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Vortex electron beams are freely propagating electron waves carrying adjustable orbital angular
momentum with respect to the propagation direction. Such beams were experimentally realized just a few
years ago and are now used to probe various electromagnetic processes. So far, these experiments used the
single vortex electron beams, either propagating in external fields or impacting a target. Here, we
investigate the elastic scattering of two such aligned vortex electron beams and demonstrate that this
process allows one to experimentally measure features which are impossible to detect in the usual plane-
wave scattering. The scattering amplitude of this process is well approximated by two plane-wave
scattering amplitudes with different momentum transfers, which interfere and give direct experimental
access to the Coulomb phase. This phase (shift) affects the scattering of all charged particles and has thus
received significant theoretical attention but was never probed experimentally. We show that a properly
defined azimuthal asymmetry, which has no counterpart in plane-wave scattering, allows one to directly
measure the Coulomb phase as function of the scattering angle.

DOI: 10.1103/PhysRevD.94.076001

I. INTRODUCTION

Electron vortex beams (or twisted electrons) are electron
states with helical wave fronts, which carry nonzero orbital
angular momentum (OAM) projection on the average
propagation direction [1]. Following the suggestion of
Ref. [2], several groups recently reported the production
of vortex electrons with energies up to 300 keV and an
OAM as large as 100ℏ [3]. The state-of-the-art technology
allows one now to manipulate vortex electron beams [4],
focus them to angstrom-size focal spots [5], or to use them
as a novel probe of various electromagnetic phenomena
such as an interplay of Larmor and Gouy rotation in the
longitudinal magnetic field [6] or the acquisition of the
phase vortex in the field of an artificial magnetic monopole
[7]. Several other proposals to use vortex electrons include
the preparation of structured beams [8], exploration of
atomic transitions [9,10], and detection of unusual features
of the electromagnetic radiation they emit [11,12]. These
proposals still await experimental verification.
In all experiments conducted so far, however, the vortex

electrons were impinging on a fixed target, either a screen
or a material specimen to be probed by vortex electrons.
One can readily envision that, by modifying the instru-
mentation, a “collider” of vortex electrons can be formed in
which the two vortex electron beams counterpropagate
colinearly and are focused upon a common focal spot. Such
a collision of vortex electrons will lead to elastic scattering

and other QED processes and can be studied with conven-
tional electron and photon detectors and spectrometers.
Because of the new degrees of freedom of vortex beams,
such collision experiments enable one to probe details of
the scattering processes to which the usual collisions are
insensitive [13].
There are publications which discuss scattering proc-

esses involving vortex electrons and other particles.
However, these authors considered either simplified proc-
esses with “scalar” vortex particles [13,14] or Compton
scattering in which only one incident particle was twisted
[8,15]. Here, we investigate the simplest QED scattering
process, Møller (elastic electron-electron) scattering, in
which both initial electrons are twisted. A brief report
on these calculations appeared in Ref. [16]. We demon-
strated there that this process serves as an analog of the
classical Young double-slit experiment but in momentum
space. Just as in any interferometric technique, this experi-
ment allows one to probe the relative phase between the
two “momentum-space paths,” the two plane-wave scatter-
ing amplitudes with different momentum transfers. For
charged particle scattering, it allows one to measure the
momentum-transfer dependence of the Coulomb phase, a
quantity which has received significant theoretical attention
but which has never been measured experimentally.
In this paper, we provide further details on these

calculations, together with a qualitative as well as quanti-
tative numerical analysis of the results. The structure of this
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paper is the following. In the next section, we calculate the
Møller scattering of coaxial Bessel vortex electrons. In
particular, we highlight the all-important modifications
to the transverse momentum distribution, which reveal
the intensity fringes arising from interference of two
plane-wave scattering configurations. Then, in Sec. III,
we demonstrate that this interference pattern gets distorted
by the momentum-transfer-dependent Coulomb phase
and show how this dependence can be extracted from the
measurements. In Sec. IV, we discuss the feasibility for
detecting the interference and Coulomb phase in such
electron-electron collisions. We close the paper with a
summary of our findings. Several Appendixes contain
supplementary material on vortex electrons and on
ee → e0e0 helicity amplitudes.

II. MØLLER SCATTERING OF VORTEX
ELECTRONS

A. Notation and kinematics

Calculation of Møller scattering of Bessel electrons
must be conducted within the fully relativistic framework.
To make the description self-contained, we start by
introducing this formalism and applying it to Bessel
electrons. In this work, we use the definitions and con-
ventions of Ref. [10]; other works, such as Refs. [17,18],
use slightly different conventions. Throughout the paper,
we use relativistic Lorentz-Heaviside units: ℏ ¼ c ¼ 1,
e2 ¼ 4παem. Bold letters correspond to transverse momenta
with respect to the chosen z axis (the beam axis), and the
three-vectors are labeled with the vector symbol.
The plane-wave electron with the four-momentum kμ ¼

ðE;k; kzÞ, where k ¼ jkjðcosϕk; sinϕkÞ, jkj ¼ j~kj sin θ,
kz ¼ j~kj cos θ, and helicity λ ¼ �1=2 (the eigenvalue of
the operator of the spin component along the electron
momentum direction) is described by

ΨkλðxÞ ¼
Nffiffiffiffiffiffi
2E

p ukλe−ikx: ð1Þ

The bispinor ukλ used here is

ukλ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþme
p

wðλÞ

2λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E −me

p
wðλÞ

�
; wðþ1=2Þ ¼

�
ce−iϕk=2

seiϕk=2

�
;

wð−1=2Þ ¼
�
−se−iϕk=2

ceiϕk=2

�
; ð2Þ

where c≡ cosðθ=2Þ, s≡ sinðθ=2Þ. The bispinors are
normalized as ūkλ1ukλ2 ¼ 2meδλ1;λ2 and N ¼ 1=

ffiffiffiffi
V

p
is the

normalization coefficient corresponding to one particle per
large volume V. We use this basis of plane-wave solutions
of the Dirac equation to construct twisted electron, or the
Bessel vortex state,

ΨϰmkzλðxÞ ¼
Ntwffiffiffiffiffiffi
2E

p
Z

d2k
ð2πÞ2 aϰmðkÞukλe

−ikx;

Ntw ¼
ffiffiffiffiffiffiffi
π

RL

r
; ð3Þ

where the Fourier amplitude is

aϰmðkÞ ¼ ð−iÞmeimϕk

ffiffiffiffiffiffi
2π

ϰ

r
δðjkj − ϰÞ: ð4Þ

Here, the normalization coefficient Ntw differs from the
plane-wave expression N but still corresponds to one
Bessel state electron per large cylindric volume
V ¼ πR2Lz. For a detailed discussion of how the twisted
states look in the coordinate space and how they must be
normalized, see Refs. [10,13,15,18].
Notice that with the definition (3) of the vortex electrons

we already fix a reference frame and the axis z. In
particular, the wave function ΨϰmkzλðxÞ in Eq. (3) depends
on this choice and is not Lorentz invariant. It describes an
electron that moves along axis z with the longitudinal
momentum kz, while its transverse motion is represented by
a superposition of plane waves with transverse momenta of
equal modulus ϰ and of all azimuthal angles ϕk. The so-
constructed Bessel electron state possesses definite energy
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϰ2 þ k2z þm2

e

p
, definite helicity λ, as well as a well-

defined value of the total angular momentum projection
on the z axis: jz ¼ m. Notice that m is a half-integer
number [10].
The orbital angular momentum and spin are not sepa-

rately conserved due to the intrinsic spin-orbital interaction
of the twisted electron [17]. However, in the paraxial
approximation, when θ ≪ 1, the spin-orbital interaction
is suppressed. If we neglect the spin-orbit interaction, we
have two conserved quantum numbers: the z projection of
the spin sz, which in this approximation is equal to helicity
λ, and the z-projection of the orbital angular momentum
l ¼ m − λ. One could also define Bessel electron states in
which the spinor ukλ contains an extra factor expðiλϕÞ,
while the Fourier amplitude (4) is constructed with integer
l instead of half-integer m [18]. This is also a valid Bessel
electron solution; its total angular momentum depends on
helicity, jz ¼ lþ λ, while the parameter l characterizes
the orbital angular momentum independent of helicity. The
two conventions differ in how an unpolarized electron is
defined; in this work, we will stick to the former definition.
To describe the collision of two aligned Bessel electrons,

we take the first electron as in (3) with all parameters
carrying subscript 1, while the second electron is con-
structed in a similar fashion with respect to the same z axis
but moving in the opposite direction. The Fourier ampli-
tude for the second electron aϰ2m2

