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We study the well-known Friedrichs model, in which a discrete state is coupled to a continuum state. By
examining the pole behaviors of the Friedrichs model in a specific form factor thoroughly, we find that, in
general, when the bare discrete state is below the threshold of the continuum state, there should also be a
virtual-state pole accompanying the bound-state pole originating from the bare discrete state as the
coupling is turned on. There are also other second-sheet poles originating from the singularities of the form
factor. We give a general argument for the existence of these two kinds of states. As the coupling is
increased to a certain value, the second-sheet poles may merge and become higher-order poles. We then
discuss the completeness relations incorporating bound states, virtual states, and resonant states
corresponding to higher-order poles.
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I. INTRODUCTION

Unstable states in quantum physics appear in a lot of
fields in modern physics, such as unstable nuclei in nuclear
physics and resonances in particle physics. In hadron
physics especially, unstable resonances always arise in
the strong interactions, and more and more newly observed
resonant states are quoted in the Particle Data Group
Table [1]. However, many states fall outside the expectations
of the conventional quarkmodels, such as the Godfrey-Isgur
model [2], in which mesons are regarded as the bound state
of a quark and an antiquark in some potential induced by
QCD. Typically, the enigmatic σ and κ resonances in ππ and
πK scatterings [3,4] can hardly be accommodated in the
conventional quark model, because they are strongly
coupled with the continuum states. In the higher energy
region, e.g., for the quarkonium-like states near or above
the open-flavor thresholds, such as Xð3872Þ, D�

0ð2318Þ,
D�

s0ð2317Þ,Xð3900Þ, the conventional quarkmodels neither
work well. An interesting approach by taking into account
the hadron loop effects provides a generally good descrip-
tion to themasses andwidths of the resonances ranging from
the light scalars [5] to the heavier charmed, charmed-
strange, and charmonium-like spectra [6–8]. From the point
of view of the hadron-loop model, one may roughly regard
these resonances as being composed partly by the discrete
spectra and the continuum spectra of the free Hamiltonian
without their interaction. How to describe these resonances

in terms of these components in a more rigorous way in
quantum theory inspires us to look at the mathematical
description of the resonances.
The description of resonance, i.e., Gamow states, cannot

be formulated in the usual Hilbert space language, since it
has complex energy eigenvalue. In order to complete the
task, one has to enlarge the usual Hilbert space to a rigged
Hilbert Space (RHS). The main point is to have a Gel’fand
triplet Ω ⊂ H ⊂ Ω×, where H is the usual Hilbert space of
the normalizable states, Ω is a nuclear space which is dense
in H, and Ω× is the space of the antilinear continuous
functionals on the nuclear space. Gamow states must be in
the larger Ω×, since it is the generalized eigenstate of the
full Hamiltonian with complex eigenvalues. The descrip-
tions of in-state and out-state are using different rigged
Hilbert spaces, Ω� ⊂ H ⊂ Ω×

� where the subscript “−”
denotes the out-state space andþ denotes the in-state space.
The triplet of state spaces can be mapped to the complex
function spaces D∓ ⊂ H2∓ ⊂ D×∓ where D∓ ¼ S∩H2∓jRþ ,
respectively, to form a representation, where S is the
Schwartz space, H2∓ is the so-called Hardy space in which
the functions are analytic on C∓, and jRþ means restriction
on Rþ. There are also two kinds of Gamow states,
jz−Ri ∈ Ω×

−, jzþR i ∈ Ω×þ denoting the decaying state and
growing states, which correspond to the lower and upper
second-sheet poles of the Smatrix, respectively. For further
detailed discussion on the mathematical foundation, the
readers are referred to [9,10].
The Friedrichs model [11] is a solvable model which

demonstrates the property of the Gamow state. In the
*xiaozg@ustc.edu.cn
†zhouzhy@seu.edu.cn

PHYSICAL REVIEW D 94, 076006 (2016)

2470-0010=2016=94(7)=076006(12) 076006-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.076006
http://dx.doi.org/10.1103/PhysRevD.94.076006
http://dx.doi.org/10.1103/PhysRevD.94.076006
http://dx.doi.org/10.1103/PhysRevD.94.076006


simplest Friedrichs model [11] there are a discrete eigen-
state and a continuum eigenstate of the free Hamiltonian,
which couple to each other through an interaction term
in the full Hamiltonian. The eigenstates of the full
Hamiltonian can be worked out exactly. If the free discrete
state is located above the threshold of the continuum, it will
become unstable Gamow states represented as a pair of
poles on the second Riemann sheet of the S matrix. The
pole on the lower second sheet corresponds to the decaying
Gamow state and the one on the upper corresponds to the
growing state. The Gamow state can be explicitly written
down as a vector in the RHS as a linear combination of the
free discrete state and the continuum states. Besides these
resonance poles generated from the discrete states, there
could also be other poles introduced by the form factors.
This was noticed in Ref. [12] by studying some special
form factors and the authors argue that it is a possible origin
of extra states in particle physics. In present paper, we will
give a general argument of the existence of these states
introduced by the form factors. If the free discrete state is
below the threshold of the continuum, there is a bound state
pole on the physical sheet below the threshold after turning
on the interaction. However, people usually do not notice
that, besides this bound-state pole, there will also be a
virtual state on the unphysical sheet originating from the
same discrete state. This virtual-state pole is the so-called
shadow pole proposed by Eden [13] in S-matrix theory. In
our present paper, we will demonstrate the existence of this
virtual-state pole in the Friedrichs model by studying some
example form factors and give a general argument of its
existence.We also track the pole trajectories as the couplings
change continuously and we find that even for such a simple
form factor there are unexpected pole structures. The pair of
the resonance poles canmerge to be a degenerate double pole
and then separate on the real axis, becoming two virtual-state
poles. One of these virtual poles may meet with the virtual
pole generated by the form factor and then they separate into
the complex plane becoming a pair of resonance poles. In
some special critical condition, the pair of resonance poles
and the virtual pole originating from the form factor may
meet on the negative real axis and form a triple pole. The
double pole can be regarded as two degenerate states and the
triple pole as three degenerate ones. In fact, the higher order
degenerate states are not the eigenstates of the Hamiltonian.
In the bases of these degenerate states, the Hamiltonian is
represented as thematrix of Jordan form. Onewould wonder
whether these states would contribute to the completeness
relations. In fact, for nondegenerate Gamow states for the
resonances, by suitably incorporating the integral contour
information in the continuum state as a distribution, the
identity operator can be decomposed in the continuum states
and the Gamow states [14]. Here we will generalize the
completeness relations to the degenerate higher order states
in the Friedrichs model.
The structure of this paper is as follows: Section II

