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The relativistic dynamic equations are derived for a superfluid-superconducting mixture coupled to
an electromagnetic field. For definiteness, and bearing in mind possible applications of our results to
neutron stars, it is assumed that the mixture is composed of superfluid neutrons, superconducting
protons, and normal electrons. We analyze the proton superconductivity of both types I and I and allow
for the possible presence of neutron and proton vortices (or magnetic domains in the case of type-I
proton superconductivity). The derived equations neglect all dissipative effects except for the mutual
friction dissipation and are valid for arbitrary temperatures (i.e., they do not imply that all nucleons are
paired), which is especially important for magnetar conditions. It is demonstrated that these general
equations can be substantially simplified for typical neutron stars, for which a kind of magneto-
hydrodynamic approximation is justified. Our results are compared to the nonrelativistic formulations
existing in the literature, and a number of discrepancies are found. In particular, it is shown that,
generally, the electric displacement D does not coincide with the electric field E, contrary to what is
stated in previous works. The relativistic framework developed here is easily extendable to account for
more sophisticated microphysics models, and it provides the necessary basis for realistic modeling of

neutron stars.
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I. INTRODUCTION

Assume that we have a relativistic magnetized finite-
temperature plasma (possibly in the strong gravitational
field) composed of superfluid neutral particles, supercon-
ducting positively charged particles, and normal (nonsuper-
conducting) negatively charged particles. Depending on the
density, the positively charged particles may form either a
type-I or type-II superconductor, and the plasma may contain
topological defects—Feynman-Onsager and/or Abrikosov
vortices. What are the macroscopic dynamic equations
describing such a system?

The question is not as far fetched as it may seem at first
glance. For example, the neutron-proton-electron (npe)
mixture in the outer neutron-star cores meets all the con-
ditions formulated above. First, it is relativistic and magnet-
ized. The typical surface magnetic field is B ~ 10% + 10> G
[1,2] and is likely to be larger in the deeper layers [3];
the surface gravitation acceleration is also huge, g~
2 x 10" cms™2 [2], electrons are ultrarelativistic, while
neutrons can be moderately relativistic. Second, according
to microscopic calculations [4,5], confirmed (to some extent)
by observations of cooling and glitching neutron stars [6—8],
neutrons and protons in their interiors become superfluid/
superconducting at temperatures 7 <7, where T ~
10® = 10'° K is the nucleon critical temperature (i = n, p).
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Third, in a rotating magnetized neutron star, it can be
energetically favorable to form Feynman-Onsager/
Abrikosov vortices [9] (the latter are formed only if
the protons are type-II superconductor; if, instead, they
are type I, different structures appear; see Sec. V for more
details).

Thus, it is not surprising that the dynamic properties of
magnetized  superfluid-superconducting  neutron-star
plasma have been the subject of numerous studies in the
past, both in nuclear matter (see, e.g., Refs. [10-20]) and in
quark matter (e.g., Refs. [21-24]). In particular, Vardanyan
and Sedrakyan [12] were the first who generalized hydro-
dynamics of a mixture of two superfluids [25,26] to
charged superfluids coupled to the electromagnetic field.
These equations were further extended by Holm and
Kupershmidt [13] to N charged superfluids, who derived
these equations from the Hamiltonian formalism. Finally,
the most general nonrelativistic finite-temperature equa-
tions, describing charged superfluids and accounting for the
mutual friction forces [27,28] between various liquid
components, were formulated by Mendell and Lindblom
[14], who used in their work the ideas of Refs. [13,25,29].
This important work was subsequently used by Mendell
[15,16] who applied the equations of Ref. [14] to neutron
stars, assuming that all neutrons and protons are paired
(e, T < T,;). (A little later, Sedrakian and Sedrakian [17]
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did similar work by extending the results of Ref. [12] to
include dissipation and mutual friction forces in their
equations.) In his work, Mendell formulated a set of
simplified magnetohydrodynamic equations, but, unfortu-
nately, incorrectly identified the magnetic field H with the
magnetic induction B and the electric displacement D with
the electric field E. The first of these inaccuracies (iden-
tification of H with B) was noticed in Ref. [30] and
corrected by Glampedakis, Andersson, and Samuelsson
[19] (hereafter GAS11); the second inaccuracy (identifica-
tion of D with E) is discussed here (see Appendix G 2).
Except for the corrected inaccuracy, the GAS11 version of
magnetohydrodynamics is equivalent (up to notations) to
that of Mendell [15] and is the most advanced treatment of
superfluid-superconducting mixtures in neutron stars to
date. It is derived using the variational framework [20,31]
and assuming 7 = 0.

All the works discussed by us so far were performed in
the nonrelativistic approximation. This is a rather serious
shortcoming because, as we have already mentioned,
neutron stars are essentially relativistic objects. The
extension of the magnetohydrodynamics of GASI11 (as
well as more general equations of Ref. [14]) to the
relativistic case is not trivial. For uncharged one-
component superfluids, this problem has been addressed
in Refs. [32-39] and has recently been “solved” in
Ref. [40] (hereafter G16). We are aware of only one
attempt [41] to consider charged mixtures in full rela-
tivity. This reference neglected all dissipation effects
(including mutual friction) and studied only the low-
temperature case 7 < T; unfortunately, it did not
provide a nonrelativistic limit for the derived equations
so that it is hard to compare them with the formulations
available in the literature. Note that Ref. [41] adopted the
variational approach similar to that developed in Ref. [36]
in application to uncharged superfluids. This approach
was criticized in G16 (see Appendix F there), where
it was argued that it does not reproduce the well-established
nonrelativistic Hall-Vinen-Bekarevich-Khalatnikov super-
fluid hydrodynamics [25,29]. We believe the same con-
clusion applies also to the results of Ref. [41].

The aim of the present study is to fill the existing gaps
and derive a set of relativistic finite-temperature equations
describing superfluid-superconducting mixtures, bearing in
mind application of these results to magnetized rotating
neutron stars. As in Refs. [29] and G16, our derivation rests
on the consistency between the conservation laws and the
entropy generation equation. For definiteness, in this paper
we consider a liquid composed of superfluid neutrons (n),
superconducting protons (p), and normal electrons (e).
Extension of our results to more complicated compositions
is straightforward (see, e.g., Refs. [24,38,42,43]). Here we
are mostly interested in the nondissipative equations (but
we allow for mutual friction dissipation; see remark 1 in
Sec. VI). Correspondingly, we assume that neutron and
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proton thermal excitations as well as electrons move with
one and the same ‘“normal” four-velocity u¥. In what
follows all thermodynamic quantities are defined in the
frame comoving with the normal (nonsuperfluid) liquid
component, in which u* = (1,0,0,0). By default, any
three-dimensional vector appearing in the text (e.g., mag-
netic induction B) is written in that frame.

The paper is organized as follows. Section II introduces
Maxwell’s equations in the medium written both in the
standard and explicitly Lorentz-covariant form. Section III
considers uncharged and charged mixtures in the absence of
vortices and other magnetic domain structures. In Sec. IV we
discuss the strategy for generalization of equations of
Sec. III in order to allow for the topological defects and
related bound charges and currents in the mixture. In Sec. V
this strategy is applied to derive the corresponding dynamic
equations under assumption of type-I superconductivity of
protons. Section VI is devoted to considering type-II proton
superconductivity and accounting for the possible presence
of both neutron (Feynman-Onsager) and proton (Abrikosov)
vortices. Section VII proves that the energy-momentum
tensors obtained in Secs. V and VI are symmetric, and
expresses them through a set of phenomenological coef-
ficients which can be calculated by specifying a microscopic
model for the energy density of the mixture. The general
dynamic equations of Sec. VI are simplified for typical
neutron-star conditions in Sec. VIII. Finally, we sum up
in Sec. IX.

The paper also contains a number of appendixes, where we
present technical, more model-dependent, or less important
results. In particular, Appendix A introduces some basic
notation used throughout the paper. Appendix B provides a
correspondence table between our notation and that adopted
in G16. Appendix C contains an example of the energy
density transformation used in Secs. V and VI. Appendix D
reveals the relation between the energy-momentum tensor of
Sec. V and the well-known Abraham tensor. Appendix E
discusses some general relations characterizing isolated
neutron or proton vortices. Appendix F demonstrates that
there exist some bound charges associated with each moving
vortex. Appendix G presents two simple microscopic models
allowing one to determine the phenomenological coefficients
from Sec. VII. Finally, Appendix H contains the full set of
dynamic equations derived in Secs. Vand VI, and Appendix I
analyzes the nonrelativistic limit of simplified equations of
Sec. VIIL.

Unless otherwise stated, in all sections except for
Sec. II and Appendixes E, F, G, and I, the speed of light
¢, the Planck constant 7, and the Boltzmann constant kg
are set to unity, ¢ =h = kg = 1. Throughout the
paper, we assume that the spacetime metric is flat,
G = diag(—1,1,1,1). Generalization of our results to
arbitrary g, is straightforward and can be achieved by
replacing ordinary derivatives in all equations with their
covariant counterparts.
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II. MAXWELL’S EQUATIONS IN THE MEDIUM

A. Standard form of Maxwell’s equations

Maxwell’s equations in the medium take the form

divD = 47pgee. (1)
10B

1E = ————, 2
cur o (2)
divB = 0, (3)

A 10D
1H = — - 4
cur CJfree+cat ( )

where E and B are the electric field and magnetic induction,
respectively; D and H are the electric displacement and
magnetic field, respectively; pge. and Jg. are macroscopic
averages of the free charge and current densities in the
medium (e.g., Ref. [44]). In the absence of bound charges
and currents one has D = E and H = B.

Equations (1)—(4) contain the continuity equation for the
electric charge,

a/) ree .
af[ + leJfree =0, (5)

and the energy equation,

ag;fM = —EJgee + %div H x E|, (6)
where
degy; — EdD + - HdB (7)
4r 4r
is the differential of the electromagnetic energy

density egy.

B. Relativistic representation
Maxwell’s equations (1)—-(4) can be rewritten in a
manifestly Lorentz-covariant form [45,46]. To see this
let us introduce the tensors F* and G* such that
0 E, E, E;

Fa[)’ = aaA/)’ _ a/}Aa — , (8)
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where A% = (¢,A) is the electromagnetic four-potential.’
Using the definitions (8)—(9), Maxwell’s equations (1)—(4)
can be represented as

9 F7P =0, (10)
0,67 = —4n 7y, (11)

a
where J (free

of free charges and *F* is the tensor dual to F* (see
Appendix A).

) = (Prees Jiee/€) is the four-current density

C. Four-vectors E*, B*, D", and H*

As is shown in Appendix A, for any antisymmetric
tensor it is possible to introduce the corresponding “elec-
tric” and “magnetic” four-vectors [see Egs. (A3) and (A4)].
In the case of electromagnetic tensors F** and G we shall
use the following (standard) notation for these vectors,

R A (12)
D! = Gl = u, G, (13)
1
B'=Fly) = u P = e F,. (14)

H' =G

1
™) — u, G" = Eeﬂy/w“len (15)

instead of, respectively, the universal notations F’ ’(E), Gé‘E),

F ’(‘M), and G’(‘M> suggested in Appendix A. In the comoving
frame, in which the four-velocity of normal liquid compo-
nent is wu* =(1,0,0,0) these vectors reduce to
E* = (0,E), B* = (0,B), D" = (0,D), and H" = (0,H).

III. NO VORTICES, BOUND CHARGES,
OR BOUND CURRENTS

In order to establish notations and get some insight into
the problem, we start with the simplest possible situation
and discuss relativistic equations for the superfluid-super-
conducting npe mixture without vortices, bound charges,
or bound currents. The latter assumption means that we set
D =E and H = B in all equations in this section.

A. General structure

The relativistic equations describing the npe mixture
consist of the energy-momentum conservation,

'We remind that in a given coordinate system:

10A
E=———-V

c Ot ¢,
B = curlA.
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9,T" =0 (16)

and continuity equations for particle species j (here and
hereafter index j = n, p, and e),

7
9yl ()

=0. (17)
In Egs. (16) and (17) T is the total energy-momentum
tensor, which is a sum of fluid and electromagnetic
contributions,

T = Tnia) + T(em): (18)

and j’(‘j) is the current density for particle species j. These
equations should be supplemented by the second law of
thermodynamics, Maxwell’s equations (see Sec. II), as well
as by a number of additional equations and constraints

describing superfluid degrees of freedom (see below).

B. Uncharged mixtures

Assume for a moment that all the mixture components
(n, p, and e) are uncharged. The corresponding non-
dissipative hydrodynamics has been extensively studied,
e.g., in Refs. [47-50]. It consists of the second law of
thermodynamics

Y;
dgﬂuid =TdS + ,uidl’l,' + ,uedi’le + de(w((ll)W(ba) (19)
and Egs. (16), (17), in which the energy-momentum tensor,
™ = T’(ﬁuid), is given by
Tﬁ(lguid) = (Ppuia + €nuia) W' u” + Ppyig ¢
+ Yik (Wﬁl,')wl(jk) + ,Ltl-Wle) u’ + /"kwl(ji) uﬂ)» (20)
and the particle four-currents are

.]/(ll) = I’lil/t” + YikWI(lk), (21)

Jiey = nett”. (22)

Here and below, the subscripts i and k refer to nucleons:
i, k=mn, p. Unless otherwise stated, a summation is
assumed over repeated spacetime indices yu, v, ... (Greek
letters) and nucleon species indices i and k (Latin letters).

In Egs. (19)—(22), eq,iq and S are the fluid energy density
and entropy density, respectively; 7' is the temperature; u;
and n; are the relativistic chemical potential and number
density for particles j = n, p, and e, respectively; Pgyq 18
the pressure given by the standard formula

*We neglect, for clarity, possible sources in these equations due
to beta-processes, thus assuming that the latter are effectively
frozen. They can be easily accounted for if necessary.
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O(equiaV)

oV = —€fuid T HeNe + pin; + T8, (23)

Ppig = —
where V is the system volume and the partial derivative is
taken at fixed total number of particles n;V (j = n, p, )
total entropy SV, and fixed scalars w([)ﬂw’(‘k) [25,26,40].
Further, Y;; in Egs. (19)—(21) is the relativistic entrain-
ment matrix [47,51-53], analogue of the superfluid or
mass-density matrix p;; of the nonrelativistic theory
[26,54-57]. In the nonrelativistic limit both matrices are
related by the formula [47]: Y, = p;i/ (m;myc?), where m;
is the bare nucleon mass (i = n or p). Finally, the normal
four-velocity #* is normalized by the condition

uut = —1; (24)

and the four-vectors w’(’i) in Egs. (19)—(21) describe the
superfluid degrees of freedom and are subject to condition

uwly =0, (25)

which ensures that all the thermodynamic quantities are
indeed defined (measured) in the comoving frame in which
u = (1,0,0,0) [see G16 for a detailed discussion]. In
particular, using Eq. (25) one finds from Egs. (20) and (21)

1,1, Thioia = €nuids (26)
uﬂj’(‘i) = -n,. (27)

To close the system of hydrodynamic equations we need
two additional conditions relating the four-vectors w’{l.) with

the wave function phases ®; of the nucleon Cooper-pair
condensates. These conditions are (i = n, p)

Wl(l,») = ', — pu”, (28)

where the scalar ¢; = ®;/2. Equations (28) can be refor-
mulated exclusively in terms of w’(’i) as

Oulwiipy + pitty] = 0, Wiy, + piu,] = 0. (29)

It is simply a statement that 9,0,¢; — 0,0,¢; =0 (or,
equivalently, 0,0,9; — 9,0,9; = 0).

