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The issue of Hermiticity of the Higgs boson interaction with fermions is addressed. A model for non-
Hermitian Yukawa interaction is proposed and approximation of one fermion generation is considered.
Symmetry properties of the corresponding hff Lagrangian with respect to the discrete P, C, and T
transformations are analyzed, and the modified Dirac equation for the free fermion is studied. Longitudinal
polarization of the fermions in the decay h → ff, which arises due to non-Hermiticity of the hff
interaction, is discussed. It is suggested to study effects of this non-Hermiticity in the decay
h → τ−τþ → μ−νμντμ

þνμντ, for which observables (asymmetries) are constructed which take nonzero
values for a non-Hermitian hτ−τþ interaction. These asymmetries are analyzed for various configurations
of the muon energies.
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I. INTRODUCTION

In 2012 at the Large Hadron Collider (LHC) the
Collaborations ATLAS and CMS discovered the spinless
particle h with the mass approximately equal to 125 GeV
[1,2]. The study of the processes of h boson production and
decay modes has shown that its properties are consistent
[3,4] with the properties of the Higgs boson of the Standard
model (SM). In particular, analysis of the angular corre-
lations in the h → ZZ�; Zγ�; γ�γ� → 4l, h → WW� →
lνlν (l ¼ e, μ), and h → γγ decay modes has shown that
all the data agree with the prediction for the Higgs boson
with the quantum numbers JPC ¼ 0þþ [5–7]. Thus based
on these data one can conclude that the structure of the
hWW and hZZ interactions is in agreement with the SM.
In the SM the fermion masses are generated through the

Yukawa couplings between the Higgs field and the fermion
fields. Measurement of these couplings is needed for
identification of the particle h with the SM Higgs boson.
At present, the intensity of the Higgs signal μ, defined as
the ratio of the experimentally measured production cross
section of the Higgs boson with its subsequent decay to a
set of final particles X to the corresponding value predicted
in the SM, is determined for the channels h → τ−τþ

and h → bb. Namely, the ATLAS Collaboration obtained
the values μðτ−τþÞ ¼ 1.43þ0.43

−0.37 [4,8] and μðbbÞ ¼ 0.52�
0.32� 0.24 [4,9], while the CMS Collaboration obtained
μðτ−τþÞ ¼ 0.91� 0.28 [3], μðτ−τþÞ ¼ 0.78� 0.27 [10]
and μðbbÞ ¼ 0.84� 0.44 [3], μðbbÞ ¼ 1.0� 0.5 [11].
Recently there appeared the combined ATLAS and CMS
measurements of the Higgs boson production and decay
rates as well as constraints on its couplings to vector bosons

and fermions [12]. As a result the value of μ turns out to be
equal to 1.09� 0.11.
The Lagrangian of the SM is invariant under the local

transformations of the group SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY
which is spontaneously broken to the SUð3ÞC ⊗ Uð1ÞQED
group. This Lagrangian is built on the basis of the principle
of minimal coupling from Lagrangian of the free fermion
fields and the scalar fields, which is invariant under
the global SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY transformations.
The latter Lagrangian contains kinetic-energy terms for the
left- and right-chiral fermion fields and kinetic-energy
terms for the scalar fields, which are automatically
Hermitian, and nontrivial self-interaction of the scalar
fields, generating the spontaneous breaking of the electro-
weak symmetry, which is usually chosen Hermitian.
After replacing the derivative ∂μ by the covariant deriv-

atives Dμ, and adding gauge-invariant kinetic terms for the
gauge fields, one obtains the SM Lagrangian of the massless
fermions, which is Hermitian and symmetric under the local
SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY transformations.
As for the Lagrangian describing the Yukawa interaction

between the fermion fields and the scalar fields, LSM
Yuk, in

the SM, in addition to the gauge invariance under the
SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY transformations, the require-
ment of Hermiticity of LSM

Yuk is imposed. Thus, unlike the
other terms in the total SM Lagrangian which are naturally
Hermitian, the Yukawa interaction has “acquired”
Hermiticity which may not be necessary. In this connection
it seems important to verify whether the interaction of the
Higgs boson with fermions is Hermitian.
Note that models which are described by non-Hermitian

Hamiltonians attracted interest for a long time [13,14].
Recently in Ref. [15] a non-Hermitian Yukawa interaction
between neutrino and scalar fields has been studied in the
SM and in its various extensions.
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Some aspects of non-Hermiticity of the Higgs boson
interaction with the top quark have been addressed in
Refs. [16–18]. In particular, in [16,17] the polarization
characteristics of the photon in the decays h → γγ and
h → γZ have been studied. The photon circular polarization
in these processes arises due to the CP-even and CP-odd
components of the htt interaction, small imaginary loop
contributions in the SM, and non-Hermiticity of the htt
interaction. In [18] it has been shown that the forward-
backward lepton asymmetry AFB in the processes h →
γlþl− (for l ¼ e, μ, τ) is sensitive to non-Hermiticity of
the Higgs interaction with the top quark, and AFB can
acquire values of about 15% (20%) for the muon-antimuon
(electron-positron) pairs.
We also emphasize that measurement of any observable

sensitive to non-Hermiticity of the Lagrangian can be used
at the same time for testing the CPT theorem, since
Hermiticity of the Hamiltonian (or Lagrangian) is a
necessary condition in the proof of the CPT theorem
in quantum field theory (see, e.g., [19]). In this connection
we recall Ref. [20], where the close relation of non-
Hermiticity with violation of the CPT symmetry has been
noted. The author of [20] has also shown that observation
of photon circular polarization in the pion decay π0 → γγ,
or muon longitudinal polarization in the η-meson decay
η → μ−μþ, would be a signal of violation of the CPT
symmetry.
In the present paper we study effects of non-Hermiticity of

