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We investigate both the chiral and deconfinement phase transitions of QCDmatter in a refined scheme of
Dyson-Schwinger equations, which have been shown to be successful in giving the meson mass spectrum
and matching the interaction with the results from ab initio computation. We verify the equivalence of the
chiral susceptibility criterion with different definitions for the susceptibility and confirm that the chiral
susceptibility criterion is efficient to fix not only the chiral phase boundary but also the critical end point
(CEP), especially when one could not have the effective thermodynamical potential. We propose a
generalized Schwinger function criterion for the confinement. We give the phase diagram of both phase
transitions and show that in the refined scheme the position of the CEP shifts to lower chemical potential
and higher temperature. Based on our calculation and previous results of the chemical freeze-out
conditions, we propose that the CEP is located in the states of the matter generated by the Au–Au collisions
with

ffiffiffiffiffiffiffiffi
sNN

p ¼ 9–15 GeV.
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I. INTRODUCTION

The phase diagram of strong interaction matter in the
plane of temperature T and chemical potential μ has been
investigated for a long time (for recent reviews, see, e.g.,
Refs. [1–3]). The strong interaction is described by QCD
which includes two important features, dynamical chiral
symmetry breaking and confinement, and thus the phase
transitions are denoted as the QCD phase transitions and
classified into two kinds: the dynamical chiral symmetry
breaking (DCSB)-dynamical chiral symmetry (DCS) phase
transition and the confinement-deconfinement phase tran-
sition. To determine the order and the phase boundary of
the chiral phase transition, thousands of works have taken
the chiral susceptibility criterion to carry out the inves-
tigations (see, e.g., Refs. [4–52]). Since the system usually
involves multiple variables, in turn, there are different
definitions for the chiral susceptibility. The equivalence
between the differently defined susceptibilities in signalling
the phase transition has not yet been examined thoroughly.
Even the equivalence of the susceptibility criterion to the
thermodynamical potential criterion has not yet been
clarified, either, except in some simple models (see, e.g.,
Ref. [52]). For the confinement-deconfinement phase
transition, since the confinement is defined as the color
degrees of freedom being confined within hadrons and not
observable as isolated states, it can naturally be associated
with the positivity violation of the spectral density function.
The positivity of the spectral density function is then

sufficient to label the deconfinement [53,54]. Because of
the difficulties in calculating the spectral function, one
usually evaluates the Schwinger function, which is defined
as the Fourier transformation of the propagator (at finite
temperature and finite chemical potential) [55–62].
Nevertheless, the Schwinger function criterion fails in
some cases [63] because the Schwinger function is the
integral of the spectral density. It is then necessary to extend
the Schwinger function so that the criterion is equivalent to
that of the spectral density function, and the numerical
calculation is easy to carry out.
It has been well known that the QCD phase transitions

happen at the energy scale 102 MeV, and one must take
nonperturbative QCD approaches to accomplish the inves-
tigations. Therefore, lattice QCD simulations have been
widely implemented (see, e.g., Refs. [3,5,7–26]). However,
the “sign problem” [3] prevents it from making rapid
progress in the large chemical potential region. The
Dyson-Schwinger (DS) equation method [53,54,64–68]
and the functional renormalization group approach [69],
which include both the DCSB and the confinement
inherently [70,71], have thus played the role. Not only
the general features of the phase transitions but also some
detailed aspects, such as the critical end point (CEP), the
property of the state in the temperature region above but
near the pseudocritical one, the baryon number fluctuations
and some transport properties, have then been proposed
(see, e.g., Refs. [27–34,55–62,71–82]). The DS equation
approach of QCD is a method of continuum quantum field
theory. It is convenient to stretch the calculations on the
whole μ–T plane without further approximation. This*yxliu@pku.edu.cn.
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advantage makes it better to obtain the information of the
phase structure on the μ–T plane than the lattice QCD
simulations in the case of large chemical potential at the
present stage. However, many of the previous work via the
DS equation approach were based on the bare approxima-
tion for the quark-gluon interaction vertex. On the hadron
property side, which is usually taken as the calibration to
fix the parameter(s) in the DS equation approach, it has
been shown that the bare vertex truncation is accurate
for light-flavor ground-state vector- and isospin-nonzero-
pseudoscalar mesons [65,67,68,83] because corrections in
these channels largely cancel each other, owing to the
parameter-free preservation of the Ward-Green-Takahashi
(WGT) identities [84–86]. This truncation is also reasonable
for heavy-flavor quarkonia [87]. Since the corrections do not
cancel in other channels [88–91], studies based on such a
truncation have not usually provided excellent results for
scalar, axial-vector, and exotic state mesons [92–98] and
have exhibited gross sensitivity to model parameters for
excited states [97–100] and tensor mesons [101].
Meanwhile, some investigations have shown that extending
the bare vertex approximation to systematic truncation may
not only improve the results for mesons (see, e.g.,
Refs. [91,102–104]) but also be promising for the phase
transitions in QCD (see, e.g., Refs. [27–29,32,33,77,105])
and QED (see, e.g., Refs. [106–108]).
A recently developed truncation scheme with a concise

expression for the quark-gluon interaction vertex [102,109]
has been found to have bridged the bottom-up scheme with
the ab initio computation in continuum QCD [110]. The
scheme preserves the WGT identities [105,111,112] and
introduces the DCSB effect into the interaction kernel
[105,109]. It has successfully given realistic hadron proper-
ties for not only the ground states of axial-vector mesons but
also some exited-statemesons [102]. Considering the success
in describing the hadron properties of the new scheme and the
coincidencewith the ab initio computation, it is imperative to
implement the refined scheme to reanalyze the phase tran-
sitions in the T–μ plane and examine the discrepancy of the
results induced by the difference of the truncation schemes.
We then take the refined truncation scheme to investigate

the QCD phase transitions in this paper. After analyzing the
chiral susceptibility criterion for the chiral phase transition
and generalizing the Schwinger function criterion for the
confinement phase transition, we obtain the phase diagrams
of the transitions. We show that the two kinds of phase
transitions coincide with each other and the results of the
chiral susceptibility criteria with different definitions for the
susceptibility deviate only in the crossover region slightly
due to the nature of the crossover. We verify that the phase
transition temperature at zero chemical potential is (at least)
150 MeV, which is consistent with the lattice QCD results,
and propose that the CEP of the chiral phase transition is
located at ðμB; TÞ ¼ ð262; 126Þ MeV. It indicates that the
refined truncation decreases the chemical potential of the

