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Motivated by the continuous experimental investigations of Xð1835Þ in three-body decay channels like
η0πþπ−, we investigate the η0KK system with the aim of searching for bound states and/or resonances when
the dynamics involved in the KK subsystem can form the resonances: f0ð980Þ in isospin zero or a0ð980Þ in
isospin 1. For this, we solve the Faddeev equations for the three-body system. The input two-body t
matrices are obtained by solving Bethe-Salpeter equations in a coupled channel formalism. As a result, no
signal of a three-body bound state or resonance is found.
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An observation of a resonancelike structure around
1830MeV, Xð1835Þ, has been reported in several processes,
with the most recent finding being in the mass spectrum of
η0πþπ− by the BES Collaboration [1]. The first observation
of Xð1835Þ in the η0πþπ− mass spectrum, in the process
J=ψ → γη0πþπ−, was discussed in Ref. [2], where a Breit-
Wigner fit to the data yielded a mass M ¼ 1833.7� 6.1�
2.7 MeV and a width Γ ¼ 67.7� 20.3� 7.7 MeV. The
same process is studied with a larger statistics by BESIII in
Ref. [1], where, apart from the confirmation of Xð1835Þ, the
finding of two new states is reported:Xð2120Þ andXð2370Þ.
A more recent analysis of the η0πþπ− data [3], focussed on
the energy region of Xð1835Þ, shows that a fit to the data in
this region requires either the presence of a much broader
state (Γ ∼ 247 MeV), distorted by the cusp of pp, or an
interference between a broad and a narrow state. The fit
shows that the broad state, in any case, couples strongly to the
pp system [3]. An enhancement near the pp threshold in the
BES data has been found in some processes (like J=ψ →
γpp and ψð2sÞ → γpp [4]) but not in some other processes
(like J=ψ → ωpp [5] and J=ψ → ϕpp [6]). The decay of
ψð2sÞ has been studied by the CLEOCollaboration also, but
the data show no pp threshold enhancements in the mass
spectra of γpp, π0pp, and ηpp [7]. All these findings have
generated a series of discussions on the possibility of the
existence of a baryonium or other alternative explanations of
the enhancement seen around 1830 MeV [8–19]. A reso-
nancelike structure around 1830 MeV is also found in the
mass spectrum of ηKK [20], ηπþπ−, where theKK is found
to come dominantly from f0ð980Þ in the former case. It is not
clear if all the states found around 1830 MeV in different
systems are the same, and the origin of this/these state(s) is
still an open question. In the presentmanuscript, we study the
possibility of understandingXð1835Þ as a bound state arising
from three pseudoscalar dynamics involving the η0 meson.
The dynamics of a system of pseudoscalar mesons is

related to the low-energy regime of QCD, which can be
described in terms of the chiral perturbation theory (χPT).
The latter is an effective field theory based on the fact that the

QCD Lagrangian with massless u, d, and s quarks has an
SUð3ÞR × SUð3ÞL chiral symmetry. This symmetry is spon-
taneously broken to SUð3ÞV , giving rise to an octet of
Goldstone bosons, which are identifiedwith the octet formed
by the pseudoscalar mesons: π, K, and η. These particles
become massless in the chiral limit of zero quark masses,
mu;d;s → 0. The ninth pseudoscalar, the η0 meson, whichwas
found independently, but almost at the same time, by two
collaborations [21,22] in 1964, is an interesting hadron; it is
closely related to the axialUAð1Þ anomaly [23–27]. This fact
prevents the η0 meson from becoming massless even in the
chiral limit. Thus, the η0 meson is not included explicitly in
the Lagrangian in the conventional χPT.
A way to incorporate η0, however, could be inspired by

the works of Witten, ‘t Hooft, and others [24,25], who
showed that in the limit of an infinite number of colors
(Nc → ∞) of QCD the SU(3) singlet state, η1, is massless
and the global SUð3ÞR × SUð3ÞL symmetry is replaced by
Uð3ÞR × Uð3ÞL. This is because in the large Nc limit the
anomaly related to the axial current is 1=Nc suppressed.
This fact can be used to incorporate η0 in an effective field
theory based on chiral symmetry, since η1 becomes the
ninth Goldstone boson and can be included in an extended
Uð3ÞR × Uð3ÞL chiral Lagrangian (see, for example,
Refs. [28–30] for more details). Alternative approaches
to including the singlet state in an effective field theory
have also been developed [31,32].
Thus, to build a Lagrangian based on chiral symmetry

