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We enumerate the conditions necessary for CP violation to be manifest in n − n̄ oscillations and build a
simple model that can give rise to such effects. We discuss a possible connection between neutron
oscillations and dark matter, provided the mass of the latter lies between mp −me and mp þme. We apply
our results to a possible baryogenesis scenario involving CP violation in the oscillations of the Ξ0.
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I. INTRODUCTION

Given the evidence for an initial period of inflation in
the early Universe, the asymmetry between matter and
antimatter that we observe implies that baryon number
(B) conservation must be violated [1]. Furthermore, while
the standard model (SM) accidentally conserves B and
lepton number (L) at the renormalizable level, both are
broken by nonperturbative effects [2], with only the
combination B − L conserved (however, such anomalous
processes cannot give rise to proton decay as they
conserve B mod 3). If neutrino masses are of the
Majorana type, as in the theoretically attractive seesaw
mechanism, they provide evidence for B − L violation,
via a ΔL ¼ 2 operator, providing further motivation to
consider B violation.
The two phenomenological hallmarks of B violation are

neutron-antineutron oscillation [3] and proton decay. Some
recent reviews of n − n̄ oscillation are given in Ref. [4].
While proton decay is much more strongly constrained by
experiment than neutron-antineutron oscillation, the former
requires that B is violated by one unit while the latter
requires violation by two units. Therefore, in theories of
baryon number violation that only admitΔB ¼ 2 operators,
n − n̄ oscillations can occur at a potentially observable rate
without leading to proton decay (for recent work in this
direction, see, e.g., Refs. [5,6]). For this reason, studying
n − n̄ oscillation is a critical component of understanding
the origin of B violation.
The basic formulas governing neutron oscillation were

first derived some time ago [7]. If B is not conserved, there
can be a nonzero transition amplitude between the (flavor
eigenstates) n and n̄ that we denote as δ. There is a splitting,
Δm, between mass eigenstates that are a linear combination
of n and n̄, due to δ as well as from other interactions, e.g.,
with a background magnetic field. Typically Δm ≫ δ.
Using a basis in which the spin axis aligns with the
background magnetic field, the system is effectively two
independent two-state systems, with the component of

angular momentum which is aligned with the magnetic
field being conserved during the transition. For time scales
short enough to neglect the possibility of neutron decay or
when the neutron is stabilized by being in a stable nucleus,
the probability for a state that is a neutron at t ¼ 0 to
oscillate to an antineutron is

Pn→n̄ ¼
2δ2

Δm2
ð1 − cosΔmtÞ: ð1Þ

In a typical experimentally relevant situation where
Δmt ≪ 1, this becomes Pn→n̄ ≃ δ2t2 ≡ ðt=τnn̄Þ2, which
defines the oscillation lifetime. Neutron oscillations in
nuclei lead to nuclear decays which presently set the
best observational limit on τnn̄. The lower bound on the
16O lifetime from Super-Kamiokande of 1.9 × 1032 yr [8]
at 90% C.L. corresponds [9] to τnn̄ > 3.5 × 108 s, or
δ < 1.9 × 10−33 GeV.
In this paper we reconsider neutral baryon oscillations in

the presence of CP-violating and baryon-number-violating
new physics, and discuss the conditions under which CP
violation can be exhibited in the oscillations. We also
consider whether a dark matter particle could be observed
in neutron decays and whether such decays could contrib-
ute to observable CP violation and/or baryogenesis. We
find that while decays of oscillating neutrons are not likely
to exhibit a significant amount of CP violation, it is
possible that oscillations of neutral baryons containing
heavier flavors could perhaps even be enough to create the
baryon asymmetry of the Universe. We briefly outline a
baryogenesis scenario involving CP violation in oscilla-
tions of baryons containing heavy flavor.

II. CP VIOLATION IN NEUTRAL FERMION
OSCILLATIONS

Because only states with the same spin can mix (in a
basis where the spin aligns with any external magnetic
field), a two-state Hamiltonian H suffices to describe
oscillations of spin-1=2 particles. Here we use the n − n̄
system as an example, but our results can be applied to any
neutral spin-1=2 particle. In vacuum H is given by

*dmckeen@uw.edu
†aenelson@uw.edu

PHYSICAL REVIEW D 94, 076002 (2016)

2470-0010=2016=94(7)=076002(8) 076002-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.076002
http://dx.doi.org/10.1103/PhysRevD.94.076002
http://dx.doi.org/10.1103/PhysRevD.94.076002
http://dx.doi.org/10.1103/PhysRevD.94.076002


