), (G8) and (E17), (E18), the vortex

energy density εvortexi can be presented as25

εvortexi ¼
ÊVi

πb2i
¼ ÊVi

πℏ
VðMiÞ ≡ λi

mi
VðMiÞ; ðG9Þ

where

λp ¼ 1

4
ℏc2mpYpp ln

�
δp
ξp

�
; ðG10Þ

λn ¼
1

4
ℏc2mn

ðYnnYpp − Y2
npÞ

Ypp
ln

�
bn
ξn

�
: ðG11Þ

In the absence of entrainment (Ynp ¼ 0) or for a one-
component liquid Eq. (G11) reduces to the parameter λ
defined in Eq. (D10) of G16. This parameter is, in turn, the
relativistic generalization of the parameter λ introduced in
Refs. [25,29].
The contribution of vortex magnetic field BVi to the total

magnetic induction can be found the same way as εvortexi
[cf. Eq. (50) of GAS11],

BVi ¼ ϕ̂i0NVi

Va
ðMiÞ

VðMiÞ
¼ ϕ̂i0

πℏ
Va
ðMiÞ; ðG12Þ

where Va
ðMiÞ=VðMiÞ is the unit vector along the local

direction of vortex lines, while ϕ̂p0 and ϕ̂n0 are [see
Eq. (E11)]

ϕ̂p0 ¼
πℏc
ep

; ðG13Þ

ϕ̂n0 ¼
πℏc
ep

Ynp

Ypp
: ðG14Þ

Similarly, the contribution of the vortex electric field EVi,
to the (averaged) electric field E is (see Appendix F)

EVi ¼ −
1

c
vLi × BVi ¼

ϕ̂i0

πℏc
VMi × vLi ¼

ϕ̂i0

πℏ
VEi; ðG15Þ

where vLi is the velocity of vortex species i. To obtain the
last two equalities in the rhs of Eq. (G15) we made use of
Eqs. (103) and (G12).
Having determined εvortexi, our next step will be to write

down the total energy density ε of the system in the
comoving frame. As it is discussed in detail in GAS11, it is
the sum of five26 “noninterfering” terms (see also G16 for a
similar discussion of ε in an uncharged fluid),

ε ¼ εfluidðnn; np; ne; S; wðiÞμw
μ
ðkÞÞ þ εvortex n

þ εvortexp þ
B2
L

8π
þ E2

L

8π
: ðG16Þ

The first term here is the same as in the absence of vortices
and magnetic field in the system; it consists of the internal
energy of the fluid at rest plus kinetic energy of superfluid
currents (i.e., terms depending on wðiÞμw

μ
ðkÞ). The differ-

ential of εfluid contributes only to the first four terms in
Eq. (55) and does not affect dεadd. Thus, this term is not
interesting for us here. The second and third terms account
for the vortex energies, including the magnetic energy of
vortices. Further, the fourth term represents the magnetic
energy density of the so-called “London field,”which is not
associated with vortices. The London field can be nonzero
even far from vortices, and for our model it equals

BL ¼ B − BVn − BVp ðG17Þ

[see Eq. (G12) for the definition of vortex contribution
to magnetic induction]. Generally, this field is very
small. For example, for a uniformly rotating one-
component vortex-free superconductor BL ≈ −2mcΩ=e ¼
−2 × 10−2½Ω=ð100 s−1Þ�G, where Ω is the spin frequency,
and to make the estimate we takem ¼ mp and e ¼ ep (see,
e.g., Ref. [15] and GAS11 for more details). Finally, the last
term in Eq. (G16) is similar to the fourth term, but describes
the electric energy density of matter, not associated with
vortices. Similarly to Eq. (G17), it can be presented as

25Strictly speaking, this is the vortex energy obtained under
assumption that the vortex is at rest in the comoving frame. Thus,
it neglects, for example, the contribution to the energy density
from the electric field generated by a moving vortex (see
Appendix F). All such contributions are small and can be ignored,
as it is emphasized in the end of Appendix E 2.