ðk2Þ then contains the
azimuthal factor e−im2ϕ2, because the azimuthal angle of
any given plane-wave component ϕ2 is written in the
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chosen reference frame, which is π-rotated with respect to
the “native” reference axis for that electron.
Performing a longitudinal boost, we find the frame in

which the longitudinal momenta of initial electrons are
balanced, i.e. k2z ¼ −k1z, while the other parameters can
still be different from each other: m2 ≠ m1, ϰ2 ≠ ϰ1, and
therefore E2 ≠ E1. The two final electrons in the elastic
ee → e0e0 scattering are described by plane waves with
four-momenta k0μ1 and k0μ2 . Their longitudinal momenta
are also balanced, k02z ¼ −k01z, and their energies satisfy
E0
1 þ E0

2 ¼ E1 þ E2. However, their final transverse
momenta are not required to sum up to zero or to any
fixed vector, because the initial electrons are not in a state
of definite transverse momentum. The only kinematical
restriction is that the total final transverse momentumK0 ¼
k0
1 þ k0

2 lies within a ring defined by ϰ1 and ϰ2 [13]:

jϰ1 − ϰ2j ≤ jK0j ≤ ϰ1 þ ϰ2: ð5Þ

For such a scattering of two Bessel beams, the final
phase space grows from the single-particle angular distri-
bution dΩ or the transverse momentum d2k0

1 to the four-
dimensional transverse momentum space d2k0

1d
2k0

2 ¼
d2k0

1d
2K0. As a consequence, further information can be

extracted from the structures in the final kinematical
distributions, such as the K0-distribution at fixed k0

1.
If we select a kinematical configuration with final

momenta k0
1 and k0

2, then the final energies are uniquely
defined:

E0
1 ¼ E1 þ ΔE; E0

2 ¼ E2 − ΔE;

ΔE ¼ k02
1 − k02

2

2ðE1 þ E2Þ
−
E1 − E2

2
: ð6Þ

The final longitudinal momentum k01z ¼ −k02z ¼ k0z is also
defined and can be calculated as

ðk0zÞ2 ¼ ðE1 þΔEÞ2 −k02
1 −m2 ¼ ðE2 −ΔEÞ2 −k02

2 −m2:

ð7Þ

B. Scattering amplitude and cross section

The high-energy particle scattering is usually calculated
by assuming that the initial and final states are well
approximated by plane waves. The scattering matrix
element for ee → e0e0 plane-wave scattering with initial
momenta k1 and k2 and final momenta k01 and k02 is then
written as

SPW ¼ ið2πÞ4δð4Þðk1 þ k2 − k01 − k02Þ

·
Mðk1; k2; k01; k02Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16E1E0
1E2E0

2

p · N4; ð8Þ

where the invariant amplitudeM is calculated according to
the standard Feynman rules and where N is the familiar
plane-wave normalization coefficient. Although in real
experiment each initial particle is a wave packet centered
at hkii, the momentum spread inside each of these
packets is typically so small that the invariant amplitude
Mðk1; k2; k01; k02Þ, which is a smooth function of momenta,
can be taken constant and equal to Mðhk1i; hk2i; k01; k02Þ.
In this approximation, we can split the transition proba-
bility unambiguously into the cross section and flux
factors [19].
In this work, we deal with initial states of essentially

non-plane-wave nature, and we aim to investigate how the
invariant amplitude varies as a function of k1 and k2.
Therefore, we need to generalize the scattering amplitude to
such situations. In Appendix A, we remind the reader of
the general treatment of the scattering of arbitrary mono-
chromatic wave packets [14,19]. In this section, we
simplify this general theory by considering the two initial
particles to be the Bessel vortex states. With the definition
(3), the S-matrix element can be written as

S ¼
Z

d2k1

ð2πÞ2
d2k2

ð2πÞ2 aϰ1m1
ðk1Þaϰ2m2

ðk2ÞSPW
N2

tw

N2

¼ ið2πÞ4δðΣEÞδðΣkzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16E1E0

1E2E0
2

p N2
twN2

ð−iÞm1þm2

ð2πÞ3 ffiffiffiffiffiffiffiffiffiffi
ϰ1ϰ2

p · J ; ð9Þ

where δðΣEÞ≡ δðE1 þ E2 − E0
1 − E0

2Þ, δðΣkzÞ≡
δðk1z þ k2z − k01z − k02zÞ, and the vortex amplitude is
defined as

J ¼
Z

d2k1d2k2eim1ϕ1−im2ϕ2δðjk1j − ϰ1Þδðjk2j − ϰ2Þ

× δð2Þðk1 þ k2 −K0Þ ·Mðk1; k2; k01; k02Þ: ð10Þ

Squaring the S-matrix element, regularizing the squares of
delta-functions as

½δðΣEÞδðΣkzÞ�2 ¼ δðΣEÞδðΣkzÞ
TL
ð2πÞ2 ; ð11Þ

dividing the result by the total observation time, and
integrating over the final longitudinal momenta, we obtain
the event rate:

dν¼ 1

16E1E2ðE1þE2Þk0z
LN4

tw
jJ j2

ð2πÞ6ϰ1ϰ2
d2k0

1d
2k0

2: ð12Þ

As explained in Ref. [19], a splitting of the event rate into
the differential cross section and the (conventional) lumi-
nosity can be unambiguously done only for plane waves,
while for non-plane-wave collisions it is a matter of
convention. Following Ref. [13], we define here the flux
according to
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j ¼ ðj~v1j þ j~v2jÞ
Z

d3rjψ1ð~r1Þj2jψ2ð~r2Þj2

¼ kzðE1 þ E2Þ
E1E2

LN4
tw · I ; ð13Þ

where ~v1 and ~v2 are the velocities of the colliding electrons
and

I ¼ ϰ1ϰ2
2π

Z
R

0

rdr½Jm1
ðϰ1rÞ�2½Jm2

ðϰ2rÞ�2: ð14Þ

Here, R is the same radius of the large but finite quantiza-
tion volumewhich was introduced in (3). This definition for
the flux allows us to define the generalized cross section,

dσ ¼ dν
j
¼ 1

16ðE1 þ E2Þ2kzk0z
1

I
jJ j2

ð2πÞ6ϰ1ϰ2
d2k0

1d
2k0

2:

ð15Þ
The dynamics of the scattering process is determined by

the vortex amplitude J defined in (10). It contains four
integrations and four delta-functions, so that the integral
can be done exactly. It is nonzero only if the inequality (5)
is satisfied, and there are only two points in the entire
ðk1;k2Þ transverse momentum space which contribute to
its value. They correspond to the momenta k1 and k2 with
the absolute values ϰ1 and ϰ2, respectively, and the
azimuthal angles

configuration a∶ ϕ1 ¼ ϕK0 þ δ1; ϕ2 ¼ ϕK0 − δ2;

configuration b∶ ϕ1 ¼ ϕK0 − δ1; ϕ2 ¼ ϕK0 þ δ2:

