
Anomalous mass dimension in multiflavor QCD

A. Doff1,2,* and A. A. Natale2,3,†
1Universidade Tecnológica Federal do Paraná—UTFPR—DAFIS
Av Monteiro Lobato Km 04, 84016-210, Ponta Grossa, PR, Brazil

2Instituto de Física Teórica, UNESP, Rua Dr. Bento T. Ferraz,
271, Bloco II, 01140-070, São Paulo, SP, Brazil

3Universidade Federal do ABC, Centro de Ciências Naturais e Humanas,
Rua Santa Adélia, 166, 09210-170, Santo André, SP, Brazil

(Received 23 August 2016; revised manuscript received 7 October 2016; published 26 October 2016)

Models of strongly interacting theories with a large mass anomalous dimension (γm) provide an
interesting possibility for the dynamical origin of the electroweak symmetry breaking. A laboratory for
these models is QCD with many flavors, which may present a nontrivial fixed point associated to a
conformal region. Studies based on conformal field theories and on Schwinger-Dyson equations have
suggested the existence of bounds on the mass anomalous dimension at the fixed points of these models. In
this note we discuss γm values of multiflavor QCD exhibiting a nontrivial fixed point and affected by
relevant four-fermion interactions.
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Models of strongly interacting theories with a large mass
anomalous dimension are important for extensions of the
standard model in the context of walking chiral symmetry
breaking dynamics [1,2]. These theories present a critical
coupling constant for the onset of chiral symmetry break-
ing, related to a nontrivial fixed point associated to a
conformal region.
Lattice QCD simulations provide a powerful tool to

investigate the presence of a large anomalous dimension in
the multiflavor case. However, when the conformal behav-
ior is approached as the number of flavor (Nf) is increased
the simulations demand larger and larger lattice volumes.
The enormous task to obtain limits on the anomalous
dimension of multiflavor QCD can be verified in Ref. [3]
and references therein.
Earlier determinations of these anomalous dimensions

include a study based on Schwinger-Dyson equations
(SDE) where it was verified that γm ≈ 1 and is not strongly
affected by high order corrections [4]. Another strong
bound based on the unitarity of conformal field theories
gives γm ≤ 2 [5]. Recent studies based on conformal
bootstrap in SUðNfÞV symmetric conformal field theories
suggest γm < 1.31 for Nf ¼ 8 [6] and γm ≤ 1.29 for Nf ¼
12 [7]. However, the existence of a conformal fixed point in
the Nf ¼ 12 model is still controversial [8].
It was observed for massless QED, when the coupling

constant reaches a certain critical value, that the chiral
symmetry is broken by the vacuum [9]. Later it was verified
that at this critical coupling four-fermion interactions
acquire an anomalous dimension such that the theory
becomes renormalizable [10,11]. The importance of a large

anomalous dimension in what are now known as gauged
Nambu-Jona-Lasinio models became clear in the works of
Refs. [12–17]. In these models two coupling constants
enter into action: the gauge coupling (λ) and the four-
fermion one (g), and there is a critical line described by a
combination of these couplings where the chiral symmetry
is broken. At this critical line the dynamical fermion mass
behaves as a slowly decreasing function with the momen-
tum [18,19], and not much different from what is expected
in a theory with bare masses.
The problem of mass generation with an enhanced fer-

mionic condensate along the critical line associated to a
slowly running coupling, i.e., near a nontrivial fixed point,
in non-Abelian gauge theories began to be studied in
Refs. [20–22]. In Ref. [22] the fixed point was obtained
from the two-loop β function for an SUðNÞ theory with
fermions in the fundamental representation. One analysis of
this problem in the case of other groups and fermionic
representations can be seen in Ref. [23]. These studies began
the search for strongly interacting theories with a critical
behavior, like that of the gaugedNambu-Jona-Lasiniomodel,
associated to a nontrivial fixed point and consequently slowly
running coupling constant, possibly in the Banks and Zaks
scenario [24] of a perturbative value for the critical coupling.
However in these cases the critical line starts depending on the
number of fermions and on the dimension of the fermionic
representations. At this point we should mention that one of
the contributions of this work, compared with the previous
studies, is that we expand the resolution of the conformal
window near the critical line expected to exist in QCD,
because we are computing the anomalous mass dimension
also in the case of a nonperturbative fixed point.
In this article we do not provide a stronger bound on

the anomalous dimension than the ones discussed in the
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previous paragraphs. We consider a different approach
where a dynamical fermion mass has a hard asymptotic
behavior associated to a nontrivial fixed point and relevant
four-fermion interaction. This is also expected due to the
coalescence of the SDE solutions [25]. The theory is fully
described by the critical coupling gc, where βðgcÞ ≈ 0, and
the effect of the four-fermion interaction together with this
critical gauge coupling leads us near the critical line; this is
translated in the fact that we necessarily have a hard
fermionic self-energy.
The anomalous dimension governs the renormalization