The system of hydrodynamic equations is now closed
and contains, in particular, the entropy generation equation,
which can be obtained by composing a vanishing combi-
nation, u,0,T* = 0, and following the same derivation as
that discussed in G16. Ignoring for the moment the
“superfluid” equations (28) [or (29)], one obtains

Ta/t (S””) = ””YikWI(k){aﬂ [W(i)v + ﬂiuv]
- au[w(i)ﬂ + :uiuﬂ]}‘ (30)
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The right-hand side of this equation vanishes in view of
Eq. (29), so that the system entropy does not increase’
and is carried with the same velocity u* as the normal
(nonsuperfluid) liquid component.

C. Charged mixtures

How should equations of the previous section be
modified for charged mixtures? Concerning the continuity
equations (17), the corresponding particle current densities
are still given by Egs. (21) and (22), and should be
considered as definitions of the four-vectors u* and w/ ;
[## is still being normalized by Eq. (24)]. The condition
(25) also remains unchanged since it directly follows from
the comoving frame definition (see Sec. Il A of G16 for a
thorough discussion of this issue). Next, the second law of
thermodynamics (19) and the pressure definition (23) retain
their form, because they are written for the fluid energy
density and fluid pressure, and hence should not include
field contributions.* In contrast, the energy-momentum
tensor 7" in Eq. (16) should be modified in order to
account for the electromagnetic field contribution. It is now
given by Eq. (18) with

, 1 1
Tiew) = 15 <F"yF”7 -2 g””Fy(;FV‘S> NI

This standard [58] electromagnetic tensor is obtained under
assumption D = E and H = B [and hence G% = F% see
Egs. (8) and (9)]. It does not include any “mixed” terms
depending on both fluid and field degrees of freedom
because of the same reason as that discussed in the
footnote 4. A more general situation, in which such a
decoupling is ambiguous (not well-defined), is considered
in Secs. Vand VL

It remains to find out how the presence of charges affects
the superfluid equations (28) and/or (29). For that, it is
instructive to repeat the derivation of the entropy generation
equation, now taking into account the electromagnetic
contribution (31). Again, composing a vanishing combi-
nation uD?,, " = u,d, T’(‘gm ot uD(’)ﬂT’Z}gM) = 0 and noting
that 8”T’<‘EM> = —F"J (free), ON account of Maxwell’s equa-
tions (10) and (11) (see, e.g., § 8, Chapter 2 of Ref. [58]),
one gets

Taﬂ(Suﬂ) - MDYikW?k){aﬂ[W(i)v + /‘iuv]
- ay[w(i)y + ﬂiuﬂ]} - uvaﬂJl(lfree)’ (32)

*We remind the reader that in this work we are mainly
interested in the nondissipative dynamics.

We remind the reader that the situation considered in this
section (superfluid-superconducting mixture in the absence of
vortices and not in the intermediate state) allows us to separate
fluid and field degrees of freedom.
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where the four-current density of free charges is given by
the formula [we use Eqgs. (21) and (22)],

ﬂ:Jﬂ

Sitree) = €3J(5) = o) T e¥iWy,  (33)

in which e; is the charge of particle j and

Jﬂ

(nom) = €j7W" = e,(n, —n,)u (34)

J

is the normal (nonsuperconducting) part of the four-current
density. Correspondingly, noticing that F,, = 9,4, — 0,4,
[see Eq. (8)] and E* = u, F* [Eq. (12)], Eq. (32) can be
rewritten as

Taﬂ (Suﬂ) = uyyikwl(lk){aﬂ [W(i)u + piuy, + eiAv]

- a” {WU)M + Hiuﬂ + eiAﬂ]} + EMJ!(tnorm)' (35)

The last term in the rhs of this equation equals zero,

E,J"

(norm)

=0, (36)
in view of the definitions (12), (34), and the equality
u,u, F* =0, (37)

following from the antisymmetry property of the tensor
F*. Equation (35) then becomes

70,(Su") = ””Yikw?k){ay Wiy + pitty, + €;A,]
- 81/[W(i)/4 + Hilly + eiA[l]}' (38)

The rhs of this equation must vanish identically because, by
assumption, there should be no entropy generation in the
system (we disregard all the dissipative corrections). Using
this requirement, it is tempting to conclude that the new
form of the superfluid equation in the presence of the
electromagnetic field is

aﬂ [W(i)v + pily, + eiAv] - 81/[W(i);4 +ﬂiuﬂ + eiAﬂ] =0
(39)

or, equivalently,
Wl(l,-) = M — pu — e;A¥, (40)

where, again, the scalar ¢; = ®;/2. This is indeed the
correct equation that could be obtained immediately from
the requirement of gauge invariance of the resulting super-
fluid hydrodynamics (see, e.g., Ref. [47]). As follows from
the microscopic theory [59], the wave function phase ®;
and the four-potential A# transform as

At — AP + OMy, (41)

083006-5



M. E. GUSAKOV and V. A. DOMMES
¢i - ¢i + 281'% (42)

under gauge transformations (y is an arbitrary scalar
function). The four-vectors w?’l.) and hence Egs. (39),

(40), and other equations in this section are thus
manifestly gauge invariant.’ The system of relativistic
equations formulated here reduces to the vortex-free
equations of Mendell [15] and Sedrakian et al. [17] in
the nonrelativistic limit (see also Ref. [60]).

Remark 1. As noted above, a simple problem considered
by us here allows to decouple the fluid and field degrees of
freedom. In this approach eg,;q and Py,;q are, respectively,
the fluid energy density and pressure, while field contri-
butions are treated separately. Such a decoupling is
hampered in more general situations (see Secs. V and
VI). To facilitate comparison with the results of Secs. V and
Vit is worth to reformulate the equations discussed here in
terms of the total energy density &,

€ = Efyid T EEM (43)
and the “pressure” P, defined as [cf. Eq. (23)]

d(eV)

P=-
ov

= —€+ U, +pn; + TS, (44)

where the partial derivative is taken at constant n;V (j = n,
p,e), SV, w(i)ﬂw’('k), B*, and D* (= E* in this section). In
Eq. (43) egy is the energy density of the electromagnetic
field measured in the comoving frame,

E*> B> EJE* B,B®
E = — _— s
EM ™ gr " 8x 8 8

(45)

where the four-vectors E* and B* are given by Eqgs. (12)
and (14); in the comoving frame they equal, respectively,
(0,E) and (0, B). Using Eq. (45), it follows from Eq. (44)
that

1
P = Pﬂuid - % (EaEa + B(tBa)' (46)

Before reformulating the dynamic equations it is instruc-
tive to note that the energy-momentum tensor 7T’ é‘éM) of the
electromagnetic field can generally be rewritten as

v 1 o a v v v
Tl = ~ 57 (EaE" + BaBY)g™ + T(g) + Ty (47)

where the “electric” part of the tensor equals

SThe four-vectors w’(‘i) (i = n, p) are observables (i.e., must be

gauge invariant) since they define the particle current density

j’('i) in the comoving frame [see Eq. (21)].
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1
T = ) )

and the “magnetic” part is
T, = !

M) ™ 47

(LaaPPOF" — il ugFPF,,).  (49)

Here 1# = ¢* 4 u*u” is the projection operator. Using
Egs. (43)-(49) the second law of thermodynamics takes the
form [cf. Eq. (19)]

Y;
de = TdS + p;dn; + p.dn, + de(WZ')W(k)a)

1 1
—E, dE* + —B,dB*
- 4n «dE" ¥ 4n «dB" (50)

while the tensor 7% becomes [cf. Eq. (18)]

" = (P + e)u*u* + Pg"™ + Yik(Wl(li)wl(/k) + ”iw’(lk)uy

+ ,ukw’(“l.) u') + T’(‘E) + T’(’K,[). (51)
Because

uﬂuUT’(‘]’g) =0, (52)

4, Ty = 0, (53)

it satisfies the condition
u,u, T = e. (54)
All other hydrodynamic equations remain unchanged.

IV. SETTING UP THE PROBLEM

Simple examples considered in the previous section
suggest a possible general approach to the problem of
formulation of the macroscopic (smooth-averaged)
dynamic equations in various interesting situations (e.g.,
in the system with vortices or in the system with small-scale
domain structure of the magnetic field). The approach is
based on using the entropy generation equation to constrain
the dynamics of superfluid-superconducting mixtures; it
has been applied recently in G16 (see also Ref. [29]) and
we refer the interested reader to those references for more
details. All the quantities in this and subsequent sections are
assumed to be averaged over the volume containing large
amount of inhomogeneities (vortices or magnetic domains).

Assume that the second law of thermodynamics takes the
form
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Yie 1 a
de = TdS + p;dn; + p.dn, + de(w(l.)W(k)a) + degaq.

(55)

where ¢ is the total energy density of the system. All the
terms in the rhs of this equation except for the last one are
the standard terms of superfluid hydrodynamics [see
Eq. (19) and Refs. [40,47,48,50]]; an additional term
de,qq contains vortex or electromagnetic contribution to
de, or both.

Accounting for this term in Eq. (55) should not affect
most of the dynamic equations due to the very same reasons
as those discussed in the beginning of Sec. III C (see also
Sec. III B in G16, where a similar problem is discussed in
detail). In particular, the expressions (21) and (22) for the
free four-current densities j’;n), j’(p), and ji’e) [which satisfy
the continuity equation (17)] should be considered as the
definitions of the four-vectors w’(n), w’<‘p), and the four-

velocity u#, normalized by the condition (24). Thus, they
remain unchanged. Next, the requirement that all the
thermodynamic quantities are measured in the (comoving)
frame, in which u# = (1,0,0, 0),6 unambiguously leads to
the same constraints (25). Finally, the free-charge

four-current density J’(‘ﬁee) and the pressure P will still

be defined by Eqgs. (33) and (44), respectively; Maxwell’s
equations (1)—(4) or (10)—(11) will also, of course, retain
their form.

The only equations that should be modified are the
expression for the total energy-momentum tensor 7+,

" = (P + e)utu’ + Pg" + Yik("‘/(li)wl(/k) + '“iw}(k) u
W ut) + AT %6)

[which still satisfies Eq. (16)], and the “superfluid”
equations for neutrons and protons [Egs. (39) or (40) in
the simple example of Sec. III C]. The correction AT*¥ in
Eq. (56) must be symmetric; it includes vortex and/or
electromagnetic contributions to 7#* and is absent in the
standard superfluid hydrodynamics [see Eq. (20)]. Because
in the comoving frame the component 7% of the tensor T+
equals, by definition, ¢,” one should have there AT® = 0,
or, in an arbitrary frame,

u, u, AT = 0. (57)

To determine the correction AT* and the form of
superfluid equations, we, as was already mentioned, utilize
the entropy generation equation. It can be derived using the
equations discussed above in this section. The result is
[cf. Eq. (38) and also equation (65) in G16]

6Mathematically, this requirement is expressed by the
condition (27).

"In an arbitrary frame this requirement translates into
u,u, T" = ¢, see Bq. (54).
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Taﬂ(Su”) = MinkW(kWVI(;/) - u”@,leadd + uvaﬂAT’”’, (58)
where

Vi = 0wy + ] — 0 why +pan’]. (59)
As one sees, Eq. (58) depends on ¢,44, Which is assumed to
be specified, and on AT*, which is unknown. Because
entropy is conserved in the absence of dissipation, the rhs
of this equation should vanish identically. As shown in
Secs. V and VI, this requirement is sufficient to fully
reconstruct dynamics of superfluid-superconducting npe
mixture.

V. RELATIVISTIC DYNAMIC EQUATIONS
FOR THE NPE MIXTURE: TYPE-I PROTON
SUPERCONDUCTIVITY

In this section, we consider a nonrotating superfluid-
superconducting npe mixture in the absence of Feynman-
Onsager and Abrikosov (single flux quantum) vortices.
However, in contrast to Sec. III C we formally assume that
the magnetic field H does not necessarily coincide with the
magnetic induction B; i.e., there are some bound currents in
the system. One can imagine that these currents can be
generated either due to (very weak, in reality) magnetic
response of particles in the mixture (e.g., electrons) to an
applied external magnetic field (case 1), or due to appear-
ance of various inhomogeneous structures of the (micro-
scopic) magnetic field in the mixture similar to those
appearing in the intermediate state of ordinary type-I
superconductors (see, e.g., Ref. [61] and Sec. V B below;
case 2). The dynamic equations in this latter case are a bit
more complicated since the proton phase winding around
such structures can be nonzero. Thus, for pedagogical
reasons we start with the simplest (but unrealistic) situation
of a homogeneous npe mixture with well-behaved phases
®,; and B # H (case 1). In what follows we, for generality,
assume also that the electric displacement D is not equal to
the electric field E (although we set D = E in the final
equations, see Sec. VII A).