and including at the same time the η0 meson, in the spirit of
Refs. [24,25,28–32], the physical η and η0 fields are
introduced as the admixtures of the SU(3) singlet η1 and
octet η8 states. Indeed, the η − η0 mixing has received a lot
of attention in the recent past. Usually, within the mixing
scheme, the η and η0 mesons are considered as linear
combinations of η1 and η8 through a mixing angle θ,

jηi ¼ cos θjη8i − senθjη1i;
jη0i ¼ senθjη8i þ cos θjη1i: ð1Þ
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The values obtained for this mixing angle range, typically, from −13° to −22°. These values are extracted, just to mention a
few examples, from the decays of η and η0 to two photons, decays of J=ψ , etc. [33–36]. Considering this mixing angle, the
SU(3) matrix containing the Goldstone bosons can be extended to U(3) as

ϕ ¼

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
3

p ηþ 1ffiffi
6

p η0 πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
3

p ηþ 1ffiffi
6

p η0 K0

K− K0 − 1ffiffi
3

p ηþ 2ffiffi
6

p η0

1
CCCA; ð2Þ

where the standard η − η0 mixing is considered [Eq. (1)
with sin θ ¼ −1=3, thus θ ∼ −20°]. Also, a two-mixing
angle scheme has been proposed [37–39] and adopted to
explain some decay widths of the η and η0 mesons, radiative
decays, pseudoscalar decay constants, and other quantities
[40,41]. We stick here to the approach with one mixing
angle.
Using the matrix in Eq. (2), at leading order in large Nc,

the lowest-order Lagrangian describing the interaction
between two pseudoscalar mesons is given by [28–30,42]

L ¼ 1

12f2
hð∂μϕϕ − ϕ∂μϕÞ2 þMϕ4i; ð3Þ

with M ¼ diagðm2
π; m2

π; 2m2
K −m2

πÞ.
The interaction of the η0 meson with other pseudoscalars

in the Swave is rather weak, and neither a bound state nor a
resonance has been found theoretically due to this dynam-
ics. However, it was shown in Refs. [30,42] that inclusion
of η0 in the coupled channel analysis is required to
reproduce the isospin I ¼ 1=2 and I ¼ 3=2 S-wave Kπ
phase shift up to energies of 1.3 GeV. In fact, a pole around
700 MeV with a width near 600 MeV is found and
identified with the κ resonance in Refs. [30,42]. Note,
however, that the presence of the η0K channel, although
being important for the reproduction of the data around
1.3 GeV, is not essential for the understanding of the
properties and nature of the κ resonance [43–45].
Contrary to the weakness of the η0 interaction with other

pseudoscalars, the S-wave interaction of systems likeKK is
known to be strong and generates poles related to the
f0ð980Þ and a0ð980Þ resonances [43–45]. It is then
plausible that in a system like η0KK the strong attraction
in the KK system could be enough, together with a weak
interaction in the subsystems having an η0, to generate a
state with a three-body nature. Such a plausibility should
not be surprising because the three-body dynamics is more
complex and richer than that associated with a two-body
system, and states of three-body nature can be found even
when the interaction in some subsystems is repulsive.
Sometimes, it is possible to generate a three-body state
even when the interaction in all the subsystems is not strong
enough to form individual two-body bound states or
resonances. Such states are called Borromean states [46].

