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The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic
regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the
absence of anomalous currents. In particular we explore the situation where the conventional vector
currents are complemented by the axial-vector currents arising either from the pseudo-Nambu-Goldstone
bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding
the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the
magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While
the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear
in the perfectly conducting limit. When the flow is irrotational, boost invariant and with vanishing four-
acceleration, the corresponding evolution equations are explicitly integrated so that the various physical
regimes can be directly verified.
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The nonrelativistic evolution of hydromagnetic non-
linearities in charged liquids at high magnetic Reynolds
numbers leads to effective currents that are parallel rather
than orthogonal to the orientation of the magnetic field.
This situation is realized, for instance, in the context of
turbulent dynamos where the plasma’s kinetic energy
amplifies the large-scale magnetic field if and when the
bulk velocity ~v is incompressible and, on average, non-

mirror symmetric i.e. h~v · ~∇ × ~vi ≠ 0 [1]. A similar physi-
cal system occurs when a globally neutral plasma contains
vector and axial-vector currents arising either from the
effective action of gauge fields at finite fermionic density
[2] or from some pseudo-Nambu-Goldstone boson of a
spontaneously broken symmetry interacting with fermions
[3]. Anomalous magnetohydrodynamics (AMHD) aims
exactly at describing the dynamical evolution of the
gauge fields in a plasma containing both vector and
axial-vector currents [4]. The relativistic theory of the
ordinary hydromagnetic nonlinearities was shaped long
ago by Lichnerowicz and developed by various authors [5].
It seems therefore both interesting and natural to relax the
assumption that the hypermagnetic fields are merely
external and to formulate AMHD in the extreme relativistic
regime by including on equal footing the axial-vector and
Ohmic currents. The obtained results can be relevant for
two complementary areas namely the dynamics of the
magnetized electroweak phase [6] and the hydrodynamic
models of multiparticle dynamics [7,8].

The very notion of relativistic magnetic fields might
appear as an oxymoron insofar as the electric and magnetic
fields are nonrelativistic concepts that must be replaced, in
a Lorentz covariant formulation, by the appropriate field
strength tensor Yμν (and by its dual1 ~Yμν ¼ EμναβYαβ=2).
However, if there exists a family of four-dimensional
observers moving with four-velocity uμ, the relativistic
dynamics of hydromagnetic nonlinearities can be described
in terms of two generalized electric and magnetic fields
defined, respectively, as [5]

Yμν ¼ E½μuν� þ EμνρσuρBσ;

~Yμν ¼ B½μuν� þ EμνρσEρuσ; ð1Þ
where E½μuν� ¼ Eμuν − Eνuμ (and similarly for B½μuν�);
Eμ ¼ Yμνuν and Bμ ¼ ~Yμνuν generalize the electric and
the magnetic components to the relativistic regime.
Bearing in mind that Yi0 ¼ ei and Yij ¼ −ϵijkbk, Eq. (1)
implies that the two four-vectors can also be written, in

three-dimensional notation and in flat space-time, as Eμ ¼
γð~e · ~v; ~eþ ~v × ~bÞ and Bμ ¼ γð−~b · ~v;−~bþ ~v × ~eÞ. The
vector current jα couples to the hypercharge field and it
is not anomalous, so that this part of the model describes an
unbroken Uð1Þ gauge theory [4]. Since we want the gauge
fields to be dynamical, the total action of the problem can
be written as
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1The totally antisymmetric symbol of Levi-Civita in four
dimensions is denoted by ϵμναβ, while Eμναβ ¼ ϵμναβ=

ffiffiffiffiffiffi−gp
(where

g ¼ det gμν) transforms correctly as a contravariant tensor under
general coordinate transformations. Note that gμν denotes the
metric tensor [with signature ðþ;−;−;−Þ] of a four-dimensional
space-time geometry. Units ℏ ¼ c ¼ 1 will be used throughout
(so that where, for instance, γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
).
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Stotal ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

R
16πG

þ 1

2
gαβ∂αψ∂βψ −WðψÞ

−
1

16π
YαβYαβ − jαYα −

1

16π

�
αB

ψ

M
Yαβ

~Yαβ

þ 2
αω
8π

ψYαβ ~ω
αβ

�
þ � � �

�
þ Sm; ð2Þ

where R is the Ricci scalar and G is the Newton constant;
Sm denotes the matter part of the action (taken to be in a
perfect fluid form), while the ellipses stand for further
interactions.2 In Eq. (2) ψ denotes the pseudo-Nambu-
Goldstone field characterized by the potential WðψÞ and
symmetry breaking scale M; the two dimensionless con-
stants αB and αω parametrize, respectively, the couplings of
ψ with the gauge field and with the vorticity of the fluid.
Both αB and αω (as the conductivity) can depend on the
temperature. The vorticity four-vector is defined as ωα ¼
~ωαβuβ and we assume the conventional decomposition of
the generally covariant derivative3:

ωαβ ¼
1

2
u½α;β� −

1

2
_u½αuβ�;

σαβ ¼
1

2
ðuα;β þ uβ;αÞ −

1

2
ð _uαuβ þ _uβuαÞ −

θ

3
Pαβ; ð3Þ

where σαβ is the shear tensor and θ ¼ ∇αuα. As usual
the semicolon stands for the covariant derivative (i.e.
uα;β ¼ ∇βuα), while the overdot denotes the absolute
derivative in the direction of uγ (i.e. _uα ¼ uγ∇γuα); finally
Pαβ ¼ gαβ − uαuβ is the standard covariant projector.
Since the variation of Sm in Eq. (2) leads to the

energy-momentum tensor of a perfect fluid (i.e.
Tμν ¼ ρuμuν − pPμν), the three relevant evolution equa-
tions inferred from Eq. (2) can be written as

gαβ∇α∇βψ þW;ψ ¼ −
αB

16πM
Yαβ

~Yαβ −
αω
8π

Yαβ ~ω
αβ; ð4Þ

∇αYαβ ¼ 4πjβ −
αB
M

∂αψ ~Yαβ − αω½ð∂αψÞ ~ωαβ þ ψ∇α ~ω
αβ�;
ð5Þ

∇μT
μ
ν ¼ Yναjα −

αω
4π

½ð∂μψÞ ~ωμα þ ψ∇μ ~ω
μα�Yνα

þ αω
8π

ð∂νψÞYαβ ~ω
αβ; ð6Þ

where the notation W;ψ ¼ ∂W=∂ψ has been used; the

Bianchi identity for the gauge field implies that∇α
~Yαβ ¼ 0,

while ∇α ~ω
αβ ¼ −∇α½Eαβρσ _uρuσ�, so that ∇α ~ω

αβ ¼ 0 only
when the four-acceleration of the fluid flow vanishes (i.e.
_uρ ¼ 0). Of course Eqs. (4) and (5) can also be phrased in
terms of the corresponding energy-momentum tensors:

∇μS
μ
ν ¼ −

αB
16πM

∂νψYαβ
~Yαβ −

αω
8π

∂νψYαβ ~ω
αβ; ð7Þ

∇μZ
μ
ν ¼ −Yναjα þ

αω
4π

½ð∂μψÞ ~ωμα þ ψ∇μ ~ω
μα�Yνα

þ αB
16πM

ð∂νψÞYαβ
~Yαβ; ð8Þ

where Sμ
ν and Zμ

ν are given, respectively, by

Sμ
ν ¼ ∂νψ∂μψ − δνμ

�
1

2
gαβ∂αψ∂βψ −W

�
; ð9Þ

Zμ
ν ¼ 1

4π

�
−
�
YναYμα þ αB

ψ

M
Yνα

~Yμα

�

þ 1

4
δμν

�
YαβYαβ þ αB

ψ

M
Yαβ

~Yαβ

��
: ð10Þ

By summing up Eqs. (6), (7) and (8), it can be easily verified

that the total energy-momentum tensor TðtotÞ
μν ¼ Tμν þ Sμν þ

Zμν is covariantly conserved (i.e. ∇μT
μν
ðtotÞ ¼ 0) as implied

by the Bianchi identity of the corresponding Einstein

equations ðRμν − Rgμν=2Þ ¼ 8πGTðtotÞ
μν , where Rμν is the

Ricci tensor and R is the Ricci scalar. The covariant
conservation of the total energy-momentum tensor implies
the conservation of the total entropy four-vector.4 When the
anomalous charge is not conserved because of the Abelian
anomaly [i.e. ∇μj

μ
R ¼ −g02Yαβ

~Yαβ=ð64π2Þ, where g0 is the
hypercharge coupling], the effective action for the Abelian
fields at finite fermionic density can be written as [2]

S ¼ −
g02

64π3

Z
d4x

ffiffiffiffiffiffi
−g

p
μREμναβYμνYαvβ;

gαβvαvβ ¼ 1; ð11Þ

showing that the modulus of the covariant derivative of the
pseudo-Nambu-Goldstone boson coincides with the chemi-
cal potential.5

2The ellipses in Eq. (2) may stand for further terms of the type
ωβEβ, ψωαBα (and so on and so forth), where ωα is the vorticity
four-vector [see Eq. (3)]. These terms will be neglected but they
can be easily included.