ð16Þ
Here,

δ1 ¼ arccos

�
ϰ21 þ K2 − ϰ22

2ϰ1K

�
;

δ2 ¼ arccos

�
ϰ22 þ K2 − ϰ21

2ϰ2K

�
ð17Þ

are the internal angles of the triangle with the sides ϰ1, ϰ2,
jK0j, where for the sake of brevity we use K ¼ jK0j. These
two kinematical configurations are shown in Fig. 1. The
area of this triangle is

Δ ¼ 1

2
Kϰ1 sin δ1 ¼

1

2
Kϰ2 sin δ2 ¼

1

2
ϰ1ϰ2 sinðδ1 þ δ2Þ

¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K2ϰ21 þ 2K2ϰ22 þ 2ϰ21ϰ

2
2 − K4 − ϰ41 − ϰ42

q
: ð18Þ

The result for the vortex amplitude J can then be
compactly written as [13]

J ¼ eiðm1−m2ÞϕK0
ϰ1ϰ2
2Δ

× ½Maeiðm1δ1þm2δ2Þ þMbe−iðm1δ1þm2δ2Þ�: ð19Þ

The plane-wave amplitudesMa andMb are calculated for
the two distinct initial momentum configurations shown in
Fig. 1 but for the same final momenta k01 and k02.
Finally, we need to insert the plane-wave amplitudes into

Eq. (19) to obtain the amplitude for the scattering of two
Bessel electrons. In the Born (one-photon exchange)
approximation, the helicity amplitudes of Møller scattering
are [20]

MBorn ¼ Mt þMu

¼ 4παem

�
ū01γ

μu1ū02γμu2
t

−
ū02γ

μu1ū01γμu2
u

�
; ð20Þ

where each spinor is taken in the form (2). Here, t ¼
ðk1 − k01Þ2 ¼ ðk2 − k02Þ2 and u ¼ ðk1 − k02Þ2 ¼ ðk2 − k01Þ2
are the two relativistic invariant Mandelstam variables
which characterize the momentum transfer in two-particle
scattering [20]. They are different for the two interfering
plane-wave amplitudes in (19):

ta − tb ¼ 2k0
1ðk1a − k1bÞ ¼ 4jk0

1jϰ1 sin δ1 sinðϕ0
1 − ϕK0 Þ:

ð21Þ

kk1a

kk2a

x

1

2 K

K K

kk1b

kk 2b

x
1

2
K

FIG. 1. The two kinematical configurations in the transverse plane that satisfy momentum conservation laws in the scattering of two
Bessel electron states.
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The third Mandelstam variable s¼ðk1þk2Þ2¼ðk01þk02Þ2
describes the total energy in the center of motion system
squared and is the same for the two amplitudes.
In Appendix B, we give compact expressions for these

helicity amplitudes. Apart from the azimuthally dependent
kinematical factors, which can be reabsorbed in the
definition of initial and final wave functions, the Born
amplitude is purely real. Multiphoton exchanges modify
this expression, and the result will be discussed in Sec. III.

C. Bessel vortex electron scattering as a double-slit
experiment in momentum space

Before we shall further analyze the cross section for the
scattering of two Bessel beams, let us first look at the result
(19) from a different perspective. We argued in Ref. [16]
that the elastic scattering of Bessel vortex electrons closely
resembles the seminal Young double-slit experiment but in
momentum space. In the usual double-slit experiment, the
wave emitted from a source propagates along two different
spatial paths through two slits in a plate and interferes with
itself on a distant screen, as shown in the upper image of
Fig. 2. The superposition of the two amplitudes leads to a
spatially periodic signal. Any change in the physical
conditions along either path will be revealed by a shift
of the interference pattern on the screen.
Equation (19) represents the momentum-space counter-

part of this setup. The ee → e0e0 scattering amplitude with
pure Bessel vortex electrons in the initial state is written as
a sum of two plane-wave amplitudes Ma and Mb, which
interfere in the cross section and produce interference
fringes. This can be viewed as if the scattering process
evolves along two well-defined and well-separated “paths”

in momentum space as schematically shown in the lower
image of Fig. 2. The two momentum-space paths end up in
the same final-state kinematics, but the momentum transfers
in each amplitude are different. The two plane-wave ampli-
tudes are accompanied with phase factors which can be
adjusted by selecting the final electron momenta. By scan-
ning the cross section across the allowed region of k01 and k

0
2,

one observes the interference fringes in the final electrons’
angular distribution. This is analogous to the intensity stripes
seen on a distant screen in the usual double-slit experiment.
The exact position and shape of the interference pattern is
sensitive to the phase difference between Ma and Mb, and
we will exploit this feature in Sec. III.
The interference pattern expected here is different from

many other similarly looking examples of interference in
collision experiments. In most cases, an initial state evolves
into a final state via different intermediate states, such as
different excited states of an atom or different virtual
particles in high-energy collisions. For example, in neutrino
oscillations [21], a neutrino is produced in a state of definite
flavor and propagates to the detection point as a super-
position of three mass eigenstates. For a fixed neutrino
energy, they correspond to different momenta, and their
interference causes spatially oscillating probability for
changing flavor between production and the detection
point. Although one can see it as the momentum-space
analog of the two-slit experiment [22], we stress that in this
case the interfering amplitudes correspond to the same
initial- and final-state kinematics but to different paths in
the state space in the course of their propagation. In
condensed matter physics, moreover, one encounters exam-
ples of interference between different momentum-space
configurations of the same (quasi)particle along the same
spatial path. Due to complicated dispersion law, an electron
with definite energy may have two different (quasi)
momenta which may interfere and may lead to a spatially
varying electron density [23]. In this case, it is the medium
that plays the instrumental role as it can absorb the extra
momentum without destroying the coherence.
In contrast to these examples, elastic scattering of Bessel

electron states exhibits interference between two ampli-
tudes with the same state-space evolution but with different
combinations of momenta, and it arises in free space,
without any medium to support the evolution. Such
examples were not known before.

D. New dimension for the transverse
momentum distributions

In the usual ee → e0e0 plane-wave scattering, the differ-
ential cross section contains the delta-function with the
transverse momenta:

dσPW ∝ δð2Þðk1 þ k2 − k0
1 − k0

2ÞjMj2d2k0
1d

2k0
2

¼ jMj2d2k0
1: ð22Þ

FIG. 2. Schematic illustration of the classic Young experiment
in coordinate space (upper image) and of the double-slit experi-
ment in momentum space (lower image). In the latter case, the
arrows show that in the collision of two Bessel electron states (3)
only two momentum combinations lead to any final plane-wave
state.
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One can investigate the differential cross section in the k0
1-

plane, but their remains no freedom in choosing the
transverse momentum of the second final particle once
the (transverse) momentum of the first final particle is
fixed. In particular, in the center of motion frame,
k0
2 ¼ −k0

1, and K0 ¼ 0.
For Bessel vortex beam scattering, the cross section is

given by Eq. (15). The main difference, when compared to
the plane-wave scattering, is that the angular distribution
acquires a new dimension, as it depends explicitly on the
transverse momenta of both final particles,

dσtw ∝ jJ j2d2k0
1d

2k0
2 ¼ jJ j2d2k0

1d
2K0; ð23Þ

where J is given by (19). This means one can now study
the k0

2-distribution or K0-distribution at fixed k0
1. This

distribution must lie inside the annular region shown in
Fig. 3. This ring is centered at zero for the distribution on
the K0-plane and at −k0

1 for the k0
2-plane, and the

interference pattern resulting from the momentum-space
double-slit experiment will reveal itself as intensity stripes
inside this ring.
Note also that this ring has a preferred orientation

since the direction of k0
1 leads to a pattern of ðk0

1;K
0Þ-

correlations. It is convenient to quantify these correlations
by means of the two azimuthal asymmetries:

A∥ ≡
R
dσ cosðϕ0

1 − ϕK0 ÞR
dσ

; A⊥ ≡
R
dσ sinðϕ0

1 − ϕK0 ÞR
dσ

:

ð24Þ

The integrals here can span either the entire space of
momentum configurations or a specific subregion inside
the ring. A nonzero and positive A∥ indicates that k0

1 tends
to dominate over k0

2; a nonzero A⊥ signals the loss of
reflection symmetry in the transverse plane with regard to
the direction of k0

1.