the Yukawa interaction in the Higgs boson decay to pair of τ
leptons. Note that though the decay h → τ−τþ has been
discussed in literature (see, for instance, [21] and references
therein) for a long time, the main interest there has been
concentrated on investigation of effects of the CP–symmetry
violation in the Hermitian Yukawa interaction and
differences in the angular distributions for the scalar and
pseudoscalar Higgs boson. In the present paper, in contrast,
wemainly pay attention to observableswhich are sensitive to
non-Hermiticity of the Yukawa interaction. In addition, a
model for non-Hermitian Yukawa interaction in case of one
fermion generation is proposed.
The paper is organized as follows. In Sec. II the decay

width of the Higgs boson to the polarized fermion f and
antifermion f is considered, and polarization characteristics
of fðfÞ are discussed. The fully differential width of the
decay into the lepton channel h → τ−τþ → μ−νμντμ

þνμντ
is derived and the distribution over the muon energies is
obtained. Observables are proposed which carry informa-
tion on the hτ−τþ non-Hermiticity. In Sec. III a model for
non-Hermitian Yukawa interaction between the Higgs
fields and fermions is proposed and the approximation
of one fermion generation is studied. In Sec. IV results of
calculation and discussion are presented. In Sec. V we draw
conclusions. In the Appendix functions fðx1; x2Þ and
gðx1; x2Þ, which enter the distribution over the muon
energies, are defined.

II. DECAYS h → f f AND h → τ−τþ → μ−μþ þ 4
NEUTRINOS

We assume that the couplings of h boson to the fermion
fields, ψf, are given by the Lagrangian including both
scalar and pseudoscalar parts

Lhff ¼ −
X
f¼l;q

mf

v
hψfðaf þ ibfγ5Þψf; ð1Þ

where v ¼ ð ffiffiffi
2

p
GFÞ−1=2 ≈ 246 GeV is the vacuum expect-

ation value of the Higgs field, GF ¼ 1.1663787ð6Þ ×
10−5 GeV−2 is the Fermi constant [22], mf is the fermion
mass and af, bf are complex parameters (af ¼ 1 and
bf ¼ 0 corresponds to the SM). At the same time, the
Higgs interaction with theW� and Z bosons is chosen as in
the SM. In terms of these parameters the decay width of the
Higgs to unpolarized fermions, except the top quark, in the
leading order is equal to

Γðh → ffÞ ¼ NfGF

4
ffiffiffi
2

p
π
m2

fmhβfðjafj2β2f þ jbfj2Þ; ð2Þ

where βf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f=m
2
h

q
is the fermion velocity in the

rest frame of h, Nf ¼ 1ð3Þ for leptons (quarks). Apparently
one can put βf ≈ 1.
For the real parameters af and bf the interaction (1) is

Hermitian, however it is seen from Eq. (2) that any non-
Hermiticity of the Lagrangian Eq. (1) does not affect the
width of the Higgs boson decay to fermions. In addition, if
parameters af, bf either satisfy the equation

jafj2 þ jbfj2 ¼ 1; ð3Þ

or the expression jafj2 þ jbfj2 turns out close to unity, then
the h → ff decay width will have the same value as in the
SM, or close to it.
However, the situation changes if it will become possible

to measure the polarization characteristics of the fermions.
Indeed, the rate of the Higgs boson decay to polarized
fermions is determined by the expression

dΓ
dΩ

¼ Γðh → ffÞ 1

16π

�
1 − ζ1Lζ2L þ jafj2β2f − jbfj2

jafj2β2f þ jbfj2

× ð~ζ1T · ~ζ2TÞ −
2Reðafb�fÞ

jafj2β2f þ jbfj2
βf~n · ½~ζ1T × ~ζ2T �

−
2Imðafb�fÞ

jafj2β2f þ jbfj2
βfðζ1L − ζ2LÞ

�
; ð4Þ

where ~ζ1 (~ζ2) is the polarization vector of the fermion f (f)
in the rest frame of f (f), ~n is the unit vector in the direction
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of 3-momentum of fermion f in the rest frame of the h
boson. Further, the longitudinal and transverse components

of polarization are defined as ζiL ≡ ð~ζi · ~nÞ and ~ζiT ≡
~ζi − ~nð~ζi · ~nÞ, where i ¼ 1, 2. Note that the covariant form
of the rate of the Higgs boson decay to polarized fermions
has been considered in Refs. [21,23]. In Ref. [24] the spin
density matrix of the ff system has been calculated for the
decays h → tt and h → τþτ− with account of radiative
corrections of the order αs and αem, respectively. The
interaction (1) with real parameters af and bf has been used
in [24].
We see that for the non-Hermitian Lagrangian in Eq. (1)

the fermion f (f) is longitudinally polarized with polari-
zation equal to

αL ¼ 2jImðafb�fÞj
jafj2β2f þ jbfj2

βf: ð5Þ

The direction of fermion polarization is opposite to the
direction of its movement (or in the direction of its
movement) depending on the sign of the quantity
Imðafb�fÞ=jImðafb�fÞj ¼ �1.
Note that the presence of both parameter af and bf in (4),

which leads to the CP violation in the Higgs boson
interaction with fermions, manifests itself not only in
the longitudinal polarization of the fermion but also in
the nonzero spin-spin correlation term ∝ Reðafb�fÞ~n·
½~ζ1T × ~ζ2T �.
Of course, measurement of the polarization of the final

fermions in the decay h → ff is a difficult problem.
Moreover, measurement of the polarization of the b- and
c-quarks, created on the LHC, is itself an important task
independently from their production mechanism. In prin-
ciple, as has been shown in [25], the ATLAS and CMS can
measure the polarization of the b quark by using the
semileptonic decay of Λb baryon, and the polarization of
the c quark using the decay of Λc baryon, Λþ

