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Supersymmetric SOð10Þ grand unified models with renormalizable Yukawa couplings involving only 10
and 126Higgs fields have been shown to realize the fermion masses and mixings economically. In previous
works, the sum rule of the fermion mass matrices is given by inputting the quark matrices, and the neutrino
mixings are predicted in this framework. Now the three neutrino mixings have been measured, and in this
paper, we give the sum rule by inputting the lepton mass matrices, which makes clear certain features of the
solution, especially if the vacuum expectation values of 126þ 126 (vR) are large and the right-handed
neutrinos are heavy. We perform the χ2 analyses to fit the fermion masses and mixings using the sum rule.
In previous works, the best fit appears at vR ∼ 1013 GeV, and the fit at the large vR scale (∼1016 GeV) has
been less investigated. Our expression of the sum rule has a benefit to understand the flavor structure in the
large vR solution. Using the fit results, we perform the calculation of the μ → eγ process and the electric
dipole moment of electron, and the importance of vR dependence emerges in low energy phenomena. We
also show the prediction of the CP phase in the neutrino oscillations, which can be tested in the near future.
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I. INTRODUCTION

The Higgs discovery at the LHC [1] opens a new era to
understand the fermion masses and the mixings, which are
generated by the Yukawa interaction to the Higgs boson.
Indeed, most of the parameters in the standard model (SM)
lie in the Yukawa coupling matrices. As the remaining
parameters in the flavor sector in the SM, the neutrino
13-mixing angle has been measured by using the short
baseline neutrino oscillations from the reactor neutrino [2],
and the CP phase in the three-flavor neutrino oscillations
[the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) phase] is
expected to be measured accurately in the long baseline
oscillations [3]. The preferable region has been already
obtained by the global data analysis for the neutrino
oscillations [4–6]. Do the accurate measurements of the
parameters in the SM mean the end of the story? The
answer is of course No! Even after the parameters are
accurately measured, they do not fix the structure of the
Yukawa matrices because of the existence of the unphysical
flavor rotation. The particle physicists claim that there must
be new physics beyond the SM from various points of view.
The unphysical rotation in the SM can be physical in
models beyond the SM. In the era that the SM parameters in
the flavor sector are accurately measured, we should, thus,
study the structure of the Yukawa matrices which can
influence observables beyond the SM to test the various
flavor models.
The difference of the generation mixings between quark

and lepton sectors is one of the major issues to understand

the structure in the Yukawa coupling matrices in the unified
flavor picture. The SOð10Þ grand unified theory (GUT)
provides a promising framework to unify the quarks and
leptons, because the entire SM matter contents of each
generation (including a right-handed neutrino) can be
unified in a single irreducible representation, 16.
Particular attention has been paid to the renormalizable
minimal SOð10Þ model, where two Higgs multiplets
f10 ⊕ 126g are utilized for the Yukawa couplings with
the matter representation [7]. The couplings to the 10 and
126 Higgs fields can reproduce realistic charged fermion
mass matrices using their phases thoroughly [8].
Qualitatively, the smallness of the generation mixings in
the quark sector can be explained by the left-right sym-
metry which is a subgroup of the SOð10Þ symmetry, while
the neutrino mixings are not necessarily small and large
mixing angles for the solar and atmospheric neutrino
oscillations can be obtained naturally in this framework.
Since the fermion mass matrices are given by the linear
combination of two symmetric matrices (multiplied by
doublet Higgs mixings), one can obtain the sum rule of the
fermion mass matrices. Because the number of the physical
parameters in the minimal model is restricted, algebraic
predictions of the SM parameters can be obtained using the
sum rule. Actually, the quantitative prediction of neutrino
oscillation parameters has been discussed by inputting the
quark masses and mixings [9,10]. The model predicts that
the neutrino 13-mixing angle is nonzero, and the predicted
value is consistent with the measured value. We now repeat
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the question in the previous paragraph. When the mixings
and the CP phases in the neutrino oscillations are measured
accurately, does it mean the end of the study of the minimal
SO(10) just by checking with the predictions after the
number-crunching fits?
The supersymmetric (SUSY) theory is one of the most