CEP. Such a location of the CEP is in the range of the
states able to be generated with the

ffiffiffi
s

p
≅ 9–15 GeV Au-

Au collision with the parametrization of the energy
dependence of μ [78,113–115] and, in turn, may be
observed in the beam energy scan experiments at the
Relativistic Heavy Ion Collider (RHIC) [116,117].
The remainder of this paper is organized as follows. In

Sec. II, we reiterate briefly the DS equation approach and
its refined truncation scheme. In Sec. III, we analyze the
criteria of the chiral phase transition, show their equiv-
alence, and emphasize the efficiency of the chiral suscep-
tibility criterion in fixing the CEP. In Sec. IV, we extend the
Schwinger function criterion and show the equivalence
between the generalized Schwinger function and the
spectral density function. In Sec. V, we give our results
of the phase diagrams and discuss the properties. Finally,
we summarize in Sec. IV.

II. QUARK GAP EQUATION

In the DS equation approach of QCD, the quark
propagator S at finite temperature T and finite quark
chemical potential μq can be determined with the gap
equation

Sð~p; ~ωnÞ−1 ¼ i~γ · ~pþ iγ4 ~ωn þm0 þ Σð~p; ~ωnÞ; ð1Þ

Σð~p; ~ωnÞ ¼ T
X∞
l¼−∞

Z
d3q
ð2πÞ3 g

2Dμνð~p − ~q;Ωnl;T; μqÞ

×
λa

2
γμSð~q; ~ωlÞ

λa

2
Γνð~q; ~ωl; ~p; ~ωnÞ; ð2Þ

where m0 is the current quark mass, ~ωn ¼ ωn þ iμq with
ωn ¼ ð2nþ 1ÞπT being the quark Matsubara frequency
and μq the quark chemical potential; Ωnl ¼ ωn − ωl;
g2Dμνð~p − ~q;Ωnl;T; μqÞ is the interaction with Dμν the
dressed-gluon propagator; and Γν is the dressed-quark-
gluon vertex. The gap equation’s solution can be decom-
posed as

Sð~p; ~ωnÞ−1 ¼ i~γ · ~pAð~p2; ~ω2
nÞ þ iγ4 ~ωnCð~p2; ~ω2

nÞ
þ Bð~p2; ~ω2

nÞ: ð3Þ

To get the functions Að~p2; ~ω2
nÞ, Bð~p2; ~ω2

nÞ, and Cð~p2; ~ω2
nÞ

by solving the gap equation, one must take appropriate
truncation(s), in other words, have the expressions of
Γμ and g2Dμνð~p − ~q;Ωnl;T; μqÞ. In our calculations, we
implement the refined truncation to the quark-gluon inter-
action vertex [109], which would be called the anomalous
chromomagnetic moments (ACM) kernel or Chang-Liu-
Roberts (CLR) kernel, which reads

Γμ ¼ ΓBC
μ þ ΓACM

μ ; ð4Þ
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ΓACM
μ ¼ ΓACM4

μ þ ΓACM5
μ : ð5Þ

The ΓBC
μ , which is just the Ball-Chiu (BC) vertex [118],

can be proven to be the unique longitudinal part of the
vertex constrained by combining the longitudinal and the
transverse WGT identities [111,112]. The generalized form
of the BC vertex at finite temperature [28,74,119] reads

ΓBC
μ ð~q; ~ωl; ~p; ~ωnÞ

¼ γTμΣA þ γLμΣC þ ðpn þ qlÞμ
�
1

2
γTαðpn þ qlÞαΔA

þ 1

2
γLα ðpn þ qlÞαΔC − iΔB

�
; ð6Þ

with

pn ¼ ð~p; ~ωnÞ; ql ¼ ð~q; ~ωlÞ;

ΣFð~q2; ~ω2
l ; ~p

2; ~ω2
nÞ ¼

1

2
½Fð~q2; ~ω2

l Þ þ Fð~p2; ~ω2
nÞ�;

ΔFð~q2; ~ω2
l ; ~p

2; ~ω2
nÞ ¼

Fð~q2; ~ω2
l Þ − Fð~p2; ~ω2

nÞ
q2l − p2

n
; ð7Þ

where F ¼ A, B, C, and γTμ ¼ γμ − γLμ , γLμ ¼ uμγαuα with
u ¼ ð0; 0; 0; 1Þ.
The ΓACM

μ is the transverse part in the vertex that
characterizes the DCSB effect in the quark-gluon vertex
through the ACM [109], which reads

ΓACM4
μ ¼ ½Tμνlνγ · kþ iTμνγνσρσlρkσ�τ4ðpn; qlÞ; ð8Þ

ΓACM5
μ ¼ σμνkντ5ðpn; qlÞ; ð9Þ

τ4 ¼
2τ5ðpn; qlÞ½2ðMðp2

nÞ þMðq2l ÞÞ�
p2
n þMðp2

nÞ2 þ q2l þMðq2l Þ2
; ð10Þ

τ5 ¼ ηΔB; ð11Þ

where σμν ¼ ði=2Þ½γμ; γν�, Tμν ¼ δμν − kμkν=k2, kμ ¼
ðpn − qlÞμ, lμ ¼ ðpnþqlÞμ

2
, and MðxÞ ¼ BðxÞ=AðxÞ, with

pn (pl) and ΔB defined in Eq. (7), and η is a parameter.
It has been mentioned that this truncation scheme

satisfies both the longitudinal and transverse WGT iden-
tities [111,112] and makes the interaction match with the
results obtained from ab initio computation [110]. Besides,
the above expressions manifest that the refined quark-gluon
interaction vertex is quite concise and easy to generalize to
finite temperature and finite chemical potential.
The interaction together with the dressed-gluon propa-

gator generally has the form

g2Dμνð~k;ΩnlÞ ¼ PT
μνDTð~k2;Ω2

nlÞ þ PL
μνDLð~k2;Ω2

nlÞ; ð12Þ

where PT;L
μν are, respectively, the transverse and longi-

tudinal projection operators,

PT
μν ¼ ð1 − δμ4Þð1 − δν4Þ

�
δμν −

pμpν

p2

�
;