introduces the Friedrichs model. In Sec. III, we examine
pole trajectories of the Friedrichs model with a kind of

example form factor. In Sec. IV, we give a general argument
for the existence of the virtual state accompanying the
bound state and the states generated by the form factor. In
Sec. V, we study the completeness relations with higher-
order degenerate states. Section VI is the conclusion and
discussion.

II. INTRODUCTION TO THE FRIEDRICHS
MODEL

The simplest Friedrichs model [11] includes a free
Hamiltonian H0 with a simple continuous spectrum, which
is Rþ ≡ ½0;∞Þ, plus a discrete eigenvalue ω0 imbedded in
this continuous spectrum (ω0 > 0). An interaction V
between the continuous and discrete parts is produced so
that the discrete state of H0 is dissolved in the continuous
spectrum and a resonance is produced. In fact, all the
following solutions also apply to ω0 < 0 cases, so we
would not restrict the domain of ω0 for the moment. We
denote the discrete state of H0 by j1i and the continuum
state by the jωi, that is,

H0j1i ¼ ω0j1i;
H0jωi ¼ ωjωi: ð1Þ

The free Hamiltonian is then

H0 ¼ ω0j1ih1j þ
Z

∞

0

ωjωihωjdω; ð2Þ

and the interaction V is written as

V ¼ λ

Z
∞

0

½fðωÞjωih1j þ fðωÞj1ihωj�dω: ð3Þ

For simplification, we assume that fðωÞ is real for above
the threshold, i.e., ω > 0. In general, it could be a complex
function. The normalizations and orthogonal conditions for
the free states are

h1j1i ¼ 1; h1jωi ¼ hωj1i ¼ 0;

hωjω0i ¼ hω0jωi ¼ δðω − ω0Þ: ð4Þ
We will solve the eigenstate jΨðxÞi of H ¼ H0 þ V with
eigenvalue x,

HΨðxÞ ¼ xjΨðxÞi: ð5Þ
Since j1i and jωi form a complete set, the eigenstate jΨðxÞi
can be expressed in terms of j1i and jωi,

jΨðxÞi ¼ αðxÞj1i þ
Z

∞

0

ψðx;ωÞjωidω: ð6Þ

Note that here jΨi is a vector inΦ×, and it only make senses
as an antilinear functional on the vector jϕi ∈ Φ, hϕjΨi. So,
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ψðx;ωÞ should be treated as a distribution. Substituting (6)
into Eq. (5), one can obtain the following relations:

ðω0 − xÞαðxÞ þ λ

Z
∞

0

fðωÞψðx;ωÞdω ¼ 0;

ðω − xÞψðx;ωÞ þ λfðωÞαðxÞ ¼ 0: ð7Þ

Then, for real x > 0, we have

ψ�ðx;ωÞ ¼ −
λαðxÞfðωÞ
ω − x� iϵ

þ γðωÞδðω − xÞ;
ðω0 − xÞα�ðxÞ þ λfðxÞγðxÞ

− α�ðxÞλ2
Z

∞

0

jfðωÞj2
ω − x� iϵ

dω ¼ 0: ð8Þ

where γðωÞ is an arbitrary function to be determined by
normalization. We have added the�iϵ in order to define the
integral contour. Now, one can define

η�ðxÞ ¼ x − ω0 − λ2
Z

∞

0

jfðωÞj2
x − ω� iϵ

dω; ð9Þ

and analytically continue η� to the complex plane ηðxÞ, and
ηþ and η− are the boundary functions of ηðxÞ on the upper
rim and lower rim of the cut on the positive axis,
respectively. Since ηðxÞ is a real-analytic function, satisfy-
ing the Schwartz reflection relation η�ðzÞ ¼ ηðz�Þ, the
analytically continued form factor GðxÞ≡ jfðxÞj2, being
proportional to the imaginary part of ηðxÞ, should be anti-
real-analytic; that is, Gðx�Þ ¼ −GðxÞ�. In usual physical
applications, ηðxÞ is real below the threshold and complex
with a positive imaginary part above the threshold. This
requires GðxÞ to positive real function above the threshold
and imaginary below the threshold.
After choosing the normalization such that

hΨ�ðx0ÞjΨ�ðxÞi ¼ δðx0 − xÞ, one obtains the solution

jΨ�ðxÞi ¼ jxi þ λ
fðxÞ
η�ðxÞ

�
j1i þ λ

Z
∞

0

dω
fðωÞ

x − ω� iϵ
jωi

�

ð10Þ

The two sets of states jΨþðxÞi and jΨ−ðxÞi can be under-
stood as in-states and out-states, i.e., jΨ∓ðxÞi ∈ Ω×∓.
For complex eigenvalue x not on the positive real axis,