Thus, the interaction between one or two subsystems can be
repulsive or weak; however, if the dynamics involved in the
remanent subsystem(s) is strong enough to overcome the
repulsion/weak attraction, a state of a three-body nature can
be formed. This is, indeed, the case of the KKK, ϕKK, and
J=ψKK systems, and three-body bound states or resonan-
ces are found and associated with the Kð1460Þ, ϕð2170Þ,
and Yð4260Þ states, respectively [47–49].
The possibility of finding a three-body state in the η0KK

system has actually been studied earlier in Refs. [50,51],
but conclusions opposite of each other have been found.
While in Ref. [50], when the η0KK system rearranges as an
η0 and the f0ð980Þ resonance, a state is found at 1835 MeV
with a width of 70 MeV, no signal of such a state is found in
Ref. [51]. The main difference between the twoworks is the
way of dealing with the three-body dynamics. In Ref. [50],
for studying the interaction between η0 and f0ð980Þ, loops
involving these two mesons are introduced and regularized
using the dimensional regularization scheme. This implies
the introduction of a subtraction constant in the loop
function related to the propagation of a meson (η0) and a
resonance [f0ð980Þ]. In Ref. [51], the formation of states in
the η0KK system is studied within the Faddeev equations in
the fixed center approximation approach. In this case, it is
assumed that when the η0 meson interacts with the KK
system, which is considered to cluster as the f0ð980Þ
resonance, no changes are produced on the latter. The
description of the dynamics in the cluster is introduced
through a form factor which depends on the mass and width
of the cluster [52].
In this paper, we study the η0KK system by solving the

Faddeev equations with the purpose of looking for possible
bound states or/and resonances. We do not assume any
cluster formation which cannot be excited in the inter-
mediate scattering states. Such a contribution can be
important, as noted in Ref. [53].
The scattering T matrix of the three-body system can be

obtained as a sum of the Faddeev partitions [54], Ti, such
that

T ¼
X3
i¼1

Ti: ð4Þ
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The formalism used here was developed in Refs. [47–49].
As shown in these latter works, the Ti partitions can be
rewritten as (see Fig. 1 for a schematic representation of the
Feynman diagrams contributing to each partition)

Ti ¼ tiδ3ð~k0i − ~kiÞ þ
X3
j≠i¼1

Tij
R ; ð5Þ

where Tij
R satisfy the equations

Tij
R ¼ tigijtj þ ti½GijiTji

R þGijkTjk
R � ð6Þ

for i ≠ j; j ≠ k ¼ 1, 2, 3. In Eq. (6), the function gij is the
three-body Green’s function of the system, which is defined
as

gijð~k0i; ~kjÞ¼
�

Nk

2Ekð~k0iþ ~kjÞ

�

×
1ffiffiffi

s
p

−Eið~k0iÞ−Ejð~kjÞ−Ekð~k0iþ ~kjÞþ iϵ
; ð7Þ

where
ffiffiffi
s

p
is the energy in the center of mass of the

system, the coefficient Nk is equal to 1 for mesons, and
El (l ¼ 1, 2, 3) is the energy for the particle l.
The Gijk function in Eq. (6) represents a loop function of

three particles, and it is written as

Gijk ¼
Z

d3k00

ð2πÞ3 ~g
ij · Fijk; ð8Þ

with the elements of ~gij being

~gijð~k00; slmÞ ¼
Nl

2Elð~k00Þ
Nm

2Emð~k00Þ
×

1ffiffiffiffiffiffiffi
slm

p − Elð~k00Þ − Emð~k00Þ þ iϵ
; ð9Þ

for i ≠ l ≠ m, and the Fijk function, with explicit variable
dependence, is given by

Fijkð~k00; ~k0j; ~kk; sk00ruÞ
¼ tjðsk00ruÞgjkð~k00; ~kkÞ½gjkð~k0j; ~kkÞ�−1½tjðsruÞ�−1; ð10Þ

for j ≠ r ≠ u ¼ 1, 2, 3. In Eq. (9),
ffiffiffiffiffiffiffi
slm

p
is the invariant

mass of the ðlmÞ pair, and it depends on the external
variables. The upper index k00 in the invariant mass sk

00
ru of

Eq. (10) indicates its dependence on the loop variable (see
Refs. [47–49,55,56] for more details).
The input two-body t matrices of Eq. (6) are obtained by

solving the Bethe-Salpeter equation in a coupled channel
approach,

t ¼ V þ VGt;

¼ V þ
Z

d4k
ð2πÞ4 V

1

½ðP − kÞ2 −m2
1 þ iϵ�½k2 −m2

2 þ iϵ� t;

