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The CPT-even sector of the standard model extension amounts to extending Maxwell electrodynamics
by a gauge invariant term of the form − 1

4
ðkFÞαβμνFαβFμν, where the Lorentz-violating (LV) background

tensor ðkFÞαβμν possesses the symmetries of the Riemann tensor. The electrodynamics in ponderable media
is still described by Maxwell equations in matter with modified constitutive relations which depend on the
coefficients for Lorentz violation. We study the effects of this theory on the Casimir force between two
semi-infinite ponderable media. The Fresnel coefficients characterizing the vacuum-medium interface are
derived, and with the help of these, we compute the Casimir energy density. At leading order in the LV
coefficients, the Casimir energy density is numerically evaluated and successfully compared with the
standard result. We also found a variety of intriguing effects, such as a nontrivial Kerr effect and the Casimir
effect between two phases of the electromagnetic vacuum. We consider a bubble of Lorentz-symmetric
(Maxwell) vacuum embedded in the infinite Lorentz-violating vacuum, and we calculate the Casimir
energy at leading order, which in this case is quadratic in the LV coefficients. The Casimir force can be
positive, zero, or negative, depending on the relative strengths between the LV coefficients.
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I. INTRODUCTION

Lorentz symmetry is one of the cornerstones of modern
physics, and it stands as one of the basic foundations of
general relativity (GR) and the standard model (SM) of
particle physics. Both Lorentz covariance to GR and the
CPT theorem to the SM involve deeply the Lorentz
symmetry. This symmetry has been tested within the
energy range currently available, with no violation detected
[1]. The question that naturally arises is whether the
Lorentz invariance holds exactly or to what extent it holds.
Motivated by the unknown underlying theory of quantum
gravity [2,3], the possible Lorentz symmetry violation
effects have been investigated from various theories, for
example, noncommutative field theories [4], loop quantum
gravity [5], string theory [6], brane worlds scenarios [7],
condensed matter analogs of “emergent gravity” [8],
among other Lorentz-violating scenarios [9,10].
The standard model extension (SME) initiated by

Kostelecký and Colladay [11,12] is an effective field theory
that considers the standard model and general relativity plus
all possible Lorentz-violating (LV) coefficients (generated as
vacuum expectation values of some basic fields belonging to
a more fundamental theory, such as string theory [13]) that
yieldLorentz scalars (as tensor contractionswith the standard
fields) under observer Lorentz transformations. One strong
motivation to study the SME is becauseLorentz violation is a
promising candidate signal for Planck-scale physics, and its

detection could shed light on the possible route to quantum
gravity. Nowadays, Lorentz violation has not been detected
in experimental tests, making the SME a current active
field of research. The search for novel effects arising from
these LV terms and an improvement of the bounds for the
magnitude of these LVcoefficients constitute two of themain
lines of study of the SME [14–16].
Lorentz violation in the photon sector of the SME has

been widely investigated in the literature. The study of light
propagation (from the cosmic microwave background) offers
an opportunity to test LV effects, such as birefringence and
polarization properties.Materialmedia have also been used to
test Lorentz invariance within the SME framework [17,18].
However, this area remainspartially unexplored. In this paper,
we provide additional contributions to this subject, and we
initiate the study of ponderable media as modeled by the
photon sector of the minimal SME. More precisely, we
analyze materials which, besides their dielectric properties,
possess additional optical properties (polarization and mag-
netization) arising from the LV coefficients of the SME. Our
primary goal here is to provide additional theoretical pre-
dictions regarding the quantum vacuum in this theory; in
particular, we concentrate on calculating the Casimir effect
between two planar Lorentz-violating ponderable media. It is
worth mentioning that the Casimir effect in LV theories has
been considered in Refs. [19]; however, our analysis is quite
different since we deal with ponderable media.
The Casimir effect (CE) [20] is one of the most

remarkable consequences of the nonzero vacuum energy
predicted by quantum field theory which has been con-
firmed by experiments [21]. The CE can be defined as the
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stress (force per unit area) on bounding surfaces when a
quantum field is confined to a finite volume of space. The
boundaries can be material media, interfaces between two
phases of the vacuum, or topologies of space. In any case, the
modes of the quantum fields are restricted, giving rise to a
measurable force, i.e. the Casimir force. For a review see,
for example, Refs. [22]. The typical example is of the two
uncharged conductive plates in a vacuum, placed a few
micrometers apart. The experimental accessibility to
micrometer-size physics has motivated the theoretical study
of the CE in different scenarios, including the gravitational
sector [23], condensed matter systems [24,25], and chiral
metamaterials [26]. In the problem at hand, the remarkably
strong experimental tests with material media can offer new
ways to impose (or find) better bounds to the LV coefficients.
In our Casimir system, we consider two Lorentz-

violating ponderable media as modeled by the photon
sector of the SME. In order to compute the Casimir energy
density, we first derive the Fresnel coefficients which
characterize a planar vacuum-medium interface, a result
which is absent in the SME literature. With the help of these,
next we use the Lifshitz formula to compute the Casimir
energy per unit area between two of these materials. The
usual Casimir energy density is corrected by a small term
which is linear order in the LV coefficients, yielding to an
attractive force (as usual) between the bodies. Another
solution presented here is the Casimir effect between two
phases of the electromagnetic vacuum: a finite Lorentz-
symmetric (Maxwell) vacuum embedded in the infinite
Lorentz-violating (SME) vacuum. In this case, the correction
to the Casimir energy is second order in the LV coefficients,
and we demonstrate that the sign of the slope of the Casimir
energy depends upon the relation between the magnitudes of
the LV coefficients, thus implying that the Casimir force
could be attractive or repulsive.
This paper is outlined as follows. In Sec. II, we briefly

review the basics of the photon sector of the SME, and we
establish the model that we are going to deal with. Using the
corresponding modified constitutive relations and imposing
the boundary conditions at the vacuum-medium interface, in
Sec. III we calculate the Fresnel coefficients. In Sec. IV, we
use the reflection matrix previously obtained to compute the
Casimir energy density in two different scenarios: i) between
two phases of the electromagnetic vacuum and ii) between
two semi-infinite ponderable media. A concluding summary
of our results comprises the last section, Sec. V. Here,
Lorentz-Heaviside units are assumed (ℏ ¼ c ¼ 1), the met-
ric signature will be taken as ðþ;−;−;−Þ, and we use the
conventions Greek indices μ, ν ¼ 0, 1, 2, 3; Latin indices i,
j ¼ 1, 2, 3; and the Levi-Cività symbol ϵ0123 ¼ þ1.