A. Case 1: Homogeneous npe mixture with B # H

The starting point of our consideration is the expression
for the electromagnetic contribution de,yq to the second law
of thermodynamics,

1 1
dgadd = EE”dD” + EH”dB’u (60)

This formula is specialized to the comoving frame, which
is, generally, noninertial, because u* changes in time and
space. In the absence of bound charges and currents one has
Dt = E¥ and H* = B*, so that Eq. (60) reduces to the last
two electromagnetic terms in the rhs of Eq. (50). In the
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special case when the comoving frame is inertial, Eq. (60)
is transformed to the standard form (7) [see the definitions
(12)—(15)]. Using Eqgs. (12)—(15), the last term in Eq. (60)
can be rewritten as

1 1 1 1 1
EHﬂdBM = EHMESﬂyaﬁMdeaﬁ +EHM§€ﬂyaﬁFaﬂdul/

1
_ 1L
= LG dF,
1
+ g ( HM €/,uz(l/3 Faﬁ + u? Ga/} Fa/i) dl/{l,

1
= o= ("G PdF 4y + 2F (s G du,). (61)

where the added underlined term vanishes on account of
normalization condition (24) (hence u’du, = 0) and we
used the notation from Appendix A. Similarly,

ﬁEﬂdDﬂ

= D) - D,dE]

= - [d(D,B) = Dy, — D, du,

= o [0, = L0y, Do )P D, P,

= i :d(DaE“) + % ("GPdF .5 - 2D(,F“7duy)]

= i -d(DaE"‘) + % (IGPdF 45 — ZGQﬂF”Wuﬂdu},)] . (62)

Equations (61) and (62) can be further transformed as
described in Appendix C. For that, we identify

1
Oaﬂ — _J_Gaﬂ’
4z
]:'aﬂ — Faﬂ’
Baﬂ — Faﬂ’

1
af _ G(l/)’
A 4

in case of Eq. (61) and

1
0¥ = _—_IG,
47
]:'a/)‘ — Fa/)”
1
Baﬁ — Gaﬂ,
¥
Aaﬁ — Faﬂ

in case of Eq. (62). As a result, the second term in the rhs of
Eq. (58) can be presented as [see Eq. (C7)]
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1 1
—u" 0y €490 = U'F 0, (E IGra 4 yp LG"”’)
= 0w (Tig), + Tian)]
+ 0,u (T /(E),, + 7 ’(‘M>D), (63)

where the “electric” and “magnetic” tensors are given,
respectively, by

1
TI{E)D = e (llexFW + uﬂu}/J—uﬂFaﬂGay + ¢#,D,E*),

T
(64)
1
Ty = 3, (1G"Fr = ' LyGPF ). (65)

It can be verified that if G** = F*¥ then these tensors

reduce to the tensors T’(‘E> and TK,I) from Sec. III C [see

W v v v
Egs. (48) and (49) there], T(E) = T(E) and T<M) =Ty
For actual calculations, it is convenient to represent the
tensors (64) and (65) in the form

1
Tl =4 (LWDE, - D'EY), (66)

1
Tl(l;/[) _ - (J_G;mJ_Fva + qu_GﬂaEa + u/‘J-GWEa). (67)
T

The first term in the rhs of Eq. (63) can be further
simplified by making use of Egs. (A9), (11), (33), (34),
and (36),

1 1 1
V0= 1GH 4 —LGr ) = uwF,,0,( —Gre
U a(47z +47z W O 4

- MDFMVJ’(lfree)
= MDFMDeiYikW/(‘k)' (68)

Substituting now Eq. (63) into Eq. (58), one gets

T0,(Sut) = u,,Y,-kW(kW(V’ZiD) + e, F™)
- aﬂ[u”(T’(‘E)y + T’(‘M)U — ATH )]

+ 0 (T(gy, + Ty, — ATY), (69)
from which one can conclude that®
Vi + e =0 (70)

and, correspondingly, in order to vanish identically the rhs
of Eq. (69),

8Equation (70) coincides with the superfluid Eq. (39) from
Sec. III C, see the definition (59).
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_ g H
ATH = T(E) + ’T(M). (71)

Note that AT* automatically satisfies the condition (57);
the fact that the tensor AT* is symmetric will be proven in
Sec. VII A. The physical meaning of Eq. (70) is trans-
parent. Using the definition (59) it can be rewritten in the
form of the superfluid Eq. (39) from Sec. IIIC, or as a
gauge-invariant expression (40) for the four-vector w’(’i),

w’(‘i> = OF¢h; — u;u* — e;,A¥, where the scalar ¢, = @,/2
and ®; is the smooth-averaged wave function phase of
the Cooper-pair condensate.’ Equation (70) thus states that

(0,0, = 0,0,)®; =0, (72)

which is quite natural since we assume in this section that
there are no vortices and nonsuperconducting domains in
the system (the phases ®; are well defined everywhere in
the mixture).

B. Case 2: The npe mixture in the intermediate state

Now let us discuss how the equations of the previous
section should be modified in order to apply them to npe
mixture in the intermediate state. But first let us clarify
what we mean by the term “intermediate.”

According to some estimates (e.g., GAS11), protons in
the inner cores of neutron stars can form a type-I super-
conductor. Upon neutron star cooling the superconducting
region expands, but it is generally believed that this process
is not accompanied by the magnetic flux expulsion (the
Meissner effect) because of the huge electric conductivity
of the outer core and crust (see Refs. [62,63] and a
comment 8 in Ref. [22]). As a result, it becomes energeti-
cally favorable for npe mixture to find itself in the
“intermediate” state, consisting of alternating domains of
superconducting (field-free) regions and nonsuperconduct-
ing regions hosting the magnetic field. The topology of
these domains can be very diverse and depends, in
particular, on their nucleation history [61,64—66]. This
complicates substantially the problem of calculation of
the total energy density e for such matter. However, we
neglect below the relatively small surface and boundary
contributions to € [45,67]. In this approximation the actual
domain structure is not important for the energy calcu-
lation. We further assume that the produced magnetic
structures have a closed topology; i.e., normal domains
are completely surrounded by the superconducting phase
[61]. This assumption seems reasonable since the magnetic
field of a typical neutron star, B ~ 10'? G, is much smaller

The fact that w’(‘i) (and hence all other dynamic equations)
appears to be gauge-invariant, is not trivial and is directly related
to the adopted expression (60) for de,qq, in particular, to the
assumption that H* in this expression is indeed the magnetic field
four-vector given by Eq. (15).
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than the critical thermodynamic field, H, ~ 10410 G
[66], while it is well known [45,61,65-67] that it is
advantageous for a relatively weak field to penetrate the
superconductor in the form of flux tubes, each containing
many flux quanta. For definiteness, this very form of
normal domains (flux tubes) will be assumed by us in
what follows. Note, however, that the actual form of normal
domains is not really important for the subsequent con-
sideration (what is important is the closed topology
assumption).

The distance between the neighboring flux tubes can be
estimated as [66,67] b ~ /RS, where R is the typical size of
the intermediate-state region and ¢ is the typical width of
the normal-superconducting boundary [67]. Taking & ~
£,~107" cm (&, is the proton coherence length) and
R ~5km, one obtains b~2x 1073 cm. Then the flux tube
radius is a ~ b(B/H,)'/?> ~ 6 x 107> cm and the number of
flux quanta in a single flux tube N, =~ rna*H./ q?z PO~
6 x 103, where gﬁpo is given by Eq. (G13), and we choose
B =102 G and H, = 10" G.

From these estimates, one can conclude that the flux
tubes are rather large objects that should interact efficiently
with the surrounding normal matter (electrons and nucleon
Bogoliubov excitations), and hence should move (at least,
in the nondissipative limit) with the normal liquid compo-
nent. In the terminology of the Hall-Vinen-Bekarevich-
Khalatnikov (HVBK) hydrodynamics, one can say that the
system is in the “strong-drag” regime (see G16). Using the
strong-drag assumption, one can try to derive the dynamic
equations for the npe mixture in the intermediate state.
First, note that all consideration of Sec. VA up to and
including Eq. (69) is applicable to the intermediate state as
well since it only uses, as a starting point, the expression
(60) for the energy density, which remains correct. From
Eq. (69), one then deduces the same Eq. (70) for neutrons
(by assumption, there are no Feynman-Onsager vortices in
the system) and Eq. (71) for the electromagnetic correction
to the energy-momentum tensor. However, for protons,
Eq. (70) cannot be applied and must be modified. The
reason is, as suggested by the London argument (e.g.,
Ref. [59]), there is a nonzero proton phase winding
$0,®,dx* around each flux tube; ie., the phase ®,,
averaged over the volume containing many flux tubes,
does not satisfy the “potentiality condition” (72). This
situation is reminiscent of that observed in the HVBK-
hydrodynamics (see, e.g., Ref. [25] and G16). In particular,
in G16 it is shown that the strong-drag regime we are
interested in, is realized if one replaces Eq. (70) for protons
with the less restrictive condition,

%Equation (73) is a special case of the more general Eq. (93)
from the next section, which, although describes a different
system (npe mixture with type-II proton superconductivity), has
some mathematical resemblance to what is studied here.
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u, (Vo) + e, F*) = 0. (73)

It is easily verified that, with this equation, the rhs of
Eq. (69) is still zero, as it should be. Summarizing, we find
that, to model the npe mixture in the intermediate state, one
should use superfluid Egs. (70) for neutrons and (73) for
protons; the correction AT*” to the energy-momentum
tensor 7" is given by Eq. (71). The last thing to do in
order to close the system of dynamic equations discussed
here is to specify the relation between the tensors G** and
F*_ and to prove that the resulting tensor AT is indeed
symmetric. This is done in Sec. VII A. A complete system
of equations is summarized in Appendix H.

Remark 1. Tt may be noted that exactly the same
derivation of the tensor (71) can be made also for normal
(nonsuperfluid) matter if we put Y;; =0 in all relevant
equations. This indicates that the tensor A7T** must be well
known in the electrodynamics of continuous media. As
shown in Appendix D, this is indeed the case and it is
directly related to the so-called Abraham electromagnetic
tensor in the medium (see, e.g., Refs. [46,68,69]).

VI. RELATIVISTIC DYNAMIC EQUATIONS FOR
NPE MIXTURE WITH NEUTRON AND PROTON
VORTICES: TYPE-II PROTON
SUPERCONDUCTIVITY

In this section, we consider a region of densities where
protons form a type-II superconductor and allow for the
possible presence of neutron and proton vortices in the
system. Since our consideration is very similar to that in
G16 we will be brief here and refer the interested reader to
this reference for more details.'' In the system with
vortices, the condition (9,0, — d,0,)®; = 0is not satisfied
at the vortex lines. Hence, as in Sec. V B, the macroscopic
(smooth-averaged) superfluid Eq. (39) [or (70)] should be
replaced by a weaker constraint [see Eq. (93) below]. In
what follows, it will be convenient to use the vorticity
tensor V’;l”)

=0+ e
=oF [w’(l.) + put + e;A¥] — 8”[w’<‘i) + put + e;A¥],
(74)
with the obvious property [cf. Eq. (10)]
o ’;l”) =0. (75)

The tensor V’('l”) is equivalent to m;curlV; 4+ ¢;B of the
nonrelativistic HVBK-hydrodynamics (V; is the superfluid

"Note that G16 uses somewhat different notation. The
correspondence table between our notation and that of G16 is
provided in Appendix B.
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Velocity).12 The geometrical meaning of this tensor is quite
transparent. Assume we have a surface spanned by some
v

closed contour. Then Vﬁ‘l) is related to the number N; of

neutron (i = n) or proton (i = p) vortices piercing the
surface by the formula (see G16 for more detailsB)

1 v
E/dfﬂ V(i)/w :ﬂNi, (76)

where an integral is taken over the surface area. In the
absence of vortices, one has V’(‘l") =0 [see Egs. (39) and

(74)]. With the tensor V’(‘S one can construct, using

Egs. (A3) and (A4), the “electric” and “magnetic” four-
vectors Vg, and V|, respectively,

Vi = u, V. (77)

€”DaﬁuDV([)aﬂ. (78)

In addition to modifying the superfluid equation, vorti-
ces affect also the second law of thermodynamics (55),
because a certain amount of energy is associated with each
vortex. This energy should be accounted for in Eq. (55)
together with the electromagnetic contribution. The expres-
sion for de,q4, that includes the vortex contribution, reads

1 1
dgadd = EE”dD'u + EHMCZB” + V/(lEi)dW<Ei)/l
+ Wi i (79)

where the four-vectors W’(’Ei) and W’(’Mi) are analogous to
D# and H*, respectively. As shown in Sec. VIIB (see

below), they can generally be presented as

Wﬂ

(&) = WV, (80)

Wiui) = P, W i)ap- (81)

1
2
Here W’(‘l”) is some auxiliary antisymmetric tensor, which

plays the same role with respect to V’;l”) as the tensor G*

with respect to F*. It is easy to see that the third and fourth
terms in the rhs of Eq. (79) are written in full analogy with,
respectively, the first and second electromagnetic terms.
This coincidence is not accidental. As detailed in
Appendix G 2 the fourth term here is basically responsible
for the vortex energy (including its magnetic energy), while

"To be more precise, the vector V’(‘Mi) [see Eq. (78) below],
constructed with the help of this tensor, is equivalent to
mcurlV; 4 e;B.

*Note that the factor 1/2 was inadvertently omitted in the
corresponding equation (42) in that reference.
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the third term comes into play if one takes into account the
electric field generated by moving vortices. Note that in
G16 only the fourth term has been allowed for, since that
reference analyzed uncharged superfluids. In addition, in
that reference it was from the very beginning assumed that
W’(’Mi) is directly proportional to V’;Mi), W’(‘Mi) x V’(‘M1>,
which is the only viable option in the absence of other
magnetic vectors in the problem [cf. Eq. (115) in
Sec. VIIB].