attractive candidates to construct a model beyond the SM,
and can explain the large hierarchy between the weak scale
and the GUT scale. In SUSY models, the structure of the
Yukawa matrices can influence the low energy phenomena
if the SUSY particle masses are less than around a few TeV.
Even after the SM parameters are fitted (within the
experimental errors), there can be physical degrees of
freedom to influence the observables, though they also
depend on the SUSY particle spectrum. Therefore, it is
important not only to fit the SM parameters, but also to
understand the flavor structure consistent with the exper-
imental data in the format applicable to extended models.
From such a point of view, in this paper, we revisit the fits
of the fermion masses and mixings in the minimal SUSY
SOð10Þ model. We first describe the sum rule of the
fermion mass matrices in terms of the charged lepton mass
matrix Me and seesaw neutrino mass matrix Mν as inputs,
and express the quark mass matrices by them. In fact, the
quark masses and mixings can receive large radiative
corrections at low energy threshold in the supersymmetric
version of the model, and there can be large ambiguities,
whereas, the masses and mixings in the lepton sector are
now more accurately measured and less ambiguous.
Therefore, it is essential to investigate the properties of
the solution inputting the parameters in the lepton sector.
Using the expression by inputting the parameters in lepton
sector, we perform a χ2 analysis to fit the quark masses and
mixings. Surely, the χ2 result must be the same whichever
input is chosen in the expression. Our claim is that the
algebraic expression can be very helpful to understand
the structure of the Yukawa matrices which reproduces the
experimental data.
The scale of 126þ 126 vacuum expectation value

(VEV), vR, is important for breaking the rank-5 SOð10Þ
symmetry down to the rank-4 SM gauge symmetry. The
scale is also important to know how the light neutrino mass
is generated by the seesaw mechanism [11]. In the SOð10Þ
model with 126 Higgs coupling, not only the right-handed
neutrino Majorana mass for type I seesaw, but also the
SUð2ÞL triplet contribution to the light neutrino mass is
generated known as type II seesaw [12]. In GUTmodels, an
intermediate scale often appears, and it can implement the
proper size of the light neutrino masses. In fact, the best fit
in the minimal model is obtained when vR ∼ 1013 GeV, as
was reported in Refs. [13,14]. However, if vR is about
1013 GeV in SUSY models, the decomposed representa-
tions in 126þ 126 lie around the scale, and they are
harmful to the gauge coupling evolution since gauge
couplings may blow up before the unification. Being

motivated by this fact, we feature the solutions for vR
being around 1016 GeV. In order to construct the solutions
in which the type I seesaw part contributes the neutrino
masses, the Yukawa coupling matrix f for 126 Higgs
coupling should be nearly singular and the elements of f−1

are enlarged. Such a situation is not obvious if the quark
masses and mixings are inputs. Contrary to the situation, in
our expression in terms of the parameters in the lepton
sector, it is easy to decode the structure of the singular
matrix. We show the results of the χ2 fit by changing vR,
and also show the result of type I seesaw, where the SUð2ÞL
triplet contribution is negligible. From the fit results, we
point out that future accurate measurements of the neutrino
23-mixing angle and the PMNS phase play a decisive role
to determine the Yukawa structure in the solutions for
vR ≳ 1016 GeV. This feature can be algebraically explained
in our expression of the sum rule.
In the minimal SOð10Þ model, the Dirac neutrino

coupling and the Majorana neutrino mass matrix are
predictable depending on the scale vR. As a consequence,
by investigating the lepton flavor violation, it is possible to
find a footprint to know which scenario of the neutrino
mass generation is chosen. We will perform the calculation
of the branching fraction of μ → eγ decay and the electric
dipole moment (EDM) of the electron, using the prediction
from the χ2 analysis in the model and discuss the vR
dependence of the predictions.
This paper is organized as follows: In Sec. II, we

introduce the sum rule of the fermion mass matrices in
the SOð10Þmodel with the minimal Yukawa interaction. In
Sec. III, the expression of quark mass matrices in terms of
the mass and mixing parameters in the lepton sector is
derived. We examine the properties of the solutions
expressed by the parameters in the lepton sector, and study
the vR dependence of the solutions. We perform the
numerical analyses to fit the fermion masses and mixings
in Sec. IV. The importance of the predictions of the phase in
neutrino oscillations is illustrated. In Sec. V, we apply our
fit results to the calculations of branching ratio of the
μ → eγ process. We also mention the vR dependence of the
results and study the importance to calculate the electron
EDM. We discuss the possible modification of the Yukawa
couplings by the SUSY threshold corrections. Section VI is
devoted to conclusions and discussions. In the Appendix,
we express the square root matrix, which is necessary to
express the solution in terms of the parameters of the lepton
sector.