26GAS11 considered only the first four of these terms and
ignored the last one since that reference assumed (incorrectly)
that there are no bound charges in the system.
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EL ¼ E − EVn − EVp: ðG18Þ

The two last terms in the rhs of Eq. (G16) can be rewritten
in the manifestly Lorentz-invariant form, B2

L=ð8πÞ¼
BðLÞμB

μ
ðLÞ=ð8πÞ and E2

L=ð8πÞ¼EðLÞμE
μ
ðLÞ=ð8πÞ, if we intro-

duce the London field four-vectors Bμ
ðLÞ and Eμ

ðLÞ,

Bμ
ðLÞ ≡ Bμ − Bμ

ðVnÞ − Bμ
ðVpÞ; ðG19Þ

Eμ
ðLÞ ≡ Eμ − Eμ

ðVnÞ − Eμ
ðVpÞ; ðG20Þ

where the corresponding vortex-related four-vectors are
defined as

Bμ
ðViÞ ≡

ϕ̂i0

πℏ
Vμ
ðMiÞ; ðG21Þ

Eμ
ðViÞ ≡

ϕ̂i0

πℏ
Vμ
ðEiÞ: ðG22Þ

It is easily verified that in the comoving frame the time
components of these four-vectors Bμ

ðLÞ, B
μ
ðViÞ, E

μ
ðLÞ, and E

μ
ðViÞ

are all zero, while their spatial components coincide with
those of the three-dimensional vectors BL, BVi, EL, and EVi,
respectively [see Eqs. (G12), (G15), (G17), and (G18)]27

Using these definitions as well as Eqs. (G9) and (G16),
the second law of thermodynamics (55) takes the form

dε ¼ TdSþ μidni þ μedne þ
Yik

2
dðwα

ðiÞwðkÞαÞ þ dεadd;

ðG23Þ

where

T¼∂εfluid
∂S þ

X
k¼n;p

�
1

mk

∂λk
∂S VðMkÞ−

1

4π2ℏ
∂ϕ̂k0

∂S BðLÞμV
μ
ðMkÞ

�
;

ðG24Þ

μi¼
∂εfluid
∂ni þ

X
k¼n;p

�
1

mk

∂λk
∂niVðMkÞ−

1

4π2ℏ
∂ϕ̂k0

∂ni BðLÞμV
μ
ðMkÞ

�
;

ðG25Þ

μe ¼
∂εfluid
∂ne ; ðG26Þ

Yik ¼ 2
∂εfluid

∂ðwα
ðiÞwðkÞαÞ

þ 2
X
l¼n;p

�
1

ml

∂λl
∂½wα

ðiÞwðkÞα�
VðMlÞ

−
1

4π2ℏ
∂ϕ̂l0

∂½wα
ðiÞwðkÞα�

BðLÞμV
μ
ðMlÞ

�
; ðG27Þ

dεadd ¼
X
k¼n;p

λk
mkVðMkÞ

VðMkÞμdV
μ
ðMkÞ

þ 1

4π
BðLÞμ

�
dBμ −

ϕ̂n0

πℏ
dVμ

ðMnÞ −
ϕ̂p0

πℏ
dVμ

ðMpÞ

�

þ 1

4π

�
Eμ −

ϕ̂n0

πℏ
Vμ
ðEnÞ −

ϕ̂p0

πℏ
Vμ
ðEpÞ

�
dEðLÞμ: ðG28Þ

In Eqs. (G24)–(G28) the parameters εfluid, λi, and ϕ̂i0 should
be treated as the same functions of S, ni, ne, and wα

ðiÞwðkÞα as
in the absence of vortices and the magnetic field. The
underlined terms there are generally small and can be
neglected. The terms underlined once are small because
they depend on the tiny London field Bμ

ðLÞ [see Eq. (G19)];
the term underlined twice is small because λi is a very weak
function of wα

