
Cross-correlation search for continuous gravitational waves from a compact
object in SNR 1987A in LIGO Science run 5

L. Sun,1,* A. Melatos,1,† P. D. Lasky,2,1 C. T. Y. Chung,1 and N. S. Darman1
1School of Physics, University of Melbourne, Parkville, VIC 3010, Australia

2Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Clayton,
VIC 3800, Australia

(Received 7 April 2016; published 19 October 2016)

We present the results of a cross-correlation search for gravitational waves from SNR 1987A using the
second year of LIGO science run 5 data. The frequency band 75–450 Hz is searched. No evidence of
gravitational waves is found. A 90% confidence upper limit of h0 ≤ 3.8 × 10−25 is placed on the
gravitational-wave strain at the most sensitive frequency near 150 Hz. This corresponds to an ellipticity of
ϵ ≤ 8.2 × 10−4 and improves on previously published strain upper limits by a factor of approximately 4.
We perform a comprehensive suite of validations of the search algorithm and identify several computational
savings that marginally sacrifice sensitivity in order to streamline the parameter space being searched. We
estimate detection thresholds and sensitivities through Monte Carlo simulations.

DOI: 10.1103/PhysRevD.94.082004

I. INTRODUCTION

Neutron stars in young supernova remnants are excellent
targets for ground-based gravitational-wave interferometers
such as the Laser Interferometer Gravitational Wave
Observatory (LIGO). Young neutron stars may be more
promising targets than their older counterparts for three
reasons. First, searches for periodic gravitational waves
from younger neutron stars can more easily reach or probe
below the indirect upper limits inferred from the spin-down
rate _ν (where _ν is measured) or the age (where _ν is
unknown). Indirect wave strain upper limits are propor-
tional to _ν or inversely proportional to the age and hence are
larger for younger neutron stars [1–3]; see also Eq. (1) in
Sec. II B. Second, less time has passed in young objects for
their crusts and interiors to settle down and erase historical
nonaxisymmetries frozen-in at birth. Third, young objects
spin down rapidly, driving crust-superfluid differential
rotation, which can excite nonaxisymmetric flows in the
high-Reynolds-number interior [4–6]. For a review of
gravitational-wave generation mechanisms in neutron stars,
see Refs. [1,7]. On the other hand, even if young neutron
stars strongly emit gravitational waves, their rapid spin-
down is a disadvantage for detection because the phase of
the gravitational-wave signal evolves rapidly. A prohibi-
tively large set of matched filters is needed for a coherent
search, if a radio ephemeris is unavailable [8]. Hence
less-sensitive semicoherent search strategies are favored
[3,9–13].
LIGO achieved its design sensitivity over a wide band

during its fifth and sixth science runs (S5 [14] and S6 [15],
respectively). Data from S5 and S6 have been analyzed in

several searches for continuous-wave sources in supernova
remnants targeting specific, known sources like the Crab
pulsar [16–18], Cassiopeia A [19,20], other young pulsars
with radio or x-ray ephemerides [18,21], and young
supernova remnants [22]. Broadband, all-sky searches have
also been carried out for unknown sources, some of
which may turn out post-discovery to reside in supernova
remnants [23–25]. Although no detections resulted from
these searches, upper limits have been placed on parameters
of astrophysical interest, e.g., the maximum ellipticity
and internal magnetic field strength of the Crab pulsar
[16,17] and the amplitude of r-mode oscillations in
Cassiopeia A [20].
In this paper, we report on the search for periodic

gravitational waves from a possible neutron star in one
of the youngest and closest known supernova remnants,
SNR 1987A. The remnant was produced by a type-II core-
collapse supernova, which occurred in February 1987 in
the Large Magellanic Cloud (right ascension α ¼ 5 h 35 m
28.03 s, declination δ¼−69° 160 11.7900, distance
d¼51.4kpc); see reviews by Panagia [26] and Immler et al.
[27]. The gravitational-wave search relies on the semi-
coherent cross-correlation algorithm [12], which has also
been used in searches for gravitational waves from the low-
mass x-ray binary Sco X-1 [28,29]. Although the noise
power spectral density of the LIGOS5 run is higher than that
of the first Advanced LIGO observation run (O1), there are
strong reasons to look for gravitational waves from SNR
1987A in the earlier data set. For example, the S5 run is
considerably longer thanO1, and the expected gravitational-
wave amplitude during S5 is larger than during O1, given
that the neutron star has aged significantly in the intervening
ten years, which amounts to 35% of the object’s age.
The structure of the paper is as follows. In Sec. II, we

discuss the evidence for a neutron star in SNR 1987A and
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briefly review the results of previous gravitational-wave
searches. Section III summarizes the theory and imple-
mentation of the cross-correlation algorithm and the asso-
ciated astrophysical phase model. Section IV reports on the
verification tests performed on synthetic data containing
pure noise and injected signals and evaluates the sensitivity
penalty exacted when averaging over source orientation
and polarization in order to reduce computational cost. In
Sec. V, we calculate the sensitivity of the search as a
function of the frequency and spin-down rate. Section VI
presents the results obtained from running the search on
LIGO S5 data and interprets the results astrophysically.

II. A NEUTRON STAR IN SNR 1987A?

A. Indirect evidence for formation

No neutron star has yet been detected electromagneti-
cally in SNR 1987A, either reproducibly as a pulsar or as a
nonpulsating central compact object [30]. Nevertheless,
strong theoretical evidence exists for the existence of a
neutron star in SNR 1987A from detailed studies of the
progenitor (see, e.g., Refs. [31,32]) and the coincident
worldwide detection of core-collapse neutrinos from the
supernova event [33–36]. Although no pulsar detection has
been confirmed, numerous searches have placed upper limits
on the flux and luminosity at radio (<115 μJy at 1390MHz;
see Ref. [27]), optical/near-UV (<8 × 1033 ergs s−1; see
Ref. [37]), and soft x-ray (<2.3 × 1034 erg s−1; see
Ref. [38]) wavelengths. Middleditch et al. [39] reported
finding an optical pulsar in SNR 1987Awith a frequency of
467.5Hz,modulated sinusoidallywith a period of about 1 ks,
consistent with precession given an ellipticity of ϵ ∼ 10−6.
The pulsations disappeared after 1996 [39] and were never
confirmed independently.
One possible reason why a pulsar has not yet been

detected is that its magnetic field is too weak. The weak-
field theory is supported by some theoretical models, in
which the field grows after the neutron star is formed over
about 103 yr, e.g., due to thermomagnetic effects [40–42].
In a related scenario, the magnetic field of a millisecond
pulsar intensifies (linearly or exponentially) from about
1010 G at birth to about 1012 G after around 0.3–0.7 kyr,
before the pulsar spins down significantly [43]. On the
other hand, the neutron star may be born with a strong
magnetic field, which is amplified during the first few
seconds of its life by dynamo action (see, e.g.,
Refs. [44,45]). Population synthesis calculations combined
with measurements of the known spin periods of isolated
radio pulsars imply a distribution of birth magnetic field
strengths B0 satisfying logB0 ¼ 12.65� 0.55 (1σ range)
[46–48]. Several birth scenarios for the pulsar in SNR
1987A were considered by Ögelman and Alpar [49] in
this context, who concluded that the maximum magnetic
dipole moment is 1.1 × 1026 Gcm3, 2.5 × 1028 Gcm3, and
2.5 × 1030 Gcm3 for birth periods of 2 ms, 30 ms, and

0.3 s, respectively. The dynamo model also accommodates
a magnetar in SNR 1987A, with a magnetic dipole moment
exceeding 2.4 × 1034 Gcm3, regardless of the initial spin
period [49].
Estimates of the birth spin of the putative pulsar in SNR

1987A are more uncertain. Simulations of the bounce and
postbounce phases of core collapse produce proto-neutron
star spin periods between 4.7 ms and 140 ms, proportional
to the progenitor’s spin period [50]. Some population
synthesis studies, which infer the radio pulsar velocity
distribution from large-scale 0.4-GHz pulsar surveys, favor
shorter millisecond birth spin periods [47], while others
argue the opposite (300� 150 ms; 1σ range) [48]. Faint,
nonpulsed, x-ray emission from SNR 1987A was first
observed four months after the supernova, and it decreased
steadily in 1989 [51,52], leading to the suggestion that a
neutron star could be powering a plerion, which is partially
obscured by a fragmented supernova envelope. A model of
the plerion’s x-ray spectrum, with a magnetic field of
1012 G and an expansion rate of 5 × 108 cm s−1, fits the
x-ray data for a pulsar spin period of 18 ms.
Despite their indirect nature, the above studies broadly

justify a search for gravitational waves from SNR 1987A at
frequencies from about 50 Hz to 450 Hz (i.e., twice the spin
frequency), bracketing the most sensitive portion of the
LIGO band. The range of frequency derivative searched in
this paper, namely, from 10−13 Hz s−1 to 10−6 Hz s−1, is
consistent with a magnetic field between 109 G and 1012 G
at the present epoch and hence with the B0 values above. It
is also consistent with maximum ellipticity in the range
10−5 ≲ ϵ≲ 10−4, if the spin-down is gravitational-wave
dominated.

B. Indirect gravitational radiation limits

Neither ν nor _ν is known for the putative neutron star in
SNR 1987A, so one is unable to infer an indirect spin-down
upper limit on the characteristic wave strain h0 by assuming
that all the observed spin-down luminosity 4π2Iν_ν (where I
is the stellar moment of inertia) goes into gravitational
radiation [3,19]. However, by a similar energy conservation
argument, one can place an upper limit on h0 in terms of the
object’s age, Tage [3,8,20], viz.

h0 ≤
1

D

�
5GIjξj
2c3Tage

�
1=2

; ð1Þ

with

ξ ¼ 1

n − 1

�
1 −

�
νb
ν

�
1−n

�
; ð2Þ

where G is Newton’s gravitational constant, c is the speed
of light, D is the distance to the source, n is the braking
index defined via _ν ∝ νn (assumed to be constant here,
for simplicity), νb is the spin frequency at birth, and

SUN, MELATOS, LASKY, CHUNG, and DARMAN PHYSICAL REVIEW D 94, 082004 (2016)

082004-2



jξj−1Tage ¼ −ν=_ν is proportional to the characteristic
electromagnetic spin-down time scale [19].
The factor jξj in Eq. (1) is normally neglected when

quoting indirect limits under the assumption ν ≪ νb [8,20].
This assumption is reasonable for objects like Cas A but not
for SNR 1987A, where Tage is much less than −ν=_ν for
many reasonable choices of birth spin and magnetic field
[53]. Figure 1 illustrates this point. It displays contours of jξj
as a function of νb and dipole magnetic field B0, assuming
purely electromagnetic spin-down (_ν ∝ B2

0ν
n, n ¼ 3),

for simplicity. The spin-down model is described in more
detail in Sec. III B. The left-panel contours (SNR 1987A;
Tage ¼ 19 yr) satisfy jξj ≪ 1 except in the top-right corner
of the plot (e.g., νb ≳ 350 Hz, B0 ≳ 7 × 1012 G for
jξj≳ 0.25). By contrast, the right-panel contours (Cas A;
Tage ≃ 333 yr) satisfy jξj≳ 0.25 over more of the plot, as
befits an older object with ν ≪ νb.
The indirect upper limit on h0 is inversely proportional to

Tage. Hence it is harder to reach observationally for older
neutron stars. Younger objects like the putative neutron star
in SNR 1987A generally have a higher limit on h0,
although not as high as one would expect assuming _ν ≈
νT−1

age in view of the “ξ effect” discussed above. The fact
that young neutron stars with ν ≈ νb spin-down slower than
∼νT−1

age aids detection by dramatically reducing the number
of matched filters required to track the phase evolution. The
latter advantage is further discussed in Sec. IV D 3.

C. Previous gravitational-wave searches

The likely existence of a young neutron star in SNR
1987A makes it a good target for gravitational-wave
searches [54,55]. A coherent matched-filtering search
was carried out in 2003 with the TAMA 300 detector,
searching 1.2 × 103 hours of data from its first science run

over a 1-Hz band centered on 934.9 Hz, assuming a spin-
down range of ð2–3Þ × 10−10 Hz s−1. The search yielded an
upper limit on the wave strain of h0 ≤ 5 × 10−23 [56]. An
earlier matched-filtering search was conducted using 102

hours of data taken in 1989 by the Garching prototype laser
interferometer. The latter search was carried out over 4-Hz
bands near 2 kHz and 4 kHz; it did not include any
spin-down parameters, and it yielded a strain upper limit of
h0 ≤ 9 × 10−21 [57].
The most sensitive gravitational-wave search to date for

SNR 1987A was conducted with the radiometer pipeline
using LIGO S5 data [58]. This search yielded an upper limit
on the wave strain of h0 ≈ 1.57 × 10−24 (90% confidence
level) in the most sensitive frequency range near 160 Hz. It
is noted that the radiometer analysis always assumes a
circularly polarized signal, so in a case of random polari-
zation like the one discussed in this paper, the equivalent
radiometer strain upper limit needs to be converted to a
more conservative value, by multiplying a sky-position-
dependent factor of 2.248 [59]. The above upper limit h0 ≈
1.57 × 10−24 has already been converted from the original
value stated in Ref. [58].
A coherent search for SNR 1987A based on the optically

derived spin parameters of Middleditch et al. [39] requires
30 days of integration time and at least 1019 search
templates covering just the frequency and its first derivative
[60]. Of course, the optical detection has not been con-
firmed independently, so one may have ν ≪ 467.5 Hz in
reality, reducing _ν ∝ ν3 and hence the number of templates.
Nevertheless, as a rule, young objects do spin down
rapidly, and typically five or six higher-order frequency
derivatives must be searched in order to accurately track the
gravitational-wave phase. In order to sidestep this problem,
Chung et al. [8] proposed an astrophysically motivated
phase model that describes the spin-down in terms of the

FIG. 1. Contours of age factor jξj in Eq. (2) for SNR 1987A (left panel) and Cas A (right panel) as a function of the spin frequency at
birth νb and dipole magnetic field B0 with n ¼ 3.
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ellipticity, magnetic field, and electromagnetic braking
index of the source instead of its frequency derivatives.
The model is most useful if the braking index varies slowly
during the observation, in a sense that will be defined
precisely in Sec. IV D 3. At the time of writing, it was
unclear, on astrophysical grounds, whether a slowly vary-
ing braking index is favored or disfavored by theoretical
arguments (e.g., Refs. [61,62]) and the sparse observational
data available [63].