II. PHOTON SECTOR OF THE SME

A. Vacuum electrodynamics

The Lagrangian of the pure photon sector of the minimal
SME is composed of the usual Maxwell Lagrangian plus the

additional terms 1
2
ðkAFÞκϵκλμνAλFμν (sometimes called the

Carroll-Field-Jackiw term [27]) and− 1
4
ðkFÞαβμνFαβFμν. The

LV tensor coefficients ðkAFÞκ and ðkFÞαβμν areCPT odd and
CPT even, respectively. Both terms have received much
attention in the literature, and experimental constraints exist
for them. TheCPT-odd term leads to negative contributions
to the canonical energy and therefore is a potential source of
instability. Thus, we set the coefficient to zero, ðkAFÞκ ¼ 0.
This is theoretically consistent with radiative corrections
in the SME and is well supported experimentally (stringent
constraints on ðkAFÞκ have been set by studying the polari-
zation of radiation from distant radio galaxies [27]).
Accordingly, we will consider only the CPT-even tensor
in our subsequent analyses. The relevant Lagrangian is [14]

L ¼ −
1

4
FμνFμν −

1

4
ðkFÞκλμνFκλFμν − jμAμ; ð1Þ

where jμ ¼ ðρ;−JÞ is the 4-current source that couples to the
electromagnetic 4-potential Aμ and Fμν ¼ ∂μAν − ∂νAμ is
the electromagnetic field strength, which satisfies the homo-
geneous equations

ϵμναβ∂νFαβ ¼ 0; ð2Þ
ensuring the gauge invariance of the action under the Uð1Þ
gauge transformations qAμ → qAμ þ ∂μΛ. The dimension-
less coefficients ðkFÞκλμν introduce Lorentz and CPT sym-
metry breakdown, and they have the symmetries of the
Riemann tensor and a vanishing double trace, which imply
a total of 19 independent components. The equations of
motion arising from the Lagrange density (1) are

∂μFμν þ ðkFÞκλμν∂μFκλ ¼ jν; ð3Þ
which extend the usual covariant Maxwell equations to
incorporate Lorentz violation. Current conservation can be
verified directly by taking the divergence at both sides of
Eq. (3), i.e. ∂μ∂νFμν þ ðkFÞκλμν∂μ∂νFκλ ¼ ∂νjν, where the
left-hand side vanishes due to the antisymmetry of Fμν and
ðkFÞκλμν (in the indices μν).
Certain linear combinations of the coefficients ðkFÞκλμν

for Lorentz violation simplify the analysis of this theory.
One useful set can be written in terms of four 3 × 3-
matrices [14], κDE, κHB, κDB, and κHE, defined by

ðκDEÞjk ¼ −2ðkFÞ0j0k;

ðκHBÞjk ¼
1

2
ϵjpqϵkrsðkFÞpqrs;

ðκDBÞjk ¼ −ðκHEÞkj ¼ ϵkpqðkFÞ0jpq: ð4Þ
The κ matrices contain the 19 independents components of
the tensor ðkFÞκλμν as follows: 11 in the matrices κDE and
κHB and 8 in the matrices κDB and κHE. These definitions
imply that the microscopic equations of motion (3) can be
cast in the form of the Maxwell equations for macroscopic
anisotropic media [17],
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∇ · D ¼ ρ; ∇ ×H −
∂D
∂t ¼ J;

∇ · B ¼ 0; ∇ ×Eþ ∂B
∂t ¼ 0; ð5Þ

with the modified constitutive relations

D ¼ ð1þ κDEÞ ·Eþ κDB ·B;

H ¼ ð1þ κHBÞ ·Bþ κHE ·E: ð6Þ
As a consequence, many results from conventional electro-
dynamics in anisotropic media hold for this Lorentz-
violating theory. For example, the energy-momentum
tensor takes the standard form in terms of E, B, D, and
H. On the other hand, the general solution to the wave
equation in the Lorentz-violating vacuum is similar to that
of a plane wave propagating in an anisotropic medium.
Another parametrization of particular relevance for

certain experimental considerations employs the four trace-
less matrices [14]

ð~κeþÞjk ¼
1

2
ðκDE þ κHBÞjk;

ð~κe−Þjk ¼
1

2
ðκDE − κHBÞjk − δjk ~κtr;

ð~κoþÞjk ¼
1

2
ðκDB þ κHEÞjk;

ð~κo−Þjk ¼
1

2
ðκDB − κHEÞjk; ð7Þ

where ~κtr ¼ 1
3
TrðκDEÞ is a single coefficient. The matrix ~κoþ

is antisymmetric, while the remaining matrices are symmet-
ric. The number of independent coefficients in each matrix
~κoþ, ~κo−, ~κeþ, and ~κe− are 3, 5, 5, and 5, respectively. The
remaining independent coefficient is contained in the scalar
~κtr. The above parametrization provides a way to split the
coefficients into birefringent and nonbirefringent sectors.
The ~κeþ and ~κo− coefficients which lead to birefringence of
light have been strongly bounded (at the level of one part in
1032 and one part in 1037, respectively) from spectropolarim-
etry of cosmological distance sources [28]. For this reason,
throughout this work, we disregard the birefringent sector by
considering the limit ~κeþ ¼ ~κo− ¼ 0. Under this assumption,
the constitutive relations can be expressed as

D ¼ ð1þ ~κtr þ ~κe−Þ ·Eþ ~κoþ ·B;

