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The fluctuation-dissipation theorem states that each source of dissipationyields corresponding fluctuations.
The most obvious source of dissipation in liquids is viscosity—internal friction between layers of matter.
However, this property also exists in solid materials in a glass state, i.e., an amorphous substance that cannot
become a crystal due to high viscosity. Fused silica is a low-loss glass material used in many interferometric
applications demanding high stability, such as Fabry-Perot etalons and gravitational-wave detector mirrors
and suspensions. Very high viscosity (from 1017 to 1040 Pa s in the literature) can be the source of additional
noise and can influence the performance of such devices.We show that fused silicamay be described with the
standard linear solid model of viscoelastisity and present a method to estimate this type of noise.
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I. INTRODUCTION

For modern high-precision measurements any source of
noise can be critical. The LIGO project [1] that resulted in
the first direct observation of gravitational waves [2] has to
account for many fundamental sources of fluctuations. The
Brownian noise coming from chaotic thermal motion of
particles is one of the enemies. Thermal noise in coatings,
substrates, and suspensions of the interferometer’s mirrors
results in fluctuations of their surfaces which add phase
noise to the signal [3,4]. A lot of other processes can
degrade the sensitivity of the device [5,6].
The common way to calculate thermal noises is the

fluctuation-dissipation theorem. It states that any dissipa-
tion in a system results in added fluctuations. The theory
gives the spectral density of surface fluctuations in mirrors
of the LIGO antennae in the form [3]

SðωÞ ¼ 4kBT
ω

Im½αs þ αcj þ αsj�; ð1:1Þ

where ω is the frequency, kB is Boltzmann’s constant, T is
the temperature, αs is the dynamic permittivity of the
substrate, and αcj and αsj are the coating and coating-
induced substrate dynamic permittivities. In Refs. [3,7,8]
the values of these parameters were found to be

αs ¼
1ffiffiffi
π

p
w
1 − ν2s
Ys

; ð1:2Þ

αcj ¼
X
j

βjdj
πw2

ð1þ νjÞð1 − 2νjÞ
Yjð1 − νjÞ

; ð1:3Þ

αsj ¼
X
j

dj
πw2

Yj

1 − ν2j

ð1þ νsÞ2ð1 − 2νsÞ2
Y2
s

; ð1:4Þ

wherew is the Gaussian beam radius on the mirror, Ys and νs
are Young’s modulus and the Poisson coefficient of the
substrate, Yj and νj are the parameters of the jth coating
layer, and dj and βj are the thickness and interference
coefficient of the jth coating layer. The dissipation is then
introduced empirically in the form of the loss angle
Y → Yð1 − iϕÞ.
There are several models that try to describe this loss

angle theoretically [9,10] and phenomenologically [11].
Viscosity is one of the sources of dissipation. In the
following section we show that viscosity can be introduced
into the equations in the same way, providing a new type
of noise.

II. MODEL OF VISCOSITY

In hydrodynamics the viscosity can be introduced into
the Navier-Stokes equation through the viscose stress
tensor σvik:

σvik ¼ η

�∂vi
∂xk þ

∂vk
∂xi −

2

3
δik

∂vl
∂xl

�
þ ζδik

∂vl
∂xl ; ð2:1Þ

where η is the shear viscosity, ζ is the volume viscosity, and
~v is the velocity of the particles. Combined with the tensor
Hooke’s law it gives the Kelvin-Voigt model for visco-
elastic materials, which works well for modeling creep in
solid materials [12]. This model was also successfully used
to explain experimental data in Ref. [13]. However, this
model does not give correct results for ultrasonic losses in
our case of the high-viscosity limit, as in the spectral*mg@rqc.ru
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representation it corresponds to a complex substitution of
the shear and bulk moduli,