c → pK−πþ,

created in the QCD collisions and coming from the decay
of the top quark.
In general, the longitudinal polarization (5) of the

fermion can also arise due to radiative corrections which
generate imaginary part of the h → ff amplitude. Such
corrections for the tt and τþτ− pairs are calculated in [24]
with the Hermitian Lagrangian (1) for real af, bf. In
particular, for the case of the τ leptons, the QED radiative
corrections, or the τþτ− rescattering via the photon
exchange, are shown to give a negligibly small contribution
of the order αemðmhÞ × ðmτ=mhÞ2 ≈ 10−6 to the longi-
tudinal polarization of the τ lepton. Based on this obser-
vation the authors of [24] concluded that this polarization is
not a useful tool for analyzing the CP nature of the
Higgs boson.
In the SM, the other possible one-loop corrections to

the h → τþτ− amplitude arise due to intermediate
WþW−-bosons, ZZ-bosons and neutrino ντντ, however
the former two contributions are real since mh <
2mW; 2mZ, and the latter one is extremely small and
can be safely neglected.
In models beyond the SM, the imaginary part of one-

loop diagrams could arise from some intermediate particles
X in the loops with the masses mX < mh=2. This would
imply a possibility of the Higgs-boson decay h → XX,
however no new particles beyond the SM have been
observed at the LHC so far. In any case the QED radiative
correction is probably the dominant, but very small con-
tribution to the longitudinal polarization of the τ lepton.
Therefore if the degree of this polarization turned out to be
different from prediction of Ref. [24], e.g., much larger,
then it would point out to a non-Hermiticity of the hτþτ−
interaction.
Here wewill not discuss the Higgs boson decay modes to

quarks and consider the decay of h boson to τ−τþ pair with
their consequent decay into the channels τ− → μ−νμντ and
τþ → μþνμντ. The differential decay width of the decay
hðpÞ → τ−ðk1Þ þ τþðk2Þ → μ−ðp1Þνμντ þ μþðp2Þνμντ is

dΓ¼ Γðh→ τ−τþÞ
�
τG2

F

48π4

�
2 d3 ~p1

E1

d3~p2

E2

�
s1s2ðs1 þ s2Þ−m2ððs1 þ s2Þ2 − yðs21 þ s22 − s1s2ÞÞ þm4ð1− y2Þðs1 þ s2Þ

−m6yð1− yÞ2 þ ð4s1s2 − 2m2ð1− yÞðs1 þ s2Þ þm4ð1− yÞ2Þ
�jaj2β2 − jbj2
jaj2β2 þ jbj2 ðp1 ·p2Þ þ

2jaj2
jaj2β2 þ jbj2 ððk1 − k2Þ ·p1Þ

× ððk1 − k2Þ ·p2Þ=m2
h þ

2jbj2
jaj2β2 þ jbj2 ðp ·p1Þðp ·p2Þ=m2

h þ
4Reðab�Þ

jaj2β2 þ jbj2 εμνρσp
μkν1p

ρ
1p

σ
2=m

2
h

�

þ 2Imðab�Þ
jaj2β2 þ jbj2 ððs1 − s2Þðs1s2 −m2ð1− yÞðs1 þ s2 −m2ÞÞ þ ðm6ð1− yÞ3 − 2m2ð1þ yÞs1s2Þp

· ðp1 −p2Þ=m2
h − 2m2ð1− yÞðs22p ·p1 − s21p ·p2Þ=m2

h þ ð4s1s2 þm4ð1− y2ÞÞðs2p ·p1 − s1p ·p2Þ=m2
h

− 2m4ð1− yÞ2ðs1p ·p1 − s2p ·p2Þ=m2
hÞ
�
; ð6Þ
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where p, k1 and k2, p1 and p2 are the 4-momenta of h
boson, τ− and τþ leptons, μ− and μþ muons, respectively,
p1 ¼ ðE1; ~p1Þ, p2 ¼ ðE2; ~p2Þ, m is the mass of τ� lepton,
y ¼ m2

μ=m2,mμ is the mass of the muon, τ is the lifetime of
the τ� lepton. Further s1 ¼ ðk1 − p1Þ2, s2 ¼ ðk2 − p2Þ2,
εμνρσ is Levi-Civita antisymmetric symbol with ε0123 ¼ þ1,
and β is the τ�-lepton velocity in the rest frame of h boson.
We also introduced the shortened notation a≡ aτ and
b≡ bτ.
After integration of Eq. (6) over the polar and azimuthal

angles we obtain the decay width as a function of the
energies of muons

dΓ
dx1dx2

¼ Γðh → τ−τþÞ
�
τ
G2

Fm
5

192π3

�
2 8aðx1Þaðx2Þ
β2ð1þ βÞ5

×

�
fðx1; x2Þ þ fðx2; x1Þ

þ 2Imðab�Þ
jaj2β2 þ jbj2 ðgðx1; x2Þ − gðx2; x1ÞÞ

�
; ð7Þ

where x1 ≡ 2E1=mh and x2 ≡ 2E2=mh are the fractions of
the energies of μ− and μþ, which vary within the limits

xmin ≤ x1ð2Þ ≤ xmax; ð8Þ

xmax =min ¼
1� β

2
þ y

1 ∓ β

2
: ð9Þ

The functions fðx1; x2Þ, gðx1; x2Þ and aðxÞ are defined in
the Appendix.
It is seen from Eq. (7) that in any Hermitian model of the

hff interaction, in which Imðab�Þ ¼ 0, the differential
width (7) has the same form as in the SM.
In connection with Eq. (7) we should mention Ref. [23],

where a similar equation was obtained for the decay h →
tt → lþl− þ � � � under assumption that the h-boson is
sufficiently heavy (400 GeV) to decay into the on-mass-
shell top quarks, and in the narrow-width approximation for
the W-boson [26].
It is convenient in addition to the differential decay width

in Eq. (7) to define the distribution over the fractions of the
muon energies

Wðx1; x2Þ≡ 1

Γ
dΓ

dx1dx2
;