H ¼
�

mn − i
2
Γn M12 − i

2
Γ12

M�
12 − i

2
Γ�
12 mn − i

2
Γn

�
; ð2Þ

mn ¼ m�
n; Γn ¼ Γ�

n: ð3Þ
Details of our formalism and how to derive M12 and Γ12

from a more fundamental theory follow from the treatment
of Refs. [10,11] and are recapped in the Appendix. While
some authors [12] have recently claimed that CP violation
is required for neutron oscillations, it is always possible to
reparametrize the system and use a definition of CP so that
the mass matrix is notCP violating [13,14].CP violation in
interference between mixing and decays is possible, lead-
ing to the n → n̄ oscillation probability in vacuum differing
from that for n̄ → n,

Pjni→jn̄i
Pjn̄i→jni

− 1 ¼ 2ℑðM12Γ�
12Þ

jM12j2 − jΓ12j2=4 − ℑðM12Γ�
12Þ

: ð4Þ

Generally, jM12j ≫ jΓ12j so that

Pjni→jn̄i
Pjn̄i→jni

− 1≃ 2jΓ12j
jM12j

sin β; ð5Þ

with β≡ argM12Γ�
12 a reparametrization-invariant CP-

violating phase. We now examine the characteristics
necessary for a model that gives n − n̄ oscillations at a
rate not too far from the current upper bounds while also
generating CP violation that is not vanishingly tiny.
Models that violate baryon number only by two units

allow for n − n̄ oscillations without generating proton
decay, which is subject to extremely strong constraints
(see, e.g., Ref. [5]). In such a model, if lepton number is not
violated, Γ12 for the neutron system can be generated by
operators that allow for the decays

n → p̄eþνe; n̄ → pe−ν̄e ð6Þ

to proceed directly. However, the operators that generate
these decays are dimension 12, and it is difficult for them to
result in a value of Γ12 that is not exceedingly small
compared to 10−33 GeV. We are therefore led to consider
new states that are lighter than the neutron.
As a motivation to consider such states, let us assume

that baryon number is only absolutely conserved mod 2, so
that we have a conservedZ2 symmetry which is a subgroup
of baryon number. This Z2 symmetry could be used to
guarantee the stability of a dark matter Majorana fermion χ,
provided that χ is lighter than mp þme. Stability of the
proton requires that χ be heavier than mp −me.

1 A slightly
stronger lower bound of mχ > 937.9 MeV comes from
requiring that 9Be remain stable and not decay via the

reaction 9Be → 8Beþ χ. We have checked that this is the
strongest bound that comes from requiring that all stable
nuclides are kinematically forbidden from decaying to χ or
χeþ. We then consider the decays of both the neutron and
antineutron into χ þ γ in order to generate Γ12. Justifying
why χ should conveniently lie in this very narrow mass
range is not the point of this paper, but it could be argued
for using anthropic reasoning, or perhaps χ could be a
baryon of a sector mirror to ours [16], with its own gauge
interactions. It is also possible that χ only couples to heavy
flavors but has a mass such that it can only decay into light
flavors, with 2 or more weak interactions required for it to
decay, in which case the constraint on its mass can be
weakened.
As an example of how to generate an interaction that

would allow decays of the neutron or antineutron into
χ þ γ, consider adding a scalar diquark ϕ that is a color
antifundamental and carries hypercharge 1=3. Then it can
couple to quarks through

L ⊃ gϕū d̄þH:c:; ð7Þ

where ū and d̄ are the (left-handed) up and down
SUð2Þ singlet quarks. We couple ϕ and d̄ to the
Majorana fermion χ,

L ⊃ yϕ�d̄χ þ H:c: ð8Þ

These interactions generate a transition dipole operator,
through diagrams like the one shown in Fig. 1, which
appears as a term in the effective Lagrangian involving the
neutron field as

Leff ⊃ μχ̄ΣμvnFμv þ H:c:; ð9Þ

with

μ ∼ eκ ×
gy

m2
ϕm

2
n
; ð10Þ

FIG. 1. Diagram that leads to the decay n → χγ as well as to an
absorptive portion to the n − n̄ transition amplitude, Γ12, given a
Majorana mass for χ. Diagrams where the photon is attached to
the scalar ϕ are suppressed by the large ϕ mass. Removing the
photon gives the diagram responsible for n-χ (and n̄-χ)
transitions.