H ¼ ð1 − ~κtr − ~κe−Þ ·Bþ ~κoþ · E; ð8Þ
which hold in vacuum. An immediate physical consequence
of these modified constitutive relations is the transmutation
of the electromagnetic fields: an electric charge in vacuum
can generate both electric and magnetic fields [17]. This
magnetoelectric phenomenon is also present in real material
media, such as topological insulators (TIs) and chiral
metamaterials. In the former, the electromagnetic response
of TIs is described by standard Maxwell equations in matter

with the modified constitutive relations D ¼ ε · Eþ
ðα=πÞθ · B and H ¼ μ−1 ·B − ðα=πÞθ ·E, where α is the
fine structure constant and θ is the topological magneto-
electric polarizability tensor [29]. The crystal symmetry of
the TI defines the dielectric tensor εij and the magnetic
susceptibility tensor μij; however, due to time-reversal
symmetry, for TIs the magnetoelectric tensor can only have
the form θij ¼ θδij. In the case of chiral metamaterials, the
modified constitutive relations have the form D ¼ ε ·Eþ
iκH andB ¼ μ ·H − iκE, where κðωÞ is the Condonmodel
for chiral molecular media [26]. It is worth mentioning that
the constitutive relations for these materials are not derivable
from Eqs. (8) because the coefficients ðkFÞαβμν for Lorentz
violation have the symmetries of the Riemann tensor, and
therefore its components cannot be the same.

B. Electrodynamics in ponderable media

The main goal of this work is to initiate the analysis
of this Lorentz-violating electrodynamics in ponderable
media. In fact, one can proceeds along the standard lines of
electrodynamics in a medium (averaging the microscopic
charge and current distributions). The analog displacement
field D and magnetic field H appearing in the vacuum
Eqs. (5) are replaced with the macroscopic displacement
field Dmatter and macroscopic magnetic field Hmatter,
defined by

Dmatter ¼ ð1þ ~κtr þ ~κe−Þ ·Eþ ~κoþ · BþP;

Hmatter ¼ ð1 − ~κtr − ~κe−Þ · Bþ ~κoþ ·E −M; ð9Þ
where P and M are the polarization and magnetization,
which can be written in terms of averaged molecular
electric and magnetic dipole moments. The Maxwell
equations in macroscopic media in the presence of
Lorentz violation then still take the form (5).
The full linear response of a ponderable media to applied

electric and magnetic fields can be described by the
constitutive relations [17]

Dmatter ¼ ðεþMvacuum þMmatterÞ · E
þ ðNvacuum þ NmatterÞ · B;

Hmatter ¼ ðμ−1 −Mvacuum −MmatterÞ · B
þ ðNvacuum þ NmatterÞ · E; ð10Þ

where we have defined the matrices Mij ¼ ~κtrδij þ ð~κe−Þij
and Nij ¼ ð~κoþÞij. Here, the permittivity εij and the
permeability μij tensors are understood to be those in
the absence of Lorentz violation, the matrices Mvacuum

ij and
Nvacuum

ij are the contributions due to the LV coefficients in
the absence of matter, and the matrices Mmatter

ij and Nmatter
ij

contain pieces of the induced moments P and M that
are leading order in ðkFÞμναβ and that may be partially or
wholly orthogonal to an applied field. The explicit form of
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the coefficients ðkmatter
F Þμναβ depends on the macroscopic

medium, and they are induced by the atomic-structure
modifications from the Lorentz violation. Indeed, unless
the matter is isotropic, their values can depend on the
orientation of the material. Their form can be established in
the standard way by applying the averaging process to an
appropriate atomic or molecular model based on the SME.
As pointed out by Kostelecký [17], in analyzing an

experiment, it may be insufficient to replace expressions
involving vacuum coefficients with ones involving the sum
of vacuum and matter coefficients because the boundary
conditions in the presence of matter may induce further
modifications. The precise problem we tackle in this paper
is the Casimir effect between two Lorentz-violating ponder-
able media as modeled by the constitutive relations (10),
in which case the boundaries play a prominent role. To
perform the analysis, we require studying the effects of the
vacuum-medium interface, which we denote as Σ, in the
propagation of the electromagnetic fields. Assuming that
the time derivatives of the fields are finite in the vicinity of
the surface Σ, together with the absence of free sources
on Σ, the field equations imply the following boundary
conditions for the electromagnetic fields at the interface,

½D�Σ · n ¼ 0; ½H�Σ × n ¼ 0;

½B�Σ · n ¼ 0; ½E�Σ × n ¼ 0; ð11Þ
which are derived by integrating Eqs. (5) over a pill-shaped
region across Σ. Here, n is the outward unit normal to Σ,
and the notation is ½V�Σ ¼ VðΣþÞ − VðΣ−Þ, where Σþ and
Σ− are the surfaces just outside and just inside the surface
Σ, as shown in Fig. 1. If the vacuum matrices Mvacuum

ij and
Nvacuum

ij are taken to be zero, then the matter matrices
Mmatter

ij and Nmatter
ij also will be zero, and Eqs. (11) reduce to

the well-known boundary conditions at the interface
vacuum dielectric reported in almost all textbooks on
classical electrodynamics. On the other hand, the limits
εij ¼ δij and μij ¼ δij (absence of matter) in Eqs. (10)
imply that these boundary conditions have no effect in the
propagation of fields across Σ, as expected.
To focus the analysis, some simplifying assumptions

are adopted in what follows. For simplicity, we work with
isotropic dielectric media with no magnetic properties
(μij ¼ 1). Thus, the dielectric tensor is taken to be of the
form εijðωÞ ¼ εðωÞδij. Since our primary interest here is

the electromagnetic phenomena in ponderable media, let us
consider that Lorentz violation is only in the photon sector
and the Lorentz force is conventional. Given that the
vacuum LV coefficients have been stringently constrained
by experiments, in our model we assume that they can be
neglected as compared with the matter LV coefficients, i.e.
ð~κmatter

e− Þij ≫ ð~κvacuume− Þij. One simple possible way to sup-
port this assumption is by considering that the coupling
between the material and the SME background has the
simple form ð~κmatter

e− Þij ¼ εikð~κvacuume− Þkj, such that εij ≫ 1.
In practical terms, the vacuum LV coefficients are set
identically zero, and it is appropriate to reduce the model by
taking the simplification ~κvacuumoþ ¼ 0. This approximation
corresponds to considering the complete nonbirefringent
parity-even sector ð~κtr; ~κe−Þ, which encompasses 6 of the
19 independent coefficients of ðkFÞκλμν. This work is not
intended to give a complete treatment of material media
within the SME framework, which is a meaningful and
open problem, but we just give a starting point in the field.
Taking these approximations, we may write down the
constitutive relations as