PL
μν ¼

�
δμν −

pμpν

p2

�
− PT

μν; ð13Þ

with p ¼ ð~p; ~ωnÞ, the same as that in Eq. (7), and

DL

�
~k2;Ω2

nl

�
¼ D

�
k2Ω; m

2
g

�
;

DT

�
~k2;Ω2

nl

�
¼ D

�
k2Ω; 0

�
; ð14Þ

wheremg is the thermal mass of the gluon and can be taken
as m2

g ¼ 16=5ðT2 þ 6μ2q=ð5π2ÞÞ according to perturbative
QCD calculations [120,121].
TheDL should generally be different from theDT at finite

temperature and finite chemical potential as indicated in
lattice QCD simulations (e.g., Refs. [122–124]) and coupled
DS equations calculations (e.g., Refs. [29,32,33,77]).
However, if we study the phase structure of the quark, then
as a mediate input,DL ¼ DT is a tolerable approximation as
shown in previous investigations (see, e.g., Refs. [28,30,31]
and others). We take thus the approximation DT ¼ DL ¼
Dðk2Ω; 0Þ to study the phase diagram with the effect of the
refined quark-gluon vertex at the present stage. The modern
DS equation and lattice QCD studies indicate that the gluon
propagator is a bounded, regular function of spacelike
momenta, which achieves its maximumvalue on the domain
at k2 ¼ 0 [125–135]. We then employ an interaction which
expresses these features [97,102,110] as

Dðk2Ω; 0Þ ¼ 8π2D
1

ω4
e−sΩ=ω

2

þ 8π2γm
ln½τ þ ð1þ sΩ=Λ2

QCDÞ2�
F ðsΩÞ; ð15Þ

with F ðsΩÞ ¼ ð1 − expð−sΩ=4m2
t ÞÞ=sΩ, τ ¼ e2 − 1,

mt ¼ 0.5 GeV, γm ¼ 12=ð33 − 2NFÞ with NF the flavor

number, ΛQCD ¼ 0.234 GeV, sΩ ¼ Ω2 þ ~k2, and D and ω
parameters.
To carry out the renormalization in the ultraviolet region

easily in practical calculation, we multiply an additional
damping factor ½1 − expð−sΩÞ�=sΩ on the ultraviolet part
of the dressed-gluon propagator, just as the Refs. [102,110]
have practically done.

III. CHIRAL PHASE TRANSITION

A. Criteria for chiral phase transition

To investigate the chiral phase transition, the chiral
susceptibilities have commonly been taken as the criteria.

QCD PHASE TRANSITIONS VIA A REFINED … PHYSICAL REVIEW D 94, 076009 (2016)

076009-3



The (generalized) chiral susceptibility is defined as the
derivative of the chiral order parameter with respect to the
control parameters, such as the current quark mass m0,
temperature T, and chemical potential μ. The susceptibility
can be connected with the thermodynamical potential.
To this end, we consider the Cornwall-Jackiw-Tomboulis
effective thermodynamical potential for quarks, which
reads [136]

ΓðSÞ ¼ −Tr½lnðS−10 SÞ − S−10 Sþ 1� þ Γ2ðSÞ; ð16Þ

where S0 stands for the bare quark propagator and Γ2

represents the two-particle-irreducible (2PI) and higher
order contributions. Calculating the variation with respect
to the quark propagator, we have

∂Γ
∂S ¼ −S−1 þ S−10 þ ∂Γ2ðSÞ

∂S ; ð17Þ

∂2Γ
∂S2 ¼ S−2 þ ∂2Γ2ðSÞ

∂S2 : ð18Þ

The quark propagator’s DS equation could be derived
through the extreme condition of Eq. (17). Meanwhile, if
calculating the derivative of the extreme condition with
respect to the current quark mass for quark propagator’s DS
equation, we obtain

−S−2
∂S
∂m0

¼ 1þ ∂2Γ2ðSÞ
∂S2

∂S
∂m0

: ð19Þ

The function S represents the dynamical symmetry
breaking and can be considered as an order parameter.
The ∂S

∂m0
can then be regarded as a generalized chiral

susceptibility, too. Comparing Eqs. (17) and (19),
we can find straightforwardly the relation between the
generalized chiral susceptibility and the thermodynamical
potential,

∂S
∂m0

¼ −
1

∂2Γ=∂S2 : ð20Þ

Similar relations between ∂S
∂T,

∂S
∂μ and thermodynamical

potential can also be easily derived as above.
It is well known that the sign changing of the second-

order derivative of the thermodynamical potential at the
state satisfying the extreme condition is conventionally
regarded as the signature of a phase transition. When we
consider the case in the nonperturbative point of view
completely, we could not have the thermodynamical
potential explicitly. The conventional thermodynamical
criterion fails, unfortunately. We should then develop
new criteria. From the above relations, one can notice that
the (generalized) chiral susceptibility is the reciprocal of the
second-order derivative of the thermodynamical potential

(a similar relation in the case of the Nambu–Jona-Lasinio
(NJL) model has been given in Ref. [52], and a not-so-
concise expression in DS equation of QCD has also been
given in Refs. [137,138]). It means that the (generalized)
chiral susceptibilities play the same role as the thermody-
namical potential in identifying the chiral phase transition
and can thus be taken as criteria for the transition.
It is also well known that, in the case of the chiral limit,

the trace of the quark propagator is the chiral quark
condensate hq̄qi. Extending such a definition to the case
beyond chiral limit, we have

hq̄qim0
¼ Tr½SðpÞm0≠0�

¼ −Z4NcNf

Z
d4p
ð2πÞ4 tr½SðpÞm0≠0�; ð21Þ

where Z4 is the renormalization constant, Nc is the number
of colors, and Nf is the number of flavors. However, the
direct trace of the quark propagator in case of nonvanishing
current quark mass contains quadratic divergence. Some
subtraction schemes must be taken when calculating the
condensate. Noticing that the quark mass function could be
written as [53]