E. Angular distribution: Qualitative discussion

Before moving to numerical results, let us develop some
intuition for the transverse momentum distribution in the

simple case of ultrarelativistic small-angle scattering. In
this case, me ≪ E, jtj ≪ s, and the u-channel contribution
Mu can be neglected [20]. The polar angles of the initial
and final particles are

θ1 ≈
ϰ1
kz

; π − θ2 ≈
ϰ2
kz

; θ01 ≈
jk0

1j
k0z

; π − θ02 ≈
jk0

2j
k0z

;

ð25Þ

which means that c1; c01; s2; s
0
2 ≈ 1, while s1; s01; c2; c

0
2 are

small. The fermion helicity is conserved in the ultra-
relativistic limit, so that the helicity amplitude can be
written as

M ¼ 8παem
s
t
e−iλ1ðϕ1−ϕ0

1
Þeiλ2ðϕ2−ϕ0

2
Þδλ1λ01δλ2λ02 : ð26Þ

Substituting these amplitudes into (19), taking into account
that configurations a and b correspond to specific initial
azimuthal angles (16), one obtains the vortex amplitude
squared for the unpolarized case,

1

4

X
λi

jJ j2 ¼ 64π2α2ems2
ϰ21ϰ

2
2

4Δ2

�
1

t2a
þ 1

t2b
þ 2

tatb

× cosð2m1δ1 þ 2m2δ2Þ cos δ1 cos δ2
�
: ð27Þ

When deriving the above expression, we defined the
unpolarized vortex electron as an incoherent superposition
of vortex states with a fixed value of the z-projection of
total angular momentum m and opposite helicities λ. This
convention is not unique, as we described above. One can
also define the unpolarized electron by fixing the orbital
angular momentum l ¼ m − λ, which is conserved in the
paraxial limit. With this definition, the last term in the
brackets of (27) becomes cosð2l1δ1 þ 2l2δ2Þ. Which
convention is more appropriate eventually depends on
the details of experiment, but their difference is not
essential for the problem we consider.
Let us now analyze the behavior of the vortex amplitude

squared jJ j2 inside the annular K0 region. Equation (27)
shows that it depends on K ¼ jK0j via quantities δ1, δ2 and
leads to a concentric ring structure. These are the interfer-
ence fringes characteristic of Young’s two-slit experiment
but which now appear in the momentum space. Of course,
the particular number of stripes in this interference pattern
depend on the values of m1 and m2. Due to the 1=Δ2 factor
in (27), the cross section diverges near the borders of the
annular region, where δ1, δ2 ≈ 0 or π.
Apart from dependence on δ1, δ2, the angle-differential

cross section is also sensitive to the momentum transfer
squared ta;b. This dependence is not azimuthally symmet-
ric, as it involves all four transverse vectors, which can be
visualized by combining Figs. 1 and 3. As the result, we

1

K

k

k2

FIG. 3. At fixed transverse momentum k0
1, the allowed values

of k0
2 fill the annular region centered at −k0

1 (gray ring). The total
transverse momentum K0 fills a similar ring (shown in dashed
lines) around the origin.
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expect a nonzero asymmetry parameter A∥. To estimate its
value, we assume further that jk0

ij ≫ ϰi. Then,

1

ta;b
≈ −

1

k02
1

�
1þ 2ϰ1

jk0
1j
cosðϕ0

1 − ϕK0 ∓ δ1Þ
�
: ð28Þ

Grouping the factors in Eqs. (15) and (27) that do not
depend on the final-state kinematics into the coefficient C,
we express the Born-level cross section in this approxi-
mation as

dσBorn
d2k0

1d
2K0 ¼

C
Δ2

2

k04
1

�
1þ 4ϰ1

jk0
1j
cos δ1 cosðϕ0

1 − ϕK0 Þ
�

× ½1þ cosð2m1δ1 þ 2m2δ2Þ cos δ1 cos δ2�:
ð29Þ

The overall effect is that the cross section increases
when K0 is aligned with k0

1, so that one can estimate
A∥ ∼ ϰ1=jk0

1j. However, there is no up-down asymmetry on
this plane; A⊥ ¼ 0. This is due to the absence of terms
proportional to sinðϕ0

1 − ϕK0 Þ or its odd powers.

F. Numerical results for pure Bessel electrons

To corroborate the above qualitative analysis, the left
panel of Fig. 4 shows the numerical results for the differ-
ential cross section in the K0-plane for the following set of
parameters:

E1 ¼ 2.1 MeV; ϰ1 ¼ 200 keV; ϰ2 ¼ 100 keV;

jk0
1j ¼ 500 keV; m1 ¼ 1=2; m2 ¼ 13=2: ð30Þ

All other kinematic parameters can be calculated from these
input numbers. In this plot, k0

1 is directed to the right. As
seen from this figure, both effects, the interference fringes
and the correlation betweenK0 and k0

1, are readily observed
in the cross sections. The number of interference fringes
depends not only on the values of mi but also on which of

the two ϰi’s is the larger one. For example, if ϰ1 ≫ ϰ2,
then the inner angle of the triangle δ1 always stays small
across the ring, while δ2 changes from zero to π as one
moves from the outer to the inner boundary. In this case,
one needs large m2 and not large m1 in order to produce
many interference fringes. One also observes that the cross
section grows toward the boundaries.

G. Realistic vortex beams

As we mentioned above, the vortex amplitude squared
jJ j2 diverges at the boundaries of the transverse momentum
integration region due to the 1=Δ2 factor. This divergence is
not integrable. For plane-wave scattering, a similar diver-
gence appears if the transverse momentum delta-function is
squared: jSPWj2 ∝ ½δð2Þðk1 þ k2 − k0

1 − k0
2Þ�2. The stan-

dard remedy against such divergences in the event rate is
to regularize the expressions by calculating them in large but
finite volume and then to divide the event rate by the
corresponding flux, which also displays a similarly divergent
behavior. The obtained ratio is called the (generalized) cross
section, and it stays finite in the infinite-volume limit. In
the case of pure Bessel beams, the integration over the
available phase space behaves as logR, the radius of the
quantization volume. The flux is proportional to I given by
(14) which behaves in the same way. Thus, the cross section
remains finite in the infinite-R limit even for pure Bessel
states [13–15].
In practice, however, the formal remedy above is not

needed in realistic situations. The finite transverse extent of
the incoming vortex electrons, which is much smaller than
R, provides a natural regularization. To incorporate it, we
model initial electrons with a Gaussian-averaged Bessel
state:

ΨðxÞ¼
Z

dϰfðϰÞΨϰmkzλðxÞ; fðϰÞ∝ ffiffiffi
ϰ

p
exp

�
−
ðϰ− ϰ̄Þ2
2σ2

�
:

ð31Þ

FIG. 4. Left: Differential cross section for pure Bessel vortex beams, in arbitrary units, as a function of K0 for fixed k0
1 and for the

choice of parameters given in (30).Middle: the same for realistic Gaussian-averaged vortex beams averaged around ϰ̄i with σi ¼ ϰ̄i=20
at Kz ¼ 0. Right: The Kz-distribution of the interference fringes.
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Notice that the electron in this state is still monochromatic
and has the same m and λ as each pure Bessel electron in
the superposition. The monochromaticity is achieved by
varying kz in accordance with ϰ. Alternative profiles fðϰÞ
can also be used; the exact choice eventually depends on
the experimental realization of vortex electrons, but it has
little effect on our conclusions.
Averaging a monochromatic Bessel vortex state over ϰ

induces an averaging over a region of longitudinal momen-
tum. To take it into account, we return to the general
expression (9) and define the vortex amplitude as

hJ i ¼
Z

dϰ1dϰ2f1ðϰ1Þf2ðϰ2Þδðk1z þ k2z − KzÞ
Jffiffiffiffiffiffiffiffiffiffi
ϰ1ϰ2

p ;

ð32Þ

where the pure Bessel vortex amplitude J is given by (19).
Notice that longitudinal momenta of the two incoming
particles,

k1z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 −m2

e − ϰ21

q
; k2z ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
2 −m2

e − ϰ22

q
;

ð33Þ

are not necessarily equal. In the paraxial approximation,
their sum is very small, so that hJ i is strongly peaked at
Kz ¼ 0. A similar modification takes place for the flux,
which we do not describe in detail because we focus here
on the angular distribution and not on the absolute value of
the cross section.
The angular distribution for collision of realistic vortex

beams is now given by

dσ ∝
Z

jhJ ij2dKz · d2k0
1d

2k0
2; ð34Þ

where we explicitly indicate integration over the narrow Kz
region centered at zero and having width ∼σϰ=kz.
In Figs. 4 and 5, we present the numerical results for this

scattering setup. The incoming vortex electrons are aver-
aged here with the Gaussian profile with σi ¼ ϰ̄i=20, while
other parameters are the same as in (30). In the middle
panel of Fig. 4, we show the averaged distribution at fixed
Kz ¼ 0, which exhibits very similar interference fringes as
for the pure Bessel case shown in the left panel of Fig. 4 but
with the boundary divergences removed. Notice that the
middle panel of Fig. 4 is not a straightforward averaging of
the left panel, because weighting with the Gaussian profile
function is done at the level of amplitude, not the cross
section. This picture depends on Kz as shown in the right
panel of Fig. 4 in the ðKz; KÞ-plane with ϕK0 ¼ ϕ0

1. As ϰi
vary, the K0-ring shrinks and expands in the way which is
correlated with the total longitudinal momentum Kz.
Positive Kz corresponds to k1z > jk2zj, which occurs when
ϰ1 deviates down from ϰ̄1 by σ1 and ϰ2 deviates up from ϰ̄2

by σ2. The inner boundary of the ring, ϰ1 − ϰ2 with our
choice of parameters, decreases by σ1 þ σ2. As the result,
the interference fringes are expected to be oblique with the
angle ΔKz=ΔK of the order of the opening angle of
incoming vortex electrons, ϰ=kz.
We do not require the electron detectors in real experi-

ment to fully reconstruct the final momenta in 3D; we just
assume that the angular distribution will be measured. To
give predictions for this case, we need to integrate over Kz.
It results in a somewhat reduced but still sufficiently high
contrast of the interference fringes; see Fig. 5. It is this
distribution that can be observed experimentally and that
we shall further discuss in Sec. IV.

III. ACCESSING THE COULOMB PHASE

In addition to the interference in the angle-differential
cross sections, Møller scattering of vortex electrons gives
also access to a quantity which cannot be measured in the
usual plane-wave scattering. This is the phase of the
(complex) plane-wave scattering amplitude or, more pre-
cisely, how the phase of the complex scattering amplitude
depends on the scattering angle.

A. Coulomb phase and its role in particle scattering

In the one-photon exchange approximation, the
Coulomb scattering amplitude is purely real, up to ines-
sential phase factors that are related to the definition of the
incoming and outgoing wave functions as in (26). Higher-
order virtual corrections due to multiphoton exchanges give
rise to an imaginary part of the amplitude and after
exponentiation produce the phase ζ. Then, the plane-wave
scattering amplitude becomes complex, M ¼ jMjeiζ, and

FIG. 5. The K0-distribution of the Møller scattering cross
section, integrated over Kz, for realistic vortex beams and for
the same set of parameters as in Fig. 4.

IVANOV, SEIPT, SURZHYKOV, and FRITZSCHE PHYSICAL REVIEW D 94, 076001 (2016)

076001-8



both jMj and ζ depend on the scattering kinematics (the
energy and the scattering angle θ, or the invariant variables
s and t).
Within the quantum-mechanical treatment of pure

Coulomb scattering, this extra phase shift arises from the
long-range nature of the electromagnetic interactions,
which distort the incoming and outgoing waves even at
large distances. One can obtain the exact solution for the
outgoing wave with a phase shift which grows logarithmi-
cally with the separation and which depends on the
scattering angle [20]. This behavior is found also in
quantum-electrodynamical calculation of the imaginary
part of the two-photon exchange diagrams [24,25]. Due
to the IR divergence, one usually has to regularize the
calculation with a finite photon mass mγ , the Coulomb
phase diverging at mγ → 0. At fixed mγ, it displays
logarithmic dependence on the small scattering angle θ,

ζ ¼ ζ0ðmγÞ þ 2αemη lnð1=θÞ; ð35Þ

where, for electron-electron scattering,

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m4

e

sðs − 4m2
eÞ

s
¼ 1þ ð1 − vÞ2

2v
ð36Þ

and where v is the electron velocity in the center of motion
frame. For ultrarelativistic scattering, v → 1 and η ≈ 1, but
it grows when v ≪ 1. For example, Ekin ¼ 10 keV corre-
sponds to η ≈ 2.6. The above expression refers to the
Coulomb phase for the scattering of two particles with
the same (elementary) electric charge; one has to change
the sign for opposite charges.
For elastic scattering of charged hadrons, the role of this

Coulomb phase becomes more important. In this case, the
elastic scattering amplitude receives contributions from the
strong and electromagnetic interactions, M¼MsþMem.
The strong amplitude, together with its own phase which
can be very large, is usually poorly known and is the subject
of investigation. Therefore, one wishes to know the
Coulomb phase of Mem as accurately as possible in order
to probe the unknown strong phase via the interference
between the two contributions.
The task of extracting the strong phase via this effect is

further complicated by the fact that the influence of strong
and electromagnetic interactions cannot be fully separated.
The strong amplitude receives multiphoton corrections,
which show IR divergence, and it is only the phase
difference ζem − ζs which is IR finite. The electromagnetic
amplitude calculated at high orders of perturbation series
involves intermediate excited hadronic states, and therefore
its phase depends on how these states are modelled.
Calculation of the Coulomb phase sparked debates in the

1960s, which sometimes reverberate even today. The first
calculation of this phase in small-angle elastic proton-
nucleus collision was undertaken by Bethe in Ref. [26], in

the potential approach and within the WKB approximation.
Similar results were obtained later by other authors [27,28].
Another calculation [29] confronted these results, and the
controversy was resolved by West and Yennie [25] with the
direct diagrammatic calculation. In later works, more
refined calculations of the Coulomb phase were performed
[30–32], and these expressions were used to gain novel
insights into the electron-nucleus deep-inelastic scattering
and the elastic small-angle pp=pp̄ scattering [33–35].
More discussion on the role of the Coulomb phase on
extraction of the strong interaction amplitudes can be found
in the recent review [36]. This long history shows that the
Coulomb phase is an important quantity which has received
significant attention and which is needed for a safe
interpretation of various hadronic processes.