D ¼ ðεþMÞ ·E; H ¼ ð1 −MÞ ·B; ð12Þ
where

Mij ¼ ~κtrδij þ ðκe−Þij ð13Þ
is a symmetric matrix. In the remainder of the paper,
coefficients κe− (or Mij) without label are understood to
be those in matter. The relevant vacuum coefficients are
explicitly labeled as κvacuume− (or Mvacuum

ij ).

III. FRESNEL COEFFICIENTS FOR
LORENTZ-VIOLATING DIELECTRICS

The Casimir effect is intimately related to the optical
properties of two material bodies. There are many ways in
which theCasimir effect may be computed. Perhaps themost
obvious procedure is to compute the (regularized) zero-point
energy in the presence of boundaries. However, a far superior
technique is based upon the use of the Green’s functions. A
particular appealing method is the so-called scattering
approach, inwhich the formula for the force or the interaction
energy per unit area can be expressed in terms of the
reflection amplitudes at the vacuum-medium interface [22].
In this section, we derive the Fresnel coefficients for the

case of a planar interface betweenvacuumandaLVdielectric,
a result which to our knowledge is absent in SME literature.
With the help of these, in the next section, wewill analyze the
Casimir energy density in two different scenarios: i) between
two phases of the electromagnetic vacuum [a finite Lorentz-
symmetric (Maxwell) rectangular bubble vacuum embedded
in an infinite Lorentz-violating (SME) vacuum] and
ii) between two semi-infinite LV dielectric bodies as
described by the constitutive relations (12).

FIG. 1. Geometry of a semi-infinite Lorentz-violating medium
in contact with the vacuum.
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The first step is to solve theMaxwell equations invacuum.
Given the rotational symmetry about the z-axis, without
loss of generality, we can choose our coordinate system so
that the plane of incidence (defined by k and z) coincides
with the xz plane. Thus, we obtain the required solution by
proposing a plane wave solution of the form [30]

Ein ¼
�
A⊥y þ A∥

1

ω
ðkzx − kxzÞ

�
eiðkxxþkzz−ωtÞ;

Hin ¼
�
A∥y − A⊥

1

ω
ðkzx − kxzÞ

�
eiðkxxþkzz−ωtÞ ð14Þ

for the incoming wave and

Er ¼
�
R⊥y − R∥

1

ω
ðkzxþ kxzÞ

�
eiðkxx−kzz−ωtÞ;

Hr ¼
�
R∥y þ R⊥

1

ω
ðkzxþ kxzÞ

�
eiðkxx−kzz−ωtÞ ð15Þ

for the reflected wave, provided that kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2x

p
. The

Cartesianvectors are represented byx, y, and z. The problem
consists in finding the relative amplitudesA⊥,A∥ andR⊥,R∥,
which are what define the entries of the reflection matrix.
The second step is to solve Maxwell equations inside the

Lorentz-violating ponderable medium. The calculation of
the plane-wave solutions inside the material is simplified
using the coordinate system ðx; y; zÞ attached to the
incident wave. If the tensor Mij is defined in a primed
coordinate system ðx0; y0; z0Þ that forms an angle φ with the
x-axis, the corresponding tensor in the coordinate system
ðx; y; zÞ is obtained by rotating it around the z-axis by an
angle φ, while the permittivity tensor εij ¼ εδij is
untouched by the rotation. For simplicity, let us consider
that the matrix Mij is defined in the coordinate system
ðx; y; zÞ. Since there is translational invariance along the
interface, kx must be conserved, so the transmitted wave
can have the form

Et ¼ eeiðkxxþqz−ωtÞ;

Ht ¼ heiðkxxþqz−ωtÞ; ð16Þ

where q is the transverse transmitted momentum deter-
mined by the dispersion relation of the LV dielectric. Our
problem now consists in finding the momentum q and the
amplitudes e and h which solve the Maxwell equations.
Finally, imposing the boundary conditions at the interface,
we will construct the reflection matrix.
From the Maxwell-Faraday equation ∇ ×E ¼ − ∂B

∂t ,
with B ¼ ð1þMÞ ·H [which is obtained by inverting
the constitutive relation (12) at linear order], one can obtain
the conditions for vectors e and h, which are

−qey ¼ ω
X

i¼x;y;z

ð1þMÞxihi;

qex − kxez ¼ ω
X

i¼x;y;z

ð1þMÞyihi;

kxey ¼ ω
X

i¼x;y;z

ð1þMÞzihi: ð17Þ

From the Maxwell-Ampère law ∇ ×H ¼ ∂D
∂t , with

D ¼ ðεþMÞ ·E, one obtains

qhy ¼ ω
X
i¼x;y;z

ðεþMÞxiei;

−ðqhx − kxhzÞ ¼ ω
X
i¼x;y;z

ðεþMÞyiei;

−kxhy ¼ ω
X
i¼x;y;z

ðεþMÞziei: ð18Þ

Using the symmetry property Mij ¼ Mji, the six previous
conditions can be written in the compact matrix form