3Inverting Eq. (3) we can also write uα;β¼ _uαuβþσαβþωαβþ
θPαβ=3, which is the standard decomposition of the covariant
derivative.

4If only some selected parts of the system are taken into
account, the entropy of the subsystem may appear to be not
conserved. This is, in particular, what happens if the gauge fields
are considered as external sources.

5Equation (11) accounts for the same interaction between ψ
and Yαβ

~Yαβ provided we identify αB ¼ αY=π and ∂μψ ¼ MμRvμ

[with αY ¼ g02=ð4πÞ and μR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβ∂αψ∂βψ

q
=M].
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In the case of a highly conducting plasma, the vector
current appearing in Eqs. (5) and (8) can be written as the
sum of two terms, namely jμ ¼ σcEμ þ nuμ, where σc is
the conductivity (potentially very large) and n ¼ jμuμ is
the charge concentration. In analogy with the relativistic
treatment of hydromagnetic nonlinearities, the relevant
equations shall be expanded in inverse powers of the
conductivity or, more formally, in powers of a dimension-
less parameter ε defined as

ε ¼ 1

4πLσc
¼ η

L
≃ η∇α; η ¼ 1

4πσc
; ð12Þ

where η denotes the magnetic diffusivity6 and L is the
typical scale of variation of the covariant gradients. After
expanding all the dynamical equations in powers of ε, the
fate of the anomalous contributions can either be studied in
the ideal limit (coinciding with the perfectly conducting
regime where ε → 0) or in the resistive approximation
where σc may be very large, remaining however always
finite (i.e. ε < 1). The first step will be to express the
Bianchi identity ∇α

~Yαβ ¼ 0 in terms of Eq. (1); the result
of this exercise will give ∇αB½αuβ� þ Eαβρσ∇αðEρuσÞ ¼ 0.
The previous equation can then be projected along uβ and
the final result becomes

∇αBα þ Bβ _uβ ¼ 2ωρEρ → 8πηωρjρ; ð13Þ

where the right-hand side follows from Bβ _uβ ¼ − _Bβuβ
[since, by definition, ∇αðuβBβÞ ¼ 0]. In Eq. (13) the
expression preceded by an arrow is derived by trading in
2ωρEρ the hyperelectric field for the current, i.e.
Eρ ¼ ðjρ − nuρÞ=σc; recall, in this respect, that
ωρuρ ¼ 0. The same procedure can be applied to Eq. (4)
and this time the result is

gαβ∇α∇βψ þW;ψ þ αω
8π

EαβρσuρBσ ~ωαβ

¼ −
αB
4πM

EαBα −
αω
4π

Eαuβ ~ωαβ: ð14Þ

The terms containing the electric fields have been collected
on the right-hand side of Eq. (14) since they are subleading
in the conductivity expansion. With the same logic and with
the same notations, Eq. (5) can be rewritten as

∇αðuρBσÞEαβρσ − 4πjβ þ αωð∂αψ ~ωαβ þ ψ∇α ~ω
αβÞ

þ αB
M

∂αψB½αuβ� ¼ −∇αE½αuβ� −
αB
M

∂αψEαβρσEρuσ:

ð15Þ

By projecting Eq. (15) along uβ we obtain

∇αEα þ _uβEβ ¼ 4πjβuβ − αωψuβ∇α ~ω
αβ

þ
�
ωα −

αB
M

∂αψ

�
Bα þ ½Bα − αω∂αψ �ωα:

ð16Þ

In the concrete examples discussed hereunder, the con-
dition jβuβ ¼ 0 shall be assumed. However all the equa-
tions are generally applicable also when the global charge
concentration does not vanish.
To lowest order in the ε expansion, Eq. (15) should be

viewed as an explicit expression for the total current, while
the remaining terms (containing more insertions of hyper-
lectric fields in various combinations) are irrelevant for
the present purposes, but they can be easily determined by
going to higher orders in the ε expansion7:

jβ ¼ 1

4π
∇λ½EλβγδuγBδ� þ

αB
4πM

∂λψB½λuβ�

þ αω
4π

½∂λψ ~ωλβ þ ψ∇λ ~ω
λβ� þOðεÞ: ð17Þ

Equation (17) shall now be substituted back into the
Bianchi identity ∇α

~Yαβ ¼ 0, and the final result will be
the wanted generalization of the hypermagnetic diffusivity
equation written in a generally covariant language and in
the presence of anomalous currents:

∇μB½μuν� −∇μ½ηEσμνρEγδλρuσ∇λðuγBδÞ�
−
αB
M

∇μ½ηEμνρσBρ _ψuσ� þ αω∇μfηuσ½Eμνρσð∂λψÞ ~ωλρ

þ ψ∇λ ~ωλρ�g þOðε2Þ ¼ 0: ð18Þ

The first term of Eq. (18) does not contain any power of the
diffusivity; consequently this is the only term surviving in
the perfectly conducting limit. The second term of Eq. (18)
represents the standard magnetic diffusivity contribution.
The two remaining contributions correspond to the hyper-
magnetic and to the vortical currents. To this order in the
expansion the hyperelectric fields of Eqs. (13), (14) and
(15) are neglected but can be relevant to higher order in the
expansion or in the situations where the conductivity is
minute. Using the properties of the Levi-Civita symbols
and making explicit their contractions, Eq. (18) becomes

6Even if η often stands for the (pseudo)rapidity, we shall
denote the magnetic diffusivity by η (as it is traditional in plasma
literature); the rapidity will be denoted by y as in hydrodynamical
models of multiparticle collisions [7].

7Equation (17) implies that the corrections to the vector current
are already OðεÞ. The induced hyperelectric fields will be
a fortiori negligible since they turn out to be, to lowest order,
Oðε2Þ.

ANOMALOUS MAGNETOHYDRODYNAMICS IN THE EXTREME … PHYSICAL REVIEW D 94, 081301(R) (2016)

081301-3

RAPID COMMUNICATIONS



∇μB½μuν� −∇μ½ηð∇½μBν� þ uαu½μ∇ν�Bα þ B½μ _uν� þ _B½μuν�Þ�
−
αB
M

∇μðηEμνρσBρ _ψuσÞ
þ αω∇μfηuσ½Eμνρσð∂λψÞ ~ωλρ þ ψ∇λ ~ωλρ�g ¼ 0: ð19Þ

If we take the formal limit η → 0 (i.e. σc → ∞) in Eq. (19),
the only term that survives is the first one. This means that
the perfectly conducting limit of AMHD in the extreme
relativistic regime coincides with the perfectly conducting
limit in the absence of the anomalous interactions. The
second term of Eq. (19) contains two covariant deriva-
tives, whereas the chiral magnetic and the chiral vortical
terms only contain one covariant derivative. Depending on
the dynamics of the anomalous contributions, Eq. (19)
suggests that magnetic fields can be amplified in the
extreme relativistic limit, but the overall result will be
scaled down anyway by the initial conductivity of the
plasma. This qualitative expectation will now be corrobo-
rated by a more quantitative discussion since, after all, the
magnetic diffusivity may have some specific dynamical
evolution.
Even if the conclusions inferred from Eq. (19) are

general (i.e. they do not assume any special profile), we
shall now focus attention, for simplicity, on the situation
where the fluid is not vortical (i.e. ωαβ ¼ 0) and the four-
acceleration vanishes (i.e. _uα ¼ 0). Neglecting the standard
magnetic diffusivity term (which contains two covariant
gradients and which will be included later on anyway when
treating a specific class of solutions), Eq. (19) becomes

∇μB½μuν� − αB∇μðηEμνρσBρ _ψuσÞ=M ¼ 0: ð20Þ

Multiplying now both sides of Eq. (20) by Bν and using the
covariant decomposition of Eq. (2), the following equation
governs the evolution of the magnetic energy density:

uα∇αB2 þ 4

3
θB2 þ 2BμBνσμν ¼ 2

αB
M

η _ψEμνρσð∇μBρÞBνuσ;

ð21Þ

where B2 ¼ −BαBα [note that, according to Eq. (1),
BαBα → −b2 in the nonrelativistic limit]. The term on
the right-hand side of Eq. (21) does not vanish provided
Eμνρσð∇μBρÞuσ is proportional to Bν either though some
constant or through some space-time scalar (such as θ).
These conditions generalize, in some sense, the nonrela-
tivistic notion of Beltrami fields,8 and this is why these
constraints shall be referred to as Beltrami conditions.