Mð−Q2Þ ¼ Bð−Q2Þ
Að−Q2Þ

⟶
Q2→∞ c

Q2

�
ln

�
Q2

Λ2
QCD

��
γm−1

þm0

�
lnðμ2=Λ2

QCDÞ
lnðQ2=Λ2

QCDÞ
�
γm
; ð22Þ

with c ¼ − 4π2γm
3

hq̄qi
½lnðμ2=Λ2

QCDÞ�γm
and μ as the renormalization

scale, one can find that the quadratic divergence is linearly
dependent on the current quark mass m0. It is apparent that
the quadratic divergence can be removed when the quark
condensate is redefined along the lines of Ref. [139] as

hq̄qi ¼ hq̄qim0
−m0

∂hq̄qim0

∂m0

: ð23Þ

It is evident that the quark condensate is a direct measure of
the dynamical quark mass generation. This condensate has
then commonly been taken as the chiral order parameter.
As the integral is extended to that at finite temperature
and/or finite chemical potential, the responsibilities ∂hq̄qi

∂T ,
∂hq̄qi
∂μ , ∂hq̄qi

∂m0
, and so on are also regarded as the chiral

susceptibility and could naturally be taken as the signatures
of the chiral phase transition, which are much more
concrete than the ones expressed similar to Eq. (20).
To show more intuitively the equivalence of the chiral

susceptibility criterion with the thermodynamical potential
criterion, we recall Eqs. (16), (21), and (23). It is apparent
that the thermodynamical potential can be rewritten as
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ΓðSÞ ¼ Γðhq̄qiÞ:

Along the line of the Landau phase transition theory, the
above thermodynamical potential of the state around the
phase transition can be expanded in terms of the powers of
the condensate as

Γðhq̄qi; ζÞ ¼ Γ0ðζÞ þ
1

2
αhq̄qi2 þ 1

4
βhq̄qi4 þ 1

6
γhq̄qi6;

ð24Þ

where ζ denotes all the controlling variables such as
temperature T, chemical potential μ, and so on, α, β,
and γ are the interaction strength parameters depending on
the intrinsic property of the system and controlling vari-
ables. We have then the other form of the generalized chiral
susceptibility,

χ ¼ ∂hq̄qi
∂ζ : ð25Þ

After differentiating the stationary condition of the
effective thermodynamical potential with respect to the
controlling parameter, one can easily have

χ ¼
−hq̄qi

�
∂α
∂ζ
�
ζ¼ζc

− hq̄qi3
�∂β
∂ζ
�
ζ¼ζc

− hq̄qi5
�∂γ
∂ζ
�
ζ¼ζc

αþ 3βhq̄qi2 þ 5γhq̄qi4

¼ −
hq̄qi

�
∂α
∂ζ
�
ζ¼ζc

þ hq̄qi3
�∂β
∂ζ
�
ζ¼ζc

þ hq̄qi5
�∂γ
∂ζ
�
ζ¼ζc�

∂2Γ
∂hq̄qi2

�
∂Γ

∂hq̄qi¼0

:

It is also known that, for the symmetry restoration phase
transition, the derivatives ð∂α∂ζÞζ¼ζc

> 0, ð∂β∂ζÞζ¼ζc
> 0, and

ð∂γ∂ζÞζ¼ζc
> 0. Since hq̄qi < 0, such a susceptibility χ takes

the same sign as the ð ∂2Γ
∂hq̄qi2Þ ∂Γ

∂hq̄qi¼0. One can then recognize

that, if the chiral susceptibility is positive, the state is in a
stable phase, and the negative susceptibility stands for an
unstable phase. The divergence of χ [corresponding to
ð ∂2Γ
∂hq̄qi2Þ ∂Γ

∂hq̄qi¼0 ¼ 0] identifies the phase transition apparently.

Therefore, the susceptibilities play the same role as the
thermodynamical potential in identifying the phase tran-

sition, and ∂hq̄qi
∂T , ∂hq̄qi∂μ , and ∂hq̄qi

∂m0
have been commonly taken

as the signatures for the chiral phase transition, no matter
whether the thermodynamical potential is valid or not.
In practical calculation, since the dynamical mass of a

quark is infrared dominant, the scalar part of the inverse
quark propagator at zero momentum Bð0; ~ω2

0Þ is a good
representation for the chiral property of the quark. We can
see it clearly through introducing a cutoff Λ ≥ Bð0Þ and
simply estimating the mass function in the quark propa-
gator with Bð0Þ. The integral of the quark propagator in

calculating the quark condensate is then proportional to
Bð0ÞΛ2. Therefore, the chiral susceptibility can be simply
rewritten as [28]

χð0; ~ω0Þ ¼
∂

∂m0

Bð0; ~ω2
0Þ: ð26Þ

In short, our above analysis indicates that the chiral
susceptibility criterion is exactly equivalent to the thermo-
dynamical potential criterion in analyzing a phase tran-
sition. Especially, in the case in which one could not have
the (effective) thermodynamical potential Γ when com-
pletely considering the nonperturbative effect, the chiral
susceptibility criterion can still work well. In this paper, we
take the two light-flavor quarks, u/d quarks, with degen-
erate bare mass m0 ¼ 3.4 MeV as our calculated objects to
analyze the criteria of the chiral phase transition and verify
the equivalence of the different expressions of the chiral
susceptibility in practical usage via calculations in the DS
equation scheme with the refined quark-gluon interaction
vertex. It should also be mentioned that the parameters used
in our practical calculations are η ¼ 0.65 in the refined
vertex, the same as in Ref. [102]; ðDωÞ1=3 ¼ 0.52 GeV and
ω ¼ 0.5 GeV in the dressed-gluon propagator, except for
looking over specifically the parameter dependence.
Because of a lack of knowledge about the interplay
between the nonperturbative and perturbative regions, we
take the perturbative part [the second term in Eq. (15)]
as that preserving the one-loop renormalization-group
behavior with NF ¼ 4, which has been shown to be quite
reasonable (see, e.g., Refs. [83,97,102,140]). It is known
that in a calculation that includes the Yang-Mills sector it is
the quark-loop content that controls the number of fermion
flavors (see, e.g., Refs. [27,29,32,33,77,104] in DS equa-
tion calculations). The Yang-Mills sector in our calculation
is only taken into account via a model for the effective
interaction, and thus we cannot attentively discuss the
flavor of the system. However, as the interaction kernel
has been constrained with the hadron properties (see, e.g.,
Refs. [102,110]), what we do here is to implement a
realistic model to represent the real system of QCD, and
then from this interaction kernel, we expect the results to be
able to explain the experiment data.