II. SUM RULE OF THE FERMION MASS
MATRICES IN THE MINIMAL SOð10Þ MODEL

The SUSY GUT can provide the most promising
framework to incorporate the vast data systematically
and consistently. Among many candidates, SOð10Þ [15]
is the smallest simple gauge group under which the entire
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SM matter contents of each generation are unified into a
single anomaly-free irreducible representation, 16. The
16-dimensional spinor representation in SOð10Þ includes
the right-handed neutrino and no other exotic matter
particles.
The minimal SOð10Þ model1 is defined as that in which

the Yukawa interaction is minimal, namely, only H∶10 and
Δ̄∶126 Higgs representations couple to the fermions ψ∶16
by renormalizable interaction:

WY ¼ 1

2
hijψ iψ jH þ 1

2
fijψ iψ jΔ̄: ð2:1Þ

Due to the SOð10Þ algebra, the coupling matrices are
symmetric, hij ¼ hji and fij ¼ fji.
The Higgs superpotential is investigated to see the

detailed pattern of symmetry breaking from SOð10Þ down
to the SM gauge group [18,19]. In these analyses, the
criterion of the renormalizability plays an essential role not
only to reduce the number of parameters but also to
construct a model without the VEVs of B − L ¼ �1

direction by 16H þ 16H representations to break SOð10Þ
symmetry. Actually, the VEVof the B − L ¼ �2 direction
by 126þ 126 fields reduces the rank of the gauge sym-
metry in the renormalizable model, in which the R-parity is
automatically conserved in the minimal SUSY standard
model (MSSM) vacua. The extension to include 120 Higgs
representation without breaking the renormalizability has
been also considered [20]. The 126 Higgs representation
includes both SUð2ÞL and SUð2ÞR triplets, and the Yukawa
interaction to 126 can generate both left- and right-handed
Majorana neutrino mass matrices. Therefore, in the frame-
work of the minimal SOð10Þ, depending on the symmetry
breaking vacua, the light neutrino mass matrix can be
obtained [10,13] in both type I and II seesaw mecha-
nisms [11,12].
The Yukawa coupling [after SOð10Þ symmetry is broken

down to the SM] is given as follows:

Yu ¼ hþ r2f;

Yd ¼ r1ðhþ fÞ;
Ye ¼ r1ðh − 3fÞ;
Yν ¼ h − 3r2f; ð2:2Þ

where r1 and r2 depend on the Higgs mixing (doublet
Higgs mixing in 10 and 126), and h and f are original
Yukawa matrices h and f multiplied by Higgs mixings2:

h ¼ V11h; f ¼ U12ffiffiffi
3

p
r1

f;

r1 ¼
U11

V11

; r2 ¼ r1
V13

U12

: ð2:4Þ

The charged fermion masses are obtained as

Mu ¼ Yuvu; Md ¼ Ydvd;

Me ¼ Yevd; MD
ν ¼ Yνvu; ð2:5Þ

where vu and vd are the VEVs of up- and down-type Higgs
fields. We obtain the relation of the mass matrices as