J ·

�
e

h

�
¼ 0;

where J is the 6 × 6 matrix

J ¼

2
6666666666664

εþMxx Mxy Mxz 0 − q
ω 0

Mxy εþMyy Myz
q
ω 0 − kx

ω

Mxz Myz εþMzz 0 kx
ω 0

0 q
ω 0 1þMxx Mxy Mxz

− q
ω 0 kx

ω Mxy 1þMyy Myz

0 − kx
ω 0 Mxz Myz 1þMzz

3
7777777777775

: ð19Þ

The condition for nontrivial solutions, det J ¼ 0, gives us the equation that determines the possible values of q consistent
with the Maxwell equations [31]. For a given tangential (to the interface) wave vector component kx ≠ 0, there exist two
normal components. At linear order in the LV coefficients, the solutions to the characteristic equation are
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q0 ¼ κz þ
εþ 1

ε

κ2zMxx − 2κzkxMxz þ εω2Myy þ k2xMzz

4κz
;

q00 ¼ −κz −
εþ 1

ε

κ2zMxx þ 2κzkxMxz þ εω2Myy þ k2xMzz

4κz
;

ð20Þ
where κz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εω2 − k2x

p
. Intuitively, we expect that the

refraction of a wave coming from the vacuum region
can only give rise to positive propagating waves, from
which we conclude that the solution q00 should be dis-
carded. One can further see that the solution q0 correctly
reduces to the transverse transmitted momentum in a
homogeneous dielectric media κz in the limit Mij → 0.
Now, we are ready to impose the boundary conditions.

According to Eqs. (11), tangential components of E andH
must be continuous along the interface, and thus

kz
ω
ðA∥ − R∥Þ ¼ ex;

A⊥ þ R⊥ ¼ ey;

−
kz
ω
ðA⊥ − R⊥Þ ¼ hx;

A∥ þ R∥ ¼ hy: ð21Þ
One can further check that, using Eqs. (17) and (18), the
continuity of the normal components of B and D are
duplicated by the continuity of Ey and Hy, respectively.
Note that the previous system does not depend upon the
components ez and hz. We can use Eqs. (17) to obtain a
relation where there is no hz dependence, with the result

− ½q0ð1þMzzÞ þ kxMxz�ey
¼ ωð1þMxx þMzzÞhx þ ωMxyhy: ð22Þ

In a similar fashion, Eqs. (18) can be combined to eliminate
the ez dependence to obtain

½q0ðεþMzzÞ þ kxMxz�hy
¼ ωεðεþMxx þMzzÞex þ ωεMxyey: ð23Þ

The last two equations can be further simplified by using
ex, ey, hx, and hy from Eqs. (21) to give the matrix equation
�

γþð1Þ ωMxy

−ωεMxy γþðεÞ
��

R⊥
R∥

�
¼

�
γ−ð1Þ −ωMxy

ωεMxy γ−ðεÞ
��

A⊥
A∥

�
;

ð24Þ
where

γ�ðεÞ ¼ kzεðεþMxx þMzzÞ � q0ðεþMzzÞ � kxMxz:

ð25Þ
Finally, inverting the 2 × 2-matrix of the right-hand side
of Eq. (24) yields the reflection matrix, which can be
conveniently written as the sum of two terms,

R ¼ Rð0Þ þRð1Þ; ð26Þ
where Rð0Þ is the zeroth-order reflection matrix (in the LV
parameters) which is defined by the standard Fresnel
coefficients for a planar vacuum-dielectric interface,

rð0Þss ðω;k∥Þ ¼
kz − κz
kz þ κz

; rð0Þppðω;k∥Þ ¼
εkz − κz
εkz þ κz

;

rð0Þsp ðω;k∥Þ ¼ rð0Þps ðω;k∥Þ ¼ 0: ð27Þ
The label s (p), equivalent to transverse electric (transverse
magnetic) modes, describes parallel (perpendicular) polari-
zation of the electric field with respect to the plane of
incidence. The matrix Rð1Þ is the linear-order correction to
the reflection matrix, the entries of which are

rð1Þss ðω;k∥Þ ¼
kz

2εκzðkz þ κzÞ2
ðð3ε − 1Þκ2zMxx

− 2ðε − 1ÞκzkiMiz

− ðεþ 1Þðεω2Myy þ k2
∥MzzÞÞ;

rð1Þppðω;k∥Þ ¼
−kz

2κzðεkz þ κzÞ2
ððε − 3Þκ2zMxx

− 2ðε − 1ÞκzkiMiz

þ ðεþ 1Þðεω2Myy þ k2
∥MzzÞÞ;

rð1Þsp ðω;k∥Þ ¼ −εrð1Þps ðω;k∥Þ ¼
2ωkzMxy

ðkz þ κzÞðεkz þ κzÞ
; ð28Þ

where now kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

∥

q
, κz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εω2 − k2

∥

q
, kiMiz ¼

kxMxz þ kyMyz, and k2
∥ ¼ k2x þ k2y as a consequence of

the rotational invariance at the vacuum region. In the limit
Mij → 0, the reflection matrix correctly reduces to the
reflection matrix for a planar vacuum-dielectric interface,
i.e. R → Rð0Þ. In such a case, there is no polarization
mixing since the off-diagonal elements of the reflection

matrix Rsp ¼ rð1Þsp and Rps ¼ rð1Þps vanish. However, they are
in general not zero, and therefore either a p- or s-polarized
incident wave may give rise to both p- and s-polarized
reflected waves. In other words, the polarization plane of
the reflected wave is rotated relative to the polarization
plane of the incident wave. In particular, for the s-polarized
incident wave, we can get the Kerr angle

tan αðsÞK ¼ rð1Þps

rð0Þpp þ rð1Þpp

; ð29Þ

which vanishes in the limitMij → 0, as expected. Now, we
have the main tool to compute the Casimir force between
LV dielectric bodies.
We close this subsection by pointing out that our results

can be further generalized to the case in which the vacuum
LV coefficients are taken into account. Here, we argue that
these are small as compared with the matter LV coefficients
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(provided that the dielectric function satisfies ε ≫ 1), and
thus at first approximation, they can be taken to be zero.
However, in general we must consider the vacuum
anisotropy induced by the LV coefficients ðkvacuumF Þμναβ
and a (rigorously derived) molecular or atomic model based
on the SME for the matter sector.