The Beltrami constraints are necessary but not suffi-
cient. It is then interesting to solve explicitly the
obtained system of equations. Equations (13) and (21)
demand, respectively, that ∇αBα ¼ − _uαBα and that
Eμνρσð∇μBρÞBνuσ ≠ 0. Both requirements are satisfied
at once by the two-dimensional flow uμ ¼
½u0ðt; x3Þ; 0; 0; u3ðt; x3Þ� with a magnetic field polarized
in the orthogonal direction, i.e. Bμ¼½0;B1ðt;x3Þ;
B2ðt;x3Þ;0�. Recalling that gμνuμuν ¼ 1 and uαBα ¼ 0

and requiring that the four-acceleration vanishes (i.e.
_uμ ¼ 0), we have that the simplest form of the ansatz is
given by

uμ ¼ ðcosh y; 0; 0; sinh yÞ;
Bμ ¼ ½0;B1ðτ; yÞ;B2ðτ; yÞ; 0�; ð22Þ

where the new variables ðτ; yÞ are related to ðt; x3Þ as
t ¼ τ sinh y and x3 ¼ τ cosh y. The result of Eq. (22)
coincides with the boost-invariant flow believed to
describe the central rapidity region in the hydrodynamical
models of multiparticle collisions (see, in particular, the
third paper of Ref. [7]). Defining the two combinations
B� ¼ B1 � iB2, the complete form of Eq. (19) implies, in
Minkowski space-time,

_B� þ B�
τ

¼ η0B0
�

τ2
þ B00

�
τ2

η� iαB
½η _ψB��0
Mτ

; ð23Þ

where the overdot denotes the derivative9 with respect to τ,
while the prime denotes a derivation with respect to y.
Finally, to lowest order in the conductivity expansion, we
can consistently posit ψ ¼ ψðτÞ and ρ ¼ ρðτÞ; thus the
profile of Eq. (22) implies the validity of the following
pair of equations:

ψ̈ þ _ψ=τ þW;ψ ¼ 0;

_ρþ ðρþ pÞ=τ ¼ 0; ð24Þ

coming, respectively, from Eqs. (4) and (6) in the case of
an irrotational flow with vanishing four-acceleration. If
the flow is irrotational only the first term at the right-hand
side of Eq. (6) survives, but it is negligible10 and it is
also of higher order in the conductivity expansion.
Equations (23) and (24) describe the amplification of

8The Beltrami fields are the eigenvalues of the curl operator i.e.
~∇ × ~b ¼ k~b, where k has dimensions of an inverse length and
denotes the typical scale of variation of the magnetic gyrotropy
(i.e. ~b · ~∇ × ~b) in units of the magnetic energy density [1].

9Note that in the case of the irrotational flow of Eq. (22) the
absolute derivative coincides with the derivative with respect to τ;
notice also that the Minkowski metric must be appropriately used
to raise and lower the indices, i.e. B1 � iB2 ¼ −B�.10This term is also negligible since, in our example, we shall
consider mostly the situation where the magnetic field is sub-
leading both in comparison with the flow (i.e. r ¼ B2=ρ ≪ 1) and
with the pseudo-Nambu-Goldstone field [see also the discussion
after Eqs. (25) and (26)].
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the relativistic magnetic field in a direction orthogonal to
the flow, i.e. a transfer of energy from the pseudo-Nambu-
Golstone boson and from the flow to the magnetic field.
However the value of the amplified field does depend
predominantly on the initial value of the magnetic
diffusivity, as we shall now show. To solve Eq. (23) we
note that η ¼ ηðτ; yÞ, implying that, in general terms,
η0 ≠ 0. The variation of the conductivity in rapidity leads
to the formation of a coherent magnetic with a mechanism
that could be viewed as the relativistic analog of the
situation arising in the case of terrestrial dynamos, where
the magnetic diffusivity has either a radial dependence or
is even allowed to fluctuate in space [9]. Even if this
situation is per se interesting, it is not directly central to
the dynamics of the anomalous currents. We shall then
stick to the case η0 ¼ 0, which is incidentally the most
reasonable if local thermal equilibrium is posited, as we
shall specify in a moment.
The physically interesting solution of Eq. (23) corre-

sponds to B0
� → 0 (at least initially) and in the central

rapidity region (say for jyj < 1). If the plasma is locally
thermalized, ρ, ψ and the temperature T will only depend
on τ, as Eq. (24) implies. The solution of Eq. (23) will then
be

B�ðτ; yÞ ¼
Biffiffiffiffiffiffiffiffiffiffi
QðτÞp

�
τi
τ

�
e−

y2−P2ðτÞ
4QðτÞ �iPðτÞy

2QðτÞ ;