Md ¼ Me þ
4

1 − r2
F ¼ rMu þ F; ð2:6Þ

rMD
ν ¼ Me þ 3F; ð2:7Þ

where

r ¼ r1
vd
vu

≡ r1 cot β; ð2:8Þ

and the matrix F, which is proportional to the 126 Higgs
coupling matrix, is

F ¼ rð1 − r2Þfvu: ð2:9Þ

Roughly, we obtain r ∼mb=mt. Surely, these mass rela-
tions are realized at GUT scale, and the evolution via
renormalization group equations (RGEs) is considered to fit
them with the low energy data of quark-lepton phenomena
including the neutrino oscillations [9].
The right-handed Majorana neutrino mass matrix is

obtained as

1In this paper, we define the minimality of the SOð10Þ model
on the Yukawa interaction: The matter representations couple to
only 10 and 126 Higgs representations, and the number of
parameters in the Yukawa couplings is minimal (without a
symmetry). People often impose the minimality of the model
even on the Higgs contents, 10þ 126þ 126þ 210, in which the
number of parameters in the Higgs interactions is minimal (in
addition to the minimality in the Yukawa interactions). In this
case, however, the SUSY version of the model suffers some
delicate mismatches between all the fermion data fittings appear-
ing in the recently developed measurements and the self-
consistency of the gauge coupling unification [14], and the
framework suggests a non-SUSY model (or split SUSY)
[16,17]. Since we focus on the prediction on the Yukawa structure
which can communicate with the low energy phenomena, we
impose the minimality just on the Yukawa interactions. See
Sec. VI for discussion.

2The unitary matrices U and V are the diagonalizing matrices
of the doublet Higgs matrix Mdoublet: UMdoubletVT is diagonal,

−Ldoublet ¼ ðH10
d ; Δ̄d;Δd;ΦdÞMdoubletðH10

u ;Δu; Δ̄u;ΦuÞT:
ð2:3Þ

The lightest linear combinations of the doublets will be the
MSSM Higgs doublets. The detail can be found in Ref. [21] (and
[19] in different conventions).
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MR ¼
ffiffiffi
2

p
fvR; ð2:10Þ

where vR is a VEV of 126. Practically, we denote

MR ¼ cRvRf; ð2:11Þ

where

cR ¼
ffiffiffi
6

p r1
U12

¼
ffiffiffi
6

p r2
V13

; ð2:12Þ

for the current notation. Because U12 and V13 are compo-
nents of the diagonalization unitary matrix for doublet
Higgs fields, cR has a minimal value. The size of cR is
related to the size of original f coupling, which will be
important to derive the GUT scale threshold correction for
flavor violation. One can rewrite as

MR ¼ cRvR
rð1 − r2Þvu

F: ð2:13Þ

The seesaw neutrino mass matrix can be written as
[11,12]

Mν ¼ ML −MD
ν M−1

R ðMD
ν ÞT; ð2:14Þ

whereML is the left-handed neutrino Majorana mass which
comes from the SUð2ÞL triplet coupling [22], llΔL. In the
SOð10Þ model, the 126 Higgs also includes the SUð2ÞL
triplet ΔL and the Yukawa coupling generates bothML and
MR. Therefore, ML is also proportional to the coupling
matrix f and we denote

ML ¼ cLvLf: ð2:15Þ

In the SOð10Þ model, if there is 210 or 54 Higgs
representation,3 the VEV of ΔL, hΔLi ¼ vL, can be
obtained as v2weak=MΔ, where MΔ is the mass of the
SUð2ÞL triplet.
For convenience, we reparametrize MR and ML as

MR ¼ 1

r2R
F × 1010; ð2:16Þ

ML ¼ δF × 10−10; ð2:17Þ

where

R≡ 1 − r2
r

vu
cRvR

× 1010;

δ≡ cLvL
rð1 − r2Þvu

× 1010: ð2:18Þ

The factor 1010 is attached for numerical convenience. We
will treat R as a parameter to specify the scale of vR impli-
citly. For example, if vR ∼ 1013 GeV, one obtains R ∼Oð1Þ
roughly. For vR ∼ 1016 GeV, one finds R ∼Oð10−3Þ.
We remark on the naive statement on the scale vR to fit