III. SEARCH PIPELINE

A. Cross-correlation algorithm

The theoretical basis of the cross-correlation algorithm
was described in detail by Dhurandhar et al. [12]. Here, we
briefly summarize the key results that are necessary for the
algorithm’s implementation.
The algorithm operates on interferometer data in the

form of short Fourier transforms (SFTs) [3], usually of
30-min duration. It outputs a cross-correlation detection
statistic called the ρ statistic. SFTs are multiplied pairwise
according to some criterion (e.g., time lag or interferometer
combination) to form a raw cross-correlation variable

YIJ ¼
~x�kI;I ~xkJ;J
ðΔTÞ2 ; ð3Þ

where I and J index the pair of SFTs ~xkI;I and ~xkJ;J; kI and
kJ are the indices of the frequency bins of the two SFTs;
and ΔT denotes the length of the SFTs. The gravitational-
wave signal is assumed to be concentrated in a single-
frequency bin in each SFT, i.e., ΔT ≪ ν=_ν due to sidereal
motion and pulsar spin-down.
The frequency range spanned by the two SFTs is the

same, but the signal does not appear in the same frequency
bin in ~xI and ~xJ. The specific frequency bins with indices kI
and kJ multiplied in Eq. (3) are related by the time lag
between the pair and between interferometers, as well as
spin-down and Doppler effects. For an isolated source, the
instantaneous signal frequency at time t is given by

νðtÞ ¼ ν̂ðtÞ
�
1þ v · n

c

�
; ð4Þ

where ν̂ðtÞ is the instantaneous signal frequency in the rest
frame of the source, v is the detector velocity relative to the
source, and n is the unit vector pointing from the detector to
the source. The instantaneous signal frequencies in SFTs I
and J, νðTIÞ and νðTJÞ, are calculated at the times
corresponding to the midpoints of the SFTs, TI and TJ.
The frequency bin kJ is therefore shifted from kI by an
amount ⌊ΔT½νðTJÞ − νðTIÞ�⌋, where ⌊…⌋ denotes the
largest integer smaller than ð…Þ [12]. For convenience,
we henceforth drop the subscripts kI and kJ.
The ρ statistic comprises a weighted sum of YIJ over all

pairs ðI; JÞ. The relative weights of the pairs in the ρ

statistic are controlled by the polarization amplitudes and
phase of the signal and the interferometer antenna pattern.
These variables are packaged within the signal cross-
correlation function ~GIJ, defined as

~GIJ ¼
1

4
expð−iΔΦIJÞ expf−iπΔT½νðTIÞ − νðTJÞ�g

× ½FIþFJþA2þ þ FI×FJ×A2
×

− iðFIþFJ× − FI×FJþÞAþA×�: ð5Þ
In Eq. (5), we define ΔΦIJ ¼ ΦIðTIÞ − ΦJðTJÞ, where
ΦIðTIÞ is the signal phase at time TI . The terms in the
second set of square brackets in Eq. (5) depend on the
polarization angle ψ , and the inclination angle ι between n
and the rotation axis of the pulsar, according to

Aþ ¼ 1

2
ð1þ cos2ιÞ; ð6Þ

A× ¼ cos ι; ð7Þ
Fþðt;n;ψÞ ¼ aðt;nÞ cos 2ψ þ bðt;nÞ sin 2ψ ; ð8Þ

F×ðt;n;ψÞ ¼ bðt;nÞ cos 2ψ − aðt;nÞ sin 2ψ : ð9Þ

Here, aðt;nÞ and bðt;nÞ are the detector response functions
for a given sky position, defined in Eqs. (12) and (13) of
Jaranowski et al. [64]. A geometrical definition is also
given by Prix and Whelan [65]. The gravitational-wave
strain tensor is

h
↔
ðtÞ ¼ h0½Aþ cosΦðtÞe↔þ þA× sinΦðtÞe↔×�; ð10Þ

where h0 is the characteristic gravitational-wave strain, and

e
↔

þ;× are the basis tensors for the plus (þ) and cross (×)
polarizations in the transverse-traceless gauge.1

With the above definitions, the ρ statistic is given by the
weighted sum

ρ ¼ ΣIJðuIJYIJ þ u�IJY
�
IJÞ; ð11Þ

where the weights are defined by

uIJ ¼ ~G�
IJ=σ2IJ; ð12Þ

and

σ2IJ ¼ SðIÞn ðνIÞSðJÞn ðνJÞ=ð4ΔT2Þ ð13Þ
is the variance of YIJ in the absence of a signal, where

SðIÞn ðνIÞ is the power spectral density of SFT I at frequency
νI ¼ νðTIÞ. For each frequency and sky position searched,

1We alert the reader to an error in Eq. (3.10) of Dhurandhar
et al. [12], which omits the factor of expf−iπΔT½νðTIÞ − νðTJÞ�g
arising from the choice of time origin of the Fourier transforms.
Also see Whelan et al. [28].
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we obtain one real value of ρ, which is a sum of the Fourier
power from all the pairs. Ignoring self-correlations (i.e., no
SFT is paired with itself), the mean of ρ is predicted to
satisfy

μρ ¼ h20
X
IJ

j ~GIJj2=σ2IJ: ð14Þ

In the limit of zero signal, the variance of ρ is

σ2ρ ¼ 2
X
IJ

j ~GIJj2=σ2IJ: ð15Þ

In the presence of a strong signal, and if self-correlations
are included, μρ and σ2ρ scale as h20 [12]. The number of
pairs is limited by computational resources. Summing over
all possible pairs, which is normally prohibitive computa-
tionally, returns the same result as a fully coherent search.
In principle, one should search over the unknowns cos ι

and ψ when computing ρ through Eq. (11). However,
this adds to the already sizable computational burden
occasioned by searching over pulsar spin parameters (see
Sec. III B), when the number of SFT pairs is large.
Accordingly, it is customary to average over cos ι and ψ

when computing ~GIJ, assuming uniform priors on both
variables. The result is

h ~GIJicos ι;ψ ¼ 1

10
expð−iΔΦIJÞ expf−iπΔT½νðTIÞ

− νðTJÞ�gðaIaJ þ bIbJÞ; ð16Þ

with aI ¼ aðTI;nÞ and bI ¼ bðTI;nÞ. One then computes
the detection statistic ρav by replacing ~G�

IJ by h ~G�
IJi in

Eq. (12). Similarly, the mean and variance of ρav can be
computed by replacing ~GIJ by h ~GIJi in Eqs. (14) and (15).
Note, importantly, that ρav is not equal to hρicos ι;ψ because
YIJ depends implicitly on cos ι and ψ if h0 ≠ 0. Once a first-
pass search with ρav is complete, a follow-up search on any
promising candidates can be performed, which searches
explicitly over cos ι and ψ to achieve maximum sensitivity.
Tests in Sec. IV C illustrate that the detection statistic
resulting from Eq. (16) is approximately 10%–15% lower
(up to 47% lower in rare cases) than if the exact cos ι and ψ
values are used.

B. Astrophysical phase model

The cross-correlation algorithm in Sec. III A must be
accompanied by a parametrized model for the phase and
frequency of the signal as functions of time, in terms of
which we express the factors ΔΦIJ and νðTIÞ − νðTJÞ in
Eqs. (5) and (16). A target like SNR 1987A raises special
challenges in this regard. It is young and spins down
rapidly, accumulating phase by an amount k proportional
to νðkÞTkþ1

obs ≈ νTobsðξTobs=TageÞ from the kth term of
the Taylor expansion of the phase evolution after an

observation time Tobs. One therefore needs approximately
Ntotal ∝ ξ10T10

obsT
5
lag templates to keep the overall phase

error below π=4 with SFT time separation T lag ¼ 1 hr [8]
by tracking terms up to and including νð4Þ. As noted in
Sec. II B, Ntotal is suppressed strongly by the factor ξ10,
with ξ10 ≪ 1 for SNR 1987A.
In the special but astrophysically plausible situation

where the braking index n ¼ νν̈=_ν2 changes slowly with
time, one can take advantage of an alternative model for the
gravitational-wave phase introduced in Chung et al. [8],
stated in terms of astrophysical parameters (i.e., the
magnetic field strength and the neutron star ellipticity)
instead of spin-frequency derivatives. The model tracks the
phase by assuming that the spin-down torque is the direct
sum of gravitational-wave and electromagnetic compo-
nents to a good approximation, with

_ν ¼ −
32π4Gϵ2Iν5

5c5
−
2π3R6⋆B2νnem

3μ0Ic3

�
πR⋆
c

�
nem−3 ð17Þ

¼ −Q1
0ν5 −Q2

0νnem : ð18Þ

In Eq. (18), R⋆ is the neutron star radius, B is the polar
magnetic field, and nem is the electromagnetic braking
index. If the electromagnetic torque is proportional to a
power of ν, then ν must enter the torque in the combination
R⋆ν=c (i.e., the ratio of R⋆ to the characteristic lever arm,
the light cylinder distance, c=2πν), on dimensional
grounds. Hence, in terms of an arbitrary reference fre-
quency νref, we write _ν ¼ −Q1ðν=νrefÞ5 −Q2ðν=νrefÞnem ,
with Q1 ¼ Q1

0ν5ref and Q2 ¼ Q2
0νnemref . Throughout this

paper, we set νref ¼ 1 Hz without loss of generality.
The spin-down model (18) tracks the phase in terms of

four parameters: ν0, Q0
1, Q

0
2, and nem. Theoretically, one

expects nem ¼ 3 for a magnetic dipole in vacuo [62];
however, observations of radio pulsars find 1.8 ≤ nem <
3.0 [63], and there exist several theoretical mechanisms
consistent with nem < 3 [53,61,66]. If nem is truly constant,
then phase tracking requires Ntotal ∝ ξ6T3

obsT
3
lag templates

[8], and the search problem simplifies considerably.
However, observations returning nem ≠ 3 raise the specter
of nem evolving as the star spins down; indeed, the extended
dipole braking model predicts nem → 3 as t → ∞ [61]. If
nem evolves too rapidly, it negates the advantage of Eq. (18)
relative to a Taylor expansion fν; _ν; ν̈; � � �g. This issue is
quantified in Sec. IV D 3, and the parameter range where
Eq. (18) remains useful is determined.

C. Numerical algorithm

The cross-correlation algorithm is implemented as part
of the LIGO data analysis software suite (LAL2 and

2https://www.lsc-group.phys.uwm.edu/dawsg/projects/lal.html
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LALApps3) in a general-purpose form. First, the user can
choose to search over the gravitational-wave frequency at
the start of the observation, denoted by ν0, and up to two
frequency derivatives in the Taylor expansion of the phase
model (ν0, _ν, ν̈), or use the astrophysical model described in
Chung et al. [8] to search over ν0,Q1,Q2, and nem. Second,
one can choose to target a single sky coordinate or search
within a grid of sky coordinates. Third, the user can choose
to run the search using a particular value for the inclination
and polarization angles (ι and ψ) or average over these
variables. Finally, the user can decide to pair up SFTs from
only the same interferometer, different interferometers, or a
combination.
The flow chart in Fig. 2 summarizes the numerical

algorithm. First, the command-line options are parsed, and
the relevant SFTs are located and read into a time-ordered
catalog. Only the frequency bins corresponding to the user-
specified search frequency range are extracted from the

SFTs. Each SFT is paired with another which satisfies the
user-specified selection criteria, e.g., the maximum time lag
T lag. For each unique SFT pair, the code loops over each
search template and calculates the corresponding normal-
ized cross-correlation statistic ρ for each template.
An important issue encountered in the implementation is

the heavy use of central processing unit (CPU) virtual
memory. When pairing up an entire year’s worth of SFTs
(∼105 SFTs ∼ 1 Terabyte), it is not feasible to load and
store all the SFTs in virtual memory while looping over the
search templates. Instead, we construct a time-ordered
linked list, which contains only SFTs within a sliding
window of length T lag, i.e., a first-in-first-out queue. The
signal phase, frequency, and detector response functions are
calculated at each TI. Then SFT pairs are constructed within
the sliding window, and we loop over the search templates.
For each pair, we calculate and store the quantities Yα, uα,
σα, Gα, and ρα ¼

P
αðuαYα þ u�αY�

αÞ, which are defined in
Ref. [12] and Sec. III A; to simplify notation, we use the
subscript α to denote the index pair (I, J) [12]. As the
window slides forward, we delete the SFT at the head of
the linked list, add the next SFTs to its tail (as long as it
satisfies the user-specified multiplication condition), and
repeat the process. Once the loop over all possible pairs is
finished, the final value of the detection statistic ρ ¼ P

αρα
for a particular search template is calculated. Finally, we
output ρ (normalized by its standard deviation) along with
the relevant search parameters used. Typically, we search up
to ∼109 templates and filter the output so that, e.g., only the
highest 10% of ρ values are saved.