1The stability of dark matter due to its mass being in this range
in a model to explain baryogenesis was considered in Ref. [15].
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where κ ∼ 10−2 GeV3 comes from evaluating the hadronic
matrix element hnjðuddÞ2jni (for a detailed computation of
this matrix element using lattice QCD, see [17]). As shown
in the left diagram of Fig. 2, this coupling gives a
contribution to Γ12 that is

Γ12 ¼
μ2m2

nmχ

16π

�
1 −

m2
χ

m2
n

�
3

ð11Þ

∼ 10−47 GeV

�
108 GeV
mϕ=

ffiffiffiffiffi
gy

p
�

4
�

ΔM
1 MeV

�
3

; ð12Þ

where ΔM ≡mn −mχ ≪ mn. There is also a contribution
to M12 from an off-shell intermediate χ exchange, seen in
the right diagram of Fig. 2, that is larger than Γ12,

M12 ∼
�
κgy
m2

ϕ

�
2 mχ

m2
n −m2

χ
ð13Þ

∼ 10−33 GeV

�
108 GeV
mϕ=

ffiffiffiffiffi
gy

p
�

4
�
1 MeV
ΔM

�
: ð14Þ

For CP violation to be present, there must exist another
contribution to M12, since this necessarily has the same
phase as Γ12. This can be done any number of ways; e.g.,
we can add another Majorana fermion χ0 with similar
couplings as χ but different phases in the couplings.
Without fine-tuning the two separate contributions to
M12 against each other, we would then generically expect
the level of CP violation in the neutron-antineutron system
to be tiny,

Pjni→jn̄i
Pjn̄i→jni

− 1 ∝
jΓ12j
jM12j

≲ 10−14
�

ΔM
1 MeV

�
4

: ð15Þ

One may wonder whether there is a contribution to the
neutron EDM that comes from attaching a photon to
diagrams with external neutrons and a χ-γ loop. Since
the amplitudes responsible for an EDM must have ΔB ¼ 0
(as we argued above, and as also done in Ref. [14],)
potential contributions to the EDM from these diagrams
must not contain a B-violating χ mass insertion. However,
the lack of a factor of mχ in such diagrams (in contrast to

M12 and Γ12) means that they do not contain a physical
CP-violating phase and thus do not contribute to the
neutron EDM.
There is a contribution to the neutron EDM from a d

quark (chromo)EDM that arises through a χ-ϕ loop.
However, since we assume that the coupling of ϕ to quark
doublets is absent, this requires a light quark mass
insertion. Therefore, ϕ masses in the 10–100 TeV range
are safe, even with g ∼Oð1Þ. For a detailed discussion of
experimental limits on similar models, see [5,18].
While a significant amount of CP violation in n-n̄

oscillations does not appear promising, this analysis sug-
gests that oscillations of neutral baryons which are less
directly constrained by nuclear stability can exhibit larger
CP violation. One might consider Λ − Λ̄ oscillations [19],
but ΔB ¼ 2 operators with ΔS ¼ 2 are highly constrained
from decays of dinucleons into two kaons. Other neutral
baryons are more promising. Consider oscillations of Ξ0

and Ξ̄0. Like neutron oscillation, this process involves
operators that have ΔB ¼ 2, but also requires ΔS ¼ 4.
Since four kaons are more massive than two nucleons,
such operators are subject to less stringent constraints than
those with ΔS ¼ 0 or ΔS ¼ 2. In particular, they are not
subject to strong limits from dinucleon decays. It is
necessary to avoid generating a similar size for the much
more constrained baryon-number-violating ΔS ¼ 0, 1, 2
and ΔS ¼ 3 [20] operators. Provided that only SU(2)
singlet strange quarks are involved in the ΔS ¼ 4 oper-
ators, then the radiative generation of ΔS ¼ 0, 1 and
ΔS ¼ 2 operators is suppressed by two more weak loop
factors as well as light quark mass insertions. However, a
ΔS ¼ 3 operator may be generated via a single weak loop,
greatly constraining the size of the operator which allows
oscillations of the Ξ0. Oscillations of baryons containing
heavier flavors are less constrained. For instance, oscil-
lations of the Ξ0

b were considered by Kuzmin in 1996 [21],
and an oscillation rate which is comparable to the decay
rate was shown to be compatible with nuclear stability
bounds. Therefore, if ϕ couples dominantly to heavy
flavor SUð2Þ singlet quarks, it is conceivable that the
strongest limits on ϕ come from collider searches, and
mϕ=

ffiffiffiffiffi
gy

p
could be a few hundred GeV or less. A detailed

study of the various flavor combinations for neutral
baryon oscillations is underway in Ref. [22] and has
shown that there are several baryons whose oscillation
rates could be comparable to their decay rates without
leading to excessive dinucleon decay. In addition, if there
exists a neutral χ fermion which both the baryon and
antibaryon can decay into, the larger mass splitting
between χ and the heavy baryon allows for sizable
jΓ12=M12�. Given a mechanism for producing neutral
heavy flavored baryons out of equilibrium in the early
Universe, such as via the late decay of some heavier χ
particle as in Ref. [11], then CPV in their oscillations and
decays is a potential new mechanism for baryogenesis.