K → K þ iωζ; ð2:2Þ

G → Gþ iωη: ð2:3Þ
It can be shown that this results in unrealistically high noise
and even leads to the wrong dispersion relation for sound
waves. There is another viscosity model, called the
Maxwell model, which is usually used for glasses [14].
However, this model does not lead to the exponential matter
flow rate measured in Ref. [15] and allows infinite motion
that was not observed in experiment [16]. That is why we
use the more general standard linear solid (SLS) model for
viscoelastic materials [17].
The SLS model can be illustrated with the spring

diagram, shown in Fig. 1. This “elementary cell” consists
of a first (static or long-term) spring Y with shear and bulk
moduli G and K, a second (dynamic) spring Y 0 with
parameters G0 and K0, and a dashpot with shear and bulk
(volumetric) viscosity η and ζ. The first spring governs the
static behavior of the system, while the higher-frequency
motion uses both. Here we should note, however, that for
ultra high viscosities of glasses all “static” load experiments
are too fast for the second spring to relax (unless they are
made on a time scale of years). In this way, both in
measurements of the speed of sound and in static load
experiments only the sum of the above introduced moduli is
observed. This can also be shown directly using the model
master equations (2.4), with the viscosities tending to
infinity.
The master equation for the tensor stress-strain relation-

ship in the standard linear solid model is�
1þ G

G0

�
_εþ1

3

�
K
K0−

G
G0

�
trð_εÞþG

η
εþ1

3

�
K
ζ
−
G
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�
trðεÞ
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1

3

�
1
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�
trð _σÞþ σ

2η
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3

�
1

3ζ
−

1

2η

�
trðσÞ;

ð2:4Þ

where indices i and j in the stress and strain tensors
notation σ and ε together with delta functions δij in front of

the trace operators are omitted for simplicity. When the
dynamic moduli G0; K0 → ∞, we arrive at the Kelvin-Voigt
model. When K;G → 0 (long-term spring removed), we
arrive at the Maxwell model. Finally, in the high-viscosity
limit (η; ζ → ∞) the problem reduces to a general static
problem with “quasistatic” moduli G0 ¼ Gþ G0 and
K0 ¼ K þ K0 that describe both high-frequency experi-
ments and static load experiments held at time scales less
than several years.
Taking the spectral representation of Eq. (2.4), we can

get the following complex substitution for the shear and
bulk moduli with which we can introduce viscous losses:

K → K þ iωζK0

K0 þ iωζ
; ð2:5Þ

G → Gþ iωηG0

G0 þ iωη
: ð2:6Þ

Unfortunately, the parameters of the model G0; K0; G,
and K as well as the viscous parameters η, ζ at room
temperatures are difficult to measure.

A. Standard linear solid parameters

To estimate the SLS parameters of fused silica a series of
recent results [13,15,16] may be used. In those works a
flow of fused silica plates under their own weight was
studied over decades. We propose to reconsider these
results in view of SLS model.
Assuming that the time dependence of the fields can

be separated from the coordinate part so that ε̂ð~r; tÞ ¼
ε̂ð~rÞTðtÞ and σ̂ð~r; tÞ ¼ σ̂ð~rÞTsðtÞ, and using Eq. (2.4), we
obtain

σμ>3ð~rÞ
εμ>3ð~rÞ

¼ ð1þ G=G0Þ _T þ GT=η
_Ts=ð2G0Þ þ Ts=ð2ηÞ

¼ CG; ð2:7Þ

trðσð~rÞÞ
trðεð~rÞÞ ¼

ð1þ K=K0Þ _T þ KT=ζ
_Ts=ð3K0Þ þ Ts=ð3ζÞ

¼ CK; ð2:8Þ

where μ > 3 means nondiagonal terms (Voigt notation).
The direct expressions for the stress tensor diagonal can
also be obtained:

σμ≤3ð~rÞ
εμ≤3ð~rÞ

¼ CG þ 1

3
ðCK − CGÞ

trðεð~rÞÞ
εμ≤3ð~rÞ

: ð2:9Þ

The form of the relations (2.7)–(2.9) suggests that there are
probably two different oscillatory behaviors (e.g., time
dependences) for diagonal (related to volumetric) and
nondiagonal (related to shear motion) terms of the tensors.
In this way the displacement vector may be decomposed
into two parts as ~uð~r; tÞ ¼ ~uKð~rÞTKðtÞ þ ~uGð~rÞTGðtÞ. So
for the stress tensor we also can write σ̂ð~r; tÞ ¼
σ̂Kð~uKÞTsK ðtÞ þ σ̂Gð~uGÞTsGðtÞ. Note that σG and σK act
like linear differential operators.