effects on the fermion condensate at one large scale Λ as

hψ̄ψiΛ ¼ exp

�Z
Λ

μ

dκ
κ
γmðαðκÞÞ

�
hψ̄ψiμ: ð1Þ

Assuming that the theory has a slowly (or almost constant)
running coupling constant in the interval μ to Λ [26], we
have the following scaling relation,

hψ̄ψiΛ ≈ η

�
Λ
μ

�
γm
μ3; ð2Þ

where η is a constant and μ is the characteristic scale
of the theory. A large γm modifies the asymptotic
dynamics and alleviates some of the problems suffered
by composite models of dynamical electroweak sym-
metry breaking [26].
The fermion condensate as a function of the fermion self-

energy (Σðp2Þ) can be written as

hψ̄ψiΛ ¼ −
NR

4π2

Z
Λ2

0

dx
xΣðxÞ

xþ Σ2ðxÞ ; ð3Þ

where NR is the dimension of the fermionic representation.
We can compute hψ̄ψiΛ with Eq. (3) and one specific
expression for Σðp2Þ and compare it with the infrared
condensate value in order to obtain a value for γm.
It is known that the infrared behavior of the fermionic

self-energy solution is a constant up to the scale μ that
roughly defines the infrared dynamically generated mass.
Therefore, apart from constants that may be assimilated in
the infrared mass scale μ we have

hψ̄ψiμ ∝ μ3: ð4Þ
This is what is expected in standard QCD regardless of
whether the self-energy is a soft one like

Σð1Þðp2 → ∞Þ ∼ μ3

p2
; ð5Þ

which is the known behavior predicted by the operator
product expansion [27], or has a harder behavior than this
one. Equation (4) is just reflecting the infrared condensate
behavior.
If the theory is affected by relevant four-fermion inter-

actions the self-energiesmay vary up to the hardest behavior

with the momentum, as shown in Refs. [18,19], and are
equal to

Σð0Þðp2Þ ∼ μ½1þ bg2ðμ2Þ ln ðp2=μ2Þ�−δ; ð6Þ
where

δ ¼ 3c=16π2b; ð7Þ
and c is the quadratic Casimir operator given by

c ¼ 1

2
½C2ðR1Þ þ C2ðR2Þ − C2ðR3Þ�; ð8Þ

where C2ðRiÞ are the Casimir operators for fermions in the
representations R1 and R2 that form a composite boson in
the representation R3. In the QCD case, for quarks in the
fundamental representation R ¼ F, c ¼ ½ðN2 − 1Þ=2N� and
b is the coefficient of the g3 term in the renormalization
group β function and is given by b ¼ ð33 − 2NfÞ=48π2.
Equation (6) may be a legitimate nonperturbative self-

energy solution driven by confinement when the gluons
have a dynamically generated mass, as discussed in
Ref. [28], or the solution when the theory is dominated
by the four-fermion interactions [18,19] that also can be the
result of coalescence of the SDE solutions [25]. The critical
coupling for this occurrence is the same one considered in
Ref. [4], determined earlier by the authors of Refs. [29–35]
and equal to

αc ¼
π

3c
: ð9Þ

Note that effects like dynamical gluon mass generation
or confinement have not been taken into account in
Refs. [29–35]; however, even in these cases we should
expect a similar coupling constant critical value for the
onset of chiral symmetry breaking [28].
Notice that Eq. (6) is the solution of the renormalization

group equation, in Landau gauge, given by
� ∂
∂μþ β

∂
∂g

�
Σ ¼ 3c

8π2
g2Σ; ð10Þ

and normalized such that Σðp2 ¼ 0Þ ¼ μ. If we go to a
higher order in the coupling constant we would expect that
the coefficient bg2ðμ2Þ appearing in Eq. (6) would be traded
by higher order terms of the β function. It is interesting to
note that Eq. (10) can be a generalization of the solution
shown in Eq. (6), because it could be solved considering
higher order terms in the β function.
Let us now consider the fermion condensate given by