IV. CASIMIR EFFECT

There are different techniques for the evaluation of the
Casimir force. The original Casimir derivation is based
on the calculation of the zero-point energy shift of the
electromagnetic field in the presence of the plates. A local
formulation based on the evaluation of the vacuum energy-
momentum tensor was introduced by Brown and Maclay.
A complementary method is the so-called scattering
approach, in which the free energy is expressed as a
convergent multiple scattering expansion of ray trajectories
propagating between the boundaries. Interestingly, the
formula for the force or the interaction energy per unit
area can be expressed in terms of the reflection amplitudes
at the vacuum-medium interface.
In the previous section, we computed the reflection

matrix (26) characterizing the vacuum-LV dielectric inter-
face. With the help of this, in the present section, we
calculate the Casimir energy density in two different
scenarios: i) between two phases of the electromagnetic
vacuum and ii) between two semi-infinite Lorentz-violating
dielectric bodies. For the situation in which two LV
dielectric parallel semi-infinite bodies are placed at a
distance d from each other in vacuum, as shown in
Fig. 2, the Casimir energy density per unit area stored in
the electromagnetic field between them is given by [24]

ECðdÞ
A

¼
Z

∞

0

dξ
2π

Z
d2k∥

2π
logdet ½1−R1 ·R2e−2k3d�; ð30Þ

where A is the plate area, k3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ k2

∥

q
is the wave

vector perpendicular to the plates, k∥ is the vector parallel
to the plates, and ξ is the imaginary frequency defined as
ω ¼ iξ. The matrices R1;2 are 2 × 2 reflection matrices of
media 1 and 2 containing the Fresnel coefficients defined as

R ¼
�
rssðiξ;k∥Þ rspðiξ;k∥Þ
rpsðiξ;k∥Þ rppðiξ;k∥Þ

�
; ð31Þ

where rij describes the reflection amplitude of an incident
wave with polarization i which is reflected with polariza-
tion j. Note that the Fresnel coefficients are evaluated at
imaginary frequencies ω ¼ iξ, and this requires the well-
known analytic properties of the permittivity in the com-
plex frequency plane. The Casimir force per unit area on the
plates is obtained by differentiating expression (30) with
respect to d, i.e. F ¼ −∂dECðdÞ. A positive (negative)
force, or equivalently a positive (negative) slope of ECðdÞ,
corresponds to repulsion (attraction) of the plates. Despite

the fact that the formula (30) is commonly used for two
homogeneous media, it is still fairly general: it may be
applied to dispersive, dissipative, and anisotropic media; all
that is needed are the appropriate reflection matrices.

A. Casimir energy between two phases of the
electromagnetic vacuum

Let us consider the Casimir configuration depicted in
Fig. 2 in the limiting case in which ε ¼ 1. In this situation,
the formula (30) gives the energy stored in the electro-
magnetic field between two phases of the electromagnetic
vacuum: a finite rectangular bubble of the Lorentz-
symmetric vacuum embedded in the infinite Lorentz-
violating (SME) vacuum. Note that this configuration
is possible given that we have assumed that the vacuum
LV coefficients are zero, and thus the replacement
ðkmatter

F Þμναβ → ðkvacuumF Þ in Eq. (26) characterizes the inter-
face between these phases of the vacuum.
The formalism of the previous section can be applied

directly to obtain the corresponding reflection matrix by
replacing ðkmatter

F Þμναβ → ðkvacuumF Þ. Only, in this subsection,
we understand the coefficients for Lorentz violation to be
those in vacuum. We observe that the zeroth-order reflec-

tion matrix vanishes, i.e. Rð0Þ
ε¼1 ¼ 0, while the linear order

becomes

Rð1Þ
ε¼1 ¼

�
rssðiξ;k∥Þ −rpsðiξ;k∥Þ
rpsðiξ;k∥Þ rssðiξ;k∥Þ

�
; ð32Þ

where the Fresnel coefficients are

rssðiξ;k∥Þ ¼ lim
ε→1

rð1Þss ðiξ;k∥Þ ¼
k23Mxx − ξ2Myy þ k2

∥Mzz

4k23
;

rpsðiξ;k∥Þ ¼ lim
ε→1

rð1Þps ðiξ;k∥Þ ¼
ξMxy

2k3
: ð33Þ

The Casimir energy for this configuration, at quadratic
order in the LV parameters, is

ECðdÞ
A

¼
Z

∞

0

dξ
2π

Z
d2k∥

ð2πÞ2 2½r
2
psðiξ;k∥Þ−r2ssðiξ;k∥Þ�e−2k3d:

ð34Þ
This integral can be evaluated in an analytical fashion. We
first write the momentum element as d2k∥ ¼ k∥dk∥dϑ and

FIG. 2. Lorentz-violating ponderable media separated by a
distance d.
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integrate ϑ ∈ ½0; 2π�. Next, we replace ξ and k∥ by the plane
polar coordinates ξ ¼ k3 cosφ and k∥ ¼ k3 sinφ and
finally integrate φ ∈ ½0; π=2�. This procedure leads to the
simple resulting integral

R
∞
0 k23e

−2k3ddk3 ¼ 1=ð4d3Þ. The
Casimir energy then becomes

ECðdÞ
A

¼ 1

1920π2d3
½10MxxðMyy − 2MzzÞ − 15M2

xx

þ 20M2
xy þ 4MyyMzz − 3M2

yy − 8M2
zz�: ð35Þ

In most cases, the resulting Casimir force between two
media separated by a vacuum region is attractive. Recently,
there has been an increased interest in determining whether
there is a combination of media 1 and 2 capable of
producing a repulsive force [24–26]. In the problem at
hand, we observe that the sign of the slope of ECðdÞ
depends upon the relation between the magnitudes of the
components of the tensor Mij, and it exhibits the same
dependence on the distance (d−3) as that between two
parallel conducting plates. For example, if all entries are
equal (Mij ¼ Mδij), the Casimir energy becomes negative,

i.e. ECðdÞ
A ∼ − 1

160π2d3 M
2. Note, however, that this model is

not allowed within the SME because ðkFÞμναβ have the
symmetries of the Riemann tensor. Interestingly, we can

consider a different configuration in which the Casimir
energy becomes positive. If we assume that the diagonal
entries of M are equal, i.e. Mxx ¼ Myy ¼ Mzz, the Casimir
energy (35) reduces to

ECðdÞ
A

¼ 1

480π2d3
ð5M2

xy − 8M2
xxÞ; ð36Þ

which is positive for jMxyj>
ffiffiffiffiffiffiffiffi
8=5

p jMxxj, zero for

jMxyj ¼
ffiffiffiffiffiffiffiffi
8=5

p jMxxj, and negative for jMxyj <
ffiffiffiffiffiffiffiffi
8=5

p jMxxj.