the fermion masses and mixings, which can be found in the
previous works. One may think that the 0.05 eV neutrino
mass can be easily obtained even if vR ∼ 1016 GeV because
the scale of MR ¼ cRvRf can be naturally Oð1014Þ GeV
for the component of f to be Oð10−2Þ. However, such a
naive thought is true only if the atmospheric mixing is
small. In fact, in order to reproduce a large atmospheric
mixing, not only ðMνÞ33 but also ðMνÞ23 should be
Oð0.01Þ eV. In the Me-diagonal basis, one obtains
ðMeF−1MeÞ23 ≪ ðMeF−1MeÞ33, and thus, to obtain a large
23-mixing, one needs a cancellation in the (3,3) element of
Mν, and the naive thought above does not work. To obtain
the large atmospheric mixing, ðMef−1MeÞ23=ðcRvRÞ has to
be Oð0.01Þ eV. Because the size of f is Oð0.01Þ due to the
fitting of quark masses and mixings, the naive size of the vR
isOð1013Þ–Oð1014Þ GeV, which corresponds to R ∼Oð1Þ.
One can find a solution for vR ∼Oð1016Þ GeV (i.e.,
R ∼ 10−3), only if the matrix f is nearly singular and
f−1 is enhanced (compared to its naive size from each
component).
We note that the solution for the nearly singular f matrix

is also found in Ref. [14] (they call the solution as
“Mixed0”). However, if one fits the charged fermion
masses, there is no reason that f is close to a singular
matrix, and it is not easy to study the property of the
solution. We describe the neutrino mass and mixing
parameters to be inputs, and construct a solution where
the situation of small det f can be seen explicitly. The
solution of the nearly singularMR matrix is applicable even
to the nonminimal models. We believe that the description
of nearly singular MR is useful to study how the light
neutrino mass scale is obtained in seesaw models.

III. PROPERTY OF THE SOLUTION BY
INPUTTING THE LEPTON PARAMETERS

We have described the general setup in the minimal
SOð10Þ model. In the previous works, the fitting of the
fermion masses and mixings has been performed by
inputting the quark masses and mixings, and the neutrino
mixings are predicted in the framework. At present, the
lepton parameters are more accurate rather than the quark
ones, and besides, a large threshold correction is expected
in the quark sector in SUSY models. In that sense, it is
better to perform the fitting by inputting the parameters in

3When 54 is employed to generate the triplet contribution to
the neutrino masses [23], the SOð10Þ breaking vacua is modified,
and the r2 parameter can be independent to the vacua.
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the lepton sector, and outputting the quark parameter. The
formulation is presented in not only such a practical
purpose, but also to make clear the property of the solution
with vR ∼ 1016 GeV, which is the main concern in this
paper.
Using the relation, rMD

ν ¼ Me þ 3F, we obtain

Mν × 1010 ¼ ðδF − RðMe þ 3FÞF−1ðMe þ 3FÞÞ
¼ ððδ − 9RÞF − 6RMe − RMeF−1MeÞ: ð3:1Þ

This equation can be rewritten as a quadratic equation in
terms of M−1=2

e FM−1=2
e , and we obtain

F¼ 1

18R−2δ
M1=2

e ðK−6R1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2−12RKþ4δR1

p
ÞM1=2

e ;

ð3:2Þ

where

K ≡ −M−1=2
e M̂νM

−1=2
e ; M̂ν ≡Mν × 1010: ð3:3Þ

The square root matrix is defined in the Appendix. Using
the expression of the Fmatrix, the quark mass matrices,Mu
and Md, can be given as a function of charged lepton mass
matrix Me and the light neutrino mass matrix Mν.
Now, by using the formula given in the Appendix, let us

express the matrix

K − 6R1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK − 6R1Þ2 þD1

q
; ð3:4Þ

whereD≡4δR−36R2. Surely because K and ðK−6R1Þ2þ
D1 can be diagonalized simultaneously, we can easily
obtain

K − 6R1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK − 6R1Þ2 þD1

q

¼
X
i

ðλi − 6Rþ si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλi − 6RÞ2 þD

q
ÞΛi; ð3:5Þ

where λi (i ¼ 1, 2, 3) are eigenvalues of matrix K, si are
signs for the square roots, and Λi are given in the Appendix.
By the definition of the matrix K, K ¼ −M−1=2

e M̂νM
−1=2
e

(where M̂ν ¼ Mν × 1010Þ, we obtain

M1=2
e Λ1M

1=2
e ¼ 1

ðλ1 − λ2Þðλ1 − λ3Þ
× ðM̂νM−1

e M̂ν þ ðλ2 þ λ3ÞM̂ν þ λ2λ3MeÞ;
ð3:6Þ

and similarly for Λ2;3.