IV. ALGORITHM VERIFICATION

A. Distribution of ρ=σρ when searching over pure noise

Abasic consistency check is to run the search on simulated
noise with no injected signal. The detector noise time series
nðtÞ is typically assumed to be Gaussian with zero mean. In
this situation, according to Eq. (3), Yα is related to the noise
power spectra in the SFTs centered atTI andTJ. Hence, ρα is
a product of two independent Gaussian variables with zero
mean. Its probability density function (PDF) is a modified
Bessel function of the second kind of order zero, with zero
mean and finite variance [12]. Applying the central limit
theorem, the sum of a large number of such zero-mean
variables tends to a Gaussian random variable [67], as the
number of SFT pairs, Npairs, increases.
The mean μρ and variance σ2ρ of ρ in the low-signal limit

are given by [12]

μρ ¼ h20
X
α

ðuαGα þ u�αG�
αÞ; ð19Þ

σ2ρ ¼ 2
X
α

juαj2σ2α; ð20Þ

where h0 vanishes for pure noise, and uα, Gα, and σα are
defined in Eqs. (12), (5), and (13), respectively. We note

FIG. 2. Flowchart summarizing the cross-correlation algorithm
used in the LALApps utility. Note that α labels the SFT index pair
(I, J).

3https://www.lsc-group.phys.uwm.edu/dawsg/projects/lalapps.
html
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that these equations exclude self-correlations (i.e., pairing a
SFT with itself), and Eq. (20) assumes h0 ≪ jnðtÞj. We
discuss how to generalize beyond the small-signal limit in
Sec. IV B. The code outputs the normalized cross-
correlation statistic ρ=σρ, whose PDF should have zero
mean and unit variance for pure noise. We emphasize that
the mean μ and variance σ2 of the PDF of ρ=σρ should not
be confused with the mean and variance of the prenormal-
ized ρ distribution, given by Eqs. (19) and (20).
The simulated Gaussian noise is generated using the

standard LALApps utility. This utility creates SFTs for
user-specified values of signal strength h0, single-sided
power spectral density ½SnðνÞ�1=2, SFT length TSFT, total
observation time Tobs, and signal parameters νðtÞ, α, δ,
cos ι, and ψ . In order to vary Npairs for testing purposes, we
generate separate sets of 30-min SFTs for five different
values of Tobs ranging from 1 hr (2 SFTs per interferometer)
to 1 yr (17532 SFTs per interferometer) with zero signal
strength (h0 ¼ 0) and random signal parameters. The
standard analytic approximation of the single-sided power
spectral density as a function of the signal frequency is [68]

SnðνÞ1=2 ≈ α0

�
α1

�
ν

150 Hz

�
−56

þ α2

�
ν

150 Hz

�
−4.52

þ α3

�
ν

150 Hz

�
2

þ α4

�
1=2

; ð21Þ

with α0 ¼ ð9 × 10−46Þ1=2 Hz−1=2, α1 ¼ 4.49, α2 ¼ 0.16,
α3 ¼ 0.32, and α4 ¼ 0.52. In real LIGO data, variable
phenomena like seismic noise make SnðνÞ time dependent
on time scales of hours to days. Simulated noise does not
suffer from this problem. SFTs are simulated for only two
interferometers (H1 and L1), and the SFTs for each
interferometer span identical times.
For each set of SFTs, we run the search using a

frequency band of 10−2 Hz and a frequency resolution of
10−4 Hz, corresponding to 100 search templates for each
pair (T lag, Tobs). We consider five values of Tobs

(1 hr ≤ Tobs ≤ 1 yr) and two values of T lag for each Tobs,
viz. 0 s and 3600 s. Setting T lag ¼ 0 correlates only SFTs
from different interferometers. This ensures that all pairs,
and the resulting ρα values, are completely independent. For
T lag ¼ 3600 s, each SFT is paired with three others if we
include data from two interferometers, and five others if we
include data from three interferometers. In this case, the
same SFT contributes tomore than one ρα. As a result, the ρα
values are not statistically independent. Coyne et al. [69]
discussed the correction to ρ for dependent ρα, finding that ρ
is distributed as a χ2 distribution with 2 degrees of freedom
instead of a Gaussian distribution (for more details, see
Ref. [69]). This correction is crucial to an intermediate-
duration search (Tobs ≲ 104 s). In this paper, we carry out a
long-duration search (Tobs ¼ 1 yr). To test the above effect,
we compare the PDFs of ρ for T lag ¼ 0 (ρα independent)

and T lag ¼ 3600 s (ρα dependent) for Tobs in the range
1 hr ≤ Tobs ≤ 1 yr. The full results are presented below in
Table I and Fig. 3. In brief, they confirm that the correction in
Ref. [69] is appreciable for Tobs ≲ 1 day but negligible for
Tobs ¼ 1 yr. The experiment is repeated 1000 times for each
pair (T lag, Tobs) with 100 templates, and the statistics of the
resulting 105 ρ=σρ values are compiled.
The mean μ and standard deviation σ of the ρ=σρ PDFs

are presented in Table I. The values of μ lie within the
95% confidence limits4 and deviate from zero by at most
0.0053. The values of σ, however, are systematically ∼4%
larger than unity and appear to increase with Tobs. The
reason for this discrepancy is unclear. We keep this issue in
mind as the analysis proceeds. Discrepancies at the ≲5%
level are not expected to impact the search results
significantly.
Figure 3 displays PDFs of ρ=σρ (solid curves) for the

trials listed in Table I. From top to bottom, the panels show
ρ=σρ for Tobs running from 1 hr to 1 yr for T lag ¼ 0 s (left
panel) and T lag ¼ 3600 s (right panel). By way of com-
parison, Gaussian PDFs with zero mean and unit standard
deviation are overplotted as dashed curves in each panel.
The PDFs for Tobs ¼ 1 hr are clearly non-Gaussian. For
T lag ¼ 0 s (top row, left panel), the distribution is sym-
metric about zero but more sharply peaked than a Gaussian.
For T lag ¼ 3600 s (top row, right panel), the distribution
peaks more sharply than a Gaussian and is significantly
skewed. As Tobs increases, the PDFs for both T lag values
approach a Gaussian. For Tobs ¼ 1month (fourth row in
Fig. 3), the difference is nearly imperceptible by eye.
We quantify the Gaussianity of the PDFs in Fig. 3 by

plotting their skewness and kurtosis excess in Fig. 4

TABLE I. Mean μ and standard deviation σ of 105 values of the
normalized cross-correlation statistic ρ=σρ for a search over
simulated Gaussian noise for observation times satisfying
1 hr ≤ Tobs ≤ 1 yr. For each value of Tobs, the number of SFT
pairs, Npairs, is listed, along with the maximum SFT pair
separation T lag.

Tobs Npairs T lag (s) μ σ

1 hour 2 0 −0.003393 1.035 527
6 3600 0.001 966 1.033 288

5 hours 10 0 0.005 309 1.037 305
46 3600 −0.002081 1.044 258

1 day 48 0 0.000 937 1.040 644
236 3600 0.002 111 1.044 826

1 month 1440 0 0.000 613 1.042 374
7196 3600 0.000 095 1.039 875

1 year 17 532 0 −0.004183 1.040 686
87 656 3600 0.003 961 1.047 173

4The 95% confidence limits for μ are�1.96σN−1=2
trial ≈�0.0064,

where Ntrial is the number of trials (105).
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as functions of Tobs. The skewness of a distribution,
which measures its reflection asymmetry, is defined as
γ1 ¼ μ3=μ

3=2
2 , where μ2 and μ3 are the second and third

central moments. For a Gaussian, γ1 is zero. The kurtosis
measures the peakiness and is defined as γ2 ¼ μ4=μ22, where
μ4 is the fourth central moment. For a Gaussian, one has
γ2 ¼ 3. The kurtosis excess, g2 ¼ γ2 − 3, therefore equals
zero for a Gaussian. Figure 4 displays γ1 and g2 as functions
of logðTobsÞ for T lag ¼ 0 s (left) and T lag ¼ 3600 s (right).
Error bars of size �2ss and �2sk are overplotted, where
2ss ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=Ntrial

p ¼ 0.0155 is twice the standard error of
skewness, 2sk ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24=Ntrial

p ¼ 0.031 is twice the standard
error of kurtosis, andNtrial ¼ 105 is the total number of trials
[70]. For T lag ¼ 3600 s, the skewness and kurtosis decrease
from γ1 ¼ 1.03, g2 ¼ 4.09 for Tobs ¼ 1 hr to γ1 ¼ 0.0277,
g2 ¼ 0.0006 for Tobs ¼ 1 yr. For T lag ¼ 0 s, when there is
no overlap between SFT pairs and all ρα values are
independent, the kurtosis also decreases as Tobs increases,
from g2¼2.204 for Tobs ¼ 1 hr to g2 ¼ 0.014 for
Tobs ¼ 1 yr. However, the skewness remains roughly cen-
tered at zero, fluctuating between γ1 ¼ −0.010 (for

Tobs ¼ 1 hr) and γ1 ¼ 0.015 (for Tobs ¼ 1 day), which is
within the standard errors. The shape of the ρ=σρ PDF is
therefore significantly affected by Tobs and, to a lesser
extent, T lag. However, for Tobs ≥ 1 yr, the PDFs for
T lag ¼ 0 s and T lag ¼ 3600 s agree with theoretical predi-
cations to an accuracy of better than 95% in μ, σ, γ1, and g2.
The above results show that for intermediate-duration
searches with Tobs ≲ 104 s (i.e., Tobs ¼ 1 hr, 5 hr in our
test), the skewness and kurtosis deviate significantly
from the expected values in a Gaussian distribution, and
hence the correction to ρ discussed in Ref. [69] is required.
However, in a long-duration search with Tobs ¼ 1 yr, the
above moments of ρ match those of a Gaussian distribution
to an accuracy above 95%, so the correction is negligible for
the search in this paper.

B. Distribution of ρ=σρ as a function of signal strength

The introduction of a gravitational-wave signal changes
the distribution of ρ and ρ=σρ. Most notably, the mean and
variance increase with the signal strength. In Appendix A
of Dhurandhar et al. [12], the statistics of the ρ distribution

FIG. 3. PDFs of ρ=σρ (solid curves) for T lag ¼ 0 s (left) and T lag ¼ 3600 s (right) for Tobs ¼ 1 hr, 5 hr, 1 day, 1 month, and 1 yr (top to
bottom). For reference, the dashed curve shows a Gaussian with zero mean and unit variance.
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are recalculated, including self-correlations and Oðh20Þ
terms which are left out in the main body of their analysis.
In the absence of self-correlations, which we neglect in this
paper, one obtains

μρ ¼ h20
X
IJ

ðuIJ ~GIJ þ u�IJ ~G
�
IJÞ; ð22Þ

σ2ρ ¼ 2
X
IJ

juIJj2σ2IJ þ
h20
ΔT

X
I≠J

juIJj2½ ~GIIS
ðJÞ
n þ ~GJJS

ðIÞ
n �

þOðh40Þ; ð23Þ
for the mean and variance of ρ, respectively. For the
normalized statistic ρ=σρ, whose noise-only PDF is a
Gaussian with zero mean and unit variance, the mean
and variance in the presence of a signal are given by

μ ¼ 21=2h20
X
α

juαj; ð24Þ

σ2 ¼
X
I≠J

juIJj2
�
SInSJn
4ΔT2

þ h20
2ΔT

ð ~GIISJn þ ~GJJSInÞ
�
þOðh40Þ;

ð25Þ
respectively, where SIn is the single-sided power spectral
density squared for the SFT centered at t ¼ TI . Self-
correlation terms are not included in Eqs. (24) and (25).
Again, we stress that μ and σ in Eqs. (24) and (25) are not
derived from Eqs. (22) and (23) simply by dividing the
latter equations by σρ and σ2ρ, respectively. The PDF of
ρ=σρ is not truly Gaussian for pure noise, if dependent pairs
are included [69]. However, the results in Sec. IVA
demonstrate that the impact is negligible (i.e., the moments

match those of a Gaussian distribution to an accuracy above
95%) for Tobs ¼ 1 yr, so we do not correct for this effect in
this paper, as discussed in Sec. IVA.
We test Eqs. (24) and (25) against numerical results by

injecting signals into simulated Gaussian noise with wave
strains in the range 1×10−26≤h0≤7.5×10−23 at 150.1 Hz
and zero spin-down. The h0 range covers the regimes
h0 ≪ jnðtÞj, h0 < jnðtÞj, and h0 ≳ jnðtÞj. Again, we use the
LALApps utility to generate 103 SFTs for each h0 value,
with arbitrary signal parameters α; δ; cos ι, and ψ . We take
Tobs ¼ 1 yr, T lag ¼ 3600 s, and search over a 0.01-Hz
band centered on the signal frequency with a frequency
resolution of 10−4 Hz. We only search the chosen α, δ,
cos ι, and ψ values of the injected signal. From the theory,
ρ=σρ is maximized at the injected frequency value, which is
150.1 Hz in this case, and this maximum value appears to
be dominant if the signal is strong enough. For verification
purposes, we extract the 103 ρ=σρ values at 150.1 Hz for
each h0 value tested. The mean and standard deviation of
the 103 ρ=σρ values are calculated and shown in Fig. 5.
The top panel of Fig. 5 plots μ as a function of h0. For

h0 ≤ 8 × 10−26, μ gets very close to zero, which is as
expected in the low signal limit. Above h0 ¼ 8 × 10−26, μ
increases from ≈0.8 at h0 ¼ 1 × 10−25 to ≈3 × 105 at
7.5 × 10−23, growing ∝ h20 as expected from Eq. (24).
The bottom panel of Fig. 5 shows σ as a function of h0.