Y

Y'

FIG. 1. “Elementary cell” of the SLS model.
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The equation of elastic motion can be written as
follows [18]:

ρ ̈~u ¼ −ρgþ div σ̂; ð2:10Þ
where ρ is the density, g is the gravitational acceleration,
and div σ̂ ¼ ∂σik∂xk in Cartesian coordinates. Substituting the
above suggested decomposition into the homogeneous
equations, we can see that due to linearity we can treat
the equations for ~uK and ~uG separately. Furthermore, the
equations are of the same form with respect to the partial
index (K or G). The displacements should be matched to
satisfy the boundary conditions. The solution can be
introduced in the form of the sum of a particular solution
of the full equation and a combination of solutions of the
homogeneous equations. Nontrivial homogeneous equa-
tions of motion for cylindrical symmetry (uφ ¼ 0 and
∂
∂φ ¼ 0), omitting the part index, can be written as follows:

ρT̈ur ¼ Ts

�
1

r
∂
∂r ðrσrÞ þ

∂
∂z σ5

�
; ð2:11Þ

ρT̈uz ¼ Ts

�
1

r
∂
∂r ðrσ5Þ þ

∂
∂z σz

�
: ð2:12Þ

Now by dividing the equations by Ts we collect all time-
dependent variables on the right and coordinate-dependent
variables on the left, thus performing coordinate separation.
So we get T̈=TS ¼ k2, where k2 is the separation parameter
in units of 1=ðPa1=2 sÞ. This constant enumerates the
solutions of the homogeneous equation and is to be
summed over in an attempt to satisfy the boundary
conditions. It is shown further that this value is not needed
for the determination of the time constant. Combining this
result with Eqs. (2.7) and (II.8), we find the temporal parts
of the equations in the form

−k2
�
ð1þ G=G0Þ _T þ G

η
T

�
¼ 1

2G0 T⃛ þ 1

2η
T̈: ð2:13Þ

The corresponding equation and solution for the volumetric
part is obtained by changing G → K, η → ζ, and 2 → 3.
This equation for the high-viscosity approximation pro-
vides three time constants:

γ0 ¼ −
GG0

ηðGþ G0Þ ; ð2:14Þ

γ� ¼ −
G02

2ηðGþG0Þ � ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþ G0p

: ð2:15Þ

This results in a solution in the form of damped (eReγ�t)
oscillations with frequencies Imγ�, near momentary equi-
librium, exponentially (eγ0t) approaching the final stationary
displacement U0. Note that γ0 do not depend on k meaning
that it is the same for each solutionof the coordinate part. This
allow us to factorize the overall exponential decay tendency

from the sum of the solutions. In this way we obtain the
exponential tendency function U0ð1 − expðγ0ðt − t0ÞÞ used
in Ref. [15] to approximate the experimental data. Although
it can be shown numerically that there is more energy in the
volume part of the deformations, we assume that this
exponential damping is related mostly to the shear process.
The observable is the z displacement in the mirror’s center
which can be estimated as

R
thickness εzzdzþ

R
radius εrzdr, and

thus the shear part scales with the disc radius and prevails.
The parameters U0 and γ−10 of the exponential approxi-

mation are badly determined (40% and 111% of the relative
variance for 95% confidence). So we use estimations
obtained for the last two plates [13]. It was shown that
their relaxation has already finished (a year shift was less
than the accuracy limit of 0.5 nm), allowing the authors to
extract the parameters with 10% accuracy.
We can get an estimate for U0 from the stationary

consideration that obviously coincides with the common
one [19,20]:

U0 ¼
gρR2

16Yh2
ð3ð5R2 þ 4h2Þ − 4ð3R2 − h2Þν − 3R2ν2Þ;

ð2:16Þ
where Y ¼ 9KG

3KþG is the Young modulus, ν ¼ 3K−2G
2ð3KþGÞ is the

Poisson ratio, R is the plate radius, h is its thickness, and ρ
is its density. To complete the system of equations we use
expressions for the longitudinal and transversal speeds of
sound, modified according to the SLS model (2.5)–(II.6) in
the high-frequency and -viscosity limit:

v2l ≈
3ðK þ K0Þ þ 4ðGþ G0Þ

3ρ
; ð2:17Þ

v2t ≈
Gþ G0

ρ
: ð2:18Þ

In addition, we make the assumption that the Poisson
ratio for the static parameters should be of the same order as
that for the quasistatic one. Being small, this should be
suitable for our estimations.
The results are summarized in Table I. The estimated

viscosity is 10 times higher than that obtained in the
original paper [13]. Nevertheless, it is still much less
than the extrapolation values following from the high-
temperature measurements.