ðiÞwðkÞα in the regime when the dependence of

Yik on the difference between the velocities of superfluid and
normal liquid components can be neglected (e.g., G16). The
second term in Eq. (G28) also depends on Bμ

ðLÞ and can, in

principle, be omitted. However, we keep it in what follows
because it is this term which makesHμ nonzero. Comparing
(G28) with the general expression (108) for dεadd and using
Eqs. (114)–(117), one finds

γðMÞ ¼ ~γðEÞ ¼ 1; ðG29Þ

ΓðMÞ
i ¼ ~ΓðEÞ

i ¼ −
ϕ̂i0

4π2ℏ
; ðG30Þ

ΓðMÞ
ik ¼ λi

miVðMiÞ
δik þ

ϕ̂i0ϕ̂k0

4π3ℏ2
; ðG31Þ

~ΓðEÞ
ik ¼ ϕ̂i0ϕ̂k0

4π3ℏ2
: ðG32Þ

The latter equation differs from its magnetic counterpart,
Eq. (G31), because we neglected the electric field contri-
bution to the vortex energy, εvortexi. From Eqs. (114), (116),
(G19), and (G20) it then follows that Hμ ¼ Bμ

ðLÞ and

Dμ ¼ Eμ
ðLÞ. The first of these equalities was earlier discussed

in GAS11.
Remark 1. The results obtained above allow us to make a

few useful estimates. First of all, since the total number of
neutron vortices in a star is by more than ten orders of
magnitude smaller than the total number of proton vortices
(for a typical neutron star with B ∼ 1012 G and a period

27Note also that when protons are normal, one has Ynp ¼ 0

[52], hence ϕ̂n0 ¼ 0 and, consequently, Bμ
ðVnÞ ¼ Eμ

ðVnÞ ¼ 0.
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P ∼ 0.1 s, see, e.g., GAS11), one can neglect BVn and EVn
in comparison to, respectively, BVp and EVp in Eqs. (G17)
and (G18), and write

B ¼ H þ BVn þ BVp ≈ BVp; ðG33Þ

E ¼ Dþ EVn þ EVp ≈ Dþ EVp: ðG34Þ

Here we also neglect H in Eq. (G33) since typically
jHj ∼ 2 × 10−2½Ω=ð100 s−1Þ�G ≪ jBj, as discussed in
the text above. Second, note that for a static or very
weakly perturbed neutron star [i.e., a star for which vLp is
so small, that EVp in Eq. (G34) can be neglected; see
Eq. (G15)], one can estimate jEj (and jDj) as
jDj ≈ jEj ∼ j∇μej=ep ∼ 1 g1=2 cm−1=2 s−1. The latter esti-
mate allows one to find an approximate proton vortex
velocity vLp0 at which jEVpj becomes comparable to jDj.
Using Eq. (G15), one finds vLp0 ∼ cj∇μej=ðepjBVpjÞ∼
3 × 10−2 cm s−1 (we take jBVpj ≈ jBj ¼ 1012 G). Thus,
for example, at jvLpj≫vLp0 one has: E≈−ð1=cÞvLp×B,
so that jHj≲ jDj ≪ jEj ≪ jBj. Correspondingly, in the
opposite limit jHj≲ jDj ≈ jEj ≪ jBj.

APPENDIX H: SUMMARY OF RESULTS:
FULL SYSTEM OF RELATIVISTIC

EQUATIONS DESCRIBING DYNAMICS
OF SUPERFLUID-SUPERCONDUCTING

NEUTRON STARS

Here we present the full system of dynamic equations
discussed in the main text. For the reader’s convenience,
this appendix is self-contained. In the present paper, we are
mainly interested in nondissipative equations (the only
dissipative mechanism, which is accounted for, is the
mutual friction, see below). Thus, we assume that neutron
and proton thermal excitations (Bogoliubov quasiparticles)
as well as electrons move with one and the same four-
velocity uμ, normalized by the condition uμuμ ¼ −1.
Superfluid degrees of freedom are characterized by the