B. Casimir energy between two Lorentz-violating
ponderable media

Let us consider the setup depicted in Fig. 2, in which we
have two semi-infinite dielectric bodies as modeled by the
photon sector of the SME. According to Eq. (30), for this
case the zero-temperature Casimir energy per unit area at
linear order in the LV parameters is

ECðdÞ
A

¼
Z

∞

0

dξ
2π

Z
d2k∥

ð2πÞ2 ½I
ð0Þðξ;k∥Þ þ Ið1Þðξ;k∥Þ�; ð37Þ

where the zeroth- and first-order integrands can be
written as

Ið0Þðξ;k∥Þ ¼ logΓðξ;k∥Þ;

Ið1Þðξ;k∥Þ ¼
2e−2k3d

Γðξ;k∥Þ
frð0Þppðiξ;k∥Þrð0Þss ðiξ;k∥Þ½rð0Þss ðiξ;k∥Þrð1Þppðiξ;k∥Þ þ rð0Þppðiξ;k∥Þrð1Þss ðiξ;k∥Þ�e−2k3d

− ½rð0Þppðiξ;k∥Þrð1Þppðiξ;k∥Þ þ rð0Þss ðiξ;k∥Þrð1Þss ðiξ;k∥Þ�g; ð38Þ

respectively, where

Γðξ;k∥Þ ¼ ½1 − rð0Þ2ss ðiξ;k∥Þe−2k3d�½1 − rð0Þ2pp ðiξ;k∥Þe−2k3d�:
ð39Þ

Note that the coefficients rð1Þsp ðiξ;k∥Þ and rð1Þps ðiξ;k∥Þ are
irrelevant in the calculation of the Casimir force at linear
order in the LV coefficients. Thus, the required Fresnel
coefficients evaluated at the imaginary frequencyω ¼ iξ are

rð0Þss ðiξ;k∥Þ ¼
k3 − K3

k3 þ K3

; rð0Þppðiξ;k∥Þ ¼
εðiξÞk3 − K3

εðiξÞk3 þ K3

;

ð40Þ

rð1Þss ðiξ;k∥Þ ¼
k3

2εðiξÞK3ðk3 þ K3Þ2
f½3εðiξÞ − 1�K2

3Mxx

þ ½1þ εðiξÞ�½k2
∥Mzz − εðiξÞξ2Myy�g;

rð1Þppðiξ;k∥Þ ¼
−k3

2K3½εðiξÞk3 þ K3�2
f½εðiξÞ − 3�K2

3Mxx

− ½1þ εðiξÞ�½k2
∥Mzz − εðiξÞξ2Myy�g; ð41Þ

where k3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ k2

∥

q
, K3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðiξÞξ2 þ k2

∥

q
and εðiξÞ is

the permittivity function of the dielectric. One recognizes in
the first term of Eq. (37) the usual Casimir energy density
between two semi-infinite dielectric bodies (without SME),
while the second represents the correction from the non-
birefringent parity-even sector of the photon Lagrangian.
The most general phenomenological model to describe

the optical response of a dielectric is a sum of oscillators
to account for particular absorption resonances. When only
one oscillator is considered, the dielectric function evalu-
ated at the imaginary frequency ω ¼ iξ can be written as

εðiξÞ ¼ 1þ ω2
e

ξ2 þ ω2
R þ γRξ

: ð42Þ

In this model, ωR is the resonant frequency of the oscillator,
while ωe accounts for the oscillator strength. The damping
parameter γR satisfies γR ≪ ωR, playing therefore a sec-
ondary role on Casimir physics.
One can introduce this model in Eq. (37) and study the

behavior of the Casimir energy as a function of the two
parameters of the model: the LV coefficients Mij and the
ratio ωe=ωR. In this case, ECðdÞ is a complicated integral
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expression of the parameters which cannot be evaluated
analytically; however, we can perform a numerical analy-
sis. In this scheme, we will investigate two aspects: i) the
effect of modifying the relative strength of ωe=ωR for
Mij ¼ δij (unrealistic model) and ii) the effect of the LV
parametersMij for the fixed value ωe=ωR ¼ 0.45, which is
appropriate for a dielectric with cubic crystal structure.
In what follows, we have rescaled all quantities in units

of ωR. Our results are summarized in Figs. 3(a) and 3(b)
where the Casimir energy [in units of E0 ¼ Aω3

R=ð2πÞ2]
is plotted against the dimensionless distance d ¼ dωR
(recall that we are working in natural units; otherwise,
d ¼ dωR=c). Figure 3(a) shows the rescaled Casimir
energy density as a function of d for different values of
the ratio ωe=ωR and Mij ¼ δij. One can further verify that
the Casimir energy vanishes for ωe=ωR ¼ 0. This is so

because rð0Þss ðiξ;k∥Þ ¼ rð0Þppðiξ;k∥Þ ¼ 0 in this limit; there-
fore, the LV coefficients appears in the Casimir energy
at quadratic order, as we discussed in the previous section.
We observe that increasing the ratio ωe=ωR shifts the
energy toward smaller (negative) values with respect to the
standard Casimir energy (Mij ¼ 0). However, Fig. 3(a)
shows schematically the modification to the Casimir energy
for Mij ¼ δij, and it is well known that ke− and ~κtr are
constrained to have very tiny values, thus implying that the
distance between the curves is suppressed by these small
factors. Figure 3(b) shows the Casimir energy density as a
function of d for different values of M and ωe=ωR ¼ 0.45,
with Mij ¼ Mδij. We observe that increasing M shifts the
energy toward smaller (negative) values with respect to
the usual Casimir energy. This plot shows that the energy
for M ¼ 10−4 is very close to the energy with M ¼ 0.
Nevertheless, M has been bounded to be smaller than
10−17, thus implying that the shift from Casimir energy is
undetectable.