Eq. (8) would not have the γðωÞ term, and there is no need
for iϵ in the denominator. In order for αðxÞ to be nonzero,
the eigenvalue must satisfy ηðxÞ ¼ 0. Depending on the
positions of the solutions, the eigenstates may be catego-
rized into resonant states, bound states, or virtual states.
(1) Resonant states. If ηðxÞ ¼ 0 has a pair of complex

conjugate solutions zR ∈ C− and z�R ∈ Cþ on the
second sheet, the right eigenstates for eigenvalue zR
and z�R can be expressed as

jzRi ¼ NR

�
j1i þ λ

Z
∞

0

dω
fðωÞ

½zR − ω�þ
jωi

�
;

jz�Ri ¼ N�
R

�
j1i þ λ

Z
∞

0

dω
fðωÞ

½z�R − ω�−
jωi

�
; ð11Þ

which are the Gamow states satisfying HjzRi ¼
zRjzRi and Hjz�Ri ¼ z�Rjz�Ri. ½…�� denotes the con-
tinuation from the upper rim of the cut to the lower
second sheet for “þ” or from the lower rim to the
upper second sheet for “−”, and hence the defor-
mation of the integration path as in Fig. 1 for “þ”
and the opposite for “−” is needed.
We have also the left eigenstates, i.e., h~zRjH¼

zRh~zRj and h~z�RjH ¼ z�Rh~z�Rj,

h~zRj ¼ NR

�
h1j þ λ

Z
∞

0

dω
fðωÞ

½zR − ω�þ
hωj

�
;

h~z�Rj ¼ N�
R

�
h1j þ λ

Z
∞

0

dω
fðωÞ

½z�R − ω�−
hωj

�
: ð12Þ

The normalization is chosen asNR¼ðη0þðzRÞÞ−1=2¼
ð1þλ2

R
dω jfðωÞj2

½ðzR−ωÞþ�2Þ
−1=2 such that h~zRjzRi¼1, since

the resonant state has zero norm hzRjzRi ¼ 0 [14,15].
(2) Bound states. If ηðxÞ ¼ 0 have a solution on the

negative real axis on physical Riemann sheet, it
represents a bound state. The bound state with
eigenvalue zB can then be represented as [16,17]

jzBi ¼ NB

�
j1i þ λ

Z
∞

0

fðωÞ
zB − ω

jωidω
�
; ð13Þ

where NB ¼ðη0ðzBÞÞ−1=2¼ð1þλ2
R
dω jfðωÞj2

ðzB−ωÞ2Þ
−1=2.

(3) Virtual states. If ηðxÞ ¼ 0 has a solution on the
negative real axis of the second Riemann sheet, it
corresponds to a virtual state. The general discussion
of the virtual states in the rigged Hilbert space
formulation can be found in Refs. [18] and [19].
For the simple virtual poles, similar to resonant states,

FIG. 1. The deformation of the integral path.
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there are two kinds of states, jzþv i by analytical
continuation from the upper rim and jz−v i lower
rim of the cut to the second sheet,

jz�v i ¼ N�
v

�
j1i þ λ

Z
∞

0

fðωÞ
½zv − ω��

jωidω
�
;

h~z�v j ¼ hz∓v j; ð14Þ

where N−
v ¼ Nþ�

v ¼ ðη0þðzvÞÞ−1=2 ¼ ð1þ
λ2

R
dω jfðωÞj2

½ðzv−ωÞþ�2Þ
−1=2. As discussed in Refs. [18]

and [19], jz−v i is only defined for t > 0 representing
the out-state and jzþv i for t < 0 representing the
in-state. In some accidental cases, there could
be multiple zeroes for ηðxÞ on the negative real
axis of the unphysical sheet, corresponding to
the degenerate virtual states, which will be discussed
later.

III. POLE TRAJECTORIES IN THE FRIEDICHS
MODEL WITH AN EXAMPLE FORM FACTOR

In this section, we will use an example form factor to
exhibit the existence of these three kinds of states, and they
can transform to each other as the coupling changes.
As a simple integrable example, similar to [12], we

choose jfðωÞj2 ¼
ffiffiffi
ω

p
ωþρ2

, ρ > 0 and analyze the pole struc-

tures for different parameters. The integral in ηðωÞ can be
worked out and analytically continued to the complex
plane,

ηðωÞ ¼ ω − ω0 þ
πλ2ffiffiffiffiffiffiffi
−ω

p þ ρ
¼ ω − ω0 þ

πλ2

−i
ffiffiffiffi
ω

p þ ρ
:

Choosing −i for
ffiffiffiffiffiffi
−1

p ¼ ðe−iπÞ1=2 in the denominator
makes the imaginary part of ηþðxÞ positive at x > 0.
The cut for ω is along the positive real axis. Continued
to the second sheet, η reads

ηIIðωÞ ¼ ω − ω0 þ
πλ2

−
ffiffiffiffiffiffiffi
−ω

p þ ρ
;

where the superscript II denotes the second Riemann sheet.
For future convenience, we turn to the momentum plane

by making a change in the variable ω ¼ u2. The u plane
combines the first sheet and the second sheet of theω plane.
The first sheet of ω corresponds to the upper half-plane of
u, and the second sheet of ω corresponds to the lower half.
The equation ηðu2Þ ¼ 0 can be recast into

1

uþ iρ
ðu3 þ iρu2 − ω0u − iðρω0 − πλ2ÞÞ ¼ 0: ð15Þ

There are three solutions for this third-order algebraic
equation.