B. Extracting the Coulomb phase

Despite its importance, the Coulomb phase has never
been measured directly in any scattering experiment. This
is not a surprise since only the cross section dσ ∝ jMj2 is
available in elastic scattering of two plane waves and this
renders the phase unobservable. Here, we use the interfer-
ence between the two plane-wave amplitudes Ma andMb
contributing to the elastic scattering of Bessel electron
states in order to probe this elusive quantity. The interfer-
ence term in the cross section

dσint ∝ 2jMa∥Mbj cosð2m1δ1 þ 2m2δ2 þ ζa − ζbÞ ð37Þ

produces interference fringes, the pattern of which is
sensitive to the phase difference:

ζa − ζb ¼ 2αemη ln
θb
θa

≈ αemη ln
tb
ta
: ð38Þ

This phase difference can be extracted with the aid of the
transverse asymmetry A⊥ as defined in (24). Let us show
this procedure in the simplified case of ultrarelativistic
small-angle scattering with pure Bessel beams described in
Sec. II E. Neglecting the small higher-order QED correc-
tions to the modulus of the Born amplitude (26), we just
multiply it with the phase factor eiζðtÞ. Keeping track only
of the cross section dependence on the final state momenta,
we express the cross section as

dσ
d2k0

1d
2K0

¼ C
Δ2

�
1

t2a
þ 1

t2b
þ 2

tatb
cosð2m1δ1 þ 2m2δ2 þ ζa − ζbÞ

× cos δ1 cos δ2

�
; ð39Þ

with the same factor C as in (29). The Coulomb phase is
small due to small αem, which allows us to express dσ as the
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Born-type cross section (29) together with a small
correction:

dσ
d2k0

1d
2K0 ¼

dσBorn
d2k0

1d
2K0 −

C
Δ2

2

tatb
sinð2m1δ1 þ 2m2δ2Þ

× cos δ1 cos δ2 · ðζa − ζbÞ

¼ dσBorn
d2k0

1d
2K0 −

C
Δ2

8αemϰ1
jk0

1j5
sinð2m1δ1 þ 2m2δ2Þ

× cos δ1 cos δ2 sin δ1 sinðϕ0
1 − ϕK0 Þ: ð40Þ

In the last step of the derivation, we used Eq. (21) and the
simplifying assumption ϰi ≪ jk0

ij. The extra term contains
sinðϕ0

1 − ϕK0 Þ, which gives rise to a nonzero transverse
asymmetry A⊥ (24). For realistic electron vortex beams,
A⊥ ∼ αemϰ1=jk0

1j. The exact value strongly depends on
the Gaussian averaging procedure as well as on the
parameters of the vortex electrons. Note that for purely
real scattering amplitudes the cross section cannot contain
the sinðϕ0

1 − ϕK0 Þ. Therefore, the measurement of a nonzero
A⊥ will reveal the desired phase difference and will allow
one to reconstruct the Coulomb phase as a function of t.

C. Numerical results

Now, we return to the exact expressions in general
kinematics and again take the plane-wave scattering
amplitude as the Born-level amplitude multiplied by the
Coulomb phase factor. The left panel of Fig. 6 illustrates
how the K0-distributions are modified by the inclusion of
the t-dependent Coulomb phase. Here, we used the same
parameters as for Fig. 5. In this plot, we artificially set the
prefactor αemη to 10 instead of its typical value Oð10−2Þ to
make its effect more visible. The obtained large phase
clearly manifests itself via the strongly distorted pattern of
the interference fringes. For the physical values of αemη, the
up-down asymmetry is not directly visible, and one needs

to accurately measure the asymmetry A⊥ in order to detect
it. By adjusting initial parameters, we can optimize this
asymmetry further. The right panel of Fig. 6 displays the
results for A⊥ with αem ¼ 1=137 and η ¼ 1 as a scan over
values of m1 keeping m2 fixed at 3=2, other parameters
remaining as above. To optimize computer running time,
these values are calculated for Kz ¼ 0. Working with the
fully Kz-integrated distributions does not change the result
significantly; the cross shows one example of such a
calculation.
One sees that the asymmetry stays, A⊥ ¼Oð10−4–10−3Þ.

This effect is small, mostly due to the smallness of αem, but
can be detected. It may be enhanced further with the
alternative definition of the unpolarized electron.1 Also, by
adjusting parameters, one can find a kinematical configu-
ration which would be more sensitive to the phase differ-
ence. Here, we do not attempt a detailed analysis of this
phase difference as the exact relation between A⊥ and phase
difference will depend on the details of experiment.

IV. FEASIBILITY OF THE PROPOSED
EXPERIMENTS

The proposed experiment can be realized with present-
day beams and detectors. Vortex electron beamswith kinetic
energies up to 300 keV were created several years ago [3]
and helped reveal novel features of how electrons behave in
external magnetic fields [4,6,7]. Scattering of two vortex
electron beams has not yet been studied experimentally, but
it can be readily done once the instrumentation is modified

FIG. 6. Left: Differential cross section, in arbitrary units, as a function ofK0 for fixed k0
1. Here, the same parameters are applied as in

Fig. 5, and for the sake of illustration, the Coulomb phase prefactor is artificially set, αemη ¼ 10. Right: asymmetry A⊥ form2 ¼ 3=2 and
various values of m1 for the physical value of αem ¼ 1=137 and Kz ¼ 0. The cross indicates the asymmetry for the full Kz integration.

1With our definition, the asymmetry A⊥ integrated over the
entire K0-ring suffers from the partial cancellation between the
local asymmetries in the inner and outer parts of the ring. This is
due to the cos δ1 cos δ2 factor appearing in front of sinðϕ0

1 − ϕK0 Þ
in (40). If the unpolarized Bessel electrons are produced in a state
of definite OAM l rather than the total AM m, this factor would
be absent.
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for this purpose. Vortex beams can be focused to the focal
spot of radius r ∼ 1 Å [5], and high contrast images in these
experiments suggest that stable alignment of the two beams
within the common focal spot can be achieved. The
potentially detrimental effects of misalignment are dis-
cussed in Appendix C. In short, if the shift of the two axes
is smaller than the size of the focal spot and if their tilt is
smaller than the vortex beam opening angle, the interference
fringes will persist.
Let us now make a rough estimate of whether the

present-day instrumentation is capable of realizing the
proposed experiments. The Møller scattering cross
section is of the order of 4πα2em=jtjmin ∼ 4πr2e=θ2min, where
re ≈ 3 × 10−15 m is the classical radius of the electron; see
Eq. (B12). In the regime where electrons are produced,
focused, and collide one by one, the probability of such a
collision P is given by the cross section divided by the area
of the focal spot, which gives P ∼ ½re=ðrθminÞ�2. Modern
detectors can detect electrons scattered at small angles. To
be on the conservative side, we take θmin ∼ few degrees,
which leads to P ∼ 10−6.
Next, with the current of 1 nA easily achievable in the

electron microscopes producing vortex electrons, we get
about 1010 electrons per second and, thus, about a thousand
detectable collisions per second. Each collision can be
accurately reconstructed with modern detectors, the effi-
ciency of which is taken to be 30%. In total, we expect that
scattering events can be detected at the rate of hundreds of
hertz. Within a few hours of observation time, a million-
event statistics can be accumulated.
The electron detectors are supposed to detect pairs of

scattered electrons in coincidence and to accurately mea-
sure their angular distribution. The detectors do not have to
cover large solid angle. They can be of the form of annular
end caps covering 2π of the azimuthal angle and a few
degrees in the polar angles. The angular resolution must be
sufficiently high to reconstruct the ring structure in the
transverse momentum space and interference fringes in it.
For example, for ϰi ∼ several keV and Ekin ¼ 300 keV,
which are already available, the angular resolution of 10−3

will be sufficient.
The experiments could be carried out as follows. One

prepares two vortex electron beams and brings them in
collision in a common focal spot. When the colliding
electrons scatter, they are detected in coincidence by the
electron detectors. For each collision event, the detectors
reconstruct the final momentak0