One can distinguish three regimes. For h0 ≤ 1 × 10−25, i.e.,
h0 ≪ jnðtÞj, the signal is too small to be detectable, giving
the same unit standard deviation as the results obtained in
Sec. IVA for pure noise. In the intermediate regime
1 × 10−25 ≤ h0 ≤ 2 × 10−25 between the vertical dashed
lines, where the signal is small but still detectable, σ grows

FIG. 4. Skewness γ1 (top panels) and kurtosis excess γ2 − 3 (bottom panels) of ρ=σρ as functions of Tobs, for T lag ¼ 0 s (left) and
T lag ¼ 3600 s (right)whenSFTs contain onlyGaussian noise. The error bars (small vertical linesoverplottedon the points) havepeak-to-peak
amplitudes of twice the standard error of skewness (toppanels) and twice the standard error of kurtosis (bottompanels) (see text for definition).
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approximately ∝ h0 as predicted by Eq. (25), and theOðh40Þ
terms are negligible. As h0 increases further, σ tends
towards the scaling σ ∝ h20. Above h0 ≈ 10−24, the
Oðh40Þ terms in Eq. (25) are dominate. In practice, realistic
astrophysical signals are unlikely to fall in the third regime.
For an optimistic yet realistic signal strength satisfying
10−25 ≲ h0 ≲ 10−24, μ and σ scale approximately as h20, as
predicted by Eqs. (24) and (25).

C. Averaging over cos ι and ψ

The inclination and polarization angles, ι and ψ , which
modulate the amplitude of a gravitational-wave signal, are
not known for the compact object in SNR 1987A and
should strictly be included in the set of search parameters.
To economize computationally, however, it is often pref-
erable to average over cos ι and ψ in a first-pass search. If a
suitable candidate is identified, follow-up searches can
include these parameters, once the number of templates is
narrowed down. In this subsection, we quantify the loss of
sensitivity occasioned by the averaging process.
When averaging over cos ι and ψ , the unaveraged signal

cross-correlation function ~GIJ in Eq. (5) is replaced by the
averaged version [64]

h ~GIJiψ ;cos ι ¼
1

4π

Z
2π

0

dψ
Z

1

−1
dðcos ιÞ ~GIJ: ð26Þ

The result is given by Eq. (16), applying the averaged
versions of Eqs. (6)–(9) [12].
Let cos ιreal and ψ real denote the cos ι and ψ values of an

injected signal, and let cos ιtest and ψ test be the associated
search variables in a mock search. We create 400 injections
on a uniformly spaced 20 × 20 grid of cos ιreal and ψ real
values, using the LALApps utility as in Sec. IVA. Signals
are injected into 1 year of 30-min SFTs (from H1 and L1)
with h0=

ffiffiffiffiffiffiffiffiffiffiffi
SnðνÞ

p ¼ 9.635 Hz1=2 at frequency 991.413 Hz.
Sky coordinates (α, δ) are chosen arbitrarily to be
ð1.16357;−0.0439203Þ. For each injection, we run two
mock searches using the following: (1) ~GIJ, the exact signal
parameters (α, δ), and a 10 × 10 grid of cos ιtest and ψ test

values, and (2) h ~GIJicos ι;ψ and the exact signal parameters
(α, δ). Both searches analyze the same SFTs across a
frequency band of full width 0.003 Hz centered on the
injected signal frequency, with a resolution of 10−5 Hz and
T lag ¼ 3600 s. We extract the maximum normalized sta-
tistics ρ=σρ at the injected frequency. Among the 100
values of ρ=σρ from the first set of searches, we denote the
maximum, mean, and minimum values with ðρ=σρÞmax,
ðρ=σρÞmean, and ðρ=σρÞmin, respectively. From the second
search, ðρ=σρÞavg denotes the single normalized statistic
returned by using the averaged cross-correlation function
h ~GIJiψ ;cos ι. We emphasize that ðρ=σρÞmean and ðρ=σρÞavg are
different quantities; the former involves ~GIJ, while the latter
involves h ~GIJiψ ;cos ι.
Figure 6 compares ðρ=σρÞavg to ðρ=σρÞmax (left panel),

ðρ=σρÞmean (middle panel), and ðρ=σρÞmin (right panel). The
relevant ratios are plotted as contours on the plane spanned
by cos ιreal and ψ real. Note that ðρ=σρÞavg is plotted as the
numerator in order to make the comparison straightfor-
ward. The left panel corresponds to trials where (cos ιtest,
ψ test) happens to be close to (cos ιreal, ψ real), in which
ðρ=σρÞavg is expected to be smaller than ðρ=σρÞmax. We find
0.534 ≤ ðρ=σρÞavg=ðρ=σρÞmax ≤ 0.943 for the 400 injec-
tions. These results are from the worst case using
h ~GIJicos ι;ψ , yet the loss in sensitivity is tolerable. The
middle panel plots the ratio of ðρ=σρÞavg to the mean value
of ρ=σρ among the 400 injections. The ratio fluctuates

slightly between 1.035 and 1.118; using h ~GIJicos ι;ψ typi-
cally sacrifices ≲10% sensitivity and can even improve it
slightly for certain (cos ιtest, ψ test) combinations. The right
panel compares ðρ=σρÞavg with ðρ=σρÞmin, when (cos ιtest,
ψ test) is far from (cos ιreal, ψ real). The ratio ranges between
1.33 and 2.802; i.e., there is a significant advantage in using
h ~GIJicos ι;ψ . In every panel, the results appear to depend
more on cos ι than ψ , but, near cos ι ≈ 0.0 where the
signal is weakest, the variation with ψ is more apparent.

FIG. 5. The mean μ (top panel) and standard deviation σ
(bottom panel) of the normalized cross-correlation statistic ρ=σρ
as a function of injected gravitational-wave strain h0. The injected
signals have arbitrary parameters α, δ, cos ι, and ψ , and a fixed
frequency of 150.1 Hz with zero spin-down. Each point comes
from 103 ρ=σρ values for given h0. The solid curves match the
approximation predicted by Eqs. (24) and (25), and the vertical
dashed lines mark the three h0 regimes [h0 ≪ jnðtÞj, h0 < jnðtÞj
and h0 ≳ jnðtÞj].
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This matches expectations: ~GIJ depends more strongly on
cos ι via Aþ and A× in Eqs. (6) and (7) than on ψ via Fþ
and F× in Eqs. (8) and (9). When the inclination angle
approaches 90 degrees (i.e., cos ι ≈ 0.0), the gravitational-
wave strain in Eq. (10) is smaller than for smaller
inclination angles, and hence the sensitivity sacrificed by
averaging ~GIJ is more obvious when there is a weaker
signal. In every panel, for j cos ιj≲ 0.25, the contours make
periodic patterns along the vertical axis caused by variation
of ψ with a period approximately equal to π, as expected
from the periodic functions Fþ and F× in Eqs. (8) and (9).
In summary, h ~GIJicos ι;ψ performs nearly as well as ~GIJ for

a fraction of the computational cost, sacrificing ≲50%
sensitivity in the (rare) worst cases and ≲10% sensitivity
typically.

D. Astrophysical spin-down parameters

As described in Sec. III C, one can choose to search over
the Taylor coefficients (ν0, _ν, ν̈) or the parameters (ν0, Q1,
Q2, nem) that define the astrophysical spin-down model
described in Sec. III B. The latter approach performs better
when nem is constant, to a good approximation over the
observation time. In this subsection, we quantify the
relative performance of the two approaches and show that
the relevant “observation time” is T lag rather than Tobs

because the cross-correlation algorithm is semicoherent.
The computational cost of the search is analyzed in Chung
et al. [8].

1. Astrophysical model versus Taylor expansion

We begin by running a single search for an injected
signal that is spinning down using both the astrophysical
model and Taylor expansion. We inject a signal into 30-min
SFTs (from H1 and L1) for the 1-yr observation period with
the parameters listed in Table II, which lie in the typical

ranges discussed in Sec. II. Note that the utility LALApps
was not written to accommodate a general spin-down
model in the form (17) for generating synthetic data, so
we input the frequency and its first three derivatives instead,
as calculated from Eq. (17).
Two searches are carried out with this mock data set for

T lag ¼ 3600 s. The first search uses the astrophysical
model. The second uses the Taylor expansion. The search
parameter ranges encompass the injected signal and are
quoted in Table III. For now, we take nem ¼ 3 to be
constant. The evolution of nem is discussed in Sec. IV D 3.
Figure 7 presents the normalized detection statistic

ρ=σρ from the first search as a function of parameter pairs
from the set fν0; Q1; Q2g in three separate contour plots.
Similarly, Fig. 8 presents contours of ρ=σρ as a function of
parameter pairs from the set fν0; _ν; ν̈g. The statistic peaks
when the trial parameter values are closest to the injected
values (ν0signal; Q1signal; Q2signal) or (ν0signal, _νsignal, ν̈signal) as
expected. The first search generates a higher maximum
(ρ=σρ ≈ 2 × 105) than the second (ρ=σρ ≈ 1.3 × 105)

FIG. 6. Ratio of the normalized detection statistic ðρ=σρÞavg computed with the averaged cross-correlation function h ~GIJicos ι;ψ divided
by the maximum, mean, and minimum values of the normalized detection statistic using the unaveraged ~GIJ as a function of the injection
angles (cos ιreal, ψ real) (left, middle, and right panels, respectively). The averaged statistic h ~GIJicos ι;ψ performs nearly as well as ~GIJ for a
fraction of the computational cost, sacrificing ≲50% sensitivity in the (rare) worst cases (left panel) and ≲10% sensitivity typically
(middle panel). It yields better sensitivity in the best cases (right panel).

TABLE II. Injection parameters used to create the synthetic
data analyzed in Sec. IV D 1. The frequency derivatives corre-
spond to spin-down parameters Q1signal ¼ 3.5 × 10−19 Hz s−1
and Q2signal ¼ 1 × 10−17 Hz s−1 (i.e., ϵ ¼ 4.52 × 10−4 and
B ¼ 4.05 × 1011 G) according to Eqs. (17) and (18).

Injection parameter Value Units

h0=
ffiffiffiffiffiffiffiffiffiffiffi
SnðνÞ

p
3.33 Hz1=2

ν0signal 150.1 Hz
_ν0signal −2.67 × 10−8 Hz s−1
ν̈0signal 2.37 × 10−17 Hz s−2
ν
…
0signal −3.80 × 10−26 Hz s−3
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because only the first and second frequency derivatives are
searched in the second test, whereas the first search tracks
the phase exactly. The superiority of searching astrophysi-
cal parameters becomes more dominant when we inject a
signal with a faster spin-down rate.

2. Including or excluding Q1 and Q2

One may doubt whether the astrophysical spin-down
model is correct and wonder how the search can benefit
from including spin-down parameters. We now test how
much sensitivity is sacrificed by searching over ν0 and

TABLE III. Search parameter ranges using the astrophysical model and the Taylor series. The ranges are centered
on the injected signals. We take nem ¼ 3 to be constant and discuss the evolution of nem in Sec. IV D 3. The range
width column defines the domain of the search parameter assuming that it is centered on the injection.

Search parameter Range width Resolution Units

Astrophysical model ν0 0.5 0.005 Hz
Q1 5 × 10−19 0.05 × 10−19 Hz s−1
Q2 2 × 10−17 0.02 × 10−17 Hz s−1

Taylor series ν0 0.5 0.005 Hz
_ν0 2 × 10−8 0.01 × 10−8 Hz s−1
ν̈0 2 × 10−17 0.01 × 10−17 Hz s−2

FIG. 7. Normalized detection statistic ρ=σρ as a function of trial parameter value pairs from the set fν0; Q1; Q2g. The injected values
are ν0signal ¼ 150.1 Hz, Q1signal ¼ 3.5 × 10−19 Hz s−1, Q2signal ¼ 1 × 10−17 Hz s−1.