Case 1. We first look at the case for ω0 > 0 and turning
on the coupling constant slowly such that ω0 > πλ2

ρ . This
case is studied in [12], and we give a review here for
completeness and discuss more on the virtual states from
the form factor. In this case, there is no bound state. The
three solutions correspond to a pair of resonant states and a
virtual state. If we set the three solutions to be u1;2 ¼
�α − iγ and u3 ¼ −id, the three solutions can be expanded
in orders of λ,

E1;2 ¼ ω0 − 2dγ ∓ 2iγω1=2
0 þOðλ4Þ

¼ ω0 −
πλ2

ρ ∓ iω1=2
0

þOðλ4Þ; ð16Þ

E3 ¼ −ðρ − 2γÞ2 ¼ −ρ2 þ 4γρþOðλ4Þ

¼ −ρ2 þ 2ρπλ2

ω0 þ ρ2
þOðλ4Þ: ð17Þ

The virtual-state pole at E3 does not exist at exact λ ¼ 0,
but as long as λ runs away from 0, the residue of the pole is
not zero and it appears near the poles of the form factor on
the second sheet.
The pair of resonance poles originates from the discrete

state can be represented as the Gamow states as in (11). The
virtual state can be represented as in (14). One may wonder
whether, as λ → 0, the virtual state tends to j1i from (14).
This is not correct. In fact, the integral term in (14) is of
Oðλ0Þ, since at λ ¼ 0, the integral is divergent. In fact, for
the example form factor, for small λ, the integral term
should be of order λOð1=λÞ ∼Oðλ0Þ. To see this, we take
the inner product hϕjz−v i, where jz−v i is defined in (14) and
jϕi ∈ Φ− and hϕjωi ¼ ϕðωÞ ∈ S∩H2

−jRþ . The integral
term in the inner product is

λ

Z
∞

0

ω1=4ϕðωÞ
ðωþ ρ2Þ1=2½zv − ω�þ

dω

¼ λ

Z
∞

0

ω1=4ϕðωÞ
ðωþ ρ2Þ1=2ðzv − ωÞ dωþ 2πiλ

z1=4v ϕðzvÞ
ðzv þ ρ2Þ1=2 :

ð18Þ

The integral term in the first term is not singular and will be
λ ·Oðλ0Þ ∼Oðλ1Þ. If we take zv ¼ e−iπðρ2 þ aλ2Þ on the
second sheet, the second term will be

2πiλ
z1=4v ϕðzvÞ

ðzv þ ρ2Þ1=2 ¼ 2πi
e−iπ=4ρ1=2ϕðe−iπρ2Þ

ð−aÞ1=2
þOðλ2Þ ∼Oðλ0Þ: ð19Þ

So, the second term in (14) is of the same order as the
first term.
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Case 2. For larger λ satisfying 0 < ω0 < πλ2

ρ , there are
two cases: the two second-sheet poles may or may not go
back to the negative real axis to form virtual states. The
critical case separating these two cases is the one in which
the three poles come together on the negative axis forming
a third-order pole and then get away. Let us examine this
critical case first. We set the three degenerate poles to be
u1;2;3 ¼ −id. One can find out that only when

d ¼ 1

3
ρ; ω0 ¼

1

3
ρ2; ρ ¼ 3

2
ðπλ2Þ1=3 ð20Þ

can the three poles merge to be a third-order pole, which
means the degeneracy of the three states (see Fig. 2). Then
as λ becomes larger, two of them run into the complex plane
to be a pair of resonance poles, and the other remains a
virtual-state pole and goes up towards threshold. When
λ2 > ρω0

π , the virtual state will go through the threshold to
the first sheet, becoming a bound state and moving
downward towards minus infinity.
According to the discussion in [20], the triple pole can be

expressed as three kinds of states: the first is the same as the
ordinary virtual state as in (14) and the other two come
from the higher-order residues of the continuum state:

jz�v2i ¼ −Nv2λ

Z
∞

0

fðωÞ
ð½zv − ω��Þ2

jωidω; h~z�v2j ¼ hz∓v2j;

ð21Þ

jz�v3i ¼ Nv3λ

Z
∞

0

fðωÞ
ð½zv − ω��Þ3

jωidω; h~z�v3j ¼ hz∓v3j:

ð22Þ

The normalization for the simple virtual state cannot be
used here, since ηðzÞ has a third-order zero, η0ðzvÞ ¼ 0

and also η00ðzvÞ ¼ 0. We can choose h~z�v3jz�v i ¼ 1 and
h~z�v2jz�v2i ¼ 1. Then Nv ¼ Nv2 ¼ Nv3 ¼ ð6=η000Þ1=2. The
Hamiltonian is not diagonalized by these states and can
only be represented as the Jordan form, that is,

Hjz�v3i ¼ zvjz�v3i þ 2jz�v2i; ð23Þ

Hjz�v2i ¼ zvjz�v2i þ jz�v i: ð24Þ

If the relation between ω0 and ρ in the above condition
(20) is not satisfied, one possibility is that the two
resonance poles can merge at a point different from the

virtual state when ω0 <
ρ2

3
. In this case, we set the three pole

positions as u1;2 ¼ −id and u3 ¼ −id0, and the solution
can then be obtained

d ¼ 1

3
ðρ� ðρ2 − 3ω0Þ1=2Þ;

d0 ¼
1

3
ðρ ∓ 2ðρ2 − 3ω0Þ1=2Þ: ð25Þ

There are two solutions which means there are two points
where either the two resonance poles come together to one
point on the real axis or separate from one point on the real
axis. The whole picture is as follows: The original two
resonance poles merge first and then separate on the
negative real axis becoming two virtual states. One virtual
state moves down and meets the original virtual state and
then they separate into the complex plane, becoming a pair
of resonance poles. The other virtual state moves through
the threshold at the origin to the first sheet and becomes a
bound state. The bound state then moves down towards
negative infinity (see Fig. 3).
Similar to the third-order pole, the second-order pole is a

degenerate of two states: the first state is the same as the
ordinary virtual state (14), and the second comes from the
second-order pole of the continuum state:

jz∓v2i ¼ −N∓
v2λ

Z
∞

0

fðωÞ
ð½zv − ω��Þ2

jωidω; h~z�v2j ¼ hz∓v2j:

ð26Þ

The normalizations N−
v ¼N−

v2 ¼ð2=η00Þ1=2 and Nþ
v ¼Nþ

v2 ¼
N−�

v are chosen such that h~z�v2jz�v i ¼ 1. The second-
order resonance poles were also found in a kind of