FIG. 2. Left: Diagram responsible for Γ12 through intermediate
on-shell χ and γ. Right: Diagram responsible forM12. The crosses
represent χ mass insertions, and the blobs are the higher
dimensional operators responsible for n-χ and n̄-χ transitions,
as seen in Fig. 1.
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III. CONCLUSIONS

There is firm evidence from the matter-antimatter
asymmetry of the Universe that B is violated. Although
proton decay searches are very sensitive probes of B
violation, they are less sensitive to theories that only allow
for ΔB ¼ 2 amplitudes. Searches for n − n̄ oscillations
directly test these theories. Much more rapid oscillations of
heavy flavor baryons is allowed, and this possibility has not
yet been experimentally explored.
In this paper we have enumerated the requirements for

physicalCP violation in neutral baryon oscillations. For the
first time, a simple model that would give CP violation in
neutral baryon oscillations was built. The model connects
the symmetry which suppresses proton decay to the
stabilization of a dark matter candidate with mass around
the mass of the proton. The amount of CP violation in
neutron oscillation in this model is still very small. Heavy
flavor baryon oscillations could exhibit significantly more
CP violation, and, given a mechanism (such as the one used
in [11]) to produce them in the early Universe, after the
QCD hadronization transition but before nucleosynthesis,
CP violation in heavy baryon oscillations and decays could
be the origin of the matter-antimatter asymmetry. This
possibility is currently under detailed study in Ref. [22].
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APPENDIX GENERAL CASE OF OSCILLATIONS
IN EXTERNAL FIELDS

Here we perform a detailed analysis of neutron oscil-
lation in the generic case where the spin quantization axis
does not align with the magnetic field, deriving the non-
relativistic Hamiltonian from the effective Lagrangian
describing the neutron-antineutron system. Our aim is to
clarify some statements in the literature and make our
formalism more explicit. We show that a simple two-state
description of this phenomenon is sufficient2 (as previous
studies [7] had used). Similar work has been done recently
[13,14]; however, as we consider some new, previously

unconsidered possibilities, such as exotic neutron
decays and the possibility of observable CP violation in
neutron oscillations, for completeness we include our
results here.

1. Deriving the Hamiltonian

Our starting point is the four-component neutron field n.
It carries a charge B ¼ þ1 under a global Uð1ÞB of baryon
number. We write the most general Lagrangian density for
describing a free neutron as

L ¼ n̄γμ∂μnþ LB þ L
B
; ðA1Þ

where the bar denotes Dirac conjugation, n̄ ¼ n†γ0. We
have separated the kinetic term from the bilinear terms that
conserve baryon number, LB, and those that violate baryon
number, L

B
. The baryon-preserving terms are

−LB ¼ n̄ðmnPL þm�
nPRÞn; ðA2Þ

where PL;R ¼ ð1 ∓ γ5Þ=2 project out the left and right
chiralities of the four-component spinors. To construct the
bilinears that break baryon number, we use the charge
conjugated field nc, which carries B ¼ −1,

−L
B
¼ n̄cðδ1PL þ δ�2PRÞnþ n̄ðδ2PL þ δ�1PRÞnc: ðA3Þ

It can be useful to express the four-component spinors in
the chiral basis in terms of left-handed, two-component
Weyl spinors, ξ and η, which carry B ¼ þ1 and −1,
respectively,

n ¼
�

ξ

η†

�
; nc ¼

�
η

ξ†

�
: ðA4Þ

Note that we suppress the spinor indices for clarity. For a
thorough description of two-component spinor techniques,
see [24]. In terms of these fields,

−LB ¼ mnηξþ H:c: ðA5Þ
and

−L
B
¼ δ1ξξþ δ2ηηþ H:c: ðA6Þ

We have defined charge conjugation so that

n→
C
nc; ξ↔

C
η: ðA7Þ

Thus, C leaves LB unchanged for any mn, and it leaves L
B

unchanged if δ1 ¼ δ2.
A parity transformation P flips helicities and can be

implemented by

n→
P
γ0n; ξ↔

P
η†: ðA8Þ

2Electromagnetic and CPV effects were recently studied by
Gardner and Jafari in Ref. [23] and CP violation by Berezhiani
and Vainshtein [12]. Our results are not in agreement with those
published results, although Gardner and Yan have updated and
extended their analysis [14].
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LB is therefore P invariant if mn is real, while LB
is parity

invariant if δ1 ¼ δ�2.
Given the C and P transformations above, a combined

CP transformation (which is equivalent to time reversal T
since we are dealing with a local, Lorentz-invariant theory)
takes

n→
CP
γ0nc; ξ→

CP
ξ†; η→

CP
η†: ðA9Þ

CP is then conserved byLB andL
B
ifmn, δ1, δ2 are all real.