four-vectors wμ
ðiÞ (i ¼ n, p), which are closely related to the

superfluid velocities of the corresponding nonrelativistic
theory (see Appendix I), and are orthogonal to uμ,

uμw
μ
ðiÞ ¼ 0: ðH1Þ

Other important parameters of the theory include the
vorticity tensors Vμν

ðiÞ,

Vμν
ðiÞ ≡ ∂μ½wν

ðiÞ þ μiuν� − ∂ν½wμ
ðiÞ þ μiuμ� þ eiFμν; ðH2Þ

and the electromagnetic tensors Fαβ and Gαβ [see Eqs. (8)
and (9)], satisfying Maxwell’s equations (10) and (11),

∂α
⋆Fαβ ¼ 0; ðH3Þ

∂αGαβ ¼ −4πJβðfreeÞ: ðH4Þ

In these formulas, ei is the charge of nucleon species i;

JμðfreeÞ ¼ epðnp − neÞuμ þ eiYikw
μ
ðkÞ ðH5Þ

is the four-current density of free charges [see Eqs. (33)
and (34)]; ⋆Fμν is the tensor dual to Fμν (see Appendix A);
the thermodynamic parameters ne, np, and Yik are
defined in what follows. In addition to the tensors Vμν

ðiÞ,
Fαβ, and Gαβ it is convenient to introduce the four-vectors
[see Eqs. (12)–(15), (77), and (78)]

Vμ
ðEiÞ ≡ uνV

μν
ðiÞ; ðH6Þ

Vμ
ðMiÞ ≡

1

2
ϵμναβuνVðiÞαβ; ðH7Þ

Eμ ≡ uνFμν; ðH8Þ

Dμ ≡ uνGμν; ðH9Þ

Bμ ≡ 1

2
ϵμνληuνFλη; ðH10Þ

Hμ ≡ 1

2
ϵμνληuνGλη: ðH11Þ

In the comoving frame in which the normal liquid compo-
nent is at rest [i.e., uμ ¼ ð1; 0; 0; 0Þ] the space components
of the four-vectors Eμ,Dμ, Bμ, andHμ reduce to the electric
field, displacement field, magnetic induction, and magnetic
field, respectively.
The equations describing the dynamics of the superfluid-

superconducting npe mixture consist of (i) Maxwell’s
equations (H3) and (H4); (ii) the particle and energy-
momentum conservations,

∂μj
μ
ðjÞ ¼ 0; ðH12Þ

∂μTμν ¼ 0 ðH13Þ

with

jμðiÞ ¼ niuμ þ Yikw
μ
ðkÞ; ðH14Þ

jμðeÞ ¼ neuμ; ðH15Þ

and

Tμν ¼ ðPþ εÞuμuν þ Pgμν

þ Yikðwμ
ðiÞw

ν
ðkÞ þ μiw

μ
ðkÞu

ν þ μkwν
ðiÞu

μÞ þ ΔTμν;

ðH16Þ
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(iii) the second law of thermodynamics [note that all the
thermodynamic quantities are measured in the comoving
frame, where uμ ¼ ð1; 0; 0; 0Þ],

dε ¼ TdSþ μidni þ μedne þ
Yik

2
dðwα

ðiÞwðkÞαÞ þ dεadd;

ðH17Þ

and (iv) the superfluid equations, which will be discussed a
bit later. In Eqs. (H12)–(H17) nj and μj are, respectively,
the number density and relativistic chemical potential of
particle species j ¼ n, p, e; T, S, ε, and P ¼ −εþ μene þ
μini þ TS are the temperature, entropy density, energy
density, and pressure, respectively. Note that all the
thermodynamic quantities are defined (measured) in the
comoving frame. Finally, Yik is the relativistic entrainment
matrix [47,48,51–53] and gμν ¼ diagð−1; 1; 1; 1Þ is the
metric tensor.
The corrections ΔTμν and dεadd in Eqs. (H16) and (H17)

appear due to the electromagnetic and vortex contributions
to the energy-momentum tensor and energy density, and
differ depending on the assumed type (I or II) of the proton
superconductivity. The same is also true for superfluid
equations, thus they should be discussed separately for
each case.