FIG. 2. The pole trajectories as λ increases from 0 when ω0 ¼ 1
3
ρ2. ρ2 ¼ 3, ω0 ¼ 1. The three second-sheet poles merge and then

separate. Two of them become a pair of resonance poles and the other moves up to first sheet.
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one-dimensional double barrier potential [21] and in the
Friedrichs model using another form factor in [22]. Higher-
order resonance poles are found to represent the degenerate
resonances in [23] and are formulated in RHS language
in [20,24].
The other possibility is that the two resonance poles do

not meet and just run away towards infinity. The condition
is ω0 > ρ2=3. The virtual state in second sheet just moves
to the threshold and comes up to the first sheet, turning into
a bound state, and then moves down toward negative
infinity (see Fig. 4).
Case 3. ω0 < 0. There is always a bound state pole on

the first Riemann sheet. η ¼ 0 gives

z0 ¼ ω0 þ λ2
Z

∞

0

jfðωÞj2
z0 − ω

dω

Since the integral is always negative, z0 is always smaller
than ω0 which means the bound state must move down
from the original one. In our specific model, the bound state
generated from the discrete state on the first sheet will
always move down towards negative infinity. For small λ,
on the second sheet, besides the virtual pole originating
from the pole of the form factor, there is another virtual-
state pole which is also generated from the original discrete
state. We will give a general argument of the existence of
this virtual pole in the next section. These two virtual poles

FIG. 3. The pole trajectories as λ increases from 0 when ω0 <
1
3
ρ2. We choose ρ2 ¼ 3.1, ω0 ¼ 1. The three second sheet poles merge

and then separate. Two become a pair of resonance poles and the other virtual state moves up to the first sheet.

FIG. 4. The pole trajectories as λ increases from 0 when ω0 > 1
3
ρ2. We choose ρ2 ¼ 1, ω0 ¼ 1. The three second-sheet poles do not

merge. The virtual-state pole moves up to the first sheet for large λ.

FIG. 5. The pole trajectories as λ increases from 0 when ω0 < 0. ρ2 ¼ 1, ω0 ¼ −2. The two virtual poles merge and then separate to a
pair of resonance poles. The bound-state pole moves to negative infinity.
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come together as λ increases and merge to be a second-
order pole. As in previous case, at the merging point, we set
the three solutions to be u1;2 ¼ −id and u3 ¼ −id0, and
then Eq. (25) can also be used here to describe the merging
point. From (25), d can be positive or negative. The
negative one corresponds to an imaginary λ which is not
physical. So, the two virtual-state poles can only merge
once and then separately move onto the complex plane and
become a pair of resonance poles. (see Fig. 5).

IV. FURTHER DISCUSSION ABOUT THE
EXISTENCE OF THE VIRTUAL STATES

We have seen that there could be second-sheet, virtual-
state poles generated from the form factor or from the
discrete states. In this section, we will give a general
argument for these states to exist.
First we look at the virtual states generated from the form

factor. It is a general result that whenever there is a simple
pole of the form factor, there is a second sheet zero point of
ηðωÞ near this position as the coupling constant is turned
on. In [12], the author noticed this phenomenon in two
special examples, but they did not provide a general
reasoning for this to happen. Here, we provide a general
argument as follows. Suppose the pole of the form factor is
at ~ω with ~ω ≠ ω0. The integral term in ηðωÞ in (9) is
analytic on the first sheet but has a pole for ηðωÞ on the
second sheet at the pole position of the form factor. This
pole appears because the analytic continuation of ω to the
second sheet to ~ω causes the integration contour to be
deformed and pinched by the two poles in the integrand as
shown in Fig. 6. Then, η on the second sheet can be
expressed as the first sheet η plus a residue,

ηIIðωÞ ¼ ηIðωÞ þ 2πiλ2GIIðωÞ ¼ ηIðωÞ − 2λ2πiGðωÞ;
ð27Þ

where the superscripts I and II denote the first sheet and
the second sheet, respectively. The last equation can be

deduced using the Schwartz reflective relation for the real
analytic function [25] and can also be understood as the
analytic continuation of ηðωÞ from the lower rim of the cut
up to the second sheet. In our previous model,

ηIIðωÞ ¼ ηIðωÞ − 2λ2πi
ffiffiffiffi
ω

p
ωþ ρ2

: ð28Þ

Since ηIðωÞ is regular at ~ω, the second term gives the pole
term at ~ω to ηII which is the pinch singularity. Near this
second-sheet pole of η, ηIIðωÞ ¼ 0 is of the form

λ2c1ðωÞ
ω − ~ω

¼ ω − ω0 ⇒ ðω − ω0Þðω − ~ωÞ ¼ λ2c1ðωÞ; ð29Þ

where c1ðωÞ is a function regular at ~ω, and if ~ω is real and
below the threshold, c1 is real. At λ ¼ 0, only ω0 is the
solution for the left equation. However, as λ is turned on,
the zero point originating from ~ω appears as illustrated
in the left graph in Fig. 8. We can expand the solution
with respect to λ2. Suppose the zero point of ηII is at
ω ¼ ~ωþ λ2ω2 þOðλ4Þ, and the above equation can be
recast as

−ð ~ω − ω0Þλ2ω2 þOðλ4Þ ¼ λ2c1ð ~ωÞ þOðλ4Þ

⇒ ω2 ¼ −
c1ð ~ωÞ
~ω − ω0

: ð30Þ

Thus, whenever the form factor has a pole, whether on the
negative real axis or on the complex plane, there will be a
state generated near the pole as the coupling is turned on.
In fact, a similar argument also applies to form factors

such as GðωÞ ¼ ffiffiffiffi
ω

p
e−ω. In this case,

ηIIðωÞ ¼ ηIðωÞ − 2πiλ2GðωÞ

¼ ω − ω0 − λ2
Z

∞

0

dx
GðxÞ

ðω − xÞ − 2λ2πi
ffiffiffiffi
ω

p
e−ω:

ð31Þ

¼ ω − ω0 þ λ2
Z

∞

0

dx
GðxÞ

ð−ω − xÞ þ 2λ2π
ffiffiffiffiffiffiffi
−ω

p
e−ω; ð32Þ

in which the integral in the last line is real and goes to zero as
ω → −∞, while the last term goes to infinity at this limit. At
exactly λ ¼ 0, ηðωÞ ¼ ω − ω0 and goes to−∞ asω → −∞.
As long as λ is turned on, ηII tends to∞ as ω → −∞. So for
small enough λ, there must be one solution at large negative
ω for the continuity of the function. See Fig. 7 for an
illustration. As λ is turned on gradually, this solution comes
from negative infinity. From this example, we conclude that
if the form factor goes to ∞ as ω → −∞ faster than −ω
without other singularities, there will be a virtual state
generated from the form factor from negative infinity as
the coupling is turned on.