Γ ¼ Γðh → τ−τþÞðBRðτ− → μ−ντνμÞÞ2: ð10Þ

This distribution is normalized to unityZ
xmax

xmin

dx1

Z
xmax

xmin

dx2Wðx1; x2Þ ¼ 1;

where xmin and xmax are defined in (9) and are equal
respectively to 0.00373716 and 0.999799. Then the

fraction of the total number of muons, which corresponds
to μ− in the energy interval ½ε1; ε01� and μþ in the energy
interval ½ε2; ε02�, is

Nðε1; ε01; ε2; ε02Þ ¼
Z

ε0
1

ε1

dx1

Z
ε0
2

ε2

dx2Wðx1; x2Þ; ð11Þ

where the integration limits satisfy the conditions
xmin ≤ ε1ð2Þ ≤ ε0

1ð2Þ ≤ xmax.
Now we construct an observable proportional to

Imðab�Þ. Let us define asymmetry in the following way

Aðε1; ε01; ε2; ε02Þ≡ Nðε1; ε01; ε2; ε02Þ − Nðε2; ε02; ε1; ε01Þ
Nðε1; ε01; ε2; ε02Þ þ Nðε2; ε02; ε1; ε01Þ

:

ð12Þ

Using expression (7) one can write for the asymmetry

Aðε1; ε01; ε2; ε02Þ ¼
2Imðab�Þ

jaj2β2 þ jbj2 Δðε1; ε
0
1; ε2; ε

0
2Þ; ð13Þ

where

Δðε1;ε01;ε2;ε02Þ

¼
Z

ε0
1

ε1

dx1

Z
ε0
2

ε2

dx2aðx1Þaðx2Þðgðx1;x2Þ−gðx2;x1ÞÞ

×

�Z
ε0
1

ε1

dx1

Z
ε0
2

ε2

dx2aðx1Þaðx2Þðfðx1;x2Þþfðx2;x1ÞÞ
�

−1
:

ð14Þ

The asymmetry (13) is nonzero for a non-Hermitian
hτ−τþ interaction. Its value is determined by the param-
eters a and b through Imðab�Þ, and also essentially
depends on the choice of the area ½ε1; ε01� ⊗
½ε2; ε02�∪½ε2; ε02� ⊗ ½ε1; ε01� in which the energies of μ−

and μþ vary in Eq. (14).
Along with the asymmetry (12) and (13) we can

define the asymmetry of the μ− and μþ mean energies,
namely

AE ≡ hE1i − hE2i
hE1i þ hE2i

; ð15Þ

which is also proportional to Imðab�Þ. Indeed, using Eq. (7)
one can write

AE ¼ 2Imðab�Þ
jaj2β2 þ jbj2 δE; ð16Þ

where
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δE ¼
Z

xmax

xmin

x1dx1

Z
xmax

xmin

dx2aðx1Þaðx2Þðgðx1; x2Þ

− gðx2; x1ÞÞ
�Z

xmax

xmin

x1dx1

Z
xmax

xmin

dx2aðx1Þaðx2Þ

×

�
fðx1; x2Þ þ fðx2; x1Þ

��
−1
: ð17Þ

From the definitions (14) and (17) it follows that
Δðε1; ε01; ε2; ε02Þ and δE can be calculated independently
of the parameters a and b. In Sec. IV we present results of
their calculation.

III. A MODEL FOR NON-HERMITIAN
YUKAWA INTERACTION

In the SM the Yukawa interaction Lagrangian of the
Higgs field with fermions satisfies the conditions of the
gauge invariance and Hermiticity. It has the form

LSM
Yuk ¼ −

X3
n;k

�
fðuÞnk q

ð0Þ
nL

~Huð0ÞkR þ fðdÞnk q
ð0Þ
nLHdð0ÞkR

þ fðeÞnk l
ð0Þ
nLHeð0ÞkR þ fðνÞnk l

ð0Þ
nL

~Hνð0ÞkR

�
þ H:c: ð18Þ

In (18) n and k are the generation indexes, and LðRÞ refer
to the left (right) chiral projections ψLðRÞ ≡ 1

2
ð1 ∓ γ5Þψ .

The left-handed quarks and leptons

qð0ÞnL ¼
 
uð0ÞnL

dð0ÞnL

!
; lð0Þ

nL ¼
 
νð0ÞnL

eð0ÞnL

!
ð19Þ

transform as SUð2Þ doublets, while the right-handed fields

uð0ÞnR , d
ð0Þ
nR , ν

ð0Þ
nR , and eð0ÞnR are singlets, in the weak-eigenstate

basis. In (18) thematrices fnk describe theYukawa couplings
between the single Higgs doublet H, ~H ≡ iτ2H�, and the
various flavors n, k of quarks and leptons.
Now we omit the additional requirement of Hermiticity

imposed on the Yukawa interaction (18) and chooseLYuk in
the form

LYuk ¼ −
X3
n;k

ðfðuÞ1nkq
ð0Þ
nL

~Huð0ÞkR þ fðdÞ1nkq
ð0Þ
nLHdð0ÞkR

þ fðeÞ1nkl
ð0Þ
nLHeð0ÞkR þ fðνÞ1nkl

ð0Þ
nL

~Hνð0ÞkR Þ

−
X3
n;k

ðfðuÞ2nku
ð0Þ
nR

~H†qð0ÞkL þ fðdÞ2nkd
ð0Þ
nRH

†qð0ÞkL

þ fðeÞ2nke
ð0Þ
nRH

†lð0Þ
kL þ fðνÞ2nkν

ð0Þ
nR

~H†lð0Þ
kL Þ: ð20Þ

It follows from (20) that if f2nk ≠ f�1kn, then the Yukawa
interaction of the Higgs field with fermions does not satisfy
the Hermiticity requirement.