FIG. 8. Normalized detection statistic ρ=σρ as a function of trial parameter value pairs from the set fν0; _ν; ν̈g. The injected values are
ν0signal ¼ 150.1 Hz, _ν0signal ¼ −2.67 × 10−8 Hz s−1, ν̈0signal ¼ 2.37 × 10−17 Hz s−2, ν…0signal

¼ −3.80 × 10−26 Hz s−3.
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neglecting spin-down, as compared to searching a combi-
nation of (ν0, Q1, Q2) according to the astrophysical spin-
down model (17). Again, we assume nem is constant for
simplicity; cf. Sec. IV D 3. We inject signals with a range of
wave strains h0 but identical ν0 ¼ 150.1 Hz. For a specific
wave strain, a grid of 15 × 17 values of Q1signal and Q2signal

is chosen within the ranges listed in Table IV. The signal
parameters are astrophysically relevant, in line with the
discussion in Sec. II, and they are affordable from the
perspective of computing cost. Each signal, which is
spinning down, is injected into 30-min SFTs (from H1
and L1) for a whole year. Two sets of searches, excluding
and including Q1 and Q2 in the search parameters, are run
over the parameter ranges in Table V with T lag ¼ 3600 s,
targeted at the same injections. We analyze only the largest
ρ=σρ value returned.
Figure 9 displays the results from the first set of searches,

where ν0 is the only search parameter (i.e., Q1 ¼ Q2 ¼ 0).
The top row displays the results for relatively strong
signals [h0 ¼ 1 × 10−23, h0=

ffiffiffiffiffiffiffiffiffiffiffi
SnðνÞ

p ¼ 0.33 Hz1=2] on
the Q1signal −Q2signal plane. The left panel shows that
ρ=σρ peaks at ∼400 in the bottom-left corner of the plot
and drops dramatically when Q1signal ≥ 10−19 Hz s−1 and
Q2signal ≥ 10−16 Hz s−1. In the right panel, the frequency at
which ρ=σρ peaks is lower than ν0signal ¼ 150.1 Hz and
decreases as Q1signal and Q2signal increase. We expect the
latter discrepancy; we are searching for a constant-ν signal,
while the injection is spinning down, and the discrepancy
grows as _νsignal increases. The middle row of Fig. 9 shows
the same thing for weaker signals with h0 ¼ 5 × 10−24 and
h0=

ffiffiffiffiffiffiffiffiffiffiffi
SnðνÞ

p ¼ 0.167 Hz1=2. Here, ρ=σρ peaks at ∼100, and
the frequency where it peaks decreases faster than in the
previous case. In the bottom row, with h0 ¼ 1 × 10−24 and

h0=
ffiffiffiffiffiffiffiffiffiffiffi
SnðνÞ

p ¼ 0.033 Hz1=2, the signals are too weak to be
detectable. Excluding spin-down therefore leads to signifi-
cant loss in sensitivity, as compared to Sec. IV B.
Figure 10 displays the results from the second set of

searches, where not only ν0 but also Q1 and Q2 are
searched. In the top row [h0 ¼ 1 × 10−23, h0=

ffiffiffiffiffiffiffiffiffiffiffi
SnðνÞ

p ¼
0.33 Hz1=2], ρ=σρ is larger than in the top row of Fig. 9 (i.e.,
same h0), reaching as high as ∼3.26 × 103 over a broad
range of Q1signal and Q2signal (Q1signal ≲ 4 × 10−19 Hz s−1

and the whole range of Q2signal tested). In the right panel
in the top row, the largest ρ=σρ always occurs at the
injected frequency ν0signal ¼ 150.1 Hz. In the middle row

[h0¼1×10−24, h0=
ffiffiffiffiffiffiffiffiffiffiffi
SnðνÞ

p ¼0.033Hz1=2], signals which
are undetectable in Fig. 9 remain detectable in Fig. 10.
Again, ρ=σρ peaks at ν0signal ¼ 150.1 Hz. In the bottom

row [h0 ¼ 3 × 10−25, h0=
ffiffiffiffiffiffiffiffiffiffiffi
SnðνÞ

p ¼ 0.01 Hz1=2], the sig-
nals become lost in the noise in both figures, close to the
minimum detectable h0 calculated in Sec. IV B.
In summary, we verify that as long as a spinning-down

signal is strong enough or spins down slowly, it can be
detected whether or not Q1 and Q2 are excluded from the
search. However, when a signal is weak [h0 ≲ 5 × 10−24,
h0=

ffiffiffiffiffiffiffiffiffiffiffi
SnðνÞ

p ≲ 0.167 Hz1=2] or the frequency evolves
quickly (j_νj≳ 1 × 10−8 Hz s−1), excluding Q1 and Q2

causes significant loss in sensitivity, enlarging the detect-
able h0 threshold ∼10 times.

3. Braking index evolution

The electromagnetic braking index nem for radio pulsars
is observed to satisfy nem < 3 [63], in contrast with
classical magnetic dipole braking (nem ¼ 3). This raises
the possibility that nem evolves, as the neutron star spins

TABLE IV. Spin-down parameter ranges for the injected signals analyzed in Sec. IV D 2 in order to compare the
results of searching ν0 only and searching ν0, Q1, and Q2. A grid of 15 × 17 values of Q1signal and Q2signal, evenly
spaced on a logarithmic scale, is chosen within the ranges. The corresponding ranges of the astrophysical parameters
ϵ and B in Eq. (17) are also quoted.

Injection parameter Astrophysical parameter

1 × 10−22 ≤ Q1signal ≤ 1.64 × 10−18 Hz s−1 7.65 × 10−6 ≤ ϵ ≤ 9.79 × 10−4

1 × 10−21 ≤ Q2signal ≤ 1 × 10−13 Hz s−1 4.05 × 109 G ≤ B ≤ 4.05 × 1013 G

TABLE V. Search parameter ranges for the synthetic signals with injection parameters quoted in Table IV. The
upper half of the table refers to searching ν0 only (i.e.,Q1 ¼ Q2 ¼ 0). The lower half refers to searching ν0,Q1, and
Q2. The ranges encompass the injected signals.

Search parameter Range Resolution Units

Search ν0 only ν0 135.45–150.15 0.01 Hz
Search ν0, Q1 and Q2 ν0 150.095–150.105 0.001 Hz

Q1 0.9–1.1 0.02 Q1signal

Q2 0.9–1.1 0.02 Q2signal
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down, increasing Ntotal over and above the already heavy
cost of searching over Q1 and Q2. We now quantify how
much sensitivity is sacrificed by assuming nem is constant.
Specifically, if we fix nem ¼ 3 in the search, yet the true

value is nem ¼ 3 − ΔnemðtÞ, we find that the sensitivity
does not change significantly, as long as T lag (the maximum

interval over which the cross-correlation algorithm requires
phase coherence) is smaller than jξj−1Tage. Instead, the
signal is recovered with a similar signal-to-noise ratio but at
a modified value of Q2. The result holds if nem is constant
or evolves slowly on the time scale jξj−1Tage, with the
signal location in Q2 evolving on a similar time scale.

FIG. 9. Maximum ρ=σρ returned as a function of Q1signal and Q2signal values when searching over ν0 only (i.e., Q1trial ¼ Q2trial ¼ 0)
(left), and the corresponding frequency at which ρ=σρ peaks (right) for h0 ¼ 1 × 10−23 and h0=

ffiffiffiffiffiffiffiffiffiffiffi
SnðνÞ

p ¼ 0.33 Hz1=2 (top), h0 ¼
5 × 10−24 and h0=

ffiffiffiffiffiffiffiffiffiffiffi
SnðνÞ

p ¼ 0.167 Hz1=2) (middle), and h0 ¼ 1 × 10−24 and h0=
ffiffiffiffiffiffiffiffiffiffiffi
SnðνÞ

p ¼ 0.033 Hz1=2 (bottom).
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Figure 11 presents results from mock searches demon-
strating the behavior above. We simulate spinning-down
signals at three different wave strains whose parameters are
quoted in Table VI, generating 1 year of 30-min SFTs (from
H1 and L1). For each value of h0, we inject signals with
eight different values of nemsignal. The search parameters are
quoted in Table VII. The electromagnetic braking index

nem ¼ 3 is held fixed in every search. For each value of
h0signal and nemsignal, the above test is repeated 100 times.
We extract the maximum ρ=σρ as well as the corresponding
Q0

2 value which maximizes ρ=σρ from each of the 100 trials,
and we plot the mean values of ðρ=σρÞmax and Q0

2 as
functions of nemsignal in Fig. 11. The variation in ðρ=σρÞmax

is modest over the full range of nemsignal, with

FIG. 10. Maximum ρ=σρ returned as a function of Q1signal and Q2signal values when searching over ν0, Q1, and Q2 (left), and the
corresponding frequency at which ρ=σρ peaks (right) for h0 ¼ 1 × 10−23 and h0=

ffiffiffiffiffiffiffiffiffiffiffi
SnðνÞ

p ¼ 0.33 Hz1=2 (top), h0 ¼ 1 × 10−24 and

h0=
ffiffiffiffiffiffiffiffiffiffiffi
SnðνÞ

p ¼ 0.033 Hz1=2 (middle), and h0 ¼ 3 × 10−25 and h0=
ffiffiffiffiffiffiffiffiffiffiffi
SnðνÞ

p ¼ 0.01 Hz1=2 (bottom).
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ðρ=σρÞmax ≃ 32, 3.2 × 103, 2.2 × 105 for h0signal ¼ 10−24,

10−23, 10−22, respectively. The reason why ρ=σρ is always

relatively lower for nemsignal ≃ 2.3 is that ρ=σρ peaks at a

smallerQ0
2 value than the smallest one searched. We do not

expand the Q2 band to such a small value because that
would introduce a finer resolution and thus require a much
larger number of templates. We also find that the Q0

2 which

maximizes ρ=σρ shifts relative to the injected value
according to

Q0
2 ¼ ν−Δnem0 Q2signal; ð27Þ

as expected from Taylor expanding Eq. (18) in
jξjT lag=Tage ≪ 1. The red dashed curves overplotted in
the right panels of Fig. 11 display the theoretically
predicted Q0

2 values as a function of nemsignal from
Eq. (27) at ν0signal ¼ 150.1 Hz and Q2signal ¼
2 × 10−17 Hz s−1. They are consistent with the empirical

FIG. 11. Maximum ρ=σρ (left) and equivalent Q0
2 (right) obtained by fixing nem ¼ 3, averaged over 100 trials, as functions of

the true, injected electromagnetic braking index nemsignal for (top to bottom) h0 ¼ 1 × 10−24, 1 × 10−23, and 1 × 10−22

[
ffiffiffiffiffiffiffiffiffiffiffi
SnðνÞ

p ¼ 3 × 10−23 Hz−1=2], with ν0signal ¼ 150.1 Hz and Q2signal ¼ 2 × 10−17 Hz s−1. The red dashed curves plot the theoretically
predicted Q0

2 from Eq. (27) as a function of nemsignal, which mainly overlap the empirical curves.

TABLE VI. Injection parameters used to create the synthetic
data analyzed in Sec. IV D 3 to study braking index evolution.
Three values of h0 and eight values of nemsignal are chosen.

Injection parameter Value Units

ν0signal 150.1 Hz
Q1signal 3.5 × 10−19 Hz s−1
Q2signal 2 × 10−17 Hz s−1ffiffiffiffiffiffiffiffiffiffiffi

SnðνÞ
p

3 × 10−23 Hz−1=2

h0 10−24, 10−23, 10−22

nemsignal 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0

TABLE VII. Search parameter ranges for the targets in Table VI
with T lag ¼ 3600 s. The electromagnetic braking index nem ¼ 3
is held fixed in every search.

Search
parameter Range Resolution Units

ν0 149.6–150.6 0.01 Hz
Q1 3.0 × 10−19 − 3.9 × 10−19 0.1 × 10−19 Hz s−1
Q2 1.0 × 10−18 − 2.5 × 10−17 0.1 × 10−18 Hz s−1
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results. This fact makes it possible to fix nem ¼ 3 in the
search, taking only Q1 and Q2 as spin-down variables and
reducing Ntotal without sacrificing sensitivity.

V. SENSITIVITY

In this section, we present Monte Carlo tests to determine
the smallest gravitational-wave signal detectable by the
pipeline in Sec. III. Specifically, we empirically determine
the value of hαc0 , for which a fraction αc (normally
αc ¼ 0.95) of the Monte Carlo trials yield ρ=σρ ≥ ρth,
where ρth is the agreed detection threshold. We discuss
the choice of ρth in Sec. VA and estimate hαc0 in
Secs. V B–VD.

A. Threshold ρth
For a given false alarm rate αf , ρth is estimated as

follows. SFTs containing pure noise are generated, and a
search is run over signal parameters (i.e., ν0, Q1, Q2, and
nem). The value of ρ=σρ which yields a fraction αf of
positive detections is then ρth. In this paper, we consider
αf ¼ 1%. Specifically, for 103 searches over pure noise, we
adjust ρth such that 10 trials have ρ=σρ > ρth.
An analytic expression for ρth (before normalizing by σρ)

given αf and σρ is presented by Dhurandhar et al. [12], viz.

ρth ¼
ffiffiffi
2

p
σρerfc−1ð2αf=NtotalÞ; ð28Þ

where erfc is the complementary error function, andNtotal is
the number of search templates. As shown in Sec. IVA, for
pure noise, the PDF of ρ=σρ is a Gaussian with zero mean
and unit variance, assuming that all pairs are independent.
As foreshadowed in Secs. IVA and IV B, we do not
discuss the non-Gaussian corrections caused by dependent
pairs in this paper because they are negligible for

Tobs ¼ 1 yr; for more details, see Ref. [69]. Hence the
threshold reduces to

ρth ≈ F−1½1 − ðαf=NtotalÞ�; ð29Þ
where F−1ðxÞ is the inverse cumulative distribution func-
tion (CDF) of x. Figure 12 plots ρth as a function of Ntotal

from Eq. (29); it ranges from 3.72 for N ¼ 102 to 7.03
for N ¼ 1010.
Searches without and with spin-down require different

numbers of templates.