To conserve CP, if Uð1ÞB is violated, this apparently
requires removing three phases to make mn, δ1, δ2 all real,
while we only have two fields at our disposal to rephase, ξ
and η. Equivalently, in the four-component language, we
can make a chiral transformation n → eiαγ

5

n to make mn
real and then n → eiα

0
n to remove the phase of δ1 or δ2, but

not both. Thus, at first glance it appears that if Uð1ÞB is
broken, it is not possible to remove CP violation. However,
if Uð1ÞB is only violated by δ1;2, then we can take a linear
combination n → cos θnþ sin θnc, nc → cos θnc − sin θn,
redefining Uð1ÞB, so that δ1 or δ2 is removed. Thus, CP
need not be violated by the mass terms since there are then
only two phases to remove. As long as we can redefine CP
to the product of the original CP and any purely internal
transformation, such that the new CP is a symmetry, there
is no physically observable CP violation.
We also incorporate interactions with the electromag-

netic field,

Ldipole ¼
1

2
Fμνn̄ΣμνðaPL þ a�PRÞn ðA10Þ

¼ aFμνησ
μνξþ H:c:; ðA11Þ

where Σμν ¼ ði=2Þ½γμ; γν�, and σμν ¼ ði=4Þðσμσ̄ν − σνσ̄μÞ,
σμ ¼ ð1; σÞ, σ̄μ ¼ ð1;−σÞ with σ the Pauli matrices. Here,
a ¼ μn − idn with μn, dn the neutron’s magnetic (electric)
dipole moment. We do not consider baryon-number–
violating interactions with the electromagnetic field of
the form n̄cΣμνn ⊃ ξσμνξ, ησμνη since these vanish identi-
cally due to Fermi statistics.3

To construct the Hamiltonian, we first introduce oper-
ators that create (and annihilate) neutron and antineutron
states,

jn; p; si ¼ asp†j0i; jn̄; p; si ¼ bsp†j0i: ðA12Þ

The algebra satisfied by the creation and annihilation
operators is

fasp; ark†g ¼ fbsp; brk†g ¼ ð2πÞ3δð3Þðp − kÞδsr; ðA13Þ

with all other anticommutators zero. We decompose the
Weyl spinors in terms of these as

ξα ¼
X
s

Z
d3p

ð2πÞ3=2
1ffiffiffiffiffiffiffiffi
2Ep

p ½xspαaspe−ip·x þ yspαb
s
p
†eip·x�;

ðA14Þ

ηα ¼
X
s

Z
d3p

ð2πÞ3=2
1ffiffiffiffiffiffiffiffi
2Ep

p ½xspαbspe−ip·x þ yspαa
s
p
†eip·x�;

ðA15Þ

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

n

p
if we assume that baryon number is

nearly conserved, δ1;2 ≪ mn. Here, x and y are solutions to
the Dirac equation, and they carry a spinor index. They can
be expressed in terms of spin eigenstates ωs, such that
ωs†ωr ¼ δsr, as

xspα ¼
ffiffiffiffiffiffiffiffiffi
p · σ

p
ωs; yspα ¼ 2s

ffiffiffiffiffiffiffiffiffi
p · σ

p
ω−s; ðA16Þ

xspα ¼ −2sω−s† ffiffiffiffiffiffiffiffiffi
p · σ̄

p
; yspα ¼ ωs† ffiffiffiffiffiffiffiffiffi

p · σ̄
p

: ðA17Þ

The matrix elements of the Hamiltonian, Hss0
ij (i, j ¼ n,

n̄; s, s0 ¼ �1=2), for the neutron-antineutron system at rest,
can be computed through

−hi; p; sj
Z

d3xLjj; p0; s0ijp→0 ðA18Þ

¼ ð2πÞ3δð3Þðp − p0ÞHss0
ij : ðA19Þ

To incorporate decays of the neutron and antineutron (as is
necessary when discussing CP), we decompose the
Hamiltonian into a dispersive portion M and an absorptive
part Γ, generated by on-shell intermediate states,

H ¼ M −
i
2
Γ: ðA20Þ

In the basis (jn;þi, jn;−i, jn̄;þi, jn̄;−i), where the spin
quantization axis is taken as the ẑ direction, the dispersive
portion of the Hamiltonian reads4

3In Ref. [23], it was speculated that such interactions could
develop through higher dimensional operators due to the
composite nature of the neutron, as is the case for the neutron
charge radius; however, that work has been updated with different
conclusions [25]. In the language of effective field theory, a
charge radius can develop because gauge invariance forbids
writing the operator n̄γμAμn (since the neutron is neutral) but
allows n̄γμ∂νFμνn=Λ2, with Λ the compositeness scale of the
neutron. However, operators like n̄cΣμνFρ

μðgνρ þ ∂ν∂ρ=Λ2 þ
…Þn couple two identical fermions to total angular momentum
J ¼ 1. This configuration is symmetric under the interchange of
the identical fermion fields; therefore, these operators vanish.