1. Vortex-free npe mixture in the intermediate state
(type-I proton superconductivity)

Assuming that protons in the npe mixture form a type-I
superconductor in the intermediate state and that neutrons
are superfluid, one has the following formulas for ΔTμν and
dεadd (see Sec. V)

ΔTμν ¼ T μν
ðEÞ þ T μν

ðMÞ; ðH18Þ

dεadd ¼
1

4π
EμdDμ þ 1

4π
HμdBμ; ðH19Þ

where

T μν
ðEÞ ¼

1

4π
ð⊥μνDαEα −DμEνÞ; ðH20Þ

T μν
ðMÞ ¼

1

4π
ð⊥Gμα⊥Fν

αþuν⊥GμαEαþuμ⊥GναEαÞ; ðH21Þ

and

⊥Gμν ¼ ϵαβμνuβHα ðH22Þ

(see Appendix A). In turn, superfluid equations for protons
and neutrons take the following form [see Eqs. (70) and
(73); we assume that there are no neutron vortices in the
system]:

Vμν
ðnÞ ¼ 0; ðH23Þ

uμV
μν
ðpÞ ¼ 0: ðH24Þ

These equations should be supplemented by the two
conditions relating the four-vectors Dμ with Eμ and Hμ

with Bμ. These conditions are obtained in Sec. VII A and in
Appendix G 1.

2. The npe mixture in the presence of neutron and
proton vortices (type-II proton superconductivity)

Assume now that protons form a type-II superconduc-
tor and consider the npe mixture in the mixed state,
allowing for the presence of both neutron and proton
vortices. The corrections ΔTμν and dεadd are then given
by (see Sec. VI)

dεadd ¼
1

4π
EμdDμ þ 1

4π
HμdBμ

þ Vμ
ðEiÞdWðEiÞμ þWðMiÞμdV

μ
ðMiÞ; ðH25Þ

ΔTμν ¼ T μν
ðEÞ þ T μν

ðMÞ þ T μν
ðVEÞ þ T μν

ðVMÞ; ðH26Þ

where Wμ
ðEiÞ and Wμ

ðMiÞ are the four-vectors analogous to
Dμ and Hμ, respectively; their relation to the four-vectors
Vμ
ðEiÞ, E

μ, Vμ
ðMiÞ, and Bμ is explored in Sec. VII B and (for

a particular model) in Appendix G 2. In Eq. (H26) T μν
ðEÞ

and T μν
ðMÞ are given by Eqs. (H20) and (H21), respec-

tively, while T μν
ðVEÞ and T μν

ðVMÞ are

T μν
ðVEÞ ¼ ⊥μνWα

ðEiÞVðEiÞα −Wμ
ðEiÞV

ν
ðEiÞ; ðH27Þ

T μν
ðVMÞ ¼ ⊥Wμα

ðiÞ
⊥Vν

ðiÞα þ uν⊥Wμα
ðiÞVðEiÞα þ uμ⊥Wνα

ðiÞVðEiÞα;

ðH28Þ

where

⊥Wμν
ðiÞ ¼ ϵαβμνuβWðMiÞα: ðH29Þ

The superfluid equations for neutrons (i ¼ n) and protons
(i ¼ p) take the form

uνVðiÞμν ¼ μinifðiÞμ; ðH30Þ

where

fμðiÞ ¼ αi⊥μνVðiÞνλWðiÞδ⊥λδ

þ βi − γi
VðMiÞ

⊥μη⊥νσVðiÞησVðiÞλνWðiÞδ⊥λδ

þ γiVðMiÞWðiÞδ⊥μδ; ðH31Þ
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(see remark 1 in Sec. VI). In Eq. (H31) ⊥μν ¼ gμνþ
uμuν; αi is a nondissipative mutual friction coefficient;
βi ≥ 0 and γi ≥ 0 are the positive dissipative mutual
friction coefficients, and28