1. Pure noise, zero-spin-down search

The signal power is concentrated within one frequency
bin when searching for a zero-spin-down signal. We
therefore search 0.1-Hz bands centered on 150.05,
300.05, and 600.05 Hz, respectively, with a resolution of
10−4 Hz using SFTs containing only noise. Each trial
consists of Ntotal ¼ 103 search templates. For αf ¼ 1%
and σρ ¼ 1, Eq. (29) yields ρth ¼ 4.265. For each band
searched, we adjust ρth such that it is exceeded by only 10
out of 103 of the ρ=σρ values. Table VIII lists ρth for the
three bands. The result in each band agrees with the
analytic value to better than 6%.

2. Pure noise, spin-down search

Searching for a spinning-down signal involves more
parameters (i.e., Q1, Q2, nem) and hence larger Ntotal. Here,
we consider the parameter space defined in Table IX. Each
trial consists of Ntotal ¼ 100 × 7 × 11 ¼ 7700 search tem-
plates. The analytic estimate from Eq. (29) yields

FIG. 12. Analytic detection threshold ρth as a function of Ntotal
from Eq. (29) with αf ¼ 1% and σρ ¼ 1.

TABLE VIII. Monte Carlo detection threshold ρth for three 0.1-
Hz bands when searching pure noise, assuming zero spin-down,
Ntotal ¼ 103, and αf ¼ 1%. Equation (29) yields ρth ¼ 4.265
analytically.

Band (Hz) ρth

150.0–150.1 4.440
300.0–300.1 4.433
600.0–600.1 4.516

TABLE IX. Search parameter ranges used to estimate the
threshold for a spin-down search in Sec. VA 2 with nem ¼ 3
fixed. The data contain Gaussian noise (h0 ¼ 0). The ranges
of Q1 and Q2 correspond to 7.6 × 10−9 Hz s−1 ≤ j_νj ≤ 5.3×
10−8 Hz s−1, 2.4×10−4≤ ϵ≤6.4×10−4, and 1.3 × 1011 G ≤
B ≤ 4.2 × 1011 G.

Search parameter Range Resolution Units

ν0 150.0–150.1 10−3 Hz
Q1 1.0 × 10−19 − 7.0 × 10−19 1 × 10−19 Hz s−1

Q2 1.0 × 10−18 − 1.1 × 10−17 1 × 10−18 Hz s−1
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ρth ¼ 4.700. Results from the Monte Carlo tests, adjusting
ρth to be exceeded by only 10 out of 103 of the ρ=σρ values,
yield ρth ¼ 4.898, which is 4% larger than the analytic
estimate.

B. Sensitivity for zero-spinning-down signals

Without considering the spin-down of a signal, we
determine h95%0 using ρth from Table VIII.
We inject signals with constant ν0signal ¼ 150.05,

300.05, and 600.05 Hz and strains in the range 1 × 10−25 ≤
h0 ≤ 2 × 10−24 into 1 year of 30-min SFTs from H1 and
L1, with signal parameters ðα; δÞ ¼ ð1.46375;−1.20899Þ
(the coordinates of SNR 1987A), random cos ιsignal
and ψ signal, and SnðνÞ given by Eq. (21). We then search

a 0.1-Hz band centered on ν0signal with a resolution of
10−4 Hz, using the exact sky position ðα; δÞ and averaging
over cos ι and ψ (T lag ¼ 3600 s). The normalized detection
statistic hρ=σρi averaged over 103 trials is plotted as a
function of h0 in Fig. 13. The solid, dotted, and dashed lines
correspond to ν0signal ¼ 150.05 Hz, 300.05 Hz, and
600.05 Hz, respectively. As expected, hρ=σρi grows ∝ h20
from Eq. (24) for a given ν0signal, and it drops when ν0signal
and hence

ffiffiffiffiffi
Sn

p
increase. In Fig. 13(b), we plot the

confidence level C (i.e., the fraction of ρ=σρ values, in each
set of 103 trials, which exceed ρth) as a function of h0. Linear
interpolation in Fig. 13(b) implies that C increases to ≥ 95%

for h0 ≥ h95%0 for the h95%0 values listed in Table X.
The results interpolated from Fig. 13(b) are for a search

over 103 templates. The full search involves ∼109 tem-
plates, corresponding to ρth ≈ 6.71 from Eq. (29). The
estimated strain limits, which are ∼20% larger, appear in
the lower half of Table X.

FIG. 13. Sensitivity without spin-down. (a) Normalized detection statistic hρ=σρi averaged over 103 trials, and (b) confidence level C,
as functions of injected gravitational-wave strain h0. The injected signals have random cos ιsignal and ψ signal, fixed sky positions
ðα; δÞ ¼ ð1.46375 rad;−1.20899 radÞ, and ν0signal ¼ 150.05 Hz (solid curve), 300.05 Hz (dotted curve), and 600.05 Hz (dashed curve).
For each injected frequency, ρth is listed in Table VIII for Ntotal ¼ 103. The horizontal line in (b) indicates C ¼ 0.95.

TABLE X. Wave strain threshold h95%0 (i.e., confidence
C ≥ 0.95) estimated for three 0.1-Hz bands containing pure
Gaussian noise. For Ntotal ¼ 103, the thresholds are estimated
from linear interpolation of Monte Carlo simulation results
plotted in Fig. 13(b). For Ntotal ¼ 109, the thresholds are based
on analytical estimation from Eq. (29).

Ntotal ν0signal (Hz) h95%0

103 150.05 4.72 × 10−25

300.05 6.36 × 10−25

600.05 1.26 × 10−24

109 150.05 5.64 × 10−25

300.05 7.60 × 10−25

600.05 1.42 × 10−24

TABLE XI. Injection parameters used to create the synthetic
data analyzed in Sec. V C containing spinning-down signals. The
injection parameters Q1signal and Q1signal are computed from the
astrophysical parameters using Eqs. (17) and (18). The corre-
sponding initial spin-down rate j_νð0Þj is 3.81 × 10−8 Hz s−1.

Injection parameter Value Astrophysical parameter

ν0signal 150.05 Hz
Q1signal 5 × 10−19 Hz s−1 ϵ ¼ 5.4 × 10−4

Q2signal 1 × 10−17 Hz s−1 B ¼ 4.05 × 1011 G
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C. Sensitivity for spinning-down signals

We inject spin-down signals with the parameters
quoted in Table XI. The wave strain is still in the
range 1 × 10−25 ≤ h0 ≤ 2 × 10−24, and all other param-
eters remain the same as those in Sec. V B. The same
searches with 103 templates are carried out, and the
normalized detection statistics averaged over 103 trials,
as well as the confidence levels, are shown in Fig. 14.
Despite the signal spin-down, the values of hρ=σρi
[Fig. 14(a)] and C [Fig. 14(b)] are close to those
plotted in Fig. 13 at the same h0. Hence, we find a
similar h95%0 ∼ 4.72 × 10−25.

D. Sensitivity for spinning-down signals
with limitation on h0

The search sensitivity depends on two factors: (1) spin-
down rate (i.e., combination of spin-down parameters ν0,

Q1, Q2, and nem) and (2) wave strain h0. First, the cross-
correlation pipeline tracks up to νð6ÞðtÞ terms using the
astrophysical model, so the search is most sensitive for the
regime with spin-down rate j_νð0Þj ≲ 10−7 Hz s−1, above
which the sensitivity starts to drop quickly because the error
in tracked signal phase increases to ≳π=2 after 1 year’s
observation. Second, given ϵ and ν, the gravitational-wave
strain at Earth is [64]

h0 ¼
4π2G
c4

Iϵν2

D
: ð30Þ

A stronger signal indicates larger ϵ and ν0 and hence a
higher spin-down rate, which inversely decreases the
sensitivity.
We first inject spin-down signals with the parameters

quoted in Table XII into 1 year of 30-min SFTs from H1 and
L1. Wave strain is in the range 1 × 10−25 ≲ h0 ≲ 7 × 10−25

FIG. 14. Sensitivity with spin-down (ν0signal ¼ 150.05 Hz, Q1signal ¼ 5 × 10−19 Hz s−1, Q2signal ¼ 1 × 10−17 Hz s−1). (a) Normalized
detection statistic hρ=σρi averaged over 103 trials, and (b) confidence level C, as functions of injected gravitational-wave strain h0. The
injected signals have random cos ιsignal and ψ signal and fixed sky positions ðα; δÞ ¼ ð1.46375 rad;−1.20899 radÞ. The horizontal line in
(b) indicates C ¼ 0.95.

TABLE XII. Injection parameters used to create the first set of synthetic data analyzed in Sec. V D containing
spinning-down signals, in which Q2signal is fixed and a group of Q1signal values are tested. The corresponding
astrophysical parameters ϵ and B in Eq. (17) are also quoted in the last column. The wave strain covers the range
1 × 10−25 ≲ h0 ≲ 7 × 10−25 as calculated from Eq. (30).

Injection parameter Value Astrophysical parameter

ν0signal 150.05 Hz
Q1signal 1 × 10−19 − 4 × 10−18 Hz s−1 2.4 × 10−4 ≤ ϵ ≤ 1.5 × 10−3

Q2signal 1 × 10−17 Hz s−1 B ¼ 4.05 × 1011 G
nemsignal 3
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by using Eq. (30).5 We search the parameter ranges in
Table XIII. We have ρth ¼ 4.898 for a signal with ν0signal ¼
150.05 Hz in Sec. VA 2, given Ntotal ¼ 7700. Figure 15
plots the normalized detection statistic hρ=σρi averaged over
103 trials as a function of Q1signal (bottom axis) and
corresponding ϵ (top axis). We plot the confidence level
C as a function ofQ1signal and ϵ in Fig. 15(b). The confidence
level C increases withQ1signal and ϵ but saturates at ∼0.9 for
Q1signal ≳ 2 × 10−18 Hz s−1 [j_νð0Þj ∼ 1.5 × 10−7 Hz s−1].
This result is consistent with our expectation that, as h0
increases, larger ϵ and ν0 (i.e., higher spin-down rate) lead to
difficulty in phase tracking and prevent achieving better
sensitivity.
Next we inject signals with the parameters quoted in

Table XIV. This time we fix Q1signal and test a group of
Q2signal values for the same ranges as in Table XIII.
Figure 16 plots the normalized detection statistic hρ=σρi
averaged over 103 trials as a function of Q2signal (bottom
axis) and corresponding B (top axis). As expected, varying
Q2signal within a reasonable range of magnetic field strength
does not impact the sensitivity much for given Q1signal

because the wave strain depends more on ϵ than B.

VI. LIGO S5 SEARCH

A. Data and templates

The S5 data contain 2 years of SFTs, collected from
November 2005 to October 2007. A search of the band
75–450 Hz is conducted, using SFTs from the H1 and L1
interferometers from 01 November 2006 to 30 October
2007 UTC. The second year of S5 is chosen because we are
limited computationally to Tobs ≤ 1 year, and the noise
power spectral density is lower during the second year than
the first. We analyze 23 223 30-min SFTs in total, with
12 590 from H1 and 10 633 from L1.
In view of the substantial computational cost, we select

the template grid with an eye towards efficiency. In Sec. VI
of Ref. [8], a semicoherent phase metric was developed to
calculate the mismatch m as a function of the template

spacing along each of the four axes of the parameter space
(ν0, Q1, Q2, nem). For the search in this paper, we elect to
tolerate a maximum mismatch m ≤ 0.2 for the template
closest to the true source parameters. Drawing on the
analysis in Sec. VI of Ref. [8], specifically Eqs. (39)–(41),
we construct a set of templates fν0; Q1; Q2g across the
astrophysically relevant parameter range quoted in
Table XV. The largest values of Q1 and Q2 are limited
by the maximum number of templates we can afford
computationally (Ntotal ∼ 109). Only two values of Q2

are needed to sample the relevant range at the resolution
required for m ≤ 0.2. We fix nem ¼ 3 (see Sec. IV D 3),
the sky position ðα; δÞ ¼ ð1.46375;−1.20899Þ, and T lag ¼
3600 s, and average over cos ι and ψ . As the pipeline loses
track of the signal phase quickly with a spin-down rate
j_νð0Þj ≳ 10−7 Hz s−1 (see Sec. V D), a narrower band
of Q1 is searched for 350 ≤ ν0=Hz ≤ 450. The total
number of templates is Ntotal ¼ 2, 373, 875, 000, implying
ρth ≈ 6.50ðαf ¼ 10%Þ.