B�ðτi; 0Þ ¼ Bi; B0
�ðτi; 0Þ ¼ 0; ð25Þ

PðτÞ ¼ −
αB
M

Z
τ

τi

ηðwÞ
w

�∂ψ
∂w

�
dw;

QðτÞ ¼ 1þ
Z

τ

τi

ηðwÞ
w2

dw; ð26Þ

where the initial data on PðτÞ and QðτÞ follow from
the boundary conditions of Eq. (25). The initial value of
the magnetic field at τi will be

ffiffiffi
r

p
times smaller than the

energy density of the plasma, i.e. Bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2N r=15

p
T2
i ,

where N denotes the effective number of spin degrees of
freedom of the radiation plasma11 and the conductivity σc
scales linearly with the temperature; the diffusivity
increases as a function of the proper time i.e. ηðτÞ ¼
ηiðτ=τiÞγ with 0 < γ < 1 (γ ¼ 1=3 for the radiation
plasma). But this means that for the amplification of the
hypermagnetic field the dynamics of ψ is less relevant than
the initial value of the magnetic diffusivity. Suppose indeed
that W ¼ 0, so that Eq. (24) implies _ψ ¼ ψ i=τ; then
Eq. (26) gives

QðτÞ ¼ 1þ ηi
λτi

�
1 −

�
τi
τ

�
λ
�
;

PðτÞ ¼ −αB
�
ψ i

λM

��
ηi
τi

��
1 −

�
τi
τ

�
λ
�
; ð27Þ

where λ ¼ 1 − γ (λ ¼ 2=3 for the radiation plasma). More
complicated evolutions of ψ do not affect the scaling of the
solution but can suppress the field even further. For instance
if ψ̈ ≪ _ψ=τ, then _ψ ≃ −τW;φ; in this case ψ is approx-
imately constant and P → 0. In the opposite limit (i.e. when
ψ oscillates) QðτÞ and PðτÞ will have a different analytical
expression,12 but the solution itself will scale in the same
way as a function of the initial value of the diffusivity η.
This is sufficient to confirm that the results derived by
approximating (and solving) the governing equations
coincide with the limit of the solutions. The solution of
Eqs. (25) and (26) can be used to compute the higher-order
effects13 like the ones arising from the contribution of EμBμ

to Eq. (4) or to the anomaly equation at finite fermionic
density [see prior to Eq. (11)].
Equation (26) is a simple example of the relativistic

generalization of the magnetic diffusivity equation of
Eq. (19). Moreover Eq. (26) describes the transfer of
energy and momentum from the flow and from the
pseudo-Nambu-Goldstone boson to the magnetic field.
Unfortunately, however, the conductivity not only sup-
presses the shortest scales of the problem (as usually
happens, even in the nonrelativistic regime) but also
suppresses the pump fields.
In summary the evolution of gauge fields in a relativistic

plasma containing simultaneously vector and axial vector
currents can be consistently formulated in a generally
covariant framework that is relevant both for the electro-
weak epoch and for the hydromagnetic models of
multiparticle dynamics. After obtaining the anomalous
hypermagnetic diffusivity equation, we demonstrated
how the perfectly conducting limit washes out the magnetic
and the vortical currents. To amplify the hypermagnetic
energy density, the flow and the anomalous currents must
obey a set of necessary (but not sufficient) conditions,
extending to the relativistic domain the conventional notion
of Beltrami field. These generalized constraints are sat-
isfied, in particular, by an irrotational and boost-invariant
flow with vanishing four-acceleration.

11The ratio between the magnetic energy density and the
energy density of the flow is r ¼ B2=ð8πρÞ, where in a radiation
plasma [i.e. p ¼ ρ=3 in Eq. (24)] we have ρ ¼ N π2T4=30 and
TðτÞ ¼ Tiðτ=τiÞ−1=3.

12This aspect can be explicitly verified in the case of massive
potential (i.e. W ¼ m2ψ2=2), where the equation for ψ [see
Eq. (24)] can be solved exactly in terms of the Bessel functions
JνðxÞ and YνðxÞ with ν ¼ 0 and argument mτ.

13To achieve this goal the solution of Eqs. (25) and (26) can be
inserted back into Eq. (17) to obtain the Ohmic current determin-
ing the electric field according to the relativistic Ohm law.
Equation (14) can then be used to compute the higher-order
evolution of ψ . A similar procedure can be used in Eq. (6) to
obtain the corrected evolution of ρ and uμ.
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