Wμ
ðiÞ ≡

1

ni
½Yikw

μ
ðkÞ þ ∂αW

μα
ðiÞ�; ðH32Þ

VðMiÞ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vμ
ðMiÞVðMiÞμ

q
: ðH33Þ

Recalling the definition (H6), one sees that Eq. (H30) is
simply the statement that

Vμ
ðEiÞ ¼ μinif

μ
ðiÞ: ðH34Þ

As in Appendix H 1, the dynamic equations formulated
here should be supplemented with the expressions relating
the vectors Dμ, Hμ, Wμ

ðEiÞ, W
μ
ðMiÞ with Eμ, Bμ, Vμ

ðEiÞ, V
μ
ðMiÞ.

These expressions are discussed in Sec. VII B and in
Appendix G 2.

APPENDIX I: NONRELATIVISTIC LIMIT
OF “MAGNETOHYDRODYNAMIC”

EQUATIONS OF SEC. VIII

Here we present the nonrelativistic limit of the simplified
dynamic equations discussed in Sec. VIII. In what follows,
unless otherwise stated, all the three-dimensional vectors
appearing in the text (shown in boldface) are defined in
the laboratory frame. As in other parts of the paper, indices
i and k refer to nucleons: i, k ¼ n, p; other Latin letters
are the space indices; we use dimensional units in this
Appendix.
The four-vector uμ is related to the normal velocity Vnorm

of the nonrelativistic superfluid hydrodynamics by the
standard formula,

uμ ≡ ðu0; uÞ ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

norm=c2
p ;

Vnorm

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

norm=c2
p

�
:

ðI1Þ

Instead of the four-vector wμ
ðiÞ ≡ ðw0

ðiÞ;wiÞ, it is convenient
to introduce the superfluid four-velocity Vμ

ðsiÞ ≡ ðV0
ðsiÞ;VsiÞ,

such that

wμ
ðiÞ ¼ micV

μ
ðsiÞ − μiuμ: ðI2Þ

As shown in G16 (see also Ref. [47]), the spatial compo-
nent Vsi of this four-vector is the superfluid velocity of

the nonrelativistic theory.29 Using Eq. (25) and the defi-
nition (I2), one finds the following equation for Vμ

ðsiÞ,
uμV

μ
ðsiÞ ¼ −μi=ðmicÞ, from which the time component

V0
ðsiÞ is

V0
ðsiÞ ¼

μi
micu0

þ uVsi

u0
: ðI3Þ

In terms of Vμ
ðsiÞ, the vorticity tensor (74) can be rewritten

as

Vμν
ðiÞ ≡

1

c
f∂μ½wν

ðiÞ þ μiuν� − ∂ν½wμ
ðiÞ þ μiuμ� þ eiFμνg

¼ mi½∂μVν
ðsiÞ − ∂νVμ

ðsiÞ� þ
ei
c
Fμν; ðI4Þ

while the electric vector Vμ
ðEiÞ is given by Eq. (96), and the

magnetic vector Vμ
ðMiÞ is [see Eq. (H7)]