B. Numerical results

First, we calculate the quark condensate with Eqs. (23)
and (21). The obtained result of the temperature depend-
ence of the condensate at zero chemical potential scaled
with that at zero temperature and the comparison with those
[more concretely, the light-flavor quark condensate of
three-flavor system, Δl;s ¼ hq̄qil − ðml=msÞhq̄qis] given
in other DS equation calculations [32] and lattice QCD
simulation [141] are shown in Fig. 1. The obtained result of
the temperature dependence of the scaled condensate at a
sizeable quark chemical potential (150 MeV) and the quark
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chemical potential dependence of the scaled condensate at a
finite temperature (110 MeV) are shown in Fig. 2.
Looking over Fig. 1, one can easily recognized that our

presently calculated temperature dependence of the con-
densate agreeswith the latticeQCDsimulation result and the
previous DS equation calculation result excellently. In
general, the condensate at low temperature barely changes
as the temperature increases till aboutT ∼ 0.8TcwithTc, the
inflection points of the corresponding curves (in our
calculation, Tc ¼ 150.8 MeV). Straightforwardly, Tc is

the temperature for the ∂hq̄qi
∂T , which is one kind of definition

of chiral susceptibility, to reach its maximum. In turn, it is
commonly regarded as the (pseudo)critical temperature of
the chiral phase transition (specifically, a crossover in the
case beyond the chiral limit). In contrast to the continuous
evolution at zero chemical potential, Fig. 2 manifests
evidently that, in the high chemical potential region, both
the temperature and the chemical potential dependences of
the quark condensate become discontinuous. In more detail,
the condensates for theNambu solution andWigner solution
are separated in a special region; they “jump to” each other at
two distinct chemical potentials, μc;l and μc;h. These features
indicate apparently that the phase transition becomes first
order, and the region μ ∈ ½μc;l; μc;h� and the counterpart of
the temperature are just the coexistence regions.
As discussed in Sec. II, besides the ∂hq̄qi

∂T , we have other

definitions for the chiral susceptibility, such as ∂hq̄qi
∂m0

, even

the simplified one in practical calculation, χð0; ~ω0Þ ¼
∂Bð0; ~ω2

0
Þ

∂m0
(e.g., Refs. [27–29]). We should then check the

equivalence of the critical temperature and the critical
chemical potential determined with the different criteria.
In the region of the first- or/and second-order phase
transition, due to the functional relation among the dynami-
cal mass, the quark condensate, and the Bð0; ~ω2

0Þ, the

discontinuities of them are the same (the ones correspond-
ing to the Wigner solution all emerge at the Tc;l

or/and μc;l, and those relating to the Nambu solution all
disappear at the Tc;h or/and μc;h). All the chiral suscep-
tibilities defined in terms of Bð0; ~ω2

0Þ and hq̄qi diverge at
the same Tc;l (μc;l) for the Wigner phase, and the same Tc;h

(μc;h) for the Nambu phase. Therefore the susceptibility
criterion with different definitions of the susceptibility
gives definite critical state (Tc;l, μc;l) [(Tc;h, μc;h)] for the
first- and second-order phase transitions. While, for the
crossover, since the susceptibility does not diverge and
there are no rigorous manifestations but just pseudo-critical
condition (for both temperature and chemical potential) to
mark the DCS restoration, different criteria might give
different results. We should thus compare the results fixed
with different definitions of the chiral susceptibility care-
fully. To this end, we give the calculated temperature
dependence of chiral susceptibility defined as ∂hq̄qi

∂T , ∂hq̄qi
∂m0

,

and ∂Bð0; ~ω2
0
Þ

∂m0
at zero chemical potential in Fig. 3. The figure

manifests evidently that the variation behaviors of the
susceptibilities defined differently with respect to the
temperature are generally almost the same, which exhibits

FIG. 2. Calculated scaled quark condensate at μq ¼ 150 MeV
as a function of T (upper panel: Solid line–Nambu phase;
dashed line–Wigner phase) and that at T ¼ 110 MeV as a
function of μq (lower panel: Solid line–Nambu phase; dashed
line–Wigner phase).

FIG. 1. Calculated scaled quark condensate (solid line) at μ ¼ 0
as a function of T=Tcðμ ¼ 0Þ compared with the results (of Δl;s)
from other DS equation calculations (dashed line, taken from
Ref. [32]) and lattice QCD simulation (filled triangles with error
bars, taken from Ref. [141].)
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an obvious peak, nevertheless those in terms of the quark
condensate show a little sharper than the other one. The
continuous variation features of the susceptibilities with
different definitions confirm that the chiral phase transition
of the system composed of quarks with physical mass is not
a sharp phase transition but a crossover. The fact that
the two susceptibilities defined as the derivative against
the current quark mass have their maxima at the same
temperature demonstrates that these two criteria are equiv-
alent to each other, and gives a pseudocritical temperature
Tcðμ ¼ 0Þ ¼ 156.1 MeV. However, the susceptibility
defined as the derivative with respect to temperature gives
a pseudocritical temperature Tcðμ ¼ 0Þ ¼ 150.8 MeV,
which has been quoted as Tc in last paragraph. These values
are definitely highly consistent with the lattice QCD
simulation results [13,23,26]. It is well known that the
crossover means a smooth evolution from one phase to
another, and different criteria lead naturally distinct pseu-
docritical temperature. The approximately 5MeVdifference
(almost the same as that given for three-flavor system in
Ref. [32]) among the pseudocritical temperatures deter-
mined with different definitions of the chiral susceptibility
(i.e., different criteria) is just a manifestation of the cross-
over. Since the discrepancy among the pseudocritical
temperatures obtainedwith different definitions of the chiral
susceptibility is quite small, we will then implement the
commonly taken definition of the chiral susceptibility (i.e.,
that defined as the derivativewith respect to the temperature)
as the signature to fix the phase diagram in the following.
Figures 1 and 2 manifest apparently that the order