TABLE I. Material parameters obtained from the literature and
estimated.

Used values Estimated values

U0 35 nm K 8.7 GPa
ν0 0.17 G 7.3 GPa
ct 3764 m=s G0 23.8 GPa
γ−10 12 years η 2.1 × 1018 Pa · s
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III. VISCOSITY NOISE

We can now use the permittivities (1.2)–(1.4) with the
substitution (2.5)–(2.6) to calculate the noises:

Ss ¼
4kBT
ω2

1

4
ffiffiffi
π

p
wðv2l − v2t Þ2v4t ρ2

×

�
v4t

K02

ζ
þ ð3v4l − 6v2l v

2
t þ 4v4t Þ

G02

3η

�
; ð3:1Þ

Scj ¼
4kBT
ω2

X
j

jβjj2dj
πw2

1

v4ljρ
2
j

�
K0

j
2

ζj
þ 4G0

j
2

3ηj

�
; ð3:2Þ

Ssj ¼
4kBT
ω2

X
j

dj
πw2

1

ðv2l − v2t Þ2v4ljρ2

×

�
2v2ljv

2
tj

ρjðv2lj − v2tjÞ
ρðv2l − v2t Þ

�
K02

ζ
þ G02

3η

�

−
�
v4tj

K02
j

ζj
þ ð3v4lj − 6v2tjv

2
lj
þ 4v4tjÞ

G0
j
2

3ηj

��
: ð3:3Þ

Here, v2l and v2t are longitude and transverse wave
velocities of the substrate and jth layer, G0 and K0 are
the short-time shear and bulk moduli of the substrate and
jth layer, η and ζ are the shear and bulk viscosity of the

substrate and jth layer, and ρ represents the materials’
densities.
We use the mirror parameters from Ref. [21], given in

Table II. Here “l” stands for low-refraction material (silica),
“h” stands for high-refraction material (tantala), and “s”
stands for the substrate (high-quality silica). Y and ν are the
Young modulus and Poisson ratio of the layers (used to
estimate Brownian noises), n represents the refraction
indices, ϕ represents the loss angles, λ is the laser wave-
length, w is the laser beam spot radius (e−2 power), and T is
the temperature.
The numerical estimates of the silica part together with

the standard Brownian noise are shown in Fig. 2. The
coating part appears to be several orders lower then the
viscosity substrate noise due to its small thickness. It can
be neglected until tantala has a viscosity at least 5 orders
smaller than that of silica (see Fig. 3).

IV. CONCLUSION

The viscosity of fused silica can be the source of
additional noise in LIGO antennae exceeding the substrate
Brownian noise at frequencies below 19 Hz. However, if
we use the viscosity value as calculated in Ref. [16] this
point moves close to 100 Hz—the maximum of LIGO
sensitivity. Furthermore, the whole volumetric part of the
noise is unknown due to the absence of appropriate material
parameters data.
Another uncertainty is attributed to viscosity in the

mirror’s coating which is totally unknown. Remembering
that regular mechanical coating losses are 3 orders of
magnitude higher than in bulk material (making coating

TABLE II. Substrate (s), high-refractive (h), and low refractive
(l) layer parameters used for the calculation. The other constants
are λ ¼ 1.064 mkm, w ¼ 0.06 m, and T ¼ 290 K.

Layer Y GPa ν n ϕ

s 72 0.17 1.45 7.6 × 10−12f0.77

l 72 0.17 1.45 0.4 × 10−4

h 140 0.23 2.06 2.3 × 10−4
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FIG. 2. Brownian noises from the substrate and coating (dashed
lines) for the parameters from Table II according to Ref. [21] with
viscosity noises (solid lines). The error estimation is 15% (dots).
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taken equal to η0 for each curve.
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Brownian noise the limiting factor of the LIGO detector),
viscosity in stressed coating may suggest surprises. Note
that the lower the viscosity, the higher the noise. We also
note that temperature reduction may be an efficient way to
reduce the viscosity noise by increasing the viscosity itself.
Nevertheless, the coating Brownian noise still remains the
limiting factor for LIGO interferometers for now.
We also conclude that fused silica can be described by

the Maxwell model of viscosity for times smaller than

12 years from the start of relaxation, while the SLS model
should be used otherwise.
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