V. SUMMARY AND CONCLUSIONS

Although the standard model is phenomenologically
successful, the search for a theory beyond the SM is
motivated by the fact that it suffers from some theoretical
inconsistencies and from some long-standing unresolved
problems. Searching for Lorentz violation has attracted
much attention since it is a promising candidate signal for
Planck-scale physics, and its detection could shed light on
the possible route to quantum gravity. In this scenario, the
SM is viewed as a low-energy limit of this more funda-
mental theory. The standard model extension is an effective
field theory that incorporates Lorentz-violating coefficients
to the standard model and general relativity, which can be
tested by experiments. The SME has been in constant
development in recent years, and all new alternatives to find
better bounds for the LV coefficients are of a great value.
The SME has been the focus of various experimental

studies, including ones with photons, electrons, protons,
and neutrons. Regarding the photon sector, radiative
corrections, photon splitting, and vacuum Čerenkov and
synchrotron radiation have been studied. Despite the
experimental efforts, no evidence for Lorentz violation
has yet been found. Material media have also been used to
test Lorentz invariance; however, this area remains partially
unexplored. In this work, we aim to fill in this gap.
We have presented an analysis of the Casimir effect

between ponderable media in a Lorentz-violating electro-
dynamics derived from the photon sector of the SME which
includes a CPT-even term of the form − 1

4
ðkFÞαβμνFαβFμν,

where the Lorentz-violating background tensor ðkFÞαβμν
possesses the symmetries of the Riemann tensor. In this
theory, ponderable media are described by Maxwell equa-
tions in matter with modified constitutive relations of the
form D ¼ DðE;BÞ and H ¼ HðE;BÞ. We restrict our-
selves to the nonbirefringent sector, and we assume that the
vacuum LV coefficients are small as compared with the
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FIG. 3. Casimir energy density [in units of E0 ¼ Aω3
R=ð2πÞ2] as a function of the dimensionless distance d̄. In (a), Mij ¼ δij is fixed,

and the different colors correspond to different values of ωe=ωR. In (b), ωe=ωR ¼ 0.45 is fixed, and the different colors correspond to
different values of M (where Mij ¼ Mδij).
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matter LV coefficients, in such a way that we set ðkFÞvacuumαβμν

identically to zero. Although the last assumption over-
simplifies the model, It represents the first advances in the
field of Casimir physics between ponderable media within
the SME.
We derived the Fresnel coefficients which characterize

the vacuum-medium interface, and using the Lifshitz
formula, we calculated the leading-order deviation from
the classical expression for the Casimir energy density
between two parallel dielectric bodies. The deviation of the
Casimir force in the Lorentz-violating theory from its
standard quantum electrodynamics value is found to be
of linear order in the LV coefficients. Using Drude’s model
for the dielectric function, we performed a numerical
analysis for the Casimir energy density as a function of
ωe=ωR and the LV coefficients.
We also found a variety of intriguing effects, such as a

nontrivial Kerr rotation and the Casimir effect between two
phases of the electromagnetic vacuum. We considered a
finite bubble of Lorentz-symmetric (usual Maxwell) vac-
uum embedded in the infinite Lorentz-violating (SME)
vacuum, and we calculated the Casimir energy at leading
order, which in this case is quadratic in LV coefficients.
We found that the Casimir force can be positive, zero, or
negative, depending on the relative strengths between the
LV coefficients. Regarding the matter sector in this work,
we have considered a simple case in which the matter LV
coefficients posses the same symmetries as that of the
nonbirefringent sector of SME in vacuum, thus yielding to
the absence of birefringence in these material media. In the
general case, one should consider a more realistic model for
the matter LV coefficients, therefore opening the possibility
of inducing birefringence in matter caused by the non-
birefringent sector of the SME in vacuum [32]. This effect
will strongly depend on the specific coupling between the
vacuum LV coefficients and the optical properties to give
the correct electromagnetic response of ponderable media
within the SME.
It is worth mentioning that in our calculations we have

fixed the fermion sector to be normal, while LV coefficients
were introduced in the photon sector. However, it well

known that this configuration is equivalent to fixing the
photon sector to be normal and allowing the fermion sector
to break Lorentz invariance. Such an equivalence is
accomplished by the replacement ðkFÞμανα → −2cμν, where
cμν are the LV coefficients associated to the fermion sector
of the minimal SME [33]. Note that this idea can only
be applied to our result for the Casimir energy between
two phases of the electromagnetic vacuum, but not to the
calculation between ponderable media, given that these
have subtleties which require additional studies, as we
mentioned above.
Due to the limited precision of the current experimental

measurements of the Casimir force, no useful bounds on
the LV coefficients can be obtained from our results. The
deviation predicted is of theoretical interest and would only
be useful in setting any significant constraints on the
LV coefficients only if the precision of the experimental
measurements will increase significantly. It is worth men-
tioning that the Casimir force between two parallel con-
ducting plates has been studied within the SME [19], and
the main finding is that the leading-order contribution is
quadratic in the LV coefficients, which makes the exper-
imental sensitivity weaker than the Casimir force between
ponderable media. This is a strong motivation to study
material media in the SME framework. Finally, we com-
ment that our model can be further generalized to more
realistic cases, for example, by considering the nonzero
background vacuum LV coefficients which are present in
the whole space, both inside and outside the material
media. We hope our study motivates further investigations
regarding the matter sector of the SME.
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