Our next step will be to transform the energy de,qq in a
way similar to how it was done in Sec. V. The first two
terms in the rhs of Eq. (79) are transformed exactly as in
Sec. V, the result is given by Eq. (63). Let us analyze the
fourth term. It reads [cf. Eq. (61)]

1
WotiudViyy = Wi 5 €, dV i)
1
+ W(Mi)y 5 eﬂyaﬂv(i)aﬁduv
Lo 1
) WiV + 2
-+ u”W(,-)aﬂV?g)du,/

Vi€V (i)

1
=5 (W AV yap + 2DV (gl d ),
(82)

where the underlined term vanishes because u“du, = 0;

lWZ’; is defined by Eq. (A5). To further transform this
|

_M”V(Ei)aaﬂwt(in) = uyv(i) yaallwﬂ‘a

+ B (WY,

Collecting together the electromagnetic terms (63) and
the vortex terms (83) and (84), one obtains

1 1
—u"0, €49 = U'F,,0, < I Gra 1 lG’“‘)
dr

+ V(0. (WG + W)
= 0l (TTg), + Thry, + Tvey, + Ty
+ 0 (T, + Ty + Tlvey + Ty )D)

(85)

where the tensors 7 ?’E)D and 7 ’ZM)U are given by Egs. (64)
and (65), and

T ”W V (i) ya‘f'u uyJ—yﬁV (i)ay +g' W laV?Ei)’

(86)

(VE

Oyl Wy,
(i)va + uﬂ”yLvﬂV W (i)ay + g’lv
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equation we make use of Appendix C. Comparing Eq. (82)
with (C1) allows us to identify

0 =W,
af _ b
T =Yy
aff _ b
BY =V
A=W
hence,
= WWmnadu Vi
= V0 W)
- 8ﬂ[uy<LWI(4iO)(V(i)va - ”ﬂ”}/—]—yﬁwzﬁ)’v(i)ay)]
+ D (FWEV (i = uﬂuuuﬁvvz.’jv@ay). (83)

Looking at Egs. (82) and (83), it may be noted that the
transformation of the fourth and second terms in Eq. (79)
are identical provided that one replaces W’(‘Mi) — H'/(4n)
and V’(‘Mi) — B* [compare Egs. (61) and (82)]. Similarly,
the transformation of the third and first terms in Eq. (79)
can be obtained from one another by replacing W’(Ei) -
D*/(4r) and V’(‘Ei) — E*. With these replacements, one can

use Eq. (62) to transform the third term in Eq. (79). The
result is

i\va +u MVJ—D/;V(I/}W i)ay + g” w (Ei aV Ez))]
V(Ez)) (84)
Tl(lvM J_Wmlv - M”MyL,,ﬁW(é/)}V(i)ay (87)

are, respectively, the “electric” and “magnetic” vortex
contributions to the energy-momentum tensor (note a
summation over { = n, p here). Similarly to tensors (64)
and (65), these tensors can be represented as [cf. Eq. (66)
and (67)]

T’K/E) = J_FVW((XEI')V(EII)& - Wl(lEi)VI(Ei)’ (88)

Tl = "WV + WY, + W

(89)
Using Eq. (85), as well as Eq. (68), the definition (74),

and the equality W” “W’{ ° lW” * [see Eq. (A9)], the
entropy generation equatlon (58) becomes

083006-11



M. E. GUSAKOV and V. A. DOMMES
Taﬂ(SMM) = MUV (i) ,/[Yl'k\/Vﬂ + aaW’(g]

= [ (T, + Thyy, + Ty
+ T’(JVM)I/ - AT”D)] + au”y(Tl(lE)y + T?M)u
+ T7VE)D + TI(VM)D —AT%,). (90)

The rhs of this equation has the same structure as Eq. (77)
in G16. Correspondingly, its analysis and the resulting
equations are very similar. Using the argumentation of that
reference, one finds that, in order for the entropy to be
conserved, it is necessary to have

MDV(i)ﬂy[Yile(lk) + 30W’<lg] = 0, (91)
AT =Tg + Ty + Ty + Tiwmy- (92)

Note that AT* satisfies the required constraint (57) and is
symmetric (see Sec. VII B). As demonstrated in G16, the
condition (91) is equivalent to the following equation,
which replaces the superfluid Eq. (39) [or (70)] of the
vortex-free system,

ubv(i)ﬂzz = Iuinif(i)ﬂ’ (93)
where
’(‘) = a; LV, W (5517, (94)
1
oo — . ma
W(l) - n; [Ylkwl(lk) + aaW(,‘)]’ (95)

and a; is a nondissipative mutual friction coefficient [note
that there are no summation over i in Egs. (93)—(95)]. The
lhs of Eq. (93) is simply the four-vector V’(Ei), so that it can
be rewritten as (now in the dimensional form)

Hill;
V’ZEi) = 3 f’(‘i). (96)

Equations (92) and (93) [or (96)] are the main results of
this section. They show how the energy-momentum tensor
and superfluid equation should be modified in the presence
of vortices. These equations depend on the tensors G** and
W’(‘l”) which will be found in Sec. VII B. The symmetry of

the tensor AT* will be demonstrated in the same section.
The whole system of dynamic equations in the presence of
vortices is summarized in Appendix H.

Remark 1. In this work we are mainly interested in
the nondissipative dynamic equations. In particular, we
assumed that normal (nonsuperfluid) components of all
particle species move with one and the same velocity #*. In
principle, this condition does not guarantee that there is no
dissipation in the system. Indeed, the entropy can be
produced, e.g., because of scattering of nucleon thermal
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excitations and/or electrons off the vortex cores. This
mechanism is known as the “mutual friction”
[15,17,25,27-29,70]. Only this dissipative mechanism
has been taken into account in GAS11. To include mutual
friction dissipation into consideration, we start with
Eq. (90) and require positive definiteness of its right-hand
side. Then, following the consideration of G16 [see the text
after Eq. (77) in that reference], we find that Eq. (91) should
be replaced with the inequality

uyv(i);w[yikw?k) + aaW’(ll(;] >0, (97)

from which one obtains the same superfluid equation (93),
but with f’(l.) given by

f” = o 1"V

+ biti, 1LV (16 V(i W (1517
(Mi)

+ 7 Vo) Wins LH, (98)

AW (SJ_/IE

where «; is the same nondissipative coefficient as in
Eq. (94); ;>0 and y; > 0 are the positive dissipative
mutual friction coefficients and

Vimi) = V/(lMi)V(M")ﬂ' (99)

Note that Eq. (98) is not the most general form of f’(‘i)

satisfying the inequality (97). In principle, there could be
cross terms depending on both V’(’:) and V’(’;) (see, e.g.,

Ref. [15] for a nonrelativistic analogue of such terms).
These terms are ignored in Eq. (98) since we do not see any
plausible physical interpretation behind them. Anyway,
one should bear in mind the possibility that Eq. (98) is not
complete. In the nonrelativistic limit a more general
expression for f?’” is contained in the Appendix of

Ref. [15]. Generalization of that result to the relativistic
case is straightforward.

Remark 2. Expression (98) for f’(‘l.) can be rewritten in
terms of the magnetic four-vector V’('M

formula (53) in G16]

j as [see a similar

f# :_axﬂ

(i) — Bie" My LiaX iy + }’ie;(l,-) W?,‘)V(Mi)b

(100)

where € = Vi) /Vwi) and X7, = M, VoviaW (-
Remark 3. As it is argued in Refs. [17,25], the coef-
ficients y; (i = n or p) in Eq. (98) are most likely very small
and the corresponding terms can be neglected. Assume that
itis indeed the case and that the tensor V?’l”) satisfies Eq. (93)

with fi’l.) defined by Eq. (98). Then it can be shown (see
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remark 2 in Sec. III A of G16) that a four-vector v’(‘Li) exists,
given by,

Hinipi
v’(‘Li) = ' — oW, L + ﬁ LHa LY W iy

(101)

such that the combination Dl(/Li)V(i)ﬂl/ is identically zero,

vl(/Li)v(i)IW =0 (102)
(no summation over i here). Equation (102) is analogous to
the vorticity conservation equation of the nonrelativistic
HVBK-hydrodynamics (see Appendix A of G16) and the

four-vector v’(’Li) has the meaning of (non-normalized)

vortex velocity.

Using Egs. (96), (100), and (101), it is straightforward to
show that the spatial components v ;/c, Vg;, and Vy; of
the four-vectors v’(’u), V’(‘Ei>, and V’ZMi) are related, in the
comoving frame, by the condition

1

Vii = EvMi X VL (103)

For future convenience the latter equation is written in the
dimensional form.

Remark 4. 1t is notable that the vortex energy-momen-
tum tensors (86) and (87) are obtained in the same way
and have exactly the same structure as, respectively, the
electromagnetic tensors (64) and (65). This is a direct
consequence of the striking similarity of the electromag-
netic and vortex contributions to the energy density de,qq
in Eq. (79).

VII. SYMMETRY OF THE
ENERGY-MOMENTUM TENSOR

The symmetry of the energy-momentum tensors
obtained in Secs. V and VI is not manifest. In this section,
we prove that they are indeed symmetric. To do this it is
necessary to express the tensors G and Wfl”) in Egs. (66),
(67), and (88), (89) through the tensors F** and V’(‘l’; This
can be done by specifying the expression for the energy

density de,qq [see Egs. (60) and (79)], which is different for
the situations considered in Secs. V and VI.

A. The npe mixture in the intermediate state
(type-I proton superconductivity)

We start with the intermediate state model of Sec. V B.
Generally, since there are no vortices in the system, the
energy density € can be a function of S, n;, n,, w(l-)ﬂm/(‘w
and various invariants composed of the four-vectors D¢
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and B? in combination with the four-vectors ## and w’(’i)

characterizing the system in the field-free case." In what
follows, we assume that there are no bound charges in
the system (i.e., nonsuperconducting domains move with
the normal liquid component), so that E¥ = D*, that is &
depends on D* through the term D,D*/(87). Concerning
magnetic contribution, the simplest (and largest) invariant
allowed by the symmetry" is x = B,B"/(8x) [the factor
1/(8x) is introduced for further convenience]. We, thus,
have for de the same equation (55) with

1 10
deyq = —D,dD" + — - B,dB",

4 47 Ox (104)

where the partial derivative is taken at constant S, n;, n,,

w(i)ﬂw’(‘k), and D¥. Comparing this equation with Eq. (60),
one finds that, indeed,
E* = D¥ (105)
and
Oe
H* =yB* with y=_—. 106
yB' with y=7- (106)

Equations (105) and (106) completely determine the
tensors |G* = IF# and +G* = yLF*, and hence the
tensor G = IG* 4 LG [see Eqs. (A6), (A5), and (A9)].
Using them, the electromagnetic tensor (71) can be
presented in the manifestly symmetric form,

1
ATW = —— (EVEY — 1"YE E*
471_( a )

+ ﬁ (LsaFF — wtu*ul ugFF,,).  (107)

The phenomenological coefficient y is calculated for a
simple model in Appendix G 1.

B. The npe mixture with neutron and proton vortices
(type-1I proton superconductivity)

In this case & can depend on additional invariants

u u
composed of the four-vectors D¥, B, W(En), W(Em,

V’(’Mn), and V’(‘Mm [see Eq. (79)]. One can construct the

"*We remind the reader that ¢ is a scalar defined in the comoving
frame; it is thus invariant under Lorentz transformations.

Other possible invariants, for example, Bﬂw’(‘i B,wh,
4 )B‘se"’”d upwcBy etc. are small, because the four-

CapysttW];

vector w’(‘i> is proportional to the generally small difference
between the normal and superfluid velocities, see, e.g., G16.
Note also that the invariant u,B*, which could be used as a
building brick for constructing other invariants, is zero,
u,B" = 0; see Eq. (14).
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following invariants from these vectors

X; = BﬂVI(IMl), and Xik = V(M,)ﬂV’;Mk)/Z (l,

16 7= D,D"/(8x),
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Z; = DﬂW/(lEi), Zik = W(El)llW(Ek)/z’ X = B”Bﬂ/(gﬂ'),

k=n or p). Correspondingly, the differential of the energy density

(S, ni,ne,w(i)ﬂW’(‘k),Z,Zi,z,»k,x,xi,x,-k) is given by Eq. (55), in which

1 Oe Oe Oe 1 Oe Oe Oe
d - D,dD* D, W" — WenudWg;, +-—7=-B,dB" B, V" +—V v,
€add = 4 a + 5 a [ ] 6Zik (Ek)u (Ei) + 47 Ox + o a [ ] axik (Mk)u (Mi)
1 E E
=Dt 4aT P Wiy JdD* + [Ty Wiy, +T17D,JdWr,
1 M M M
o lr™B, + x0T MV ldBe + TR Vo, + VBVl (108)
|
where The system of Egs. (112) and (113) can be inverted and the
four-vectors D* and W” ) can be presented as
o= o 02 (109)
0z 0x . (B
) ) D' =7EB + 4al PV (116)
() _ ¢ M) _ ©0¢
r./=—, r.=—, 110
(B r(E)
r® _r® = 83; o aif TR Wi =Py P, (117)
ik ik
Comparing Egs. (108) and (79), one identifies where the quantities 7, fSE), and l:l(-f) can easily be
(E) 1(E) (E) o
w _ (E) (E)ypm expressed through y'*/, I';™, and I';;” using Egs. (112) and
B =y D+ 4l W), (112) (113). From Egs. (115) and (117) one now sees that the
. (B)yrp () oy four-vectors W’(’Ei) and W’(‘M> indeed have the form
Viey = Vi Wi + 17 D", (113) " 4esumed in Egs. (80) and (81).
Using Egs. (114)—(117), as well as Egs. (AS), (A6), and
H = yMpr +4”F VMM, (114)  (A9), one can find the tensors G** and W’(’iy),” and to
M)y (M) present the tensor AT* (92) in the manifestly symmet-
W( Mi) = Ui V(Mk) +IB (115) ric form,
|
7(E) - B) f(E)
ATH = i (EFEY — 1"EE*) — T} [(V’(’Ei)E + E"V’(’Ei)) — ZL””EQV?EI.)] [(V" V”Ek +V (EX) V >)
™M)
v o 4 va v a M Vo va v Q)
= 21"V (g Vigy)] —I——E(J_(;O,F”‘SF — wu ' ugFPF,,) + FE )[J_(;a(V’(‘SF + F”‘sV(i)) —2utu u7uﬁV(gFa7]
Fg:/[) 5 s B
+ lT [J_ga(V’(’l)V% + Vl(lk)VI(/lo;) - 214”””1/!},14/3])(1-)]}(1()&7]. (1 18)

In the absence of vortices this tensor reduces to that in
Sec. VIL A [see Eq. (107)]. In another limiting case of only
one neutral superfluid particle species (e.g., i =n) it
reproduces the tensor presented in G16 if one sets all

'°Of course, the number of possible invariants is much larger.
Here we only write out those invariants whose physical meaning
is clear to us (see Appendix G 2), but one should bear in mind that
it is straightforward to consider other possibilities.

[

the coefficients except for I S\f) to zero [see equation (79)
in that reference]. A simple microscopic model allowing
to calculate the phenomenological coefficients 77(5), y(M>,

l:l(-E) , FEM), l:ff) , and Fl(.,l:/[) in Eq. (118) is considered in

"In  particular, Wi
€aﬁﬂb”ﬂ(rgllc\4)v(Mk)a + FEM)Ba)

w _ (E) v =(E)
”W}(i) =TIy IIVl(‘k) +T; Il v

= LW’(’S + ”W’Z), where LW’(‘f) =
=TV + TP and
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Appendix G 2. This model is analogous to the model
discussed in detail in GAS11.