1 andk
0
2. A sufficiently large

statistics of such events can be sliced into several jk0
1j

regions, and in each region, one can reconstruct its distri-
bution over K0. According to our calculations, interference
fringes should be well visible within the K0 ring with the
million-event statistics.
In order to detect the nonzero asymmetry A⊥ and to

probe the Coulomb phase, the distributions in the annular
K0-region need to be measured with much higher accuracy,

which seems to be challenging with the present-day
instrumentation. Once the fringes are detected in a
proof-of-principle experiment, one can look for ways to
improve the setup.

V. CONCLUSIONS

In this paper, we presented detailed quantum-electrody-
namical calculation of the elastic scattering of two vortex
electron beams. We developed the formalism based on the
exact description of relativistic vortex electrons and accom-
panied calculations with detailed qualitative discussion and
numerical results.
We showed that this process serves as the momentum-

space analog of the classical Young double-slit experiment.
It reveals interference between two well-localized paths in
momentum space, that is, two plane-wave scattering ampli-
tudes with different momentum transfers. This interference
leads to intensity fringes, which can be detected with
present-day technology. As a nontrivial application of this
momentum-space interferometry, we suggested directly
measuring the momentum-transfer dependence of the
Coulomb phase, i.e. the phase factor that accompanies all
charged particle scattering. Despite being under theoretical
debates and playing an important role in elastic scattering of
hadrons, this quantity has never been measured experimen-
tally. We show that elastic scattering of vortex electrons
gives access to this quantity. None of these effects can be
measured in the traditional collisions experiments.

ACKNOWLEDGMENTS

The work of I. P. I. was supported by the Portuguese
Fundação para aCiência e a Tecnologia (FCT) through the
FCT Investigator Contract No. IF/00989/2014/CP1214/
CT0004 under the IF2014 Programme, as well as under
Contracts No. UID/FIS/00777/2013 and No. CERN/FIS-
NUC/0010/2015, which are partially funded through
Programa Operacional “Ciência, Tecnologia, Inovação”
(POCTI), Programa Operacional Factores de
Competitividade (COMPETE), Quadro de Referência
Estratégico Nacional (QREN), and the EU. I. P. I. is also
thankful to Helmholtz Institut Jena for hospitality during
his stay as a Visiting Professor funded by the ExtreMe
Matter Institute EMMI, GSI Helmholtzzentrum für
Schwerionenforschung, Darmstadt. S. F. acknowledges
support by the QUTIF priority program of the DFG (FR
1251/17-1).

APPENDIX A: SCATTERING
OF WAVE PACKETS

1. Exact expressions

The general theory of scattering of nonmonochromatic,
arbitrarily shaped, partially coherent beams was developed
in Ref. [19] in terms of Wigner distribution. For the specific
case of pure, monochromatic, and approximately paraxial
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initial states, this formalism can be simplified [14]. Here,
we briefly review it for the sake of completeness.
We consider two-particle scattering and assume that the

initial particles are described with the coordinate wave
functions ψ1ð~rÞ and ψ2ð~rÞ normalized by

R
d3rjψ ið~rÞj2¼ 1.

If the wave function is normalizable, the integral here
extends to the entire space. If not, it goes over a large but
finite quantization volume V, and one needs to check that
the cross section is independent of V. The corresponding
momentum-space wave functions are

φð~kÞ ¼
Z

d3rψð~rÞei~k ~r;
Z

d3k
ð2πÞ3 jφð

~kÞj2 ¼ 1: ðA1Þ

The S-matrix element for elastic scattering of this initial
state into the plane-wave final state with momenta k01 and k

0
2

can be written as

S ¼
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3 φ1ð~k1Þφ2ð~k2ÞSPW; ðA2Þ

where the plane-wave S-matrix element SPW is given by (8).
Since the beams are monochromatic, the number of
scattering events into a given differential volume of the
final phase space per unit time is

dν ¼ ð2πÞ7δðEÞ
4E1E2

jFj2 d3k01
ð2πÞ32E0

1

d3k02
ð2πÞ32E0

2

: ðA3Þ

Here, δðEÞ stands for δðE1 þ E2 − E0
1 − E0

2Þ, and

F ¼
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3 φ1ð~k1Þφ2ð~k2Þδð3Þð~k1 þ ~k2 − ~K0Þ

×Mðk1; k2; k01; k02Þ; ðA4Þ

with ~K0 ¼ ~k01 þ ~k02. Note that each φið~kiÞ contains a delta-
function of the form δð~k2i þm2 − E2

i Þ because the initial
states are monochromatic. Thus, the expression for F
includes five delta-functions and six integrations and can
be represented as a one-dimensional residual integral.

2. Plane-wave limit

Let us now see how (A3) simplifies in the plane-wave
limit. This limit corresponds to very compact momentum

wave functions φið~kiÞ localized near h~kii. The matrix
element can then be approximated as Mðk1; k2; k01; k02Þ≈
Mðhk1i; hk2i; k01; k02Þ≡M0, and the expression for F
becomes

F ¼ M0

Z
d3r
ð2πÞ3 e

i ~K0~rψ1ð~rÞψ2ð~rÞ: ðA5Þ

Changing d3k01d
3k02 to d3k01d

3K0 and integrating jFj2 over
~K0, one gets

Z
d3K0jFj2 ¼ jM0j2

Z
d3r
ð2πÞ3 jψ1ð~rÞj2jψ2ð~rÞj2: ðA6Þ

This means that in the plane-wave limit, ki ¼ hkii, one can
effectively replace

jFj2 → jM0j2δð3Þðh~k1i þ h~k2i − ~K0Þ

×
Z

d3r
ð2πÞ3 jψ1ð~rÞj2jψ2ð~rÞj2: ðA7Þ

This expression exhibits an important feature: the ampli-
tude which describes the microscopic dynamics and the
parameters of the wave-packet factorize. The number of
events can therefore be split into the cross section and
luminosity factors:

dν ¼ dσ · L; ðA8Þ

dσ ¼ ð2πÞ4δ4ðhk1i þ hk2i − k01 − k02Þ
4E1E2v

jM0j2

×
d3k01

ð2πÞ32E0
1

d3k02
ð2πÞ32E0

2

;

L ¼ v
Z

d3rn1ð~rÞn2ð~rÞ; nið~rÞ≡ jψ ið~rÞj2: ðA9Þ

Note that we inserted here by hand the relative velocity of
the two plane waves, v ¼ j~v1 − ~v2j.
We stress that the separation of the number of events into

the differential cross section and the (conventional) lumi-
nosity is uniquely defined only for plane waves. Extending
this splitting for non-plane-wave collisions is a matter of
convention. One needs to introduce the notion of a
generalized cross section [19], for example, by dividing
the full dν in (A3) by L (A9) with v defined for h~kii rather
than ~ki. With this definition, the generalized cross section
for non-plane-wave scattering takes the form

dσ ¼ dσ0Rd3K0; R≡ ð2πÞ3jFj2
jM0j2

R
d3rn1ð~rÞn2ð~rÞ

;

ðA10Þ

where dσ0 is the plane-wave ~K0-integrated cross section.
In this notation, the plane-wave limit corresponds to

R → δð3Þð~k1 þ ~k2 − ~K0Þ.