ð11Þ

where the kernel V is determined from the Lagrangian
given by Eq. (3).
The G function in Eq. (11) stands for the two-body loop

function; P and k are, respectively, the total 4-momentum
of the two-body system and that of the particles in the loop
(expressed in the two-body center-of-mass frame), and m1

and m2 are the masses of the two particles under
consideration.
The first step of our formalism is to solve Eq. (11) for all

the two-body subsystems by considering all the relevant
coupled channels. In this way, the resonances generated in
the two-body subsystems are automatically present in the
three-body scattering. As shown in Refs. [44,45,57,58], it is
possible to convert the integral Bethe-Salpeter equation
[Eq. (11)] into algebraic equations. In this case, the kernel
V, and thus, t, can be factorized outside the integral, and
Eq. (11) becomes

t ¼ ½1 − VG�−1V;
¼ V þ VGV þ VGVGV þ…; ð12Þ

which sums up the contributions associated with the series
of Feynman diagrams shown in Fig. 2. The V present in
Eq. (12) is a function of the Mandelstam variables;
however, we are only interested in S-wave meson-meson
scattering, thus V has to be projected over S waves (for
more details, we refer the reader to Refs. [44,45]).

FIG. 2. Schematic representantion of Eq. (12).

FIG. 1. Schematic representation of the Ti partition. Each
horizontal line represents a particle (named as particles 1, 2, 3
from top to bottom). The partition T1, for example, considers
contributions from Feynman diagrams starting from the inter-
action between particles 2 and 3. The interaction between these
two particles is represented through the two-body t1 matrix.
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The loop function G in Eq. (12) is regularized using a
cutoff or dimensional regularization [44,45]. If the cutoff
method is considered, then for a channel r formed by two
particles of masses m1r and m2r, in the center-of-mass
frame of the two-body system, one has the expression [44]

Gr¼
Z

qmax d3q
ð2πÞ3 Irð~qÞ;

Irð~qÞ¼
ω1rð~qÞþω2rð~qÞ

2ω1rð~qÞω2rð~qÞ½E2−ðω1rð~qÞþω2rð~qÞÞ2þ iϵ� ;

ð13Þ

with E being the center-of-mass energy of the two-body
system, ωi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þm2

ir

p
, and qmax a cutoff for the

3-momentum integration.
In the case of the dimensional regularization scheme, the

expression found for G is given by [45]

Gr ¼
1

16π2

�
arðμÞ þ ln

m2
1r

μ2
þm2

2r −m2
1r þ E2

2E2
ln
m2

2r

m2
1r

þ qr
E
½lnðE2 − ðm2

1r −m2
2rÞ þ 2qrEÞ

þ lnðE2 þ ðm2
1r −m2

2rÞ þ 2qrEÞ
− lnð−E2 þ ðm2

1r −m2
2rÞ þ 2qrEÞ

− lnð−E2 − ðm2
1r −m2

2rÞ þ 2qrEÞ�
�
; ð14Þ

where qr is the on-shell center-of-mass momentum, μ is a
regularization scale, and arðμÞ is a subtraction constant for

the channel r. Since a change in μ can be always absorbed
into ar, there is only one independent parameter.
In a fashion similar to Eq. (12), as shown in

Refs. [47,56], Eq. (6) is also an algebraic set of six coupled
equations. This simplification is a result of the cancellation
of the contribution of the off-shell parts of the two-body t
matrices in the three-body Faddeev partitions with the
contact term(s) of the same topology (the origin of which
relies on the Lagrangian used to describe the two-body
interaction in the subsystems) [47–49,55,56]. Interestingly,
a deduction of cancellations of two-body and three-body
forces using a different procedure has recently been
reported in Ref. [59]. Because of these cancellations, only
the on-shell part of the two-body t matrices is relevant for
solving Eq. (6). As a consequence, the Tij

R partitions given
in Eq. (6) depend only on the total three-body energy,

ffiffiffi
s

p
,

and on the invariant mass of one of the subsystems, which
we choose to be the one related to particles 2 and 3 and the
invariant mass of which is denoted as

ffiffiffiffiffiffi
s23

p
. The other

invariant masses,
ffiffiffiffiffiffi
s12

p
and

ffiffiffiffiffiffi
s31

p
, can be obtained in terms

of
ffiffiffi
s

p
and

ffiffiffiffiffiffi
s23

p
, as shown in Refs. [48,49].