VIII. “MAGNETOHYDRODYNAMIC”
APPROXIMATION FOR NPE MIXTURE WITH
NEUTRON AND PROTON VORTICES (TYPE-II

PROTON SUPERCONDUCTIVITY)

General equations of Secs. VI and VIIB can be sub-
stantially simplified if the magnetic induction B is much
larger than the fields E, D, and H in the comoving frame
(hereafter the magnetohydrodynamic approximation).18
As it is discussed in Appendix G2 (see remark 1 there),
as well as in GAS11, this is a typical situation in real
neutron stars. Note also that in the comoving frame Vg;) =
(V(E,»>MV’(’Ei>)1/ 2~ (1/¢)Voi) and can be neglected in
comparison to V) [this follows from the analysis of
the superfluid Eq. (96) and its nonrelativistic counterpart in

Appendix I]. In addition, one can neglect the neutron-
related four-vector V?’Mn) in comparison to the proton four-

vector V’(‘Mp) in Eq. (114), because the lengths of these

vectors are proportional to the vortex density Nv,; [see
Eq. (G7)], which is larger for protons by more than ten
orders of magnitude. Using these facts, a number of
simplifications are possible:

(I) One can omit H* (and V’(‘ ) as we have already
mentioned) in Eq. (114). This leads to the
condition relating B* and V’(’M ) (here and below
in this section we, for definiteness, use the param-

eters y<M), FEM), Fl(,l(v[), etc. calculated for a simple
microscopic model of Appendix G 2),

(M)
Y T
Vi) =~ BY = =— B = ¢, B".

(119)
4aT M b0

Physically, this condition means that almost all the
magnetic induction is produced by the proton
vortices. Note that, from Eq. (74) it follows

V’(an) - V;(an) +epB. (120)
Comparing this equation with Eq. (119)

one sees that in the adopted approximation the
vector V’(‘Mp), which reduces to (0, m,curlV,) in

the nonrelativistic limit (see footnote 12), should be
neglected in comparison to e,B".

'8In what follows we assume that the relative velocity between
the normal and superfluid components is much smaller than the
speed of light c. As is argued in G16 (see Appendix D there), this
is not a very restrictive requirement.
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(2) Because H and D are small by assumption, one can
discard Maxwell’s equation (11), setting to zero the

four-current density J’(‘free) in all other equations,

Ty = i) = ep(n, = nJu' + ;¥ ywiyy =0,

P
(121)

that is, since u},w‘(‘i) =0 [see Eq. (25)],
n,=n,, (122)
eiYikW"Zk) = 0 (123)

(3) One can ignore the first three terms in the rhs of
the expression (79) for the energy density de,qq,
because they depend on small four-vectors E¥, DH,
H*, V?’Ei), and W?’Ei).w The last term in Eq. (79) is
large in comparison to the neglected terms, since it is
independent of these small vectors, as is shown
below. Using Eq. (114) with H* =0, as well as
Egs. (115), and (G29)-(G32), one obtains (no
summation over i here)20

(124)

so that this last term can be approximately
presented as

Ai
dsadd ~ Z }'an(Mi)V(MinV,(lMi)’ (125)

i=n,p

where 4, and 4, are given, respectively, by
Egs. (G10) and (G1 1).2] Note that the proton-related
term (i = p) in Eq. (125) reduces to ep,d,/
(m,B)B,dB* in view of Eq. (119) [here
B = (B,B")'/].

(4) One can repeat the derivation of Sec. VI with de, g4
from Eq. (125). As a result, one will derive Egs. (92)
and (93) with the following modifications: (i) The

PThe four-vector W’(‘Ei> is expressed through V’(ED and E* by
Eq. (117) and hence is small. Note that the tensor ! W’(‘; is also

small since it is in turn related to W’ZEI.) by Eq. (80).

Owe emphasize once again that the relation (124) is only valid
in the (usually adopted) approximation of noninteracting vortices,
see lAppendix G2.

In principle, the term with i =n in Eq. (125) could be
neglected in comparison to the i = p term, since in neutron stars
Vivn) < Vomp) and 4, ~ 4,. However, we prefer to retain this
term here in order to describe situations when protons are normal
and i = p term is absent.
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first three tensors in the rhs of Eq. (92) will not
appear in the approximation adopted here, since they
are smaller than the fourth term (in principle, this can
be independently checked by direct comparison of
the elements of four these tensors). We thus left with

ATH =T (126)

(i) The four-vector W’(‘i), entering the definition of
f’(‘l.) in Eq. (93), will be modified (no summation
over i is assumed),

1

uo_ o

Wiiy = o aenty + 0V
1 a a

= - Wil + o[V + VG

1 L\ e
~ ”_z [Yikwl(‘k) + aa W(,‘)]
1
= ;{Yik“/fk) + aa[eyﬁﬂauﬂW(Mi)y]}

1

(127)

[see the footnote 19, Eqgs. (AS), (A6), and (A9)

and note that we neglect the small term depending

on W’(‘Ei) here]. All other equations remain exactly
the same.

Summarizing, the system of simplified “magnetohydro-
dynamic” equations for npe mixture consists of the
energy-momentum and particle conservation laws (16)
and (17) with j’(’j) given by Egs. (21), (22) and T* given
by Eq. (56) with AT* from Eq. (126). When calculating
AT* one should express J‘W’(‘Z’) through Wiy, which is in
turn should be found from Eq. (124). These equations
should be supplemented by Maxwell’s equation (10), the
second law of thermodynamics (55) with de,qq defined in
Eq. (125), and by the conditions (24), (25), (122), and
(123). Finally, the system is closed by the neutron and
proton superfluid equations (93) [or (96)], in which fl(i') is
defined by Eq. (98) [or, equivalently, by Eq. (100)] and W’(’i>
is given by Eq. (127). The nonrelativistic version of some
of these equations is presented in Appendix I.

Remark 1. Tt is interesting that, using Eqgs. (100) and
(119), the proton four-vector f’(‘m can be represented in

terms of B,

fl(‘ﬂ) ~ _al’X;(lﬂ) = Bpe e o)X (py + epy,,e’(‘p)W?p)B,l,
(128)
where e ) ~ B"/B and X{; ~ e, Mu, ByW i),
Remark 2. Note that the proton four-vector w‘(‘p) can be

found from the condition (123). The proton superfluid
equation can thus be used to express the electric four-vector
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E*. Using Eq. (74) in order to present V’(‘Ei) as V’(‘Ei) =
WE;’) + e;E*, and substituting this expression (for i = p)
into Eq. (96), one finds

[ Hp

__ L p ou
B ==V = fr
P

¢p

(129)

where f’(‘p) is given by Eq. (128). Together with Maxwell’s

equation (10), this equation allows one, in principle, to
exclude E* and obtain a closed equation for B only (see
remark 1 in Appendix I, where such an equation is derived
in the nonrelativistic limit).

IX. SUMMARY AND CONCLUSIONS

This paper is devoted to studying the dynamic properties
of superfluid-superconducting mixtures in neutron stars
accounting for the possible presence of electric and
magnetic fields, as well as neutron (Feynman-Onsager)
and proton (Abrikosov) vortices. Our results and main
conclusions are summarized as follows:

(1) Using the method and ideas from Refs. [29] and

G16, we derived a set of fully relativistic equations
(see Appendix H) describing a charged mixture
composed of superfluid neutrons, superconducting
protons, and electrons (the simplest neutron-star
composition). Generalization of these equations to
more exotic compositions (including, e.g., muons,
hyperons, etc.) is straightforward [24,38,42,43].

(2) The proposed equations can be used at finite temper-
atures; i.e., they allow for the possible presence of
neutron and proton (Bogoliubov) thermal excita-
tions. This is especially important for a sufficiently
hot neutron stars, such as magnetars, whose internal
temperatures can be ~10% K, i.e., of the order of
the nucleon critical temperatures 7. [1,71] (we
remind that at 7 > T; nucleon species i = n, p is
completely nonsuperfluid).

(3) The derived dynamic equations are “nondissipative”
in a sense that to obtain them we assume that normal
(nonsuperfluid) liquid components (electrons, nu-
cleon thermal excitations, and entropy) move with
one and the same velocity (i.e., diffusion effects
are ignored). However, we do take into account
the mutual friction dissipation [see Eqgs. (97) and
(98)]. Extension of our results to a fully dissipative
problem is rather easy and will be reported
elsewhere.

(4) Estimates show that protons form type-1I super-
conductor in the outer neutron-star core, but become
of type-Iin the inner core (e.g., GAS11, [66,72-74]).
The dynamic equations are derived and analyzed
in both these cases with the special emphasis on
the more elaborated type-II case. It seems that the
dynamics of the type-I superconductor is discussed
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for the first time (in the astrophysical context), but
the analysis presented is rather brief and simplified
and should be considered as a first step towards the
solution of this complex problem.

Our main results include the “electromagnetic”
energy-momentum tensors T’(‘E) (H20) and T’(‘KD

(H21), and the nucleon “vortex” energy-momentum
tensors 7" ’(’{’,E) (H27) and TI(CM) (H28), as well as the

“superfluid” equations for the cases of type-1 (H23),
(H24) and type-II (H30) proton superconductivities.
Remarkably, the vortex energy-momentum tensors
have the same structure and are obtained exactly in
the same way as the electromagnetic tensors (H20)
and (H21) (see remark 4 in Sec. VI).

As a byproduct of our work, it is shown that for normal
matter the sum T?’Q + TI(JK’I) of the electromagnetic

energy-momentum tensors is directly related to the
so-called Abraham tensor 7%, of the standard
electrodynamics of continuous media [46,68,69].
Thus, our results can be considered as one more
derivation of this tensor based on the conservation
laws and the requirement that the entropy of a non-
dissipative closed system remains constant.

The equations derived in this paper [in particular,
the expressions for the electromagnetic and vortex
energy-momentum tensors 7" ?‘S, T ?‘1\”4) T ’(‘{’,E), and
T’(‘\”,M)] depend on the four-vectors E¥, B¥, V’(‘Ei),

V’('Ml.) and the complementary four-vectors D¥, H*,

W’(‘Ei), W’(‘Mi). The physical meaning of these four-
vectors is described in detail in the text. For example,
the spatial components of E¥, B¥, D, and H"
reduce, respectively, to the electric field, magnetic
induction, electric displacement, and magnetic field
in the comoving frame moving with the normal
liquid component (see Sec. I1C); the other four-
vectors are related to vortices.

The four-vectors mentioned above are not all
independent. To express the quantities D¥, H*,
W’('El.), W’(‘Mi) through E¥, B*, V’ZEI.), V’(Mi>, one
should specify, as in the usual electrodynamics of
continuous media, the microphysics model for the
mixture. This is done, for two simple models, in
Appendix G (in particular, one of these models
analyzes the system of noninteracting vortices).
However, it is important to point out that the general
equations obtained here will likely remain un-
changed if one considers more complex models.
The only thing that should be modified in the latter
case is the relations between the fields D*, HH*,
W’(‘Ei), W’(Mi) and E*, B*, V’(‘Ei), V’(‘Mi).
It is instructive to compare our results with the most
advanced nonrelativistic magnetohydrodynamics
of GAS11, describing superfluid-superconducting

PHYSICAL REVIEW D 94, 083006 (2016)

mixtures. In comparison to GAS11, we (i) take
into account the relativistic and finite-temperature
effects, (ii) provide a general framework allowing
one to easily incorporate new physics into the
existing dynamic equations, and (iii) demonstrate
that the electric displacement field D is not generally
equal to the electric field E, contrary to what was
assumed in GAS11 and some other papers starting
from the work by Mendell [15] (see also Ref. [17]).
(9) The rather complex general system of equations
derived in this work can be substantially simplified
for typical neutron-star conditions, for which a kind
of “magnetohydrodynamic” approximation is justi-
fied. This approximation is analogous to the usual
magnetohydrodynamic approximation for ordinary
stars. The corresponding equations are derived and
analyzed for a simple model of Appendix G2 in
Sec. VIII; their nonrelativistic limit is presented in
Appendix I, where we also derive a “magnetic field
evolution equation” (124). It is shown that the latter
equation coincides with that proposed in Ref. [75],
but differs from the evolution equation derived in
Ref. [76] using magnetohydrodynamics of GAS11.
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APPENDIX A: SOME USEFUL DEFINITIONS

Assume we have an arbitrary antisymmetric tensor A**,
which can be represented in the matrix form as

0 Ao A Ans
A — — Ao 0 A A (A1)
—Ap —Anp 0 Ap
—Apg —Aiz —Ap 0

Here and below all matrix representations of tensors/

vectors are given in the comoving frame, i.e. in the frame

in which the normal four-velocity is u* = (1,0,0,0).
The tensor A*, dual to the tensor A, is

1
34”” = Ee’ul/aﬁAaﬂ

0 A23 _A13 -AIZ
_A23 0 _-/403 AO2 (A2)
-A13 AO3 0 _AOI
_-'412 _-AOZ -’401 0
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Using these tensors, one can construct the “electric” A’(‘E) and “‘magnetic” A’(’M) four-vectors [77]

_A’(‘E) = u, A" = (0, Ap1. Anz, Ags),

1
A/ZM) =u, M — Eeﬂmﬁ”u/laﬁ = (0, A23, —.A13, A]z)a

and two additional tensors

0 0 0
0 0 Aip
LA = Py, A = LF1YP A, =
M) 7 0 —Ap 0
0 —-Ap —-Ax
v v v v a va _AOI O
IAm = —y A’(‘E) + u"A(E) = —uu A + ' u A = A, 0
—Apy 0
with the properties
u, A" =0,
J‘m/”Aﬂy = 0’

where 1# = g" + u*u” is the projection operator and e*#* is the Levi-Civita tensor, €

AM can be decomposed as

A = L w1l g,

0123

0
Az
Az

0

Ao
0
0
0

s

Aos
0
0
0
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(A3)

(A4)

(A7)

(A8)

= 1. One can see that the tensor

(A9)

APPENDIX B: COMPARISON OF NOTATION USED IN THIS PAPER AND IN G16

Some of the parameters introduced in G16 and in the present paper differ only by the index i, since here we have two
superfluid/superconducting particle species [neutrons (i = n) and protons (i = p)], whereas G16 deals with one particle

species. Such parameters are not provided in the table below.