parameter, scaled chiral quark condensate, behaves dis-
tinctly in the regions of different order phase transitions. In
turn, the chiral susceptibility demonstrates different features
in the different regions. The calculated temperature depend-
ence of the chiral susceptibilities at three typical values of the
chemical potential is shown in Fig. 4. It is apparent that in the
first-order transition region, the susceptibility of the Nambu
(DCSB) phase diverges at locations different from those for

the Wigner (DCS) phase to diverge. The region between the
states for the susceptibility of each of the two phases to
diverge individually is the coexistence region. In the cross-
over region, the susceptibility is a smooth function involving
a peak, i.e., the susceptibility of the DCSB phase links with
(in fact, changes to) that of the DCS phase not only
continuously but also smoothly. In the second-order tran-
sition region, the susceptibility of the DCSB phase diverges
at the same location as that for the susceptibility of the DCS
phase to diverge. The characteristic for the susceptibilities of
the two phases to diverge at the same location thus defines
the state which separates the crossover region from the first-
order transition region, namely, the CEP. Therefore, the
chiral susceptibility criterion can not only give the phase
boundary of the chiral phase transition but also localize the
position of the CEP.

IV. DECONFINEMENT PHASE TRANSITION

A. Criterion for deconfinement transition

The confinement is defined as that the color degrees of
freedom are confined within hadrons and could not be
observed as isolated states. It means that there does not
exist an asymptotic free colored state. In turn, it can
naturally be represented by the violation of the positivity
of the spectral density function. It has been shown that such
a violation of the positivity associates the confinement with
the dynamically driven changes in the analytical structure
of QCD’s propagators and vertices [71,142–147]. To avoid
the difficulty in calculating the spectral density function,
one usually links it with the Schwinger function. The
Schwinger function at finite temperature and finite chemi-
cal potential is defined as the Fourier transformation of the
propagator [55–62],

FIG. 3. Calculated ∂hq̄qi
∂T , ∂hq̄qi∂m0

, and
∂Bð0; ~ω2

0
Þ

∂m0
at μ ¼ 0 as functions

of temperature T (in the solid line, dashed line, and dotted line,
respectively).

FIG. 4. General characteristics of the chiral susceptibility in
different regions (solid—at μq ¼ 0, i.e., in the crossover region;
dotted—at μq ¼ 200 MeV, i.e., in the first-order transition
region; dashed—at μq ¼ 85 MeV, i.e., near the chemical poten-
tial separating the crossover region from the first-order transition
region.)
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D�ðτ; j~pj ¼ 0Þ ¼ T
X
n

e−iωnτS�ðiωn þ μ; j~pj ¼ 0Þ

¼
Z þ∞

−∞

dω
2π

ρ�ðω; j~pj ¼ 0Þ e−ðωþμÞτ

1þ e−ðωþμÞ=T ;

ð27Þ

where S� is the projected quark propagator defined as
S ¼ SþLþ þ S−L− with L� ¼ 1

2
ð1� γ4Þ and ρ� is the

corresponding spectral density function and is positive
definite if the propagator contains an asymptotic state. The
violation of the positivity of the spectral density function is
sufficient for determining the confinement [53,54], while
the Schwinger function criterion fails in some cases [63].
This is because the Schwinger function is the integral of the
spectral density function, even though there exists negativity
in the spectral density function, the Schwinger function can
still be positive after the integration. The positivity of the
Schwinger function is just a prerequisite but not a sufficient
condition for judging the deconfinement as found in the
calculation in the DS equation approach [63]. It would then
be very helpful if one can find a way for the Schwinger
function, which is easy to calculate, to represent the proper-
ties of spectral density function directly.
Noticing that by differentiating the Schwinger function

against the τ we have

D2n
� ðτ; j~pjÞ

¼
Z þ∞

−∞

dω
2π

ðωþ μÞ2nρ�ðω; j~pjÞ
e−ðωþμÞτ

1þ e−ðωþμÞ=T ; ð28Þ

where D2n is the 2n-order derivative of D. If discretizing
the variables in Eq. (28), we have

D2nðτlÞ ¼
X
m

fnðωm; τlÞρðωmÞ:

The (n × l)-dimensional functions D2nðτlÞ are able to
determine the m ¼ n × l-dimensional discretized spectral
density function. It can definitely reach to the continuum
limit when n → ∞. This means that, even though the
Schwinger function D0 is not sufficient, the series of D2n

can determine the properties of the spectral density function
completely. If the spectral density function is positive
definite, the series of D2n should be all positive, and
otherwise, when the spectral density function is somehow
negative, negativity will appear in the series of D2n as n
reaches a proper (large) value.