On this stage we will not study the consequences of the
non-Hermiticity of the Lagrangian (20) on the flavor
mixing. We restrict ourselves to one generation and
moreover take one fermion from this generation. In this
approximation the Lagrangian describing the mass of the
fermion, kinetic energy and its interaction with the Higgs
field h can be presented in the form

LðxÞ ¼ −
�
1þ hðxÞ

v

�
ðm1ψðxÞψðxÞ þm2ψðxÞγ5ψðxÞÞ

þ i
2
ðψðxÞγμ∂μψðxÞ − ∂μψðxÞγμψðxÞÞ; ð21Þ

where ψðxÞ is the field of a fermion,

m1 ¼ v
f1 þ f2
2
ffiffiffi
2

p ; m2 ¼ v
f1 − f2
2
ffiffiffi
2

p ; ð22Þ

and f1, f2 are the Yukawa coupling constants. Note that
description of neutrino with non-Hermitian Yukawa inter-
action has been studied in Ref. [15].
From the Lagrangian (21) we obtain the modified Dirac

equation for the free fermion field

iγμ
∂ψðxÞ
∂xμ − ðm1 þm2γ5ÞψðxÞ ¼ 0: ð23Þ

This is the first-order differential equation. Acting by the
operator iγν∂ν on Eq. (23) we obtain

ðgμν∂μ∂ν þm2ÞψðxÞ ¼ 0; ð24Þ

where

m2 ¼ m2
1 −m2

2 or m2 ¼ v2

2
f1f2: ð25Þ

Therefore, if ψðxÞ satisfies Eq. (23) then each of the
components of ψðxÞ has to obey the Klein-Gordon equa-
tion (24). It is clear that m is the mass of a fermion.
In the SM f2 ¼ f�1, so that m2 ¼ v2

2
jf1j2 is the real-

valued (in fact, in the SM f1 can be made real and positive,
i.e., f1 ¼ f2 ≥ 0). While for non-Hermitian interaction,m2

can be real or complex. We note that the unstable particles
are usually characterized by the complex mass

m2 ¼ M2 − iMΓ; or m2 ¼
�
M − i

Γ
2

�
2

; ð26Þ

whereM and Γ are their mass and width, respectively, while
the stable particles are characterized by the real mass. Of
course, the question on whether the interaction coupling of
the Higgs boson with fermions is real or complex requires
experimental study. At the same time, the experimental data
on the total decay width of the fundamental fermions [22]
show that the charged leptons, muon and τ lepton, have the
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width much smaller than their mass. One has Γμ ¼ 2.84 ×
10−18mμ and Γτ ¼ 1.28 × 10−12mτ, and the electron can be
considered as the stable particle. For neutrino there exists
only a constraint on the ratio of the mean lifetime and the
mass τν=mν, fromwhich it follows that if neutrinomass is not
extremely small, then the width is much smaller than the
mass. Regarding the quarks, there is no information on their
decay width aside from the t quark for which Γt ¼ 1.15 ×
10−2mt with mt ¼ 173.21 GeV. Therefore, if the hff
coupling constant is proportional to a complex mass coming
from instability of a fermion, then its influence on processes
with participation of the Higgs boson and fermions will
probably be negligible, except for the top quark.
These two possibilities, namely the real and complex

parametersm1 andm2, lead to drastically different behavior
of the Lagrangian density (21) under the P, C, and T
transformations. Under the space-inversion transformation,
charge conjugation and time inversion, ψðt; ~xÞ and hðt; ~xÞ
transform as follows [27]

ψPðt; ~xÞ ¼ γ0ψðt;−~xÞ; hPðt; ~xÞ ¼ hðt;−~xÞ; ð27Þ

ψCðxÞ ¼ iγ2ψ�ðxÞ; hCðxÞ ¼ hðxÞ; ð28Þ

ψTðt; ~xÞ ¼ γ1γ3ψð−t; ~xÞ; hTðt; ~xÞ ¼ hð−t; ~xÞ; ð29Þ

respectively, γμ are the matrices in the Pauli-Dirac repre-
sentation. Of course the second (kinetic-energy) term in
(21) is invariant with respect to P, C and T transformations,
while the first term in (21), as will be seen below, is
invariant with respect to C transformation and not invariant
under P transformation for both real and complex values of
parameters m1 and m2. Regarding T transformation, the
first term in (21) is invariant for real m1 and m2 and
not invariant for complex parameters. Indeed, using the
definitions (27)–(29) one obtains:

P
�
1þ hðt; ~xÞ

v

�
ψðt; ~xÞðm1 þm2γ5Þψðt; ~xÞP−1

¼
�
1þ hðt;−~xÞ

v

�
ψðt;−~xÞðm1 −m2γ5Þψðt;−~xÞ;

C
�
1þ hðxÞ

v

�
ψðxÞðm1 þm2γ5ÞψðxÞC−1

¼
�
1þ hðxÞ

v

�
ψðxÞðm1 þm2γ5ÞψðxÞ;

T
�
1þ hðt; ~xÞ

v

�
ψðt; ~xÞðm1 þm2γ5Þψðt; ~xÞT −1

¼
�
1þ hð−t; ~xÞ

v

�
ψð−t; ~xÞðm�

1 þm�
2γ5Þψð−t; ~xÞ: ð30Þ

Thus, for real m1 and m2 the Lagrangian density (21) is not
invariant under P, CP, PT , and CPT transformations [28].