Gl6 This work Parameter name

F V’(‘I”) Vorticity tensor

o iV’(‘i’“) “Magnetic” part of the vorticity tensor

H* V/(IMU “Magnetic” vorticity-related vector

—E# V’ZE,.) “Electric” vorticity-related vector

V’(’L) v’(‘u) Vortex four-velocity (non-normalized)

H Vi) Length of the four-vector V’(‘Mi) (or H")

H Vi Spatial part of the four-vector V’(‘Mi> (or H")

-E VEi Spatial part of the four-vector V’(‘Ei> (or —E*)

Vi Vi Spatial part of the vortex four-velocity v’('u) [or V’(‘L)]
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APPENDIX C: ENERGY DENSITY
TRANSFORMATION

Assume we have a term in the expression for the energy
density which takes the form

d&’pan = (Oa/jdfaﬂ + ZBaﬂAa”uﬁdu},), (Cl)

N[ =

where 0%, A% and B are some arbitrary antisymmetric
tensors; F% is the antisymmetric tensor satisfying the
condition®

I FP =0, (C2)
and u* is the four-velocity of normal liquid component. Our
aim will be to transform the expression —u#0, &, to some
standard form [see Eq. (C7) in what follows]; this trans-

formation is used several times in the main text of the paper
(see also G16). Using (C1), one has

—ut0, e

1
upart =~ w00, F oy — 't B,s A% 0u,.  (C3)

The first term in the rhs of Eq. (C3) can be transformed as

1
W OPY,F oy =t F 0,0 = 0, (w O" F, )

+ 0, U’ (0" F ). (C4)

To obtain this expression, we used Eq. (C2), which is
equivalent to

8Mfaﬁ - 86,]:”/, + aﬁ]:aﬂ, (CS)

and the fact that both tensors F*¥ and OM are

antisymmetric.
The second term in the rhs of Eq. (C3) can be rewritten as

— U B A" 0,u,
=— [’ By A™ + ' u ul u, By A710,u,
=—wu’ 1,3 AP B,,0,u"

=—wu’ L s AP B, 0,u" 40, (uwuu Lz APB,,), (C6)

where the wunderlined terms equal zero (because
u,0,u’* =0 and u’l,;=0); they are added here in
order to symmetrize the corresponding energy-momentum
tensor 7% and to satisfy the condition wu,u, AT =0
(see the main text). Combining Egs. (C4) and (C6), one
obtains

*For example, it can be the electromagnetic tensor F% or the
vorticity tensor V’(’S, see Egs. (10) and (75).
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—ut 0,y = U F 0,0
— O, [ (0" F yy — ' u? Ly A By, )]

+ O u* (OF*F o — wu? Ly AP B,,).  (C7)

APPENDIX D: ENERGY-MOMENTUM
TENSOR (71) AND ITS RELATION
TO THE ABRAHAM TENSOR

As mentioned in Sec. V, the derivation of the energy-
momentum tensor (71) can also be applied to ordinary
(nonsuperfluid) matter. In other words, this tensor should
have a well-known counterpart in the literature. Here we
explore this issue in more detail.

We consider a normal (isotropic and homogeneous in
the comoving frame) dielectric “fluid” with the energy-
momentum tensor

™ = (P + e)u'u” + Pg" + ATH (D1)
and the second law of thermodynamics
1 L, 1 ’
de = TdS + pdn + EEﬂdD + EH”dB . (D2)

In Eqs. (D1) and (D2) AT* is given by Eq. (71)*; n is
the “particle” number density [it can be composite
particles; in the case of a few particle species j the
second term in Eq. (D2) should be replaced with
> jHdn;l; p s the relativistic chemical potential; and P
is the pressure,

P=-e+un+TS. (D3)
Since the medium is isotropic and homogeneous, the
displacement vector D and magnetic induction B can be
presented, in the comoving frame, as

D =¢E, (D4)

B = jiH, (D5)
where & and f are the corresponding permeabilities
(scalars). We assume, in addition, that the permeabilities
are field-independent, but can generally be functions of n
and S. Because the time components of the four-vectors D*,
E*, B*, and H* all vanish in the comoving frame, it follows
from Egs. (D4) and (D5) that

“Note that for a dielectric fluid the free-charge four-
current density J’(free) in Eq. (11) equals zero, J’(free> =0,
hence the first line in the rhs of Eq. (63) is zero too and
the derivation of Sec. VA can indeed be used to obtain ATH

in the form (71).
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D+ = £EX, (D6)

B' = jiH". (D7)
Using Egs. (D6) and (D7), Eq. (D2) can be readily
integrated and presented as

1
&€= 8ﬂuid<n’ S) + E(EaDa + HaBa>

1
= enua(n ) + 5 (BELE" + AH,HC),  (DS)

where equiq(n,S) is the fluid energy density, the same
function of n and § as in the absence of the electromagnetic
field. Combining Eqs. (D3) and (D8), one obtains

1
P = —enia(n. S) + un + TS — — (E,D* + H,B®). (D9)
T

8

The chemical potential u and temperature 7 in this equation
still depend on the fields D* and B*. As follows from
Egs. (D2) and (D8),

u(n, S, D,D*, B,B%)
_ e(n, S, DD, B,B)
B on
. 1 £ 1
— aeﬂuld(”’ S) o (88(”, S) EaEa + aﬂ(an’ S) HaHa)
n

on 87 on

= pquia(n, S) + ou, (D10)
where pgiq(n, S) = Oenuiq(n, S)/0n is the same function
of n and § as in the system without the electromagnetic
field and ou is

1 (0é&(n,S) oi(n,S)
=—-— E E” H,H* ). D11
on 87 ( on “ + Oon “ (D11)

Similar formulas can also be written for the temperature,
T = Tpuia(n, S) + 6T, where

5T = — (a‘g("’ S g pe 4 S0-S) HO,H“>. (D12)

87\ oS a8

Substituting Eq. (D10) and similar equation for 7 into
Eq. (D3), we arrive at

1
P = Pﬂuid + (Sﬂi’l + 5TS - 8_ (EaDa + HaBa), <D13)
T

Where Pﬂuid = —Efid + Miluid? =+ TﬂuidS- NOW, using equa-
tions derived above one can present Eq. (D1) in the form

™ =T

(i) T 7 (Em)- (D14)
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where T’(‘guid> = (Ppuiq + €nuia) ' 1* + Pauiqg is the fluid
energy-momentum tensor (the same as in the absence of

electromagnetic field) and 7 ’(‘];M) is the electromagnetic

tensor in the medium,

Tﬂ

1
ey = L (8 + 8TS) = o ¢, (E,D" + H,B%)

o u
+ T(E)V + 'T(M)y
1
= LM:/((Sﬂn + 5TS) + 8_gﬂy(EaDa - HaBa)
¥/
1
(G F b Ly (F9G,, — GF,)]
(D15)

It is easily checked that this tensor equals to the so-called

Abraham tensor, T’(‘Zbraham) [46,68,69],
TI;];M) = Tl(l:braham) = T’(llf/linkowski) + (%A) - L‘f(‘M))”U’
(D16)
where T’&i akowski) 18 the Minkowski tensor [46],
T Minkowski) = L (3un + 0T'S)
+ i (FﬂyGW - % g’“’Fy(;G?’&) . (D17)

and the four-vectors d(‘ A) and g’(‘M) are

1
Ay = 3¢ EHp, (D18)

1
I = 4—eﬂwaﬂuDDQBﬁ. (D19)
T

The latter four-vectors reduce, in the comoving frame, to

(0.8a) = (O,E:”H), (D20)
(0.gm) = <O,D 4>;B> , (D21)

where g, is the so-called Abraham momentum density (it
coincides with the energy flux density) and gy, is the
Minkowski momentum density. In the comoving frame

the tensor T’(‘EM) [= T’(‘gbmham)] can be schematically

presented as

v v EEM 8aA
T;(lEM) = Tl(lAbraha.m) = ( R ) (D22)
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where ey, is the energy density and 6/ is the stress tensor

of the electromagnetic field (I, m =1, 2, 3),
1

€EM = o (EE* + pH?), (D23)
V3

1 E? & &
olm 2 (E'D™ + H'B™) — [8— <e - n% - S@)

s 7 on_ " 08
H? [ ofi oji m

and 6" is the Kronecker symbol. To obtain Eq. (D24),
we express ou and 67 with the help of Egs. (D11) and
(D12). Usually, one accounts only for the dependence
of &€ and ji on n [46]. In the latter case Eq. (D22) reduces to
the standard equation for Abraham tensor (see, e.g.,
Refs. [46,69]).

APPENDIX E: GENERAL FORMULAS FOR
ISOLATED NEUTRON AND PROTON VORTICES

Here we briefly review the properties of isolated neutron
and proton vortices taking into account the entrainment
effect [26] and closely following Refs. [11,15], GASII1,
and G16. Note, however, that our consideration differs
from that in Refs. [11,15] and GASI11 in three aspects:
(i) we use a bit different (but equivalent) formulation of
superfluid hydrodynamics; (ii) we consider the relativistic
npe mixture, and thus employ relativistic entrainment
matrix instead of its nonrelativistic counterpart [26]; (iii) we
do not assume the zero-temperature approximation.
Although below we make use of the London equations,
one should bear in mind that it is not a very good
approximation when the particle coherence length becomes
comparable to their London penetration depth [59,67].

1. London equations and their solution

Assume that a neutron i = n or proton i = p vortex is at
rest in the chosen coordinate frame and there are no
external (superfluid and normal) particle currents and
magnetic field at the spatial infinity. We also assume that
all the velocities generated by the vortex are nonrelativistic
(but, at the same time, equation of state is relativistic), so
that one can use nonrelativistic expressions for, e.g.,
particle current densities. All equations below are written
in dimensional units.

Consider, for example, a proton vortex (i = p; the case
i = n can then be obtained by exchanging p = n in all
formulas). In the presence of the vortex p the gradient of
the scalar ¢, which is proportional to the wave-function
phase ®, of the Cooper-pair condensate (¢, = ®,/2), is
given by (e.g., G16)

(4
p, =22,

2r (E1)

PHYSICAL REVIEW D 94, 083006 (2016)

where e, is the unit vector in the azimuthal direction (¢ is
the polar angle); r is the distance from the vortex; and
a =1, 2, 3 is the space index. Using Eq. (40) one then has

Wiy, = hcdp, — e A, (E2)
where we make use of the fact that u* = (0, 0,0). Similarly,
for neutrons one has

¢, =0, (E3)

W?n) = —e,AY,

(E4)
(we do not set ¢, =0 in order to rewrite easily these
formulas for neutron vortex if necessary), so that the total
electric current density is [see Eq. (33)]

Jiree = ce,-Y,-kwE’k) = a1A" + a0, (ES)
where the parameters a; and a,

ay = —c(eiY,, +2e,e,Y,, +e3Y,,). (E6)

ay = hc*(e, Y, +€,Y,,) (E7)

are constants since we neglect small dependence of Y;; on r
(see, e.g., Ref. [25] and G16 where a similar approximation
is discussed). Now, using Maxwell’s equations (3) and (4)
with H = B, one arrives at the following equation for the
vortex magnetic field B

4
_AB="T" [a1B + mase 5(r)], (E8)
C
or
1 43 0
AB- B = —5—’;@6(}’), (E9)
p P

where 5(r) is the two-dimensional delta-function in polar
coordinate system (r,¢); e, is the unit vector along the
vortex axis; and

1 4ra

6—25— c ! :47Z(62Ynn+2enepynp+e%)Ypp)’ (Elo)
14

b= mheletm oY) (E11)
b a; e%Ynn + 2enepY’lp + e%YPP

Here 5, is the London penetration depth and (;Aﬁpo is the
magnetic flux associated with the vortex (see below). The
nonrelativistic limit of these equations can be reproduced
if one takes into account that then Y — py/(m;mic?),
where p;;, is the entrainment (or mass-density) matrix
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[26,54-57]. Equation (E9) can easily be solved [59], the

result is
ol = )€z
5y

where K(r) is the MacDonald function. One can verify
that, indeed, qAﬁpO is the total vortex magnetic flux,
j:o‘” B(r)2xrdr = qASPO. Using (E12), one finds: curl B =
¢p0/(2ﬂ52)K1(r/5p)e(p, and hence from Egs. (4) and (ES)

-tz

P P

_ & PO
27:5%,

B(r) (E12)

(E13)

so that Egs. (E2) and (E4) can be rewritten as

hc 6(270 erf?o r
a —__— (1] -2222 PPPK, [ — E14
Yip) 2r( whe >e‘”+ 225, '\6,) " (E14)

. en$p0 I 1 r
v == 1555 e

P P

(E15)

For neutron vortex similar formulas can be obtained by
exchanging p = n in Eqgs. (E1)—~(E15). Note that, in the
case of protons, the first term in the rhs of Eq. (E14)
equals zero.

2. Vortex energy

Neglecting a small contribution from the vortex core, the
general expression for the vortex energy per unit length is

R 1
Ey = / 5 [Y,uWh +2Y,,w,w, + Y, wilrdrde

BZ
+ / —rdrdep,
8

where w; = [w(,,wf, . w{, ]. The first integral in this equa-

i

(E16)

tion is the kinetic energy of superfluid currents [15,43]; the
second integral is the magnetic energy, it is generally
smaller (e.g., GAS11). Equations (E12), (E14), and (E15)
allow one to calculate the integrals in Eq. (E16) and to
obtain the following approximate expressions for, respec-
tively, proton Ey » and neutron Ey, vortex energies per unit
length,

. 5
By, ~ % R2c2Y,, In <§_P> , (E17)

P

. n (Y Y, =Y2) (b
Ev ~Zp2o2 e T, (20 E1l
Vn 4flC Y n éj ( 8)

pp n

In these formulas &, and £, are, respectively, the proton
and neutron coherence lengths [15] (effective sizes of the
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vortex cores) and b,, is some “external” radius of the order
of the typical intervortex spacing (see, e.g., Refs. [25] and
G16). In the nonrelativistic limit, these formulas reduce
to the corresponding expressions (Al12) and (A18) of
Mendell [15].

Equations (E17) and (E18) are derived under assumption
that a neutron (proton) vortex is at rest in the comoving
frame [i.e., in the frame in which u* = (1,0,0,0)]. As itis
argued in G16 in application to uncharged superfluids, the
same equations also apply to moving vortices, provided
that the difference between the macroscopic (smooth-
averaged) normal and superfluid velocities in the system
is much smaller than the speed of light c¢. The latter
condition is always satisfied in neutron stars (see G16
for details). Thus, it is justifiable to assume that Eqgs. (E17)
and (E18) represent correct vortex energies, independently
of whether vortices move or not.

APPENDIX F: BOUND CHARGES IN THE
PRESENCE OF VORTICES

The aim of this appendix is to explain why the
displacement field D is not generally equal to the electric
field E in the system with vortices. In what follows, it is
assumed that we sit in the comoving frame, i.e. the frame
associated with the normal liquid component. Consider, for
example, a single proton vortex directed along the axis z of
the Cartesian coordinate system xyz and moving with the
velocity vp = v e, + vy .e,, where e, and e, are the unit
vectors along the axes x and z, respectively. In the rest
frame of the vortex its magnetic field B(r) is given by
Eq. (E12). Correspondingly, as follows from Eq. (2), in
the comoving frame it generates the electric field (e.g.,
Ref. [78]),

E:—%vaB(r), (F1)

(we assume that |v | < ¢, which is always the case [79];
the same formula can be obtained by making Lorentz
transformation from the vortex rest frame to the comoving
frame). An associated charge density, p., induced in that
frame, is found from Maxwell’s equation divE = 4zp,,

sin @, (F2)

where ¢ is the polar angle in the xy-plane.
Correspondingly, the dipole moment of the vortex segment
of length Az is given by

ULx 4

where (2),,0 is introduced in Eq. (G13) and e, is the unit
vector along y. Now, assuming that there are many vortices
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moving with one and the same velocity v;, the dipole
moment of the unit volume is

PVNV UL A
= E= =5 ey
Az 4r’ch?