FIG. 6. The integral contour is pinched by the two poles as the
ω analytically continued to the pole position of the form factor
from the first sheet to the second sheet.
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Next we look at the virtual state generated from the
discrete state. In fact, this is also a general result. In general,
whenever there is a discrete state coupled to a continuum
below the threshold, as soon as the coupling is turned
on, the original discrete state will be copied on both the
first sheet and the second sheet and be renormalized
separately. This is because before turning on the coupling
ηðzÞ ¼ z − ω0, (ω0 < 0 and ω0 ≠ ~ωÞ, and as we turn on the
coupling, on both Riemann sheets, ηðzÞ has small real
corrections on the negative real axis near ω0, and the
intersection between ηðzÞ and the negative axis should also
move away continuously from ω0 on both sheets. See
also the left figure in Fig. 8 for illustration. We can also
expand the solution around ω0 with respect to λ, ω ¼ ω0þ
λ2ω2 þOðλ4Þ, and ηII ¼ 0 can also be expressed as

0 ¼ ω − ω0 þ λ2c2ðωÞ
¼ λ2ω2 þ λ2c2ðω0Þ þOðλ4Þ ⇒ ω2 ¼ −c2ðω0Þ; ð33Þ

where c2ðωÞ is regular atω0. Perturbation theory in quantum
theory only concerns the bound states, and the virtual state
can only be reproduced by summing up the bubble chain and
solving the inverse propagator on the secondRiemann sheet.
One exception is when the pole position of the form factor is
the same as the energy for the discrete state ω0, and
c1ðω0Þ < 0, where c1 is defined in (29). The η function is

illustrated in the right figure of Fig. 8. In this accidental case,
there are no solutions on the negative axis, but they will
move to the complex plane and represent a pair of resonance
poles of the S matrix as soon as λ is turned on. This can be
seen from (29), which becomes

ðω − ω0Þ2 ¼ λ2c1ðωÞ: ð34Þ

For small enough λ, we expand the solution with respect to λ
as before, ω ¼ ω0 þ λω1 þOðλ2Þ, and have

λ2ω2
1 þOðλ3Þ ¼ λ2c1ðω0Þ þOðλ3Þ ð35Þ

and, for c1ðω0Þ < 0, there can only be complex solutions.

V. COMPLETENESS RELATION

We have seen that besides the bound state and the
continuum states, there are also resonant states and virtual
states on the second sheet of the Riemann sheet. When the
discrete state becomes a resonance pole on the second
sheet, only the continuum states form the complete set of
bases, and the completeness relation can be expressed using
the states defined in terms of (10) as

1 ¼
Z

∞

0

dωjΨþðωÞihΨþðωÞj: ð36Þ

Nevertheless, in Ref. [14], in order to solve the large
Poincaré problem, Petrosky, Prigogine, and Tasaki (PPT)
proposed to modify the continuum a little and then
resonances can also appear in the completeness relation.
In the spirit of PPT, the continuum states should be
considered as a complex functional with integral contour
information encoded in it. Two physical conditions, i.e., the
decay of the unstable state in the future and the emission of
the out-going wave, determine the rule for choosing the
integral contour. In their derivation for the jΨþi state, the
physical condition requires the pole position of the original
discrete state to have a small iϵ above the path on the real
axis, and after the turning on of the interaction, the pole will
move continuously down to the second sheet. The integral

FIG. 7. ηðωÞ function on the first sheet and second sheet with
form factor G ¼ ffiffiffiffi

ω
p

e−ω, ω0 ¼ −1, and λ ¼ 0.1.

FIG. 8. Solid line and dashed line denote ηðxÞ on the real axis of the first and the second Riemann sheets, respectively. The left one:
λ ¼ 0.2, ρ2 ¼ 3 and ω0 ¼ −1, with two virtual states; The right one λ ¼ 0.2, ρ2 ¼ 1 and ω0 ¼ −1, with a pair of resonance poles.
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path for the continuum state should also be continuously
deformed to keep the discrete state above the integration
path as in Fig. 1. Then one needs to include this path
information into the continuum state by using ηþd , which
can also be expressed as

1

ηþd ðxÞ
≡ 1

ηþðxÞ
x − ~ω1 þ iγ

½x − ~ω1 þ iγ�þ
; ð37Þ

in which ~ω1 − iγ is the zero point of ηþ and ½…�þ means
deforming the contour as shown in Fig. 1. Similarly, for
jΨ−i, ω0 is taken to be a little below the real axis and η−

develops a zero above the real axis on the second sheet.
Then the contour should be deformed upward into the
second sheet to keep the pole below the contour, and one
can include this contour information in η−d ¼ 1

η−ðxÞ
x− ~ω1−iγ

½x− ~ω1−iγ�−,
where ½…�− just denotes the deformation of the contour
from the lower rim of the real axis to upper the second
sheet. Now, the right continuum state can be expressed as
ω > 0,

jΨ�ðxÞi ¼ jxi þ λ
fðxÞ
η�d ðxÞ

�
j1i þ λ

Z
∞

0

dω
fðωÞ

x − ω� iϵ
jωi

�
:

ð38Þ

According to PPT’s prescription, the left eigenstate with the
same eigenvalue would not need the deformation of the
contour,

h ~Ψ�ðxÞj ¼ hxj þ λ
fðxÞ
η∓ðxÞ

�
h1j þ λ

Z
∞

0

dω
fðωÞ

x − ω ∓ iϵ
hωj

�
:

ð39Þ

The orthogonal relation for continuum states,
h ~Ψ�ðx0ÞjΨ�ðxÞi ¼ δðx − x0Þ, still holds. With these defi-
nitions, the completeness relation can also be expressed in
terms of the continuum and the resonant state,

1 ¼
Z

∞

0

dωjΨþðωÞih ~ΨþðωÞj þ jzRih~zRj: ð40Þ

We can generalize these kinds of definitions to the cases
with virtual states. Since the virtual states and resonances
may transform to each other as the coupling changes, one
should not treat them differently. So, whenever there are
virtual states, it should also modify the integral path for the
continuum states, and in the definition of η�d in Eq. (37), all
the second-sheet poles on the real axis and the lower half-
plane should be included, which means the integral path is
chosen as in Fig. 9. With these definitions of the con-
tinuum, the generalized completeness relation can be
generalized here to case 1, including the virtual state from
the form factor

1¼
Z

∞

0

dωjΨþðωÞih ~ΨþðωÞjþ jzRih~zRjþ jzþv ih~zþv j: ð41Þ

In case 3, where the discrete state becomes a bound state
and a virtual state for small λ, the generalized completeness
relation should also include the two virtual states:

1 ¼
Z

∞

0

dωjΨþðωÞih ~ΨþðωÞj þ
X2
i¼1

jzþviih~zþvij: ð42Þ

In general, as long as the contour for the continuum
states goes around all the virtual-state poles and the
resonance poles on the lower second sheet, these states
also enter into the generalized completeness relation along
with the bound states on the first sheet.
Above completeness relations only apply to simple

poles. We have also seen that there are second-order poles
or third-order poles in our example. One would wonder
what role these states play in the completeness relation. In
fact, for simplicity, if there is only one second-order virtual-
state pole and no other resonance or bound state, the
generalized completeness relation is

1 ¼
Z

∞

0

dωjΨþðωÞih ~ΨþðωÞj þ jzþv ih~zþv2j þ jzþv2ih~zþv j;

ð43Þ

¼
Z

∞

0

dωjΨ−ðωÞih ~Ψ−ðωÞj þ jz−v ih~z−v2j þ jz−v2ih~z−v j: ð44Þ

This can also be applied to the cases with complex double
resonance poles on the complex plane by changing the
virtual states to the corresponding resonant states. If there
are more resonances or bound states, they must also
included in the sum as above. Similar completeness relation
in a special potential model in a different context was also
found in [26].
This completeness relation can be generalized to the nth-

order virtual-state pole or resonance pole. In these cases,
there are n groups of Gamow states for an nth-order pole,
which can be represented as [20]

FIG. 9. The contour for ηþd in the case with one virtual pole and
a pair of resonance poles.
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jzð1Þi ¼ N

�
j1i þ λ

Z
∞

0

fðωÞ
½z − ω�þ

jωidω
�
; ð45Þ

h~zð1Þj ¼ N
�
h1j þ λ

Z
∞

0

fðωÞ
½z − ω�þ

hωjdω
�
; ð46Þ

jzðnÞi ¼ Nð−1Þn−1λ
Z

∞

0

dω
fðωÞ

ð½z − ω�þÞn
jωi; for n ≥ 2;

ð47Þ

h~zðnÞj ¼ Nð−1Þn−1λ
Z

∞

0

dω
fðωÞ

ð½z − ω�þÞn
hωj; for n ≥ 2;

ð48Þ

N ¼ ð n!
ηðnÞðzÞÞ1=2 ¼ ðð−Þn−1 λ2

n!

R
dω jfðωÞj2

ð½z−ω�þÞnþ1Þ−1=2 is chosen

such that h~zðrÞjzðn−rþ1Þi ¼ 1 and z is the pole position either
for resonances or virtual states. These are the states
continued from the upper first sheet to the lower second
sheet and there are also the other set of states continued
from the lower first sheet to the upper second sheet.
Suppose there are no other poles except the nth-order
pole, the completeness relation can be expressed as

1 ¼
Z

∞

0

dωjΨþðωÞih ~ΨþðωÞj þ
Xn
r¼1

jzðrÞih~zðn−rþ1Þj; ð49Þ

which is proved in the Appendix. In general, if there is
more than one pole on the lower half-plane and the negative
axis of the second sheet at positions zj, (j ¼ 1;…; mII,)
and also other simple bound-state poles zbi, ði ¼ 1…; mbÞ
on the negative real axis of the first sheet, with the
continuum states modified accordingly, the most general
completeness relation can be written down as

1 ¼
Xmb

i

jzbiihzbij þ
Z

∞

0

dωjΨþðωÞih ~ΨþðωÞj

þ
XmII

j

Xnj
r¼1

jzðrÞj ih~zðnj−rþ1Þ
j j; ð50Þ

where nj is the order of the jth pole.