B. Candidates and line vetoes

Templates fν0; Q1; Q2g with ρ=σρ > ρth are found to
cluster at 19 narrow ν0 bands, each spanning ∼0.5 Hz and
extending over the entire ranges of Q1 and Q2. We list the
peak ρ and corresponding ν0, Q1, and Q2 values in
Table XVI for each cluster.
Continuous waves emitted by nonspherical spinning

neutron stars appear as narrow spectral lines. The instru-
mental power line at 60 Hz with wings extending �2 Hz,
its harmonics, and noise lines from electronics, wire,
calibration, etc., impact the search by obscuring astro-
physical signals in that band. Within the frequency range
we are searching, the most prominent known peaks lie at
low frequencies, ∼90–100 Hz (electronic lines), and at
∼329–350 Hz (mirror suspensions). An instrumental line
catalog can be found in Appendix B of Ref. [71] and at the
LIGO Open Science Center.6 We notch out bands con-
taminated by known noise lines. For each candidate cluster
with a peak at frequency ν0 and _ν0 (calculated from Q1 and
Q2), we veto the cluster if the band ν0 − Δν ≤ ν ≤ ν0 þ Δν,
with Δν ≈ ν0 × 10−4 þ j_ν0j × 3.14 × 107 s, overlaps with a
known noise line. This criterion takes into account the
maximum possible Doppler shift due to the Earth’s orbit
and the maximum frequency shift due to the spin-down of
the source [71]. The surviving candidates are listed in
Table XVII.

C. Manual vetoes

We now examine the survivors in Table XVII manually
to check if they are false alarms. We do this in two ways.
First, we search the second year of S5 (01 November 2006
to 30 October 2007 UTC) from H1 and L1 separately to test

TABLE XIII. Search parameter ranges for injected spin-down
signals in Tables XII and XIV. The ranges are centered on the
injected signals. The range width column defines the domain of
the search parameter assuming that it is centered on the injection.

Search parameter Range width Resolution Units

ν0 0.1 10−3 Hz
Q1 7 × 10−19 1 × 10−19 Hz s−1
Q2 1.1 × 10−17 1 × 10−18 Hz s−1

5For comparison, we have h0 ¼ 2.5 × 10−25 computed from
Eq. (30) using parameters quoted in Table XI in Sec. V C, which is
relatively low compared to the range 1 × 10−25 ≲ h0 ≲ 7 × 10−25

we test in Sec. V D. 6https://losc.ligo.org/speclines/
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if the signal appears in both interferometers. The sensitiv-
ities of the two interferometers during S5 are comparable to
one another, implying that a signal is expected to meet the
same detection criterion in both detectors. Second, we
search the first year of S5 (04 November 2005 to 30
October 2006 UTC) from H1 and L1 to test if the candidate
persists in both years. As with the first detection criterion,
the strain sensitivities of the detectors in the first and second
years of observation are comparable, implying that a
gravitational-wave signal present in one year of data should
also be present in both.
Figure 17 compares the output from both detectors (H1

and L1; top two panels in each group of four) and from one
detector (H1 or L1; bottom two panels in each group of

four) for each candidate cluster. For clusters (a) and (b), the
bottom two panels are from H1 and no detection is found in
L1; for (c), (d), and (e), the bottom two panels are from L1
and no detection is found in H1. The left panels in each
group of four are for Q2 ¼ 1 × 10−21 Hz s−1, and the right

FIG. 15. Sensitivity with spin-down. (a) Normalized detection statistic hρ=σρi averaged over 103 trials and (b) confidence level C as
functions of Q1signal (bottom axis) and ϵ (top axis). The injected signals have random cos ιsignal and ψ signal, fixed sky positions
ðα; δÞ ¼ ð1.46375 rad;−1.20899 radÞ, ν0signal ¼ 150.05 Hz, and Q2signal ¼ 1 × 10−17 Hz s−1. From Sec. VA 2, we set ρth ¼ 4.898 for
Ntotal ¼ 7700. The horizontal line in (b) indicates C ¼ 0.90.

TABLE XIV. Injection parameters used to create the second set
of synthetic data analyzed in Sec. V D containing spinning-down
signals, in which Q1signal is fixed and a group of Q2signal values
are tested. The corresponding astrophysical parameters ϵ and B in
Eq. (17) are also quoted in the last column. The wave strain
h0 ¼ 3 × 10−25 is calculated from Eq. (30).

Injection
parameter Value

Astrophysical
parameter

ν0signal 150.05 Hz
Q1signal 7 × 10−19 Hz s−1 ϵ ¼ 6.4 × 10−4

Q2signal 2 × 10−18 − 1 × 10−16 Hz s−1 1.8 × 1011 G ≤ B ≤
1.3 × 1012 G

nemsignal 3

FIG. 16. Normalized detection statistic hρ=σρi averaged
over 103 trials as a function of Q1 (bottom axis) and
magnetic field strength B (G) (top axis). The injected signals
have random cos ιsignal and ψ signal, fixed sky positions
ðα; δÞ ¼ ð1.46375 rad;−1.20899 radÞ, ν0signal ¼ 150.05 Hz, and
Q1signal ¼ 7 × 10−19 Hz s−1.
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panels are for Q2 ¼ 2 × 10−16 Hz s−1. Red and blue dots
stand for ρ higher and lower than 50, respectively. In some
cases, the cluster spreads wider across parameter space ν0,
Q1, and ρ=σρ is higher from the output of one detector than
from both detectors because the loud noise line causing
these candidates in one detector is weakened by the noise in
the other detector.
The only candidate seen in both detectors lies around

112 Hz. The detection statistic ρ=σρ for this candidate is
plotted as a dot for each template fν0; Q1; Q2gwith ρ=σρ >
ρth ¼ 6.5 in Fig. 18. At Q2 ¼ 1 × 10−21 Hz s−1, three
templates exceed ρth obtained using both detectors, five
templates exceed ρth for H1, and one template exceeds ρth
for L1. No hits are atQ2 ¼ 2 × 10−16 Hz s−1. Following up
further, we take the first year of S5 data from H1 and L1
and run the same search around 112 Hz. If the candidate is
astrophysical in origin, we expect a detection with similar
statistical significance at a slightly higher ν0 consistent with

the astrophysical spin-down model. However, nothing is
detected in the first year of S5 data for 111.5 ≤ ν0=
Hz ≤ 112.5, 2 × 10−22 ≤ Q1=Hz s−1 ≤ 6.17 × 10−19, and
1 × 10−21 ≤ Q2=Hz s−1 ≤ 2 × 10−16. As the candidate
comprises relatively few templates, and ρ=σρ stands just
above the threshold, a false alarm is strongly implied.
In summary, no candidate survives the manual vetoes.

The false alarm rate selected for the whole search is 10%, so
a single false alarm candidate cluster is consistent with our
expectation.
To better understand the cause of the strongest vetoed

candidates (i.e., clusters around 91 Hz and 381 Hz; both
found in L1), we divide the second year of S5 data from the
L1 detector into two halves (01 November 2006 to 30 April
2007 UTC and 01 May 2007 to 30 October 2007 UTC),
search them separately, and compare the two outputs. The
cluster around 91 Hz only exists in the second half of the
year. The cluster around 381 Hz only exists in the first half
of the year. The normalized detection statistic for each
template fν0; Q1; Q2g with ρ=σρ > ρth ¼ 6.5 from L1 is
plotted in Fig. 19 [(a) for a cluster around 91 Hz in the
second half of the year, and (b) for a cluster around 381 Hz
in the first half of the year]. The patterns of dots in the (Q1,
ν0) plane from the second half of the year [around 91 Hz;
Fig. 19] and the first half of the year [around 381 Hz;
Fig. 19(b)] are exactly the same as those from the whole
year [see Figs. 17(c) and 17(e)]. Hence, instead of being
some persistent noise line throughout the whole observa-
tion period, the candidate is probably a short-term glitch.
We also check how the pattern of dots caused by a glitch

differs from that of a known instrumental spectral line. We

TABLE XV. Ranges and resolutions of template parameters ν0, Q1, and Q2 (nem fixed). Only two Q2 values are searched.
Corresponding ranges of ϵ and B are listed in the right column.

ν0 (Hz) Resolution (Hz) Q1, Q2ðHz=sÞ Resolution (Hz/s) ϵ, BðGÞ
75 ≤ ν0 < 350 4 × 10−4 2 × 10−22 ≤ Q1 ≤ 6.17 × 10−19 3.68 × 10−22 1.08 × 10−5 ≤ ϵ ≤ 6.0 × 10−4

1 × 10−21 ≤ Q2 ≤ 2 × 10−16 2 × 10−16 4.05 × 109 ≤ B ≤ 1.81 × 1012

350 ≤ ν0 ≤ 450 4 × 10−4 2 × 10−22 ≤ Q1 ≤ 4.99 × 10−20 3.68 × 10−22 1.08 × 10−5 ≤ ϵ ≤ 1.71 × 10−4

1 × 10−21 ≤ Q2 ≤ 2 × 10−16 2 × 10−16 4.05 × 109 ≤ B ≤ 1.81 × 1012

TABLE XVI. First-pass candidates from the LIGO S5 search
for SNR 1987A, listing the maximum ρ=σρ in each cluster with
ρ=σρ > ρth ¼ 6.50 and the corresponding ν0, Q1, and Q2, sorted
according to ν0.

ρ=σρ ν0 (Hz) Q1ðHz s−1Þ Q2ðHz s−1Þ
23.81 75.0240 1.0872 × 10−20 1 × 10−21

3774.10 91.1360 1.80888 × 10−19 1 × 10−21

7.77 93.2896 2.20264 × 10−19 2 × 10−16

11.07 96.4980 2.31304 × 10−19 2 × 10−16

35.73 100.0008 1.0136 × 10−20 1 × 10−21

90.11 108.8632 5.0984 × 10−20 1 × 10−21

10.90 112.0000 2.408 × 10−21 1 × 10−21

47.07 119.8792 4.984 × 10−21 1 × 10−21

27.73 128.0012 4.616 × 10−21 1 × 10−21

49.61 139.5112 2.776 × 10−21 1 × 10−21

7.72 144.8112 1.31944 × 10−19 2 × 10−16

7.26 145.3072 5.64344 × 10−19 1 × 10−21

21.89 179.8132 9.36 × 10−22 1 × 10−21

23.93 193.5700 4.3256 × 10−20 1 × 10−21

8.22 200.0304 9.032 × 10−21 2 × 10−16

7.79 329.7820 2.00 × 10−22 1 × 10−21

2891.52 381.9036 2.040 × 10−21 1 × 10−21

1093.79 393.1372 9.36 × 10−22 1 × 10−21

6243.65 396.9736 9.36 × 10−22 1 × 10−21

TABLE XVII. Second-pass candidates from the LIGO S5
search for SNR 1987A after instrumental line veto, listing the
maximum ρ=σρ in each cluster with ρ=σρ > ρth ¼ 6.50 and the
corresponding ν0, Q1, and Q2, sorted according to ν0.

ρ=σρ ν0 (Hz) Q1ðHz s−1Þ Q2ðHz s−1Þ
3774.10 91.1360 1.80888 × 10−19 1 × 10−21

35.73 100.0008 1.0136 × 10−20 1 × 10−21

10.90 112.0000 2.408 × 10−21 1 × 10−21

27.73 128.0012 4.616 × 10−21 1 × 10−21

8.22 200.0304 9.032 × 10−21 2 × 10−16

2891.52 381.9036 2.040 × 10−21 1 × 10−21
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FIG. 17. Surviving candidates after instrumental line veto. Normalized detection statistic ρ=σρ as a function of Q1 and ν0 for five
clusters (group of four panels). Each dot on the plots stands for one template fν0; Q1; Q2g with ρ=σρ > ρth ¼ 6.5. The color of the dots
indicates values of ρ=σρ (larger ρ=σρ in warmer colors). The dots merge into continuous lines or thick bars because they are closely
spaced. For each cluster, two values of Q2 are searched: Q2 ¼ 1 × 10−21 Hz s−1 (left two panels in each group of four) and Q2 ¼
2 × 10−16 Hz s−1 (right two panels in each group of four). The top and bottom panels in each group correspond to two detectors (H1 and
L1) and one detector (H1 or L1), respectively. For clusters (a) and (b), no detection is found in L1; for (c), (d), and (e), no detection is
found in H1.
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plot two examples of the clusters caused by instrumental
lines at 108.8 Hz and 193.4 Hz in Fig. 20. We find that the
pattern of dots is similar to a glitch, with dots spreading
∼0.5 Hz in frequency across the whole Q1 and Q2 band
searched. Interestingly, therefore, we cannot differentiate
reliably between a persistent line and a transient glitch from
the super-threshold template distribution in the (Q1,
ν0) plane.