3. Bessel state limit

Let us also recover the pure Bessel limit from the general
expression and compare it with Sec. II A. With the
kinematics conventions adopted there, this limit corre-
sponds to
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ϕ1ð~k1Þ ¼ 2πNtwaϰ1;m1
ðk1Þδðk1z − kzÞ;

ϕ2ð~k2Þ ¼ 2πNtwaϰ2;m2
ðk2Þδðk2z þ kzÞ: ðA11Þ

Then, the expression for F is simplified to

F ¼ N2
twδðKzÞ ·

ð−iÞm1þm2

ð2πÞ3 ffiffiffiffiffiffiffiffiffiffi
ϰ1ϰ2

p · J ; ðA12Þ

where J is given by (10). Substituting it into the general
formula (A3), we recover expression (12) from the
main text.

APPENDIX B: HELICITY AMPLITUDES FOR
MØLLER SCATTERING

1. Exact expressions

In the Born approximation, the ee → e0e0 scattering
amplitude is [20]

M ¼ Mt þMu ¼ e2
�
ū01γ

μu1ū02γμu2
t

−
ū02γ

μu1ū01γμu2
u

�
:

ðB1Þ

The helicity amplitudes λ1λ2 → λ01λ
0
2 can be represented in

the following way,

Mt ¼
e2

t
½ðQ11Q22 þ P11P22Þ½12�½1020�� þ ðQ11Q22 − P11P22Þð120�Þð10�2Þ�; ðB2Þ

where

Qij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0

i þmeÞðEj þmeÞ
q

þ ð2λ0iÞð2λjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0

i −meÞðEj −meÞ
q

; ðB3Þ

Pij ¼ ð2λjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0

i þmeÞðEj −meÞ
q

þ ð2λ0iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0

i −meÞðEj þmeÞ
q

; ðB4Þ

½ij�≡ wðλiÞ
ia ϵabw

ðλjÞ
jb ; ðijÞ≡ wðλiÞ

ia δabw
ðλjÞ
jb : ðB5Þ

The contraction of spinors depends on helicities. For example, for positive helicities,

½iðþÞjðþÞ� ¼ cisje−iðϕi−ϕjÞ=2 − sicjeiðϕi−ϕjÞ=2;

ðiðþÞjðþÞÞ ¼ cicje−iðϕiþϕjÞ=2 þ sisjeiðϕiþϕjÞ=2; ðB6Þ

where ci ≡ cosðθi=2Þ, si ≡ sinðθi=2Þ. For other helicity choices, these products can be expressed in terms of those given by
Eq. (B6). Everywhere, asterisk means complex conjugation. Note that half-integer values in front of azimutal angles will be
compensated by half-integer m’s in (19). In all cases, the angles are defined with respect to the same coordinate frame.
Finally, the u-channel amplitude is

Mu ¼ −
e2

u
½ðQ12Q21 þ P12P21Þ½21�½1020�� þ ðQ12Q21 − P12P21Þð110�Þð20�2Þ�; ðB7Þ

with the same definitions as before. Notice that since ½21� ¼ −½12� the ½12�½1020�� terms add up in Mt and Mu.

2. Ultrarelativistic limit

In the ultrarelativistic limit, Qij ¼ 2
ffiffiffiffiffiffiffiffiffiffi
E0
iEj

p
δλ0i;λj ¼ ð2λjÞPij, so that helicities are always conserved along each fermion

line. The t and u channel amplitudes become

Mt ¼
e2

t
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1E0

1E2E0
2

q
δλ0

1
;λ1δλ02;λ2ðδλ1;λ2 ½12�½1020�� þ δλ1;−λ2ð120�Þð10�2ÞÞ; ðB8Þ

Mu ¼ −
e2

u
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1E0

1E2E0
2

q
δλ0

1
;λ2δλ02;λ1ð−δλ1;λ2 ½12�½1020�� þ δλ1;−λ2ð110�Þð20�2ÞÞ: ðB9Þ

Squaring them, summing over final and averaging over initial helicities, and observing that
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s ¼ 4E1E2j½12�j2 ¼ 4E0
1E

0
2j½1020�j2;

t ¼ −4E1E0
1j½110�j2 ¼ −4E2E0

2j½220�j2;
u ¼ −4E1E0

2j½120�j2 ¼ −4E2E0
2j½210�j2; ðB10Þ

we obtain

1

4

X
jMj2 ¼ 2e4

��
s
t
þ s
u

�
2

þ u2

t2
þ t2

u2

�

¼ 2e4
s4 þ t4 þ u4

t2u2
; ðB11Þ

which leads to the well-known result [20]

dσ
dt

¼ 2πα2em
s2

s4 þ t4 þ u4

t2u2
: ðB12Þ

APPENDIX C: IMPERFECT ALIGNMENT

In Sec. II, we assumed that two colliding vortex electrons
are perfectly aligned; that is, they can be both described by
Eq. (3) and with the same quantization axis. Real beams
can be slightly misaligned, due to either shift or tilt between
the two axes. One may wonder whether a misalignment can
cause a deviation of the angular distribution which could
mimic the effect we measure, such as the visibility of the
interference fringes or the azimuthal asymmetry. Here, we
will briefly discuss its effects without undertaking a full
numerical simulation, which in any event would heavily
rely on the details of experiment.
A shift between two parallel axes can be easily incorpo-

rated in the above formalism. Avortex state jϰ; mia defined
with respect to an axis shifted in the transverse direction by
vector a ¼ aðcosϕa; sinϕaÞ can be expressed via the
vortex states defined for the original axis:

jϰ; mia ¼
Xþ∞

m0¼−∞

eiðm0−mÞϕaJm0−mðϰaÞjϰ; m0i: ðC1Þ

Using this representation for the first electron and working
out some algebra, one finds that J in (19) is replaced with

J shift ∝ Maeiϰa sin δ1 cosϕaeiðm1δ1þm2δ2Þ

þMbe−iϰa sin δ1 cosϕae−iðm1δ1þm2δ2Þ: ðC2Þ

Since such a shift effectively makes the scattering amplitude
complex, one might worry that it will induce the azimuthal
asymmetry A⊥ mentioned above. This is not the case. The
extra phase factor is opposite in the two plane-wave ampli-
tudes, and it does not depend on t. If the two plane-wave
amplitudes are real, the net effect is a shift of the interference
fringes without reducing their contrast. For example, for the
ultrarelativistic small-angle scattering considered in Sec. II E,
this phase factor amounts to the replacement

cosð2m1δ1 þ 2m2δ2Þ
→ cosð2m1δ1 þ 2m2δ2 þ 2ϰa sin δ1 cosϕaÞ ðC3Þ

inside Eq. (27). The cross section remains up-down sym-
metric, and noA⊥ is induced. For Gaussian-averaged beams,
the effect of the extra phase factor can be sizable only if
σa > 1, that is, if the shift between the two axes is larger than
the focal spot. We expect that the high control over vortex
beams will allow for a good overlap of the two collid-
ing beams.
A tilt of the two axes has a more important effect on the

interference pattern. For pure Bessel beams, the conserva-
tion of energy and momentum will spoil the two-slit picture
which works for parallel axes. However, for physical states
smeared over some region of ϰ, the interference is restored
provided the tilt angle is less than σ=kz, that is, the factor of
σ=ϰ of the Bessel state opening angle. This should be well
achievable experimentally. In short, if the two axes are
aligned with sufficient accuracy, the two-slit interference
pattern survives.
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