(F4)

[see Eq. (G6) for a definition of Ny, ]. It is easily checked
that P and the average electric field E, generated by
vortices, are related by the standard condition [45],
E = —4zP, which should take place for any homogeneous
system in which all currents are bound, so that D = 0. We
come to conclusion that the electric field of moving vortices
should be considered as produced by bound charges,
similar to how their magnetic field is produced by (vortex)
bound currents. A further implication of this observation
can be found in Appendix G 2.

APPENDIX G: DETERMINATION OF THE
PHENOMENOLOGICAL COEFFICIENTS
OF SEC. VII FOR TWO SIMPLE
MICROSCOPIC MODELS

Our aim here will be to determine the exact form of
Eq. (55) (or, equivalently, to find an expression for de,4q) in
two situations considered above (the intermediate state and
“vortex” state of npe mixture). This aim can be achieved by
specifying a microphysics model for the energy density of
the system. Below, for illustration, we consider two very
simple microphysics models (in particular, the model,
considered in Sec. G2 was studied in GASI11), but one
should bear in mind that the very same approach can be
used to formulate dynamic equations for more elaborated
models.

1. Intermediate state of a nonrotating npe mixture
(type-I proton superconductivity)

Assume we are sitting in the normal-liquid (comoving)
frame in which nonsuperconducting domains (flux tubes)
are at rest. Let us calculate the coefficient y in Eq. (106),
which allow us to determine de,qq from Eq. (104). In what
follows, instead of ¢ it will be more convenient to deal with
the (Helmholtz) free energy density, F =¢ —TS.

The magnitude of the field in a flux tube coincides
with the critical thermodynamic field A [45], it is directed
along the average magnetic induction B, and can be found
from the following approximate formula [67],

H;

P8

F F (G1)

nonsp

where F,,, 1s the free energy density of nonsupercon-
ducting matter in the flux tube** and F op 18 the free energy
density of the surrounding (superconducting) matter, it is

It does not include the energy of the magnetic field [67].
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the same function of thermodynamic quantities as in the
absence of the magnetic field.

Now, introducing the volume fraction occupied by
nonsuperconducting domains, x,qep, and following the
consideration of Refs. [45,67] (in particular, neglecting
all striction effects), it is easy to obtain an expression for
the macroscopically averaged free energy density F of the
npe mixture in the intermediate state,

2

H;
F~ FSp + —— Xnonsp-

¥ (G2)

On the other hand, magnetic flux conservation requires
that the average magnetic induction B to be given by
|B| = HXponsp- Hence, Eq. (G2) can be represented as [45]

H_|B| H )
F%FSP+Z7:FSP+4—;(BﬂBM)1/ . (G3)
The latter equality is written in an explicitly Lorentz-
invariant form; B* is given by Eq. (14). Now, using
Egs. (55), (104), (G3), and the definition F=¢—TS,
one can find that the macroscopic parameter H* of the

phenomenological theory of Sec. VII A is

H" = yB, (G4)
where
H,
"B )

Remark 1. The model discussed here and in Sec. VII A
is designed for describing the nonrotating npe mixture in
the intermediate state. Generalization of the model to
allow for rotation and neutron vortices is rather straight-
forward and can be done along the lines discussed in
Appendix G 2.

2. The npe mixture with neutron and proton
vortices (type-II proton superconductivity)

We follow here the approach similar to that described in
Sec. IV.2 of GAS11 and in Appendix D of G16. We work
in the comoving frame and neglect vortex-vortex inter-
actions in all calculations. Assume we have a bunch of
parallel neutron or proton vortices with the intervortex
spacing b; (i = n or p). The parameter b; is related to the
average number of vortices Nv; per unit area by the formula
(see, e.g., Ref. [25] and G16),

1

po L
"7 N

(G6)

On the other hand, as follows from Egs. (76) and (78)
[cf. Eq. (D9) of G16],
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€ Vel 1
N = — = — a .
Vi 2rh 7h Vo

, (G7)

where a, b, and ¢ are the space indices and we use
dimensional units. To obtain this formula we perform
integration in Eq. (76) over the unit area in the plane
perpendicular to vortex lines. The areal density Ny, is
defined in the comoving frame. It is thus a Lorentz invariant
and it can be rewritten in an explicitly Lorentz-invariant
form as

1 1

Ny; = s Vo Vimiy = EV(MI-) (G8)
[see Eq. (99) for the definition of V(y;)]. For an uncharged
fluid V) reduce, in the nonrelativistic limit, to
m;|curlV;|, where m; is the mass of particle species i
and V; is the superfluid velocity.

Using Egs. (G6), (G8) and (E17), (E18), the vortex
energy density &,,cx; Can be presented as™

Ev;‘ Ew _ A
Evortexi — ﬂ—blz = h V(Mi) = EV(Mi)’ (G9)
where
1 o
Ap :thzmprp ln<§—p>, (G10)
P

1 YnnY - Y%l bn
- thzmn (;”—”)m (—) (G11)

pp
In the absence of entrainment (Y,, = 0) or for a one-
component liquid Eq. (G11) reduces to the parameter A
defined in Eq. (D10) of G16. This parameter is, in turn, the
relativistic generalization of the parameter 1 introduced in
Refs. [25,29].

The contribution of vortex magnetic field By; to the total

magnetic induction can be found the same way as €,qyex;
[cf. Eq. (50) of GAS11],

- Vi ¢
By; = ¢ioNvi M _ —OV(“M,»>,

12

where V?Mi> /Vmiy is the unit vector along the local

direction of vortex lines, while (%0 and q3n0 are [see
Eq. (E11)]

25Strictly speaking, this is the vortex energy obtained under
assumption that the vortex is at rest in the comoving frame. Thus,
it neglects, for example, the contribution to the energy density
from the electric field generated by a moving vortex (see
Appendix F). All such contributions are small and can be ignored,
as it is emphasized in the end of Appendix E 2.
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bpo=—. (G13)
€p
. hcY,
o =212 (G14)
ep Ypp

Similarly, the contribution of the vortex electric field Ev;,
to the (averaged) electric field E is (see Appendix F)

1 Pio o
Ey; = _EvLi XBy; = —Vw; XV = %in’

G15
nhe ( )

where vy ; is the velocity of vortex species i. To obtain the
last two equalities in the rhs of Eq. (G15) we made use of
Eqgs. (103) and (G12).

Having determined &,,;, Our next step will be to write
down the total energy density ¢ of the system in the
comoving frame. As it is discussed in detail in GAS11, it is
the sum of five”® “noninterfering” terms (see also G16 for a
similar discussion of ¢ in an uncharged fluid),

&€= gﬂuid(nrn ny,ne, S, W(i)um/(lk)) + Eyortexn

B? E}
+8v0rtexp +_L+_L

) Gl6
8t 8« ( )

The first term here is the same as in the absence of vortices
and magnetic field in the system; it consists of the internal
energy of the fluid at rest plus kinetic energy of superfluid
currents (i.e., terms depending on w; ﬂw’(k)). The differ-

ential of &q,;4 contributes only to the first four terms in
Eq. (55) and does not affect de,qq. Thus, this term is not
interesting for us here. The second and third terms account
for the vortex energies, including the magnetic energy of
vortices. Further, the fourth term represents the magnetic
energy density of the so-called “London field,” which is not
associated with vortices. The London field can be nonzero
even far from vortices, and for our model it equals
BL :B—an _BVp (G17)
[see Eq. (G12) for the definition of vortex contribution
to magnetic induction]. Generally, this field is very
small. For example, for a uniformly rotating one-
component vortex-free superconductor By ~ —2mcQ/e =
-2 x 1072[Q/(100 s~1)] G, where Q is the spin frequency,
and to make the estimate we take m = m,, and e = e, (see,
e.g., Ref. [15] and GAS11 for more details). Finally, the last
term in Eq. (G16) is similar to the fourth term, but describes
the electric energy density of matter, not associated with
vortices. Similarly to Eq. (G17), it can be presented as

GAS11 considered only the first four of these terms and
ignored the last one since that reference assumed (incorrectly)
that there are no bound charges in the system.
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EL - E —Evn _EVp‘ (GIS)

The two last terms in the rhs of Eq. (G16) can be rewritten
in the manifestly Lorentz-invariant form, Bj/(87)=

B(.),B(,/(87) and E / (87) = E (1), E{; , / (87), if we intro-
duce the London field four-vectors B’(’L) and E’(L),

Ho H H

B(L) = Bt — B<Vn) - B<Vp), (G19)
o pu_ pt _pH

E(L) = [+ E<V”> E<Vp), (G20)

where the corresponding vortex-related four-vectors are
defined as

¢10

Blyy =V (G21)
bio

" i

Elvy =2 Viey (G22)

It is easily verified that in the comoving frame the time
components of these four-vectors B’(‘L), B’(‘Vi), E L’ and E’(‘m
are all zero, while their spatial components coincide with
those of the three-dimensional vectors By, By;, Ey, and Ey;;,
respectively [see Eqs. (G12), (G15), (G17), and (G18)]*
Using these definitions as well as Eqgs. (G9) and (G16),

the second law of thermodynamics (55) takes the form

Y; .
de =TdS + p;dn; + p.dn, + de(w’(i)W(k)a) + dégq,

(G23)
where
Oequia 1 0k 1 9o
— T fluid T ot e WV b
S +kz m, 05~ MO 4225 95~ M Mk
(G24)
_85ﬂuid 1 Ol 1 09;5/(0 "
i On; +kznp{m_kaniV(Mk) ~4’h On; B(L)”V(Mk) ’
(G25)
0O .
u, = gimd, (G26)
YNote also that when protons are normal, one has Y,, = 0
[52], hence ¢,o = 0 and, consequently, B/(an) = E/(an) =0.
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Oeqia { 1 oy
Yy =207—F——+2 e B 4
R CTAT 12,7 R
1 0o }
_ 0B Vot (G27)
47T2h a[w((,‘)w(k)a] (L)u (M)
dedd: ZLVMI{ A%
’ k=n.p mkV(Mk) (MO i
1
+ B [dB” P dViyy, ¢"° Vi ]
1 b, Do
+E[ £V — ”;;)Vl(lEn) p Vﬂ } Ewy- (G28)

In Egs. (G24)—((G28) the parameters &qyiq, 4;, and (]3,-0 should
be treated as the same functions of S, n;, n,, and W{(I,‘)W(k)a as

in the absence of vortices and the magnetic field. The
underlined terms there are generally small and can be
neglected. The terms underlined once are small because
they depend on the tiny London field B" [see Eq. (G19)];

the term underlined twice is small because A; 1s a very weak
function of W((l,')w(k)a in the regime when the dependence of

Y on the difference between the velocities of superfluid and
normal liquid components can be neglected (e.g., G16). The
second term in Eq. (G28) also depends on B’(‘L) and can, in

principle, be omitted. However, we keep it in what follows
because it is this term which makes H* nonzero. Comparing
(G28) with the general expression (108) for de,yq and using
Egs. (114)—(117), one finds

M = 7E) =1, (G29)
r™ = fF = ﬁ—z‘% (G30)
F'(]l:d) B miéi(Mi) ¢ floifg ’ (@30
FE _ biobro (G32)

ik — 4ﬂ3f12 :

The latter equation differs from its magnetic counterpart,
Eq. (G31), because we neglected the electric field contri-
bution to the vortex energy, € gmexi- From Eqgs. (114), (116),
(G19), and (G20) it then follows that H* = B? L) and
Dt = E’(‘L). The first of these equalities was earlier discussed
in GASI11.

Remark 1. The results obtained above allow us to make a
few useful estimates. First of all, since the total number of
neutron vortices in a star is by more than ten orders of
magnitude smaller than the total number of proton vortices
(for a typical neutron star with B ~ 10'> G and a period

083006-25



M. E. GUSAKOV and V. A. DOMMES

P ~0.1 s, see, e.g., GAS11), one can neglect By,, and Ey,,,
in comparison to, respectively, By, and Ey, in Egs. (G17)
and (G18), and write

B=H+By, +By,~By,, (G33)

E=D+Ey,+Ey,~D+Ey,. (G34)
Here we also neglect H in Eq. (G33) since typically
|H| ~2x 1072[Q/(100s7")]G < |B|, as discussed in
the text above. Second, note that for a static or very
weakly perturbed neutron star [i.e., a star for which vy, is
so small, that Evp in Eq. (G34) can be neglected; see
Eq. (G15)], one can estimate |E| (and |[D|) as
ID| ~ |E| ~ |Vu,|/e, ~1 g!/?>cm™/2s7!. The latter esti-
mate allows one to find an approximate proton vortex
velocity vy, at which |Ey,| becomes comparable to |D.
Using Eq. (G15), one finds vy, ~ c|Vu,|/(e,|By,|) ~
3x 1072 cms™! (we take |By,|~|B|=10'2 G). Thus,
for example, at vy ,|> vy, one has: Ex—(1/c)vy, xB,
so that |H| < |D| < |E| < |B|. Correspondingly, in the
opposite limit |H| < |D| ~ |[E| < |B|.

APPENDIX H: SUMMARY OF RESULTS:
FULL SYSTEM OF RELATIVISTIC
EQUATIONS DESCRIBING DYNAMICS
OF SUPERFLUID-SUPERCONDUCTING
NEUTRON STARS

Here we present the full system of dynamic equations
discussed in the main text. For the reader’s convenience,
this appendix is self-contained. In the present paper, we are
mainly interested in nondissipative equations (the only
dissipative mechanism, which is accounted for, is the
mutual friction, see below). Thus, we assume that neutron
and proton thermal excitations (Bogoliubov quasiparticles)
as well as electrons move with one and the same four-
velocity u, normalized by the condition u,u* = —1.