D. Wave strain upper limit

Without a detection, we are able to place an upper limit
on h0 as a function of ν0.
Given the one-sided power spectral density Sð1Þn ðνÞ and

Sð2Þn ðνÞ for each interferometer, and assuming that ρ is
normally distributed, the lowest detectable gravitational-
wave strain hthðνÞ calculated by Dhurandhar et al. [12] is

hthðνÞ ¼
S1=2ffiffiffi

2
p hj ~GIJj2i1=4N1=4

pairs

�ðSð1Þn ðνÞSð2Þn ðνÞÞ1=2
ΔT

�1=2
;

ð31Þ

with S ¼ erfc−1ð2αfÞ þ erfc−1ð2αdÞ, where αf is the false
alarm rate, αd is the false dismissal rate, hj ~GIJj2i is the
cross-correlation function defined in Eq. (5) averaged over
cos ι and ψ , and Npairs is the number of SFT pairs. The
theoretical sensitivity is analyzed as a function of ν0 in
Sec. 4 1 of Chung et al. [8], who found h0 ≤ 1.6 × 10−25 at
the most sensitive frequency around 150 Hz, with
αf ¼ αd ¼ 0.1. This estimate in Ref. [8] is also based on
the S5 noise curve, and hence it is approximately the
theoretical sensitivity we expect.
The upper limit we are able to place is more

conservative than hth in Eq. (31) because the sensitivity
drops significantly for j_νð0Þj ≳ 10−7 Hz s−1 (i.e., large
Q1, Q2, and ν0), where the pipeline loses track of the
signal phase (≳π=2) after a year’s observation (see
Sec. V D). The observation period during which the
phase tracking remains accurate is shorter than 1 year
for j_νð0Þj≳ 10−7 Hz s−1, reducing Npairs and hence the
sensitivity. At a given ν0, when the largest Q1 and Q2 in
our parameter space are set in the template, the search is
least sensitive because of the largest j_νð0Þj leading to the
quickest loss in phase tracking. Hence the upper limit on
h0 at this ν0 is the most conservative with the largest Q1

and Q2. We analyze the upper limit on h0 as a function
of ν0 with both the largest and smallest Q1 and Q2.
We first evaluate the upper limit on h0 with the largestQ1

and Q2 values in the two frequency bands searched
separately. The largest Q1 and Q2 values are listed in
Table XVIII. At each given ν0, we find the smallest h0,
above which we have ρ=σρ > ρth ¼ 6.5 (i.e., a detection
with 90% confidence level). Hence, this h0 is the 90% con-
fidence level upper limit without a detection.
The analysis is described in three steps. First, we inject

synthetic signals for wave strains in the range 1 × 10−25 ≤
h0 ≤ 2 × 10−24 spinning down with Q1max and Q2max in
Table XVIII. Second, we search these synthetic data sets
with the same templates as we use searching the LIGO S5
data in Sec. VI A, and we plot the normalized detection
statistic ρ=σρ as contours on the (h0, ν0) planes in Fig. 21
for two frequency ranges, respectively. Third, we draw the
contour ρ=σρ ¼ ρth ¼ 6.5 as a red dashed curve. For given
ν0, any h0 above the curve leads to ρ=σρ > ρth ¼ 6.5,
which stands for a detection with αf ¼ αd ¼ 0.1. Hence,
the red dashed curve shows the 90% confidence level upper
limits on h0 given that no detection is found.
As the injected ν0 gets larger, the sensitivity decreases

and the upper limit on h0 increases. Comparing Figs. 21(a)
and 21(b) in the frequency range 255–300 Hz, the upper
limit on h0 is larger in panel (a) than in panel (b) by a factor
of ∼3. The lower upper limit on h0 in panel (b) does not
indicate better sensitivity because we sacrifice ∼90% of the
Q1 parameter space compared to (a). Generally speaking,
the pipeline is most sensitive for the parameter domain
defined in Table XIX, reaching h0 ≤ 8 × 10−25. The best

FIG. 18. Surviving candidate cluster around 112 Hz seen in
both detectors. Normalized detection statistic ρ=σρ as a function
of Q1 and ν0. Each dot on the plots stands for one template
fν0; Q1; Q2g with ρ=σρ > ρth ¼ 6.5. All templates are obtained
at Q2¼1×10−21 Hzs−1, and no hits are at Q2¼2×10−16 Hzs−1.
The top, middle, and bottom panels correspond to two detectors
(H1 and L1), H1, and L1, respectively.
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FIG. 19. Two strongest vetoed candidate clusters around (a) 91 Hz and (b) 381 Hz (both found in L1) seen in half of the second year of
S5 data. The normalized detection statistic ρ=σρ is plotted as a function ofQ1 and ν0 for the two clusters. Each dot on the plots stands for
one template fν0; Q1; Q2g with ρ=σρ > ρth ¼ 6.5. The color of the dots indicates values of ρ=σρ (larger ρ=σρ in warmer colors). The
cluster around 91 Hz only exists in the second half of the year (01 May 2007 to 30 October 2007 UTC). The cluster around 381 Hz only
exists in the first half of the year (01 November 2006 to 30 April 2007 UTC). For each cluster, two values of Q2 are searched:
Q2 ¼ 1 × 10−21 Hz s−1 (left panels) and Q2 ¼ 2 × 10−16 Hz s−1 (right panels).

FIG. 20. Two examples of the clusters caused by instrumental lines at (a) 108.8 Hz and (b) 193.4 Hz. The normalized detection statistic
ρ=σρ is plotted as a function of Q1 and ν0. Each dot on the plots stands for one template fν0; Q1; Q2g with ρ=σρ > ρth ¼ 6.5. For each
cluster, two values of Q2 are searched:Q2 ¼ 1 × 10−21 Hz s−1 (left panels) and Q2 ¼ 2 × 10−16 Hz s−1 (right panels). Both clusters are
obtained from the second year of S5 data from two detectors (H1 and L1).
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upper limit h0 ≤ 3.8 × 10−25 is obtained near 150 Hz with
Q1 ≤ 6.17 × 10−19 Hz s−1 and Q2 ≤ 2 × 10−16 Hz s−1.
Similarly, we also evaluate the upper limit on h0 with

Q1 ¼ Q2 ¼ 0 (i.e., _ν ¼ 0). We inject synthetic signals
with 1 × 10−25 ≤ h0 ≤ 2 × 10−24, 75 ≤ ν0=Hz ≤ 450, and

_ν ¼ 0, plot the ρ=σρ as contours on the (h0, ν0) plane, and
draw the ρ=σρ ¼ ρth ¼ 6.5 curve, which represents the best
upper limit achievable by the cross-correlation pipeline.
Figure 22 displays the comparison among the h0 upper

limits with the largest Q1 and Q2 (blue solid curves; same
as red dashed curves in Fig. 21), the h0 upper limits with
Q1 ¼ Q2 ¼ 0 (green dash-dot curves), and the theoretical
sensitivity from Eq. (31) (red dashed curves). The band is
separated into the same two segments as in Fig. 21. For
ν0 ≤ 150 Hz, the blue curve and green curve almost
overlap because we have j_νð0Þj≲ 10−7 Hz s−1 for all
(Q1,Q2), and the pipeline tracks the signal phase accurately
with an error ≲10−8 over a year. For ν0 ≳ 150 Hz, the

TABLE XVIII. Maximum Q1 and Q2 values in the two
frequency bands of the search.

ν0 range (Hz) Q1maxðHz s−1Þ Q2max ðHz s−1Þ
75–300 6.17 × 10−19 2 × 10−16

255–450 5 × 10−20 2 × 10−16

FIG. 21. Contours of normalized detection statistic ρ=σρ from searching the synthetic data with different values of h0 and ν0
injected. The signals are generated with 1 × 10−25 ≤ h0 ≤ 2 × 10−24 and (a) 75 ≤ ν0=Hz ≤ 300, Q1 ¼ 6.17 × 10−19 Hz s−1,
Q2 ¼ 2 × 10−16 Hz s−1, and (b) 255 ≤ ν0=Hz ≤ 450, Q1 ¼ 5 × 10−20 Hz s−1, Q2 ¼ 2 × 10−16 Hz s−1. The red dashed curves are
the contours ρ=σρ ¼ ρth ¼ 6.5, implying the 90% confidence level upper limit on h0. The best upper limit h0 ≤ 3.8 × 10−25 is obtained
near 150 Hz with Q1 ≤ 6.17 × 10−19 Hz s−1 and Q2 ≤ 2 × 10−16 Hz s−1.
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difference between upper limits with the largest Q1 and Q2

and upper limits withQ1 ¼ Q2 ¼ 0 increases with ν0. If we
diminish the Q1 and Q2 parameter space being searched,
the corresponding upper limits with the largest Q1 and Q2

(blue curves) get closer to the green curves. Hence, the real
h0 upper limits always lie between the blue curves and
green curves for the parameter space listed in Table XV. As
a reference, the sensitivity in theory from Eq. (31) is plotted
as red dashed curves in Fig. 22. It is ∼2 × 10−25 to 4 ×
10−25 lower than the best upper limits from the green
curves. The discrepancy arises in at least two ways. First,
the theoretical calculation pertains to the special case where
Npairs ¼ 105 and the noise floor in all SFTs is the same (see
Sec. IV in Ref. [12] and Sec. IV.1 in Ref. [8]). Second,
Eq. (31) is valid under the assumption that ρ is normally
distributed (i.e., all SFT pairs are independent), which is
not true in reality. From the analysis in Sec. IVA, the

moments of the noise-only PDF of ρ=σρ agree with those of
a Gaussian distribution to an accuracy of over 95% for
Tobs ¼ 1 yr. Hence, we do not expect the latter cause to
contribute more than ∼5% to the overall discrepancy,
consistent with the discrepancy between the theoretical
and empirical values of ρth in Sec. VA. A more accurate
statistical investigation lies outside the scope of this paper.
Upper limits on ellipticity ϵ can be deduced from the h0

upper limits (with the largestQ1 andQ2) in Figs. 21 and 22,
using the relationship between wave strain at the Earth and
the ellipticity of the star described in Eq. (30), and are
plotted in Fig. 23 as blue curves. The dashed horizontal
lines indicate the largest ϵ (see Table XV) searched in each
panel, with ϵ ¼ 6.0 × 10−4 (left) and 1.71 × 10−4 (right).
The upper limits on ϵ derived from h0 are larger than the
maximum values being searched, which indicates that the
upper limits are still above the largest spin-down rate we are

TABLE XIX. Parameter domain with sensitivity h0 ≤ 8 × 10−25 for the search in Sec. VI. The corresponding
astrophysical parameters ϵ and B in Eq. (17) are quoted in the last column.

Search parameter Range Astrophysical parameter

ν0 75–200 Hz
Q1 2 × 10−22 − 6.17 × 10−19 Hz s−1 1.08 × 10−5 ≤ ϵ ≤ 6.0 × 10−4

Q2 1 × 10−21 − 2 × 10−16 Hz s−1 4.05 × 109 ≤ B=G ≤ 1.81 × 1012

FIG. 22. Comparison among the h0 upper limits with the largestQ1 andQ2 (blue solid curves), the h0 upper limits withQ1 ¼ Q2 ¼ 0
(green dash-dot curves), and the theoretical sensitivity from Eq. (31) (red dashed curves). The left panel shows the band
75 ≤ ν0=Hz ≤ 300 with Q1 ¼ 6.17 × 10−19 Hz s−1 and Q2 ¼ 2 × 10−16 Hz s−1 injected for the blue curve. The right panel shows
the band 255 ≤ ν0=Hz ≤ 450withQ1 ¼ 5 × 10−20 Hz s−1 andQ2 ¼ 2 × 10−16 Hz s−1 injected for the blue curve. For ν0 ≤ 150 Hz, the
blue curve and green curve almost overlap because we have j_νð0Þj≲ 10−7 Hz s−1 for all (Q1, Q2), and the pipeline tracks the
signal phase accurately with an error ≲10−8 over a year. The best upper limit h0 ≤ 3.8 × 10−25 is obtained near 150 Hz with
Q1 ≤ 6.17 × 10−19 Hz s−1 and Q2 ≤ 2 × 10−16 Hz s−1.
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sensitive to. The best upper limit ϵ ≤ 8.2 × 10−4 is obtained
near 150 Hz, ∼35% higher than the largest ellipticity being
searched.

VII. CONCLUSION

In this paper, we perform a cross-correlation search for
SNR 1987A using the second year of LIGO science run
5 data. The frequency band 75–450 Hz is searched. Six
out of the total 19 first-pass candidates survive line
vetoes. One out of the six second-pass candidates
remains after the first stage of manual veto (searching
two interferometers separately) but does not survive the
second stage (searching first year of S5). With zero
survivors, a 90% confidence level upper limit is placed
on the wave strain given by h0 ≈ 3.8 × 10−25 at 150 Hz,
the most sensitive frequency, corresponding to
ϵ ≈ 8.2 × 10−4. The previous most sensitive search for
SNR 1987A conducted with the radiometer pipeline
yielded a 90% confidence level upper limit on the wave
strain of h0 ≈ 1.57 × 10−24 (converted from the original
value by the correction factor [59]) at the most sensitive
frequency range [58]. Hence, the strain upper limit
yielded from our search improves on previously pub-
lished results by a factor ≈4.
To verify the algorithm, we conduct a battery of tests on

synthetic data and verify that the cross-correlation data
analysis pipeline is functioning correctly for gravitational-
wave signals from a continuous-wave source obeying the
spin-down law described by Eq. (17). It is demonstrated
that averaging over cos ι and ψ sacrifices typically ≲10%

and at worst ≲50% sensitivity while delivering computa-
tional savings. It is also shown that the electromagnetic
braking index nem can be excluded from the search
parameters (by setting nem ¼ 3) without sacrificing
sensitivity, alleviating concerns expressed in previous
work [8]. We estimate the detection threshold and sensi-
tivity with a group of Monte Carlo tests. Without spin-
down, the estimated strain limits are h95%0 ≈ 5.64 × 10−25,
7.60 × 10−25, and 1.42 × 10−24 for 150, 300, and 600 Hz,
respectively.
The next step in this investigation is to search Advanced

LIGO data, as they become available. Despite a shorter
observation period of 4 months for the first Advanced
LIGO science run O1 (i.e., a threefold reduction in Npairs),
the noise power spectral density of Advanced LIGO is ∼4
times better than Initial LIGO. Hence, referring to Eq. (31),
we can expect improvement in the theoretical sensitivity
hth. On the other hand, the remnant has aged since S5, so
the expected signal amplitude is lower in O1.
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