Vμ
ðMiÞ ¼

1

2
ϵμναβuνmi½∂αVðsiÞβ − ∂βVðsiÞα� þ

ei
c
Bμ: ðI5Þ

and reduces to Vμ
ðMiÞ ¼ ð0; miωiÞ in the comoving frame,

where we defined

ωi ≡ curlVsi þ
ei
mic

B: ðI6Þ

To leading order in Vnorm=c the same expression Vμ
ðMiÞ ¼

ð0; miωiÞ is also valid in the laboratory frame (and this is
also true for other “magnetic” vectors). It remains to
express the relativistic entrainment matrix, Yik, through its
nonrelativistic counterpart, ρik. As shown, e.g., in
Ref. [47], in the nonrelativistic limit they are related by
the formula: ρik ¼ mimkc2Yik.
Using these definitions and relations the nonrelativistic

version of the superfluid equation (93) takes the form

∂tVsi þ ðVsi∇ÞVsi þ ∇
�
μ̆i −

1

2
jVsi − Vnormj2

�

¼ −curlVsi × ðVnorm − VsiÞ

− nif i þ
ei
mi

�
Eþ Vnorm

c
× B

�
; ðI7Þ

where μ̆i ≡ ðμi −mic2Þ=mi and

f i ¼ −αimi½ωi ×Wi� − βimiei × ½ωi ×Wi�
þ γimieiðWiωiÞ: ðI8Þ

28The tensor Wμν
ðiÞ in Eq. (H32) equals Wμν

ðiÞ ¼ ∥Wμν
ðiÞ þ ⊥Wμν

ðiÞ,
where ∥Wμν

ðiÞ ¼ −uνWμ
ðEiÞ þ uμWν

ðEiÞ (see Appendix A).
29Note that Vμ

ðsiÞ is measured in cm/s while uμ is dimensionless
[see Eq. (I1)].
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In the latter formula ei ¼ ωi=jωij; Wi is the spatial part of
the four-vectorWμ

ðiÞ, which is, in the dimensional form [see

footnote 28 and Eqs. (H29), (95)],

Wμ
ðiÞ ¼

1

ni
½cYikw

μ
ðkÞ þ ∂αðϵδβμαuβWðMiÞδ þ ∥Wμα

ðiÞÞ�: ðI9Þ

We have not made yet any simplifying assumption about
the value of the magnetic induction B, so up until now
our nonrelativistic equations are quite general. Now let us
make full use of simplifications of Sec. VIII.30 Employing
Eqs. (119) and (120), Eq. (I6) can be presented as

ωn ¼ curlVsn; ðI10Þ

ωp ≈
ep
mpc

B: ðI11Þ

In turn, Eq. (124) becomes

Wμ
ðMnÞ ≡ ð0;WMnÞ ¼

λn
mnVðMnÞ

Vμ
ðMnÞ ¼

λn
mnωn

ð0;ωnÞ;

ðI12Þ

Wμ
ðMpÞ ≡ ð0;WMpÞ ≈

λp
mpVðMpÞ

Vμ
ðMpÞ ≈

λp
mpB

ð0;BÞ:

ðI13Þ

As it was argued in Sec. VIII, the term depending on ∥Wμα
ðiÞ

in Eq. (I9) is small and can be omitted. Thus, the resulting
nonrelativistic expression for Wμ

ðiÞ is given by (see

Appendix C of G16 for a similar equation)

Wi ¼
1

ni

�X
k¼n;p

ρik
mi

ðVsk − VnormÞ þ curlWMi

�
; ðI14Þ

where the vectors WMi are defined in Eqs. (I12)–(I13).
Equations (I10)–(I11) and (I14) should be used to calculate
f i [see Eq. (I8)]. Equation (I14) can be further simplified in
the case of protons (i ¼ p) if we note that the conditions
(122) and (123) can be rewritten as

ne ¼ np; ðI15Þ
X
k¼n;p

ρpkðVsk − VnormÞ ¼ 0: ðI16Þ

Using Eqs. (I14) and (I16), one obtains

Wp ¼ 1

np
curlWMp: ðI17Þ

Next, within the magnetohydrodynamic approximation
adopted here, the vortex-related corrections (125) and (126)
to, respectively, the second law of thermodynamics (55)
and the energy-momentum tensor (56) are given, in the
nonrelativistic limit, by