Eq. (3) calculated at the high energy scale Λ and Σðp2Þ
given by Eq. (6). It is straightforward to show that the
leading contribution to the QCD fermion condensate is

hψ̄ψiΛ ∝
3

4π2
Λ2μ

�
1þ bg2ðμÞ lnΛ

2

μ2

�−δ
: ð11Þ
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This is the extreme behavior for the condensate. With this
result and Eq. (4) we obtain

hψ̄ψiΛ
hψ̄ψiμ

¼ Λ2

μ2

�
1þ bg2ðμÞ lnΛ

2

μ2

�−δ
: ð12Þ

However,

hψ̄ψiΛ ¼ Z−1
m hψ̄ψiμ; ð13Þ

and the renormalization constant Zm is related to the
anomalous dimension as

γm ≡ μ
∂
∂μ lnZm; ð14Þ

leading, with the help of Eq. (12) to

γmðΛ2Þ ¼ 2 − 2δb
g2ðμ2Þ

½1þ bg2ðμ2Þ ln Λ2

μ2
� : ð15Þ

The anomalous mass dimension of Eq. (15) was calcu-
lated using the fermionic condensate Eq. (3) and not directly
from the gap equation as usual. Furthermore, we use the hard
self-energy [Eq. (6)] and not the soft one giving by Eq. (5).
If we deal with a conventional theory (or standard QCD),

the asymptotic freedom condition (αðΛ2Þ → 0) applied to
Eq. (15) leads to γm ¼ 2, where we recover the known
result of Ref. [5]. However, this is not the case we are
interested in, which is the one of a large number of flavors,
where the theory is dominated by four-fermion interactions
and we have an almost conformal theory, i.e., βðgÞ ≈ 0 (or
strictly 0), and we cannot use the leading order coupling
constant as considered in Eq. (15).
Before making a detailed calculation of Eq. (15) taking

into account a possible conformal behavior of the coupling
constant, we can recall that at the same time the chiral
symmetry is broken and nontrivial self-energies like that of
Eq. (6) are generated; composite pseudoscalar Goldstone
bosons (the pions) and scalar massive bosons (the σ) are
formed, whose wave functions (respectively ΦP

BS and ΦS
BS)

are solutions of the Bethe-Salpeter (BS) equation related to
the fermionic self-energy as

Σðp2Þ ≈ ΦP
BSðp; qÞjq→0 ≈ ΦS

BSðp; qÞjq2¼4m2
dyn
: ð16Þ

These BS wave functions are subjected to a normalization
condition [36,37]. One analysis of this condition applied to
the pseudoscalar and scalar boson wave functions given by
Eq. (6) can be found respectively in Refs. [38] and [39]. We
do not enter into details of the calculation but just present
the final constraint, which is

δ >
1

2
: ð17Þ

In the QCD case Eq. (17) implies Nf > 5. Gauge theories,
with a not too large number of fermions, can feature a

nontrivial fixed point in or near the so-called “conformal
window” [40]. Recently, the authors in Refs. [41,42]
demonstrated using lattice simulations, with the conformal
window for the SUð3Þ gauge theory lying in the range
8<Nfc < 12. In this region we indeed have a slowly
running coupling (β ≈ 0), where the limit of Eq. (17) is
valid. Therefore in the subsequent calculations the limit
imposed by Eq. (17) is always be taken into account,
leading to a large number of fermions.
We now return to Eq. (15). This equation is a conse-

quence of Eq. (6); it involves a determination of the
coupling constant g2ðμ2Þ in the large Nf limit, in one
region where βðgÞ ≈ 0, when the theory is dominated by a
fixed point and four-fermion interactions are relevant.
However even if Eq. (6) is a consequence of four-fermion
interactions it is only dependent on the leading coefficient
(b) of the β function, and all information about the walking
behavior should be present in the coupling constant. This
means that this coupling, in order to disclose such behavior,
should be computed perturbatively beyond leading order or
within some nonperturbative approach. Both possibilities
are discussed in the following.
We first consider the perturbative approach and follow

the same steps of Ref. [22], with a walking two-loop β
function given by

βðαμÞ ¼ −αμðβ0αμ þ β1α
2
μÞ; ð18Þ

where ðβ0αμ þ β1α
2
μÞ ≪ 1 in order to warrant a walking

behavior, as well the quantity being positive in order to
assure asymptotic freedom. We thus have the following
approximation for the coupling constant,

αðpÞ ≈ αμ

�
1 −

βðαμÞ
αμ

ln
p
μ

�
; ð19Þ

which, if inserted into Eq. (15), entails

γmðΛ2Þ ≈ 2 − γm þ 1

2

β½αðμÞ�
αc

ln
Λ2

μ2
; ð20Þ

where γm ¼ 1
2

αðμ2Þ
αc

.
Equation (20) is justified when the coupling constant is

given by Eq. (18), but small differences appear as we go to
more loops in the β function. Within this approximation
and assuming βðαμ ¼ αcÞ ≈ 0 we obtain 1≲ γmðΛÞ < 2,
which is the known range for this quantity [1,2]. Note that
the complete independence of γm on the scale happens only
in the presence of a fixed point; if this is not the case its
perturbative determination will also be dependent, above
the two-loop order of the β function, on the renormalization
scheme.
It is interesting to comment on the behavior of Eq. (15) in

the case where we indeed have a fixed point. We can
indicate the value of the coupling constant as α�

ANOMALOUS MASS DIMENSION IN MULTIFLAVOR QCD PHYSICAL REVIEW D 94, 076005 (2016)

076005-3



and consider βðαμ ¼ α�Þ ¼ 0, and now the anomalous
dimension is described by

γm ≈ 2 −
1

2

α�

αc
≈ 2 − γ�; ð21Þ

where γ� ≡ 1
2
ðα�=αcÞ. We first consider the α� as the

coupling constant determined perturbatively in the Banks
and Zaks scenario (BZ) [23,40,43], where

α� ¼ −4π
11N − 4NfdðRÞ

34N2 − 2NfdðRÞ½10N þ 6C2ðRÞ�
; ð22Þ

and dðRÞ is the dimension of the representation R of the
group SUðNÞ. Assuming the QCD conformal window in
the range 8≲ Nf ≲ 12, for Nf ≲ 12 and α� given by
Eq. (22) we obtain an upper limit of γm ≲ 1.5.
In Table I we show the results obtained for (γm), α� and

γ�, for QCD assuming βðαðμÞÞ ¼ 0 at four loops, as a
function of Nf in the MS scheme [44] in the range
(8≲ Nf ≲ 12).
As a second determination of γm we consider the case

where the fixed point is a result of the dynamical generation
of gluon masses (DGM) [45–48]. As a consequence of
dynamical gluon mass generation (mgðk2Þ) by the QCD
vacuum, the theory acquires a nontrivial infrared (IR) fixed
point [49]. The running coupling constant becomes IR
finite at moderately small values [50] and we have the
following nonperturbative β function [51–53],

βDGM ¼ −bg3
�
1 −

4m2
g

Λ2
e
− 1

bg2

�
; ð23Þ

where b is the coefficient of the g3 term in the renormal-
ization group β function and, for simplicity, the running
behavior of the dynamical gluon mass was neglected. The
variation of mg with Nf was determined in lattice simu-
lations [54] and with Schwinger-Dyson equations [55] for a
small number of flavors. These results were extrapolated
for a large number of flavors as in Refs. [56–58], and we
use the following parametrization: m−1

g ¼ m−1
g0 :e

0.05942Nf

with mg0 ¼ 440 MeV [58]. The values of α� for Nf ¼ 8, 9,
10, and 12 can be obtained from Table II of Ref. [58] and
the anomalous dimensions that can be obtained in this
approach are shown in Table II.
In this note we discussed the anomalous mass dimension

of multiflavor QCD. The calculation is performed in the
case in which the theory has a nontrivial fixed point or
critical line and the theory is dominated by four-fermion
interactions leading naturally to a hard asymptotic quark
self-energy [18,19], what may also happen due to the
coalescence of the SDE solutions [25] or to a confinement
mechanism of chiral symmetry breaking [28].
In the context of the simple BZ scenario at the two-loop

level and within the conformal window with Nf ≲ 12 we
obtain γm ≲ 1.5. Similar results are obtained in the case of
fixed points obtained from βðα�Þ ¼ 0 at four loops, for
Nf ¼ 8 − 10 and in the DGM nonperturbative case. The
data set presented in Tables I and II points to the existence
of a limit on the mass anomalous dimension compatible
with γm ≈ ð1.3–1.5Þ. Therefore, we obtained new estimates
of the mass anomalous dimension of multiflavor QCD in
the presence of critical coupling constants associated to
perturbative and nonperturbative fixed points. In order to
compare with previous studies we can say that in this work
we expanded the resolution of the conformal window near
the critical line expected to exist in QCD, see Ref. [44],
once we computed the mass anomalous dimension also in
the case of a nonperturbative fixed point. We hope that
these γm values may be confronted with the ones that can be
obtained with QCD simulations and conformal bootstrap
methods.
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TABLE I. Anomalous dimensions evaluated at the fixed points
obtained from βðαðμÞÞ ¼ 0 at four loops in the range
(8≲ Nf ≲ 12), where α� is the coupling constant value at the
fixed point for each Nf .

Nf α� γ� γm

8 1.138 0.724 1.275
9 0.952 0.608 1.394
10 0.445 0.283 1.717
11 0.259 0.165 1.835
12 0.176 0.112 1.887

TABLE II. Anomalous dimensions evaluated at the fixed points
obtained from the nonperturbative (DGM) βðgÞ function [58], in
the range (8≲ Nf ≲ 12), where α� is the coupling constant value
at the fixed point for each Nf .

Nf α� γ� γm

8 0.640 0.407 1.593
9 0.700 0.446 1.554
10 0.780 0.496 1.504
12 1.060 0.676 1.324
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