Using this formalism, we solve Eq. (6) for the η0KK
system. The input two-body η0K and η0K amplitudes are
obtained following Ref. [42], where Eq. (12) is solved for
the πK, ηK, and η0K systems in the S wave and, as a result
of this coupled-channel dynamics, the κ resonance is
generated. The subtraction constants arðμÞ are taken to
be, following Ref. [42], −1.383 for channels coupled to
isospin 1=2 (Kπ, Kη, and Kη0) and −4.643 for channels
coupled to isospin 3=2 (Kπ) for the regularization scale

FIG. 3. (Left panel) Modulus squared (top) and contour plot (bottom) of the three-body T matrix for the η0KK̄ system for total isospin
zero; thus, the KK̄ subsystem is in isospin zero. (Right panel) Modulus squared (top) and contour plot (bottom) of the three-body
T matrix for the η0KK̄ system for total isospin 1, which implies that the KK̄ subsystem is in isospin 1 (right panel). The peak seen in the
figures corresponds to the three-body threshold cusp.
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value of μ ¼ mK. These values are obtained in Ref. [42] by
fitting the isospin 1=2 and 3=2 Kπ phase shifts, and a good
reproduction is found up to energies slightly above
1.3 GeV. For the KK t matrix, we consider the work of
Ref. [44], in which the ππ, KK system in the S wave is
investigated for the isospin-zero configuration and for the
isospin-1 case the KK and πη system is considered. The
subtraction constants used in the present work are arðμÞ≃
−1 for μ ¼ 1224 MeV and for both isospin configurations.
These parameters are fixed to reproduce the observed two-
body phase shifts and inelasticities for the KK system and
coupled channels up to energies around 1.2 GeV, as done in
Refs. [44,45]. Because of the dynamics involved in these
coupled-channel systems, f0ð600Þ and f0ð980Þ are found
for the isospin-zero case, and a0ð980Þ is found for the
isospin-1 case.
InFig. 3,we show theplots obtained for theη0KK Tmatrix

for total isospin zero (left panel) and 1 (right panel) as a
function of

ffiffiffi
s

p
and

ffiffiffi
s

p
23. As can be seen, apart from the

threshold enhancement at ð ffiffiffi
s

p
;

ffiffiffiffiffiffi
s23

p Þ≃ ð1950; 992Þ MeV
in both isospins, no other structure is found, not even for
values of

ffiffiffi
s

p
23 around 980 MeV, where the KK system in

isospin zero forms f0ð980Þ and in isospin 1 forms a0ð980Þ.
A threshold enhancement was also the only effect seen in the
study of Ref. [51]. At this point, a question might arise about
the stability of our results when the subtraction constants/
cutoffs of the loop functions are varied. In the case of the

calculation of the two-body t matrices, the subtraction
constants used here, as previously mentioned, following
Refs. [42] and [44], have been fixed to reproduce relevant
data on phase shifts and inelasticities. We have not varied
them due to the limited availability of freedom. For the three-
body loop functions, Eq. (8), a cutoff of 1000MeV has been
used.We have varied this cutoff in the range 800–1100MeV,
and minor changes in the size of the three-body amplitudes
of Fig. 3 are observed. This insensitivity is related to the
presence of three-meson propagators in Eq. (8). Thus, our
study of the η0KK system reveals no structure at 1835 MeV,
contrary to the findingofRef. [50], and no structure above the
threshold either. Hence, we cannot relate Xð1835Þ and
Xð2120Þ with states generated by three-body dynamics.
The thirdX found inRef. [1],Xð2370Þ, is anyways too heavy
to be explained as an η0KK resonance. Apart from Xð1835Þ,
Xð2120Þ, there are some π, η states listed by the Particle
Data Group at energies 1800–2100 MeV with large widths,
100–200MeV: ηð1760Þ, πð1800Þ, ηð2225Þ. According to the
study carried in thiswork, the dynamics involved in the η0KK
system plays no essential role in understanding the nature of
the above-mentioned states.We thus conclude fromourwork
that the origin of Xð1835Þ and Xð2120Þ must be something
other than three-pseudoscalar dynamics.
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