dεadd ≈
X
i¼n;p

λi
miVðMiÞ

VðMiÞμdV
μ
ðMiÞ

¼ λn
jωnj

ωndωn þ
λp
jωpj

ωpdωp; ðI18Þ

ΔTμν ¼ T μν
ðVMÞ

¼
�

0 gn
gn Πlm

ðVnÞ

�
þ
� 0 gp

gp Πlm
ðVpÞ

�
; ðI19Þ

where

gi ¼
1

c
½minif i þ ðVMi × VnormÞ� ×WMi; ðI20Þ

Πlm
ðViÞ ¼ VMiWMiδ

lm − Vl
ðMiÞW

m
ðMiÞ ðI21Þ

and VMi ¼ miωi. Using the definition for the critical
magnetic field Hc1, Hc1 ≡ 4πÊVp=ϕ̂p0 (see, e.g.,
Ref. [59]), as well as Eqs. (G9), (G14), (I11), (I13),
and (I21), it is easily demonstrated that the proton tensor
Πlm

ðVpÞ can be represented as

Πlm
ðVpÞ ¼

Hc1

4π

�
Bδlm −

BlBm

B

�
: ðI22Þ

Note that dεadd in Eq. (I18) can be considered as defined
in the laboratory frame up to corrections ∼Vnorm=c. All
other parameters and equations of the theory [e.g., con-
tinuity equations, the remaining parts of the second law of
thermodynamics (55) and the energy-momentum tensor
(56)] have the same form as in the standard (vortex-free)
superfluid hydrodynamics (see, e.g., Refs. [25,60,80] and
G16). However, it is very important to point out that the
temperature T and chemical potential μi will be renormal-
ized in the presence of vortices according to Eqs. (G24)
and (G25).
Remark 1. Using the equations obtained above it is

straightforward to derive the “magnetic evolution” equa-
tion. To this aim let us take a curl of Eq. (I7) written for
protons (i ¼ p). Then, using Maxwell’s equation (2) and
neglecting the terms depending on curlVsp in comparison
to the similar terms depending on ep=ðmpcÞB [our mag-
netohydrodynamic approximation; see a note after
Eq. (120)], one gets

30We remind the reader that Sec. VIII utilizes the model of
noninteracting vortices discussed in Appendix G 2.
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∂B
∂t þ curl

�
mpc

ep
npfp þ B × Vnorm

�
¼ 0: ðI23Þ

This equation can be further simplified if one neglects the
small kinetic coefficient γp in Eq. (I8). Eq. (I23) can then be
rewritten as (see also Ref. [75] for a similar equation)

∂B
∂t þ curlðB × vLpÞ ¼ 0; ðI24Þ

where vLp is the nonrelativistic velocity of proton vortices
[spatial part of the four-vector vμðLpÞ; see Eq. (101)], given
by

vLp ¼ Vnorm − αpmpnpWp −
βp
B
mpnpB ×Wp ðI25Þ

with

Wp ¼ 1

mpnp
curl

�
λp
B
B

�
ðI26Þ

[see Eqs. (I13) and (I17)]. The physical meaning of
Eq. (I24) is obvious: It describes transport of the magnetic
field (produced by the proton vortices) with the vortices. A
bit different equation has been recently obtained, in the
approximation of vanishing temperature, in Ref. [76] [see
Eq. (67) there].31 The magnetic field in that reference is
transported with the velocity which differs from the vortex
velocity vLp. This is a puzzling result since Ref. [76]
explicitly assumes that the magnetic field is confined to
proton vortices [see Eq. (65) in that reference] and hence
should be carried along with them.
Note, in passing, that the energy consideration of

Ref. [76] does not look convincing. In particular,
Eq. (76) in that reference disagrees with the result of
Ref. [10] for the free magnetic energy density Fmag (which
must coincide with the magnetic energy density in the limit
of T ¼ 0); see the formula after Eq. (16) in Ref. [10].
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