While for complex m1 and m2 the Lagrangian density (21)
is not invariant under P, T , CP, PT , CT , and CPT
transformations. These properties are summarized in
Table I. Note that at the same time the Higgs boson
interaction with the W� and Z0 bosons is C, P, and T
invariant.
Now we consider the case of real and positive constants

f1 and f2. Then the modified Dirac equation for the free
fermion (23) and the Lagrangian density (21) can be
written as

iγμ
∂ψðxÞ
∂xμ −meξγ5ψðxÞ ¼ 0: ð31Þ

and

LðxÞ ¼ i
2
ðψðxÞγμ∂μψðxÞ − ∂μψðxÞγμψðxÞÞ

−m

�
1þ hðxÞ

v

�
ψðxÞeξγ5ψðxÞ; ð32Þ

where

cosh ξ ¼ m1

m
; sinh ξ ¼ m2

m
; m ¼ v

ffiffiffiffiffiffiffiffiffiffi
f1f2
2

r
:

Note that the Dirac equation with the fermion mass term
in the form m1 þm2γ5 has also been considered in
Refs. [29,30].
From Eq. (31) one finds the positive energy, ψ ðþÞðxÞ ¼

exp ð−ip · xÞuðpÞ and the negative energy, ψ ð−ÞðxÞ ¼
exp ðþip · xÞvðpÞ, solutions. The four-momentum and
the energy of the fermion are

pμ ¼ ðEp; ~pÞ; Ep ¼ ð~p2 þm2Þ1=2: ð33Þ

In momentum space the modified Dirac equations for the
free fermion are

ðp −meξγ5Þurð~pÞ ¼ 0; ðpþmeξγ5Þvrð~pÞ ¼ 0; ð34Þ

TABLE I. Behavior of the Lagrangian (21) under discrete
symmetries and Hermiticity. “Yes” (“No”) means that the
Lagrangian satisfies (does not satisfy) the symmetry.

m1–real,
m2–real

m1–real,
m2–imaginary

m1–complex,
m2–complex

P No No No
C Yes Yes Yes
T Yes No No
CP No No No
PT No Yes No
CT Yes No No
CPT No Yes No
Hermiticity No Yes No
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where p≡ γμpμ and r ¼ 1, 2 labels two independent
solutions. They satisfy the following normalization
conditions

urð~pÞur0 ð~pÞ ¼ 2mδrr0 ; vrð~pÞvr0 ð~pÞ ¼ −2mδrr0 : ð35Þ
The projection operators on the states with definite
polarization along the space-like 4-vector s (s2 ¼ −1),
orthogonal to p (s · p ¼ 0), are

uðp; sÞuðp; sÞ ¼ e−ξ=2γ5ðpþmÞ 1þ γ5s
2

eξ=2γ5 ;

vðp; sÞvðp; sÞ ¼ e−ξ=2γ5ðp −mÞ 1þ γ5s
2

eξ=2γ5 :

The propagator of the free fermion has the form

h0jTψðxÞψðyÞj0i ¼ iSFðx − yÞ;

SFðx − yÞ ¼
Z

d4p
ð2πÞ4 e

−ip·ðx−yÞ pþme−ξγ5

p2 −m2 þ iϵ
: ð36Þ

In the Lagrangian model (32) the rate of decay of the
Higgs boson to the polarized τ−τþ leptons, approximating
the τ� velocity in the h rest frame by unity, is determined
from the expression (4) with a ¼ cosh ξ and b ¼ −i sinh ξ:

dΓ
dΩ

¼ Γðh → τ−τþÞ 1

16π

�
1 − ζ1Lζ2L þ

~ζ1T · ~ζ2T
cosh 2ξ

− tanh 2ξðζ1L − ζ2LÞ
�
; ð37Þ

where

Γðh → τ−τþÞ ¼ GFm2

4
ffiffiffi
2

p
π
mh cosh 2ξ: ð38Þ

As m2 ¼ m2
1 −m2

2, in order to estimate the decay width
h → τ−τþ one has to know m2

2. If m
2
2 comes from the mean

lifetime of the τ� lepton, thenm2
2 ¼ Γ2

τ=4. In this case ξ ≈ 0

and therefore the width of the h → τ−τþ decay practically
coincides with the width in the SM.
Ifm2

2 has other origin, then the decay width of h → τ−τþ
can differ from the SM prediction. Indeed, let us write the
ratio of the h → τ−τþ decay width in the model (32) and in
the SM, and the longitudinal polarization of the τ lepton,

κ2τ ≡ Γðh → τ−τþÞ
ΓSMðh → τ−τþÞ

¼ v2
f21 þ f22
4m2

¼ f21 þ f22
2f1f2

≥ 1; ð39Þ

αL ¼ f21 − f22
f21 þ f22

: ð40Þ

In the SM f1 ¼ f2 ≡ fSM ¼ ffiffiffi
2

p
m=v. Taking into

account the constraint m2 ¼ v2
2
f1f2 we have

f1 ¼ fSMeξ; f2 ¼ fSMe−ξ; ð41Þ

κ2τ ¼ cosh 2ξ; αL ¼ tanh 2ξ; ð42Þ

where ξ ¼ 0 corresponds to the SM and fSM ¼ 0.0102 for
the τ lepton with mass 1.77682 GeV [22].
In Fig. 1 the dependence of the ratio (39) and longi-

tudinal polarization (40) on the parameter ξ is presented.
For an estimate we choose the interval −0.5 ≤ ξ ≤ þ0.5.
As it is seen, the longitudinal polarization of the τ takes

sizable values, while the decay width varies not so much,
up to a factor of 1.5 for the ratio κ2τ . Thus the values of the
measured h → τ−τþ decay width which are close to the
value in the SM will not necessarily mean that the structure
of the Yukawa interaction is the same as in the SM.
Measurement of the τ longitudinal polarization is very
important for obtaining information on Hermiticity of the
hτ−τþ interaction.