VI. CONCLUSION AND DISCUSSION

In this paper, we first thoroughly studied the Friedrichs
model with an integrable example form factor. As discov-
ered in [12], the form factor introduces extra second-sheet
poles besides the resonance poles originating from the
discrete state. We give a general argument that each pole of
the form factor may introduce an extra state on the second
sheet. When the discrete state is below the threshold,
besides the bound state, there is also a virtual-state pole
arising from the discrete state for small coupling. We also

give a general argument for the existence of such a virtual-
state pole. This pole is similar to the shadow pole discussed
in [13] in S-matrix theory. We also generalize PPT’s
prescription for the continuum states and give the com-
pleteness relations including all the states on the second
Riemann sheet; i.e., all the virtual states and resonant states
arise both from the discrete states and from the form factor.
We also find that for larger coupling, the resonances that
arise from the discrete state can meet on the negative real
axis to form a double pole or meet with the other virtual
state to form a triple pole. We have also discussed the
generalized completeness relations including these higher-
order resonances.
Note that in all the cases of the example, we have seen

that the original discrete state is doubled as soon as the
coupling is turned on. In case 1, when ω0 > 0, it
becomes a pair of resonance poles, and in case 3 when
ω0 < 0, it becomes a bound state and a virtual state. In
general, the number of the poles arising from the discrete
state is always doubled whenever a new threshold is
opened. The poles on different sheets with the same
origin are called shadow poles by Eden and Taylor [13].
However, the number of the poles arising from the form
factor is not doubled when the first threshold is opened.
This is the difference between these two kinds of poles.
The poles from the form factors can be regarded as
dynamically generated states. In fact, in the dispersive
analysis of the low-lying 0þ resonances, σ, κ are found
to be just this kind of resonance [5]. In this paper, we
only studied one opened channel. The number of the
poles from the discrete state is only doubled once.
When more channels are included, the number of the
poles may be doubled more than once. In this sense,
one original discrete state may generate more resonant
states to be observed in the experiment. This phenome-
non may already be observed in the low-energy 0þ
resonances [5].
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APPENDIX: PROOF OF THE COMPLETENESS
RELATION FOR HIGHER-ORDER POLES

We assume that there is only one nth-order pole (n ≥ 2)
on the lower second sheet. The completion relation is

1 ¼
Z

∞

0

dωjΨþðωÞih ~ΨþðωÞj þ
Xn
r¼1

jzðrÞih~zðn−rþ1Þj: ðA1Þ
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Proof:

Z
dωjΨðωÞih ~ΨðωÞj ¼

Z
jωihωj þ

Z
dω

λ2jfðωÞj2
ηþd ðωÞηðωÞ

�
j1ih1j þ

Z
∞

0

dω0 λfðω0Þ
ω − ω0 þ iϵ

jω0ih1j

þ
Z

∞

0

dω0 λfðω0Þ
ω − ω0 − iϵ

j1ihω0j þ
Z

∞

0

dω0dω00 λ2jfðω0Þj2
ðω − ω0 − iϵÞðω − ω00 − iϵÞ jω

0ihω00j
�

þ
Z

∞

0

dω
λfðωÞ
η−ðωÞ jωih1j þ

Z
∞

0

dω
λfðωÞ
ηþd ðωÞ

j1ihωj

þ
Z

∞

0

dω
λfðωÞ
η−ðωÞ

Z
∞

0

dω0 λfðω0Þ
ω − ω0 − iϵ

jωihω0j

þ
Z

∞

0

dω
λfðωÞ
ηþd ðωÞ

Z
∞

0

dω0 λfðω0Þ
ω − ω0 þ iϵ

jω0ihωj: ðA2Þ

Similar to the derivation in the Appendix of [14], the integrals above can be worked out as follows:

I1 ¼
Z

dω
λ2jfðωÞj2

ηþd ðωÞη−ðωÞ
¼ −Res

1

ηðωÞ
����
þ

z
þ 1 ¼ 1; ðA3Þ

I2ðω0Þ ¼
Z

dω
λ2jfðωÞj2

ηþd ðωÞη−ðωÞðω − ω0 þ iϵÞ ¼ −
1

η−ðω0Þ þ
ð−1Þnn!

ηþðnÞðzÞ½ðz − ωÞþ�n
; ðA4Þ

I3ðω0Þ ¼
Z

dω
λ2jfðωÞj2

ηþd ðωÞη−ðωÞðω − ω0 − iϵÞ ¼ −
1

ηþd ðω0Þ þ
ð−1Þnn!

ηþðnÞðzÞ½ðz − ωÞþ�n
; ðA5Þ

I4ðω0;ω00Þ ¼
Z

dω
λ2jfðωÞj2

ηþd ðωÞη−ðωÞðω − ω0 þ iϵÞðω − ω0 − iϵÞ ðA6Þ

¼ 1

ω0 − ω00 − iϵ

�
−

1

η−ðω0Þ −
1

ηþd ðω00Þ
�
þ ð−1Þnn!

ηþðnÞðzÞ
Xn−1
r¼0

1

½ðz − ωÞþ�rþ1½ðz − ωÞþ�n−r
: ðA7Þ

Inserting the above equations in (A2), the terms corresponding to the first terms in (A4), (A5), and (A7) cancel the last three
lines in (A2), and we have

Z
dωjΨðωÞih ~ΨðωÞj ¼

Z
jωihωj þ j1ih1j þ ð−1Þnn!

ηþðnÞðzÞ

�Z
∞

0

dω0 λfðω0Þ
½ðz − ω0Þþ�n

jω0ih1j þ
Z

∞

0

dω0 λfðω0Þ
½ðz − ω0Þþ�n

j1ihω0j

þ
Xn−1
r¼0

Z
∞

0

dω0 λ2fðω0Þfðω00Þ
½ðz − ω0Þþ�rþ1½ðz − ω00Þþ�n−r

jω0ihω00j
�

¼ 1 −
�
jzðnÞih1j þ j1ih~zðnÞj þ

Z
∞

0

dω0 λfðω0Þ
ðz − ω0Þþ

jω0ih~zðnÞj

þ
Z

∞

0

dω0 λfðω0Þ
ðz − ω0Þþ

jzðnÞihω0j þ
Xn−2
r¼1

jzðrþ1Þih~zðn−rÞj
�

¼ 1 −
Xn
r¼1

jzðrÞih~zðn−rþ1Þj; ðA8Þ

and the completeness relation.
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Rðz�Þ, G�ðzÞ ¼ −Gðz�Þ on the first sheet. However, the
Schwartz reflection principle also requires that the con-
tinuation of GðzÞ satisfies G�ðzÞ ¼ GIIðz�Þ, which means
GðzÞ ¼ −GIIðzÞ.
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