Superfluid degrees of freedom are characterized by the
four-vectors w’(l.) (i = n, p), which are closely related to the

superfluid velocities of the corresponding nonrelativistic
theory (see Appendix I), and are orthogonal to u”,

u Wiy = 0. (H1)
Other important parameters of the theory include the
vorticity tensors V’{i”),

VI = 0wt -+ ] — O Wl ] + e P,

i) = (i) (H2)

and the electromagnetic tensors F* and G* [see Egs. (8)
and (9)], satisfying Maxwell’s equations (10) and (11),

0, F# =0, (H3)
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0,G% = —4nJ’

(free)* (H4)

In these formulas, e; is the charge of nucleon species i;

Jﬂ

(free

) = ep(n, —n)u' + e ¥ ywfy, (H5)

is the four-current density of free charges [see Egs. (33)
and (34)]; * F* is the tensor dual to F** (see Appendix A);
the thermodynamic parameters n,, n,, and Y; are
defined in what follows. In addition to the tensors V’(‘S,

F% and G% it is convenient to introduce the four-vectors
[see Egs. (12)—(15), (77), and (78)]

Vigi = w, Vi), (H6)
1

Viwy =3¢ Vo (H7)
Bt =u, FM, (H8)
D' = u,G™, (HO)
Bt = ! Hwhy F H10
= z € Uyl pn, ( )

Ht = ! my G H11
= 5 u, Ane ( )

In the comoving frame in which the normal liquid compo-
nent is at rest [i.e., u¥ = (1,0,0,0)] the space components
of the four-vectors E¥, D*, B*, and H* reduce to the electric
field, displacement field, magnetic induction, and magnetic
field, respectively.

The equations describing the dynamics of the superfluid-
superconducting npe mixture consist of (i) Maxwell’s
equations (H3) and (H4); (ii) the particle and energy-
momentum conservations,

B, =0, (H12)
9, =0 (H13)
with
j’(¢i> = mu" + Y,»kw‘(‘k), (H14)
Jiey = mett", (H15)
and

" = (P + e)u'u* + Pg"
+ Vi (Wi why + W+ iy i) + AT,
(H16)
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(iii) the second law of thermodynamics [note that all the
thermodynamic quantities are measured in the comoving
frame, where u* = (1,0,0,0)],

Y
de = TdS + p;dn; + p.dn, + de(w‘("i)w(k)a) + deag;

(H17)

and (iv) the superfluid equations, which will be discussed a
bit later. In Eqs. (H12)~(H17) n; and p; are, respectively,
the number density and relativistic chemical potential of
particle species j =n, p,e; T, S, e,and P = —e + u,n, +
u;n; + TS are the temperature, entropy density, energy
density, and pressure, respectively. Note that all the
thermodynamic quantities are defined (measured) in the
comoving frame. Finally, Y;; is the relativistic entrainment
matrix [47,48,51-53] and ¢ = diag(—1,1,1,1) is the
metric tensor.

The corrections AT* and de,qq in Eqs. (H16) and (H17)
appear due to the electromagnetic and vortex contributions
to the energy-momentum tensor and energy density, and
differ depending on the assumed type (I or II) of the proton
superconductivity. The same is also true for superfluid
equations, thus they should be discussed separately for
each case.

1. Vortex-free npe mixture in the intermediate state
(type-I proton superconductivity)

Assuming that protons in the npe mixture form a type-I
superconductor in the intermediate state and that neutrons
are superfluid, one has the following formulas for A7** and
de,qq (see Sec. V)

AT = TH + Tl (HI8)
dewgs =~ E,dD" + -~ H dB" (H19)
€add *471, " A H ’
where
v 1 178 Y4 v
Tty = 3 (L*DE, ~ D'EY). (H20)
1
le :_(lG#alea—f'MDLG”(IE(I—FM”LGWIE&)? (HZI)
M) " 4n
and
LGm = ebmy,H, (H22)

(see Appendix A). In turn, superfluid equations for protons
and neutrons take the following form [see Egs. (70) and
(73); we assume that there are no neutron vortices in the
system]:
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Vi =0. (H23)
u, Vi, = 0. (H24)

These equations should be supplemented by the two
conditions relating the four-vectors D* with E* and H*
with B*. These conditions are obtained in Sec. VII A and in
Appendix G 1.

2. The npe mixture in the presence of neutron and
proton vortices (type-I1 proton superconductivity)

Assume now that protons form a type-II superconduc-
tor and consider the npe mixture in the mixed state,
allowing for the presence of both neutron and proton
vortices. The corrections AT* and de,yq are then given
by (see Sec. VI)

1 1
dgadd = EEﬂdDﬂ + EHﬂdBﬂ

+ Vl(lEi)dW(Ei)y + W(M[)ﬂdvl(th, (HZS)
AT =T + T?’KA) + T’;@E) + TIK/M)’ (H26)

where W’(’Ei) and W’(’M) are the four-vectors analogous to

D* and H*, respectively; their relation to the four-vectors
V’(‘Ei), E*, V’(’Mi), and B* is explored in Sec. VII B and (for

a particular model) in Appendix G 2. In Eq. (H26) Tﬁ’g)
and 7" ’(‘K,l) are given by Eqgs. (H20) and (H21), respec-
tively, while T’(‘\"]E) and T’(\”,M> are

TP(Q//E) = J‘MDW{(XE[)V(Ei)a - WP(lEi)VL(/E[), (H27)
Ty = VIV + 0V Y e + w0 WY g,

(H28)
where

J'Wl(lll; = €”’ﬁ"”uﬂW<Mi>a. (H29)

The superfluid equations for neutrons (i = n) and protons
(i = p) take the form

MDV(,-)M/ = ﬂinif(i)ﬂ7 (H30)
where
o= a; LV (3 W (1517
Bi—vi n | Vo
+o— L Vi VoW ()5 L%
(Mi)
+ 7V Wiips L, (H31)
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(see remark 1 in Sec. VI). In Eq. (H31) 1# = g+
utu’; a; 1s a nondissipative mutual friction coefficient;
pi >0 and y; >0 are the positive dissipative mutual
friction coefficients, and”®

1
(L — o
W(l) = n_l [YikW;(lk> + 8(1W(i)]’ (H32)

Recalling the definition (H6), one sees that Eq. (H30) is
simply the statement that

VIZEi) = Hiniflzi)- <H34)

As in Appendix H 1, the dynamic equations formulated
here should be supplemented with the expressions relating
the vectors D*, H*, W?’Ei), W’(‘Mi> with E#, BH, V’(’Ei), V’(’Mi>.
These expressions are discussed in Sec. VIIB and in
Appendix G 2.

APPENDIX I: NONRELATIVISTIC LIMIT
OF “MAGNETOHYDRODYNAMIC”
EQUATIONS OF SEC. VIII

Here we present the nonrelativistic limit of the simplified
dynamic equations discussed in Sec. VIIL. In what follows,
unless otherwise stated, all the three-dimensional vectors
appearing in the text (shown in boldface) are defined in
the laboratory frame. As in other parts of the paper, indices
i and k refer to nucleons: i, k = n, p; other Latin letters
are the space indices; we use dimensional units in this
Appendix.

The four-vector u* is related to the normal velocity V.,
of the nonrelativistic superfluid hydrodynamics by the
standard formula,

ut = (u07u) _ ( 1 ’ Vnorm )
\/1 - Vﬁorm/c2 C\/l - Vx210rm/c2

(1)

Instead of the four-vector w’(‘i> = (w%, w;), it is convenient
to introduce the superfluid four-velocity V’(‘Si) = (V?Si), V),
such that

w’('l.) = m,-CV’(’Si) — put, (I2)

As shown in G16 (see also Ref. [47]), the spatial compo-
nent V; of this four-vector is the superfluid velocity of

*The tensor W} in Eq. (H32) equals W(}) = I Wi + LW’(’S
where W/ = —uWig, + u' Wiy, (see Appendix A).
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the nonrelativistic theory.29 Using Eq. (25) and the defi-
nition (I2), one finds the following equation for V’(‘Sl.),

uMV’(‘si) = —u;/(m;c), from which the time component

V((’Sl.) is

Hi uV
Vo = + . 13
(s0) m;cu® u® (13)

p

In terms of V(Sl.), the vorticity tensor (74) can be rewritten

as

Y
Vi

1
E{aﬂ [W?i) +,"41"/‘1/] - ay[wl(ll') +/“’il'tﬂ] + eiFlw}

= m [V, — V] + %Fﬂ (14)

while the electric vector V’(’E ) is given by Eq. (96), and the

i

magnetic vector V’(‘Mi) is [see Eq. (H7)]

1 e
V’(lMi) = 5 ﬂyaﬁuvmi[aav(si)ﬂ - aﬂv(si)a] + ?Bﬂ (IS)

and reduces to V’(‘Mi) = (0, m;w;) in the comoving frame,
where we defined

€;

w; = curlV; + B. (I6)

1

To leading order in V., /c the same expression V’(‘Mi) =

(0, m;w;) is also valid in the laboratory frame (and this is
also true for other “magnetic” vectors). It remains to
express the relativistic entrainment matrix, Y, through its
nonrelativistic counterpart, p;. As shown, e.g., in
Ref. [47], in the nonrelativistic limit they are related by
the formula: p;;, = m;m;c?Y ;.

Using these definitions and relations the nonrelativistic
version of the superfluid equation (93) takes the form

2
= —curlVy; X (Viorm — Vi)

; | 4
—nifi—l—i(E—l—ﬂxB), (17)
m; C

1

1
81Vsi + (Vsiv)vsi +V |:/21 -5 |Vsi - Vnorm|2:|

where ji; = (u; — m;c?)/m; and
fi=—amjo; x W] - p;me; x [w; x W]

+yime;(Wo;). (I8)

PNote that V’{Si) is measured in cm/s while ## is dimensionless
[see Eq. AD)].
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In the latter formula e; = w;/|w;|; W, is the spatial part of
the four-vector W’(’i), which is, in the dimensional form [see

footnote 28 and Egs. (H29), (95)],

1

W’Zl) = n—l [CYikW?lk) + aa<€6ﬁﬂauﬂW(Mi)5 + ”W;{S)] (19)
We have not made yet any simplifying assumption about

the value of the magnetic induction B, so up until now

our nonrelativistic equations are quite general. Now let us

make full use of simplifications of Sec. VIILY Employing

Egs. (119) and (120), Eq. (I6) can be presented as

w, = curlV,, (110)
p
~——B. 111
apx (1)
In turn, Eq. (124) becomes
Wi, = (0,0 W ):Lvﬂ zll—"(Ow)
o = T Vg M e,
(112)
wh = (0, W )NLV" zi(o B)
(Mp) VY Mp m,V ) Mp) ™ g, B
(113)

As it was argued in Sec. VIII, the term depending on ”W’(‘g

in Eq. (I9) is small and can be omitted. Thus, the resulting
nonrelativistic expression for W’(‘i) is given by (see

Appendix C of G16 for a similar equation)

1 .
Wi = |:Z p_lk (Vsk - Vnorm) =+ CuerVMi ’ (114)
k=n,p

n; i

where the vectors W, are defined in Eqs. (I12)—(I13).
Equations (I10)—(I11) and (I14) should be used to calculate
fi [see Eq. (I8)]. Equation (I14) can be further simplified in
the case of protons (i = p) if we note that the conditions
(122) and (123) can be rewritten as

(115)

n,=n

prk(vsk - Vnorm) =0.
k=n,p

(116)

Using Egs. (I14) and (116), one obtains

We remind the reader that Sec. VIII utilizes the model of
noninteracting vortices discussed in Appendix G 2.
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1
Wp = n— CuerMp.
P

(117)

Next, within the magnetohydrodynamic approximation
adopted here, the vortex-related corrections (125) and (126)
to, respectively, the second law of thermodynamics (55)
and the energy-momentum tensor (56) are given, in the
nonrelativistic limit, by

1
degg~ S —2 Vg dV
€add = mV o (MY (i)
A
=" w,dw, +—w,do,, (118)
|, | @, per
AT =T G

0 8n 0 gl’
:( gim >+< [pim ) (119)
En Hvn & vy

where

1
gi= p [minfi + (Vmi X Viorm)] X Whai (120)
Hér\”,i) = vM,'WMi(SZm - VéMi)W’(nMi) (121)

and V\; = m®;. Using the definition for the critical
magnetic field H., H, E4ﬂl§vp/$p0 (see, e.g.,
Ref. [59]), as well as Egs. (G9), (Gl14), (I11), (I13),
and (I21), it is easily demonstrated that the proton tensor
H””p> can be represented as
B!B™
B )

v

Note that de,qq in Eq. (I18) can be considered as defined
in the laboratory frame up to corrections ~V, . ../c. All
other parameters and equations of the theory [e.g., con-
tinuity equations, the remaining parts of the second law of
thermodynamics (55) and the energy-momentum tensor
(56)] have the same form as in the standard (vortex-free)
superfluid hydrodynamics (see, e.g., Refs. [25,60,80] and
G16). However, it is very important to point out that the
temperature 7 and chemical potential y; will be renormal-
ized in the presence of vortices according to Eqgs. (G24)
and (G25).

Remark 1. Using the equations obtained above it is
straightforward to derive the “magnetic evolution” equa-
tion. To this aim let us take a curl of Eq. (I7) written for
protons (i = p). Then, using Maxwell’s equation (2) and
neglecting the terms depending on curlV, in comparison
to the similar terms depending on e, /(m,c)B [our mag-
netohydrodynamic approximation; see a note after
Eq. (120)], one gets

H,
i ==l <B51’" (122)

vp) = 4n
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OB m,c
—— +curl —pan +BXVym| =0. (123)
ot e,

This equation can be further simplified if one neglects the
small kinetic coefficient y, in Eq. (I8). Eq. (I23) can then be
rewritten as (see also Ref. [75] for a similar equation)

OB
— +eurl(B xv,) =0,

= (124)

where vy, is the nonrelativistic velocity of proton vortices
[spatial part of the four-vector v’(‘Lm; see Eq. (101)], given
by

p
vy = Viorm — a,m,n,W, —Epmpan xW, (125)
with
1 A
W, = curl (pB> (126)
myn, B
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[see Egs. (I13) and (I17)]. The physical meaning of
Eq. (I24) is obvious: It describes transport of the magnetic
field (produced by the proton vortices) with the vortices. A
bit different equation has been recently obtained, in the
approximation of vanishing temperature, in Ref. [76] [see
Eq. (67) there].”! The magnetic field in that reference is
transported with the velocity which differs from the vortex
velocity v, This is a puzzling result since Ref. [76]
explicitly assumes that the magnetic field is confined to
proton vortices [see Eq. (65) in that reference] and hence
should be carried along with them.

Note, in passing, that the energy consideration of
Ref. [76] does not look convincing. In particular,
Eq. (76) in that reference disagrees with the result of
Ref. [10] for the free magnetic energy density F,, (Which
must coincide with the magnetic energy density in the limit
of T = 0); see the formula after Eq. (16) in Ref. [10].

3!The same equation follows from the Maxwell’s equation (2)
and Egs. (161) and (162) of GASI11.
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