B. Numerical result

To show the validity of our criterion, we have calculated
the DðτÞ, the second-order derivative D2ðτÞ, the fourth-
order derivativeD4ðτÞ, and the sixth-order derivativeD6ðτÞ
at many states ðT; μqÞ. The obtained results at ð1.1Tc; 0Þ

and ð0.8Tc; 0Þ, the spectral density functions of which have
been analyzed explicitly in Ref. [61], and those at
(140, 110) and (80, 110) MeV are illustrated in Fig. 5.
Figure 5 manifests evidently that in the case of zero

chemical potential, the DðτÞ at T ¼ 1.1Tχ
c is positive

definite, which is consistent with the positivity of the
spectral density function (see, e.g., Ref. [61]). The DðτÞ at
T ¼ 0.8Tχ

c is positive definite, too; however, the positivity
of the spectral density function is violated (see, e.g.,
Ref. [61]). Inconsistency emerges in the Schwinger func-
tion criterion and the spectral density function criterion.
Nevertheless, the D4ðτÞ accords with the spectral density
function excellently. In the case of chemical potential
μq ¼ 110 MeV (μB ¼ 330 MeV), the DðτÞ, D2ðτÞ and
even D4ðτÞ are all positive, which could not illustrate
the confinement nature at T ¼ 80 MeV, while positivity
violation appears for D6ðτÞ. It is then clear that analyzing
the even-order derivative of the Schwinger function
(we refer to it as the generalized Schwinger function
hereafter) can play the role of identifying the confinement-
deconfinement phase transition efficiently.
From Fig. 5, one can also observe that the positivity

violation of the generalized Schwinger function connects
the change of the monotonicity of the function. In general,
if the DðτÞ and its 2n-order derivatives are all convex
functions, they and the spectral function are positive
definite and manifest the deconfinement. While any con-
cave behavior appears in D2nðτÞ, positivity violation
emerges for the D2ðnþ1ÞðτÞ and the spectral density func-
tion, which means a confinement.

FIG. 5. Calculated Schwinger function DðτÞ and its deriva-
tives D2ðτÞ, D4ðτÞ at zero chemical potential (left panel:
dashed—T ¼ 1.1Tχ

c, solid—T ¼ 0.8Tχ
c) and the D2ðτÞ, D4ðτÞ,

D6ðτÞ at chemical potential μq ¼ 110 MeV (right panel:
dashed—T ¼ 140 MeV, solid—T ¼ 80 MeV).
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V. PHASE DIAGRAMS AND CRITICAL
END POINT

With the solutions of the quark’s DS equation, we can
take the chiral susceptibility criterion and the generalized
Schwinger function criterion to give the complete phase
diagrams in the T–μ plane. For chiral susceptibility, we
perform our calculations with definitions ∂hq̄qi

∂T , ∂hq̄qi
∂m0

, and
∂Bð0; ~ω2

0
Þ

∂m0
. The calculated results with each of the definitions

show that in the low chemical potential region the line
demonstrating the states for the susceptibility of the Nambu
phase to take its maximum overlaps with the line for that
of the Wigner phase to take its maximum. However, the
two lines separate from each other in the high chemical
potential region. This indicates that chiral phase transition
in the high chemical potential region is a first-order phase
transition but that in the low chemical potential region is in
fact a crossover, just as mentioned in Sec. III. And there
exists a CEP to separate the two regions. The obtained
chiral phase diagram with the conventional definition of the
chiral susceptibility ∂hq̄qi

∂T and that of the confinement phase
diagram are displayed in Fig. 6. It is evident that the
presently obtained phase diagram is qualitatively the same
as the previous results.
Looking over the numerical data, we notice that our

present calculation with the refined quark-gluon interaction
vertex (CLR model) gives the position of the CEP at
ðμBE; TEÞ ¼ ð262.3; 126.3Þ MeV (μBE ¼ 3μqE), which yields
the ratios TE=Tc ¼ 0.84, μBE=Tc ¼ 1.74, and μBE=TE ¼ 2.08,
which agree with the lattice QCD simulation results
[15,16,21,25] very well. The ratios are also comparable
with the recent DS equation result with the baryon effect
being included [77].
Comparing such a result with our previous results in the

case beyond chiral limit [34,76], one can observe that both
the chemical potentials and the temperatures of the CEP

determined via different truncation schemes change accord-
ingly (even though the amplitudes are different). To
investigate the parameter dependence of the location of
the CEP, we have performed a series of calculations,
maintaining the same quark condensate at T ¼ μ ¼ 0.
Our calculated results indicate that, to keep the quark
condensate the same, the parameter ω in the interaction can
take different values but the D should be almost a constant.
Moreover, as the parameter ω decreases, the μE decreases,
and the TE increases. Some of the concrete data are listed in
Table I. Extending the idea discussed in Refs. [28,48,76],
one can infer that the 1

ω plays the role of the radius of the
interaction sphere. An increase of the interaction radius
(i.e., the volume of the interaction sphere) plays the same
role as increasing the density of the system; it compensates
then the effect of increasing the chemical potential. As a
consequence, the μBE decreases, and the TE increases
simultaneously due to the compensation.
If we consider only the crossover region of the chiral

phase transition, we can fit the chiral phase boundary line
with an expansion formula,

Tcðz ¼ μ=Tc;μÞ ¼ Tc;μ¼0ð1 − κz2Þ; ð29Þ
with κ ¼ 0.339 if μ stands for that of the quarks and κB ¼
0.038 if μ refers to the baryon chemical potential. This value
is merely one time larger than that given in recent lattice
QCD simulations [typically around 0.018] [19,20,24], and
consistent with other DSEs calculations [29,33,34,76,77].
Since lattice QCD simulation suffers from the sign problem
at finite chemical potential and thus usually employs the
techniques like Taylor expansion or analytic continuation,
we believe it would be reliable to determine the curvature
parameter through the DS equation approach, which does
not involve further approximation when carrying out the
calculation on the finite chemical potential domain.
For the first-order phase transition region, people

usually take the phase equilibrium condition PN ¼ PW to
fix the boundary line. Even though we could not give
the boundary line in such a way now since we could not
get the thermodynamical potential due to including the
nonperturbative effect more generally in the presently

FIG. 6. Calculated phase diagrams on the T–μq plane (dotted-
dashed—Wigner chiral phase transition; dashed—Nambu chiral
phase transition; dotted—Deconfinement phase transition.)

TABLE I. Calculated parameter dependence of the location of
the CEP ðμBE; TEÞ via different truncation schemes with the quark
condensate hq̄qiμ¼1GeV being kept a constant [ð240 MeVÞ3] (all
the dimensional quantities are in the unit GeV).