4Our Hamiltonian has hn;þjHjn̄;þi ¼ hn;−jHjn̄;−i, while
the one in Ref. [23] has hn;þjHjn̄;þi ¼ −hn;−jHjn̄;−i which
violates Lorentz invariance. As pointed out in Ref. [12], this error
leads to incorrect eigenvalues of the Hamiltonian in Ref. [23].
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M ¼
�
ReðmnÞ × 1 −H · σ M12 × 1

M�
12 × 1 ReðmnÞ × 1þH · σ

�
;

ðA21Þ

where H ≡ μnB − dnE, 1 is the 2 × 2 unit matrix, and
M12 ≡ δ�1 þ δ2. While we have retained it in this expression
for completeness, in what follows we ignore the (known to
be tiny) electric dipole moment of the neutron and keep
only the magnetic dipole moment. Because the dispersive
portion of the Hamiltonian comes from on-shell intermedi-
ate states and we are assuming Lorentz invariance, Γ must
be trivial in spin. Thus, in this basis, it is given by

Γ ¼
� Γn × 1 Γ12 × 1

Γ�
12 × 1 Γn × 1

�
; ðA22Þ

where Γn ¼ 1=885.6 s ¼ 7.4 × 10−28 GeV is the free neu-
tron beta decay rate and Γ12 represents any common final
state that both the neutron and antineutron may decay into
(which necessarily requires physics beyond the SM).
A CP transformation on H is implemented by taking the

Hermitian conjugate ofM and Γ separately. Given the form
of these matrices, we see that CP violation requires a

nontrivial phase difference between M12 ¼ δ�1 þ δ2
and Γ12.
The Hamiltonian in this basis can be broken up into

2 × 2 blocks according to its effect on baryon number,

H ∼
� ΔB ¼ 0 ΔB ¼ 2

ΔB ¼ −2 ΔB ¼ 0

�
: ðA23Þ

The ΔB ¼ 0 blocks mix spins (if there is an
external electromagnetic field) while, because of Fermi
statistics, the ΔB ¼ �2 blocks do not. Because of this,
even in the presence of (constant) electromagnetic fields, a
2 × 2 Hamiltonian is sufficient to describe the neutron-
antineutron system. To see that, we make a unitary trans-
formation of the Hamiltonian using the matrix

UB ¼

0
BBB@

cθ e−iαsθ 0 0

0 0 cθ e−iαsθ
−eiαsθ cθ 0 0

0 0 −eiαsθ cθ

1
CCCA; ðA24Þ

with tan 2θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
x þ B2

y

q
=Bz and tan α ¼ By=Bx.

Operating on H with this matrix gives

UBHU†
B ¼

0
BBB@

mn − μnBz − i
2
Γn H12 0 0

H21 mn þ μnBz − i
2
Γn 0 0

0 0 mn þ μnBz − i
2
Γn H12

0 0 H12 mn − μnBz − i
2
Γn

1
CCCA; ðA25Þ

defining H12 ≡M12 − ði=2ÞΓ12, H21 ≡M�
12 − ði=2ÞΓ�

12.
Thus, we see that the system described by the 4 × 4
Hamiltonian given by Eqs. (A21) and (A22) is actually
two separate, identical two-state systems—this transforma-
tion aligned the spin quantization axis along the direction of

the magnetic field. This justifies previous analyses of n-n̄
transitions that used a two-state Hamiltonian [7], despite
the presence of electromagnetic fields that could have
required the consideration of neutron and antineutron spin.5

To diagonalize H we make use of the matrix U,

U ¼

0
BBBBB@

H−1=2
12 c1cθ H−1=2

12 c1e−iαsθ −H−1=2
21 s1cθ −H−1=2

21 s1e−iαsθ

−H−1=2
12 c1eiαsθ H−1=2

12 c1cθ −H−1=2
21 s1eiαsθ H−1=2

21 s1cθ

H−1=2
12 s2cθ H−1=2

12 s2e−iαsθ H−1=2
21 c2cθ H−1=2

21 c2e−iαsθ

H−1=2
12 s2eiαsθ −H−1=2

12 s2cθ −H−1=2
21 c2eiαsθ H−1=2

21 c2cθ

1
CCCCCA
; ðA26Þ

which gives

5The time evolution is more complicated if the direction of the external field is time dependent, as considered in Ref. [23], as the
matrix which block diagonalizes the Hamiltonian is then time dependent. However, the neutron-antineutron mixing angle is always
suppressed by an external magnetic field. We do not consider time-varying fields here.
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UHU−1 ¼