IV. RESULTS OF CALCULATION AND
DISCUSSION

In Table II we present results of calculation of the
function Δðε1; ε01; ε2; ε02Þ in (14) which along with the
factor 2Imðab�Þ=ðjaj2β2 þ jbj2Þ determines the asymmetry
(13). It is seen that for certain intervals of the muon
energies, Δðε1; ε01; ε2; ε02Þ takes quite big values.
One should keep in mind that feasibility of measuring

the asymmetry will depend not only on values of
Δðε1; ε01; ε2; ε02Þ and parameters a, b, but also on the
number of muons (11) in this energy area. This fraction
of the muon number is Nðε1; ε01; ε2; ε02Þ þ Nðε2; ε02; ε1; ε01Þ,
and this number is independent of parameters a, b and
coincides with corresponding number calculated in the SM.
We calculate Nðε1; ε01; ε2; ε02Þ in Table III. For any

0.4 0.2 0.0 0.2 0.4
1.0

0.5

0.0

0.5

1.0

1.5

2.0

FIG. 1. Ratio κ2τ (solid line) and longitudinal polarization αL
(dashed line) as functions of ξ.
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Hermitian interaction, the function Nðε1; ε01; ε2; ε02Þ is
symmetric under the transformation ε1; ε01 ↔ ε2; ε02.
Our analysis shows that the configuration of the muons

with energies close to the minimal allowed energy
E1ð2Þ;min ¼ xminmh=2 ≈ 234 MeV is the most probable.
In general, the smaller energies the muons have, the bigger
number of muons is. This tendency is seen from Table III.
From Table II it follows that in order to have big values of
Δðε1; ε01; ε2; ε02Þ one needs to choose μ− and μþ with big
difference in energies. Based on these observations we can
take, for example,

x1 ∈ ½0.1; 0.3�; x2 ∈ ½0.5; 0.7� ð43Þ

with Δð0.1; 0.3; 0.5; 0.7Þ ¼ 0.327 and corresponding frac-
tion of the number of muons Nð0.1; 0.3; 0.5; 0.7Þ þ
Nð0.1; 0.3; 0.5; 0.7Þ ¼ 0.114.
In order to search for favorable conditions for the

asymmetry we consider the following configuration of
the muon energies. Introduce an arbitrary x0, such that
xmin ≤ x0 ≤ xmax, and calculate the function Δðx0Þ≡
Δðxmin; x0; x0; xmaxÞ and the fraction of the muon number
Nðx0Þ≡ Nðxmin; x0; x0; xmaxÞ þ Nðx0; xmax; xmin; x0Þ for
various values of x0. Results of the calculation are
presented in Fig. 2.
It is seen from Fig. 2 that the function Δðx0Þ reaches the

value −1 at the ends of the interval, i.e. at x0 ≈ xmin ¼
0.00373716 and x0 ≈ xmax ¼ 0.999799. However the prob-
ability of these configurations of the muons is close to zero.
To have sizable values of Δðx0Þ and number of muons we
can choose, for example,

x0 ≈ 0.6; jΔðx0Þj ≈ 0.5; Nðx0Þ ≈ 0.3: ð44Þ

This means that muons should be selected in the intervals of
energies

Emin < E1ð2Þ < E0; E0 < E2ð1Þ < Emax; ð45Þ

where Emin ¼ 234 MeV, E0 ≈ 37.5 GeV, and Emax ¼
62.53 GeV.
As for the asymmetry of mean muon energies (15)

and (16), direct calculation of coefficient δE in (17) gives

δE ≈ 0.142: ð46Þ

One can also study asymmetries of the kth moments of
the energy distribution (10)

AEk ≡ hEk
1i − hEk

2i
hEk

1i þ hEk
2i

¼ 2Imðab�Þ
jaj2β2 þ jbj2 δEk ; ð47Þ

with δE2 ≈ 0.249; δE3 ≈ 0.332;…, which are more sensitive
to the high-energy components of the energy distribution.

V. CONCLUSIONS

In this paper the main attention is paid to a possible non-
Hermiticity of the Yukawa interaction between the Higgs
scalar field with fermions. A model for non-Hermitian
interaction is proposed and approximation of one fermion
generation is considered. The corresponding Lagrangian is
obtained, and for the free fermion the modified Dirac
equation, which contains the “mass” term in the form
m1 þm2γ5, is studied. The symmetry of the Lagrangian
with respect to the discrete P, C, and T transformations is
addressed, in particular, for real parameters m1 and m2

the Lagrangian appears to be P-odd, C-even, T -even,
CPT -odd, and non-Hermitian.
We discuss the decay of the Higgs boson to the polarized

fermion f and antifermion f, and calculated the decay rate
and polarization characteristics of f, f. The interaction
vertex hff is parametrized in terms of the two couplings af

TABLE II. Values of Δðε1; ε01; ε2; ε02Þ in (14). The intervals
½ε1; ε01� are indicated in the top raw, and the intervals ½ε2; ε02� – in
the left column. Note that xmin ≤ ε1ð2Þ ≤ ε0

1ð2Þ ≤ xmax.