Scheme ðDωÞ1=3 ω Tc ðμBE; TEÞ μBE=TE

Bare 0.800 0.450 0.1562 (0.2055,0.1524) 1.3572
0.800 0.500 0.1503 (0.3324,0.1283) 2.5908
0.800 0.550 0.1343 (0.4371,0.1143) 3.8241

Refined 0.501 0.450 0.1536 (0.1176,0.1513) 0.7773
0.520 0.500 0.1508 (0.2623,0.1263) 2.0768
0.536 0.550 0.1274 (0.3909,0.1022) 3.8247
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refined truncation scheme, one can infer that the linemust be
located between the (red) dotted-dashed line and the (black)
dashed line. From the conditionPN ¼ PW , we directly have

dðPN −PWÞ
dT

¼
�∂PN

∂μ −
∂PW

∂μ
� ∂μ
∂Tþ

�∂PN

∂T −
∂PW

∂T
�
¼ 0:

With the thermodynamical relations n ¼ ∂P=∂μ and
s ¼ ∂P=∂T, where n is the particle number density and s
is the entropy density, we observe

∂μ
∂T ¼ −

sN − sW
nN − nW

: ð30Þ

Typically, the DCS phase has a larger entropy density and a
larger quark number density, which reads nW > nN and
sW > sN . Therefore, one should have ∂μ

∂T < 0. It indicates
that the phase boundary line TðμqÞ will always decrease
monotonically as the μq increases and could not involve any
backbend. Such a feature can be extended to the crossover
region sincewhere the pressure equilibrium condition is still
satisfied. In more specific case, μ ¼ 0 (or μ → 0þ), due to
the conjugate symmetry of the �μ, we have ∂T

∂μ ¼ 0. As a
consequence, the boundary curve hits the vertical (T) axis
perpendicularly. Figure 6, especially the insertion,manifests
evidently that our numerical result coincides with the
general principle excellently, and so do the previous DS
equation calculation results (e.g., Refs. [27–34,76–78]),
lattice QCD simulation results, and other model results
(e.g., Ref. [46]).
Furthermore, for the confinement-deconfinement phase

transition, our presently calculated result, as shown in Fig. 6,
manifests that the dotted curve determined with D4ðτÞ ¼ 0

orD6ðτÞ ¼ 0 overlaps with the chiral phase transition line of
the Nambu phase. It indicates that the deconfinement phase
transition coincides with the complete chiral symmetry
restoration (chiral phase transition) exactly, and it makes
the locations of the two kinds of CEPs coincide. Meanwhile,
the Wigner phase is always in the deconfinement phase even
when it is unstable in the low temperature and low chemical
potential region. This feature provides evidence again that
hierarchy between the chiral phase transition and the
deconfinement phase transition does not exist.
In addition, if we employ the parametrization of the

chemical freeze-out condition reported in Ref. [113], we
would propose that the CEP may appear in the matter
generated by the Au-Au collision at the energy

ffiffiffi
s

p
≅

14.6 GeV, or with the parametrization in Ref. [114], we
obtain

ffiffiffi
s

p
≅ 13.9 GeV. If we take further the finite size

effect into account [78], the energy to generate the CEP in
the Au-Au collision will shift to

ffiffiffi
s

p
≅ 9.4 GeV. By fitting

the data from lattice QCD simulation [115] with the energy
dependence expression μB ¼ d=ð1þ e

ffiffiffi
s

p Þ, we can also
find that the CEP can be reached in the matter generated by

the Au-Au collision with center-of-mass energyffiffiffi
s

p
≅ 10 GeV. Such an energy range 9–15 GeV is consis-

tent with what the oscillation structure of the net baryon
number fluctuation observed in recent RHIC experiments
[117] hints.

VI. SUMMARY

With the refined truncation scheme of the Dyson-
Schwinger equations developed recently, with which the
dressed quark-gluon interaction vertex is written in a quite
concise form, we studied the QCD phase transitions in this
paper. For the chiral phase transition, we analyzed the
equivalence of the (generalized) chiral susceptibility cri-
terion and the thermodynamical potential criterion. The
chiral susceptibility criterion is much more powerful in the
case of taking the nonperturbative nature of the phase
transitions into account where the thermodynamical poten-
tial is not available. We also investigated the consistency of
the chiral susceptibility criterion with distinct definitions
of the susceptibility (i.e., that in different directions) and
showed that the susceptibility along different directions
behaves in the same manner in the first-order transition
region but slightly differently in the crossover region. For
the deconfinement phase transition, we gave a generalized
Schwinger function criterion and proved that the positivity
violation of the generalized Schwinger function is defi-
nitely a sufficient condition to identify the confinement.
With these criteria and the solutions of the refined DS

equations, we obtained the complete phase diagram of not
only the chiral phase transition but also the deconfinement
transition. The results indicate that the two kinds of phase
transitions coincide with each other completely. Our results
for the chiral phase transition predict that there exists a CEP
and it is located at ðμBE; TEÞ ¼ ð262.3; 126.3Þ MeV, with
TE=Tc ¼ 0.84 and μBE=Tc ¼ 1.74, which agrees with lattice
QCD simulation results and former DS equation results
very well. The obtained phase boundary coincides with the
lattice QCD simulation and previous DS equation calcu-
lation results well, and matches the requirement of the
general principle in Eq. (30). With the parametrization for
the collision energy dependence of the chemical potential,
we propose that the CEP may appear in the states generated
by the

ffiffiffi
s

p
≅ 9–15 GeV Au-Au collision.

Comparing our presently obtained results with the
refined truncation scheme and the (previous) ones with
the bare vertex approximation, one can notice that an
obvious discrepancy between the results via different
truncation schemes in general does not exist. However,
the refined scheme shifts the location of the CEP to lower
chemical potential and higher temperature. It provides
evidence for that the CEP locates in the region of the
states that the presently planned RHIC experiments could
generate. Nevertheless, since present experiments can not
provide information for the states above the chemical
freeze-out line but the CEP is a specific state at the phase
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boundary, plenty of works are then required in order to
detect the CEP in experiments. Exploring the chemical
freeze-out conditions with the refined truncation scheme is
thus in progress. In addition, the work to distinguish the
longitudinal part from the transverse part of the dressed-
gluon propagator is also in progress.
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