0
BBB@

mn − Δ=2 − i
2
Γn

mn þ Δ=2 − i
2
Γn

mn þ Δ=2 − i
2
Γn

mn − Δ=2 − i
2
Γn

1
CCCA: ðA27Þ

In these expressions, we have taken mn real and defined
Δ≡ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2nB2 þH12H21

p
, and we use sθ and cθ to denote

sin θ and cos θ, with θ as given above. We have also defined
c1;2 ¼ N1;2

ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
, s1;2 ¼ N1;2

ffiffiffiffiffiffiffiffiffiffi
1 − z

p
with z ¼ 2μnB=Δ

and N2
1;2 ¼ jH12ð1� zÞj þ jH21ð1 ∓ zÞj.

2. Transition probabilities

The transition probabilities are given in terms of the
matrix U by

Pi→j ¼ jUkiU−1
jk e

−iMktj2; ðA28Þ

with MK the mass of eigenstate k. As mentioned, because
the ΔS ¼ �2 amplitudes do not mix spins, the probability
for a neutron to oscillate into an antineutron of the opposite
spin (or vice versa) is computed to be zero,

Pjn;þi→jn̄;−i ¼ Pjn̄;þi→jn;−i ¼ 0: ðA29Þ

We find the probability as a function of time for a neutron at
t ¼ 0 to transition to an antineutron of the same spin (and
omitting superfluous spin indices) to be

Pjni→jn̄i ¼
2jH21j2
jΔj2

�
cosh

ΔΓt
2

− cosΔmt

�
e−Γnt; ðA30Þ

and that for an antineutron at t ¼ 0 to oscillate to a neutron,
it is

Pjn̄i→jni ¼
2jH12j2
jΔj2

�
cosh

ΔΓt
2

− cosΔmt

�
e−Γnt: ðA31Þ

We note here that, for Γ12 ¼ 0, our expressions for the
oscillation probabilities in Eqs. (A30) and (A31) agree with
standard formulas that have appeared in the literature [7]
and, in particular, are suppressed when μnB ≫ jH12j, jH21j.
The current experimental limit on the 16O lifetime translates
to jH12;21j≲ 10−33 GeV.

[1] A. D. Sakharov, Usp. Fiz. Nauk 161, 61 (1991) [Pis’ma Zh.
Eksp. Teor. Fiz. 5, 32 (1967)].

[2] F. R. Klinkhamer and N. S. Manton, Phys. Rev. D 30, 2212
(1984).

[3] V. A. Kuzmin, Phys. Rev. Lett. 44, 1316 (1980); R. N.
Mohapatra and R. E. Marshak, Pis’ma Zh. Eksp. Teor. Fiz.
12, 335 (1970); Phys. Rev. Lett. 44, 1644 (1980).

[4] K. Babu et al., arXiv:1310.8593; arXiv:1311.5285; D. G.
Phillips, II et al., Phys. Rep. 612, 1 (2016).

[5] R. N. Mohapatra, J. Phys. G 36, 104006 (2009); E.
Herrmann, arXiv:1408.4455; K. S. Babu and R. N.
Mohapatra, Phys. Rev. D 91, 013008 (2015); P. S. B. Dev
and R. N. Mohapatra, Phys. Rev. D 92, 016007 (2015);
J. M. Arnold, B. Fornal, and M. B. Wise, Phys. Rev. D 87,
075004 (2013).

[6] A. Addazi, J. High Energy Phys. 04 (2015) 153; Phys. Lett.
B 757, 462 (2016).

[7] R. N. Mohapatra and R. E. Marshak, Phys. Lett. 94B, 183
(1980); R. Cowsik and S. Nussinov, Phys. Lett. 101B, 237
(1981).

[8] K. Abeet al. (Super-Kamiokande Collaboration), Phys. Rev.
D 91, 072006 (2015).

[9] E. Friedman and A. Gal, Phys. Rev. D 78, 016002 (2008).
[10] S. Ipek, D. McKeen, and A. E. Nelson, Phys. Rev. D 90,

076005 (2014).
[11] A. Ghalsasi, D. McKeen, and A. E. Nelson, Phys. Rev. D

92, 076014 (2015).
[12] Z. Berezhiani and A. Vainshtein, arXiv:1506.05096.
[13] K. Fujikawa and A. Tureanu, arXiv:1510.00868.
[14] S. Gardner and X. Yan, Phys. Rev. D 93, 096008 (2016).
[15] R. Allahverdi and B. Dutta, Phys. Rev. D 88, 023525

(2013).
[16] Z. Berezhiani, arXiv:1507.05478; Z. Berezhiani and L.