[0.1, 0.3] [0.3, 0.5] [0.5, 0.7] [0.7, 0.9]

[0.1, 0.3] 0.0 −0.129 −0.327 −0.593
[0.3, 0.5] 0.129 0.0 −0.207 −0.503
[0.5, 0.7] 0.327 0.207 0.0 −0.330
[0.7, 0.9] 0.593 0.503 0.330 0.0

TABLE III. Fraction of the muon number Nðε1; ε01; ε2; ε02Þ in
Eq. (11) in the SM. The intervals ½ε1; ε01� are indicated in the top
raw, and the intervals ½ε2; ε02� – in the left column. In the whole
area Nð0.1; 0.9; 0.1; 0.9Þ ¼ 0.7.

[0.1, 0.3] [0.3, 0.5] [0.5, 0.7] [0.7, 0.9]

[0.1, 0.3] 0.096 0.081 0.057 0.029
[0.3, 0.5] 0.081 0.066 0.046 0.023
[0.5, 0.7] 0.057 0.046 0.030 0.014
[0.7, 0.9] 0.029 0.023 0.014 0.006

1.0

0.5

0.0

0.5

x0

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. Fraction of the number of muons Nðx0Þ (solid line) and
function Δðx0Þ (dashed line) vs. x0.
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(CP-even term) and bf (CP-odd term) in such a way that for
a general case of complex af and bf the interaction is non-
Hermitian. This non-Hermiticity gives rise to polarization
of fermion and antifermion along the direction of their
movement. The magnitude of the longitudinal polarization
is determined by the factor ∝ Imðafb�fÞ.
In connection with violation of the CPT symmetry

and non-Hermiticity in the present model, we note that
most frequently the CPT symmetry is tested via
measurement of the differences between the masses
of particle and its antiparticle and some other their
characteristics (see, for example, [22]). These experi-
ments are based on the CPT theorem which is a
consequence of Lorentz invariance, locality, connection
between spin and statistics, and a Hermitian
Hamiltonian [19]. Nevertheless, even if the masses of
particle and antiparticle are equal, the CPT invariance
can be violated in scattering and other physical proc-
esses [31]. It is also proved [31] that the CPT violation
leads to violation of the Lorentz invariance.
Unlike the case of the particle-antiparticle mass differ-

ence, the longitudinal polarization of the fermion in the
decay h → ff is an example of the CPT -violating observ-
able in Lorentz invariant but non-Hermitian model.
Another such observable is the circular polarization of
the photon in the Higgs-boson decays h → γγ and h → γZ
[16] (other examples and detailed discussion are given in
Ref. [20]). In general, non-Hermitian Lagrangian (or
Hamiltonian) leads to violation of the unitarity of the
S-matrix, however measurement of the longitudinal polari-
zation of the fermion can be easier task than direct tests of
the unitarity violation.

In order to search for the fermion longitudinal polari-
zation we considered the Higgs boson decay to the τ−τþ
leptons with their subsequent decay into the leptonic
channels, i.e. the process h → τ−τþ → μ−νμντμ

þνμντ.
For this decay the fully differential decay width and the
distribution over the energies of the muons μ− and μþ are
analytically derived. Then an observable is proposed, called
the asymmetry, which is nonzero for a non-Hermitian
hτ−τþ interaction.
This asymmetry has the form of a product of

non-Hermiticity factor ∝ Imðafb�fÞ and function
Δðε1; ε01; ε2; ε02Þ, which depends on the area of energies
of μ− and μþ. We calculated this function for various
configurations of muon energies and selected optimal
conditions for studying this observable. Other observables
proportional to Imðafb�fÞ are also studied and calculated.
We hope that the study of the asymmetries in the decay

h → τ−τþ → μ−νμντμ
þνμντ, considered in the present

paper, will be useful for the test of Hermiticity of the
Yukawa interaction.
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APPENDIX: DEFINITION OF FUNCTIONS
f ðx1;x2Þ AND gðx1;x2Þ

The functions fðx1; x2Þ and gðx1; x2Þ which enter the
energy distribution in Eq. (7) have the form

fðx1; x2Þ ¼ aðx1Þa2ðx2Þ=3 − 2ð1þ βÞð1 − yÞa2ðx2Þ=3 − ð1þ βÞð2þ yÞaðx1Þaðx2Þ=4þ ð1þ βÞ2ð1 − y2Þaðx2Þ

− ð1þ βÞ3yð1 − yÞ2 þ ð1 − βÞ−1
�
x1x2aðx1Þaðx2Þ − 2ð1þ βÞð1 − yÞx1x2aðx2Þ þ ð1þ βÞ2ð1 − yÞ2x1x2

− aðx1Þbðx1Þ
aðx2Þbðx2Þ

36β2
þ ð1þ βÞð1 − yÞaðx2Þbðx2Þ

cðx1Þ
12β2

− ð1þ βÞ2ð1 − yÞ2 cðx1Þcðx2Þ
16β2

�
; ðA1Þ

gðx1; x2Þ ¼ ð2x1 − 1Þaðx1Þa2ðx2Þ=3þ 2ð1þ βÞð1 − yÞð1 − x1Þa2ðx2Þ=3 − ð1þ βÞ2ð1 − yÞð2 − x1 − 2x2

þ yð2x2 − x1ÞÞaðx2Þ=2þ ð1þ βÞ3ð1 − yÞ3x1 − ð1þ βÞð1þ yÞx1aðx1Þaðx2Þ=2: ðA2Þ

Here

aðxÞ≡ ð1þ βÞð1þ yÞ − 2zðxÞ − 2
x − zðxÞ
1 − β

; ðA3Þ

bðxÞ≡ 2xþ 4βzðxÞ − ð1 − β2Þð1þ yÞ; ðA4Þ

cðxÞ≡ 2xþ 2βzðxÞ − ð1 − β2Þð1þ yÞ; ðA5Þ

and zðxÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − yð1 − β2Þ

p
.
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