Bento, Phys. Rev. Lett. 96, 081801 (2006).
[17] M. I. Buchoff and M. Wagman, Phys. Rev. D 93, 016005

(2016).
[18] E. L. Berger, Q.-H. Cao, C.-R. Chen, G. Shaughnessy, and

H. Zhang, Phys. Rev. Lett. 105, 181802 (2010); I. Baldes,
N. F. Bell, and R. R. Volkas, Phys. Rev. D 84, 115019
(2011).

CP-VIOLATING BARYON OSCILLATIONS PHYSICAL REVIEW D 94, 076002 (2016)

076002-7

http://dx.doi.org/10.3367/UFNr.0161.199105h.0061
http://dx.doi.org/10.1103/PhysRevD.30.2212
http://dx.doi.org/10.1103/PhysRevD.30.2212
http://dx.doi.org/10.1103/PhysRevLett.44.1316
http://dx.doi.org/10.1103/PhysRevLett.44.1644.2
http://arXiv.org/abs/1310.8593
http://arXiv.org/abs/1311.5285
http://dx.doi.org/10.1016/j.physrep.2015.11.001
http://dx.doi.org/10.1088/0954-3899/36/10/104006
http://arXiv.org/abs/1408.4455
http://dx.doi.org/10.1103/PhysRevD.91.013008
http://dx.doi.org/10.1103/PhysRevD.92.016007
http://dx.doi.org/10.1103/PhysRevD.87.075004
http://dx.doi.org/10.1103/PhysRevD.87.075004
http://dx.doi.org/10.1007/JHEP04(2015)153
http://dx.doi.org/10.1016/j.physletb.2016.04.018
http://dx.doi.org/10.1016/j.physletb.2016.04.018
http://dx.doi.org/10.1016/0370-2693(80)90853-9
http://dx.doi.org/10.1016/0370-2693(80)90853-9
http://dx.doi.org/10.1016/0370-2693(81)90302-6
http://dx.doi.org/10.1016/0370-2693(81)90302-6
http://dx.doi.org/10.1103/PhysRevD.91.072006
http://dx.doi.org/10.1103/PhysRevD.91.072006
http://dx.doi.org/10.1103/PhysRevD.78.016002
http://dx.doi.org/10.1103/PhysRevD.90.076005
http://dx.doi.org/10.1103/PhysRevD.90.076005
http://dx.doi.org/10.1103/PhysRevD.92.076014
http://dx.doi.org/10.1103/PhysRevD.92.076014
http://arXiv.org/abs/1506.05096
http://arXiv.org/abs/1510.00868
http://dx.doi.org/10.1103/PhysRevD.93.096008
http://dx.doi.org/10.1103/PhysRevD.88.023525
http://dx.doi.org/10.1103/PhysRevD.88.023525
http://arXiv.org/abs/1507.05478
http://dx.doi.org/10.1103/PhysRevLett.96.081801
http://dx.doi.org/10.1103/PhysRevD.93.016005
http://dx.doi.org/10.1103/PhysRevD.93.016005
http://dx.doi.org/10.1103/PhysRevLett.105.181802
http://dx.doi.org/10.1103/PhysRevD.84.115019
http://dx.doi.org/10.1103/PhysRevD.84.115019


[19] X.-W. Kang, H.-B. Li, and G.-R. Lu, Phys. Rev. D 81,
051901 (2010).

[20] S. L. Glashow, arXiv:1007.4140.
[21] V. A. Kuzmin, arXiv:hep-ph/9609253.
[22] K. Aitken, D. McKeen, T. Neder, and A. E. Nelson

(in preparation).

[23] S. Gardner and E. Jafari, Phys. Rev. D 91, 096010
(2015).

[24] H. K. Dreiner, H. E. Haber, and S. P. Martin, Phys. Rep. 494,
1 (2010).

[25] S. Gardner and X. Yan, Phys. Rev. D 93, 096008
(2016).

DAVID MCKEEN and ANN E. NELSON PHYSICAL REVIEW D 94, 076002 (2016)

076002-8

http://dx.doi.org/10.1103/PhysRevD.81.051901
http://dx.doi.org/10.1103/PhysRevD.81.051901
http://arXiv.org/abs/1007.4140
http://arXiv.org/abs/hep-ph/9609253
http://dx.doi.org/10.1103/PhysRevD.91.096010
http://dx.doi.org/10.1103/PhysRevD.91.096010
http://dx.doi.org/10.1016/j.physrep.2010.05.002
http://dx.doi.org/10.1016/j.physrep.2010.05.002
http://dx.doi.org/10.1103/PhysRevD.93.096008
http://dx.doi.org/10.1103/PhysRevD.93.096008