In the limit of R → 0 (i.e., vR → ∞), we obtain

F → −
1

2δ
M1=2

e ðK þ
ffiffiffiffiffiffi
K2

p
ÞM1=2

e : ð3:7Þ

So, let us evaluate K þ
ffiffiffiffiffiffi
K2

p
. One can write down

Kþ
ffiffiffiffiffiffi
K2

p
¼ V

0
B@

ð1þ s1Þλ1
ð1þ s2Þλ2

ð1þ s3Þλ3

1
CAV−1

¼
X
i

ð1þ siÞλiΛi: ð3:8Þ

For example, suppose s1 ¼ −1 and s2;3 ¼ 1 (because the
square root of a complex number has two branches, we
choose a sign convention

ffiffiffiffiffi
λ2

p
¼ λ to define si), one finds

K þ
ffiffiffiffiffiffi
K2

p
¼ 2

X
i¼2;3

λiΛi ¼ 2K − 2λ1Λ1: ð3:9Þ

As a result, we obtain under the choice of si and in the limit
of R → 0,

F ¼ 1

δ
ðM̂ν þ λ1M

1=2
e Λ1M

1=2
e Þ ð3:10Þ

¼ 1

δ

1

ðλ1 − λ2Þðλ1 − λ3Þ
ðλ1M̂νM−1

e M̂ν

þ ðλ21 þ λ2λ3ÞM̂ν þ λ1λ2λ3MeÞ: ð3:11Þ

In the choice of s1 ¼ −1, s2 ¼ s3 ¼ 1, it can be written as

K þ
ffiffiffiffiffiffi
K2

p
¼ 2V

0
B@

0

λ2

λ3

1
CAV−1: ð3:12Þ

Therefore, rankðK þ
ffiffiffiffiffiffi
K2

p
Þ ¼ 2 in this case. As a conse-

quence, one of the right-handed neutrinos is very light
compared to the other two because the right-handed
Majorana mass matrix is proportional to F. Needless to
say, R is finite (though it is small), and therefore, the
lightest right-handed neutrino is not massless.
For a choice of s1 ¼ s2 ¼ s3 ¼ 1, one obtains

K þ
ffiffiffiffiffiffi
K2

p
¼ 2K; ð3:13Þ

and thus, in the limit of R → 0,

F →
1

δ
M̂ν: ð3:14Þ

Therefore, this choice corresponds to the case where
the right-handed neutrinos are decoupled, and the triplet
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contribution is dominant (namely Mν ¼ ML). It is known
that the fits of fermion masses and mixings are not good in
the triplet-dominant case [14]. The difference compared to
the previous case comes from the contribution from
λ1M

1=2
e Λ1M

1=2
e , which makes the fits better. In our descrip-

tion of the solution, the triplet-dominant case is contained
in the expression just by a choice of the signs of the square
root matrix. In fact, as we execute χ2 analysis in the
following sections, the triplet-dominant case does not
appear in the fits by χ2 minimum, because it gives a large
χ2 value. Therefore, we call the combination of the triplet
and type I seesaw contributions just as a type II solution,
which is intrinsic in the SOð10Þ model. In Ref. [14], they
name the solutions as “Mixed” and “Mixed0”, but those two
solutions are continuously connected as a function of the
parameter R in our description.
We note that the dependence of R is small in the type II

solution for s1 ¼ −1, s2 ¼ s3 ¼ 1 for small R (namely,
large vR) as one can find from the R → 0 limit. In the type I
seesaw (δ ¼ 0), the F matrix in the limit of R → 0 can be
written as

F →
1

18R
M1=2

e ðK þ
ffiffiffiffiffiffi
K2

p
ÞM1=2

e ; ð3:15Þ

and it surely depends on R. For the solution s1 ¼ s2 ¼
s3 ¼ 1, one obtains

F → −
1

9R
M̂ν: ð3:16Þ

For a smaller value of R, the component of F becomes large
and it is expected that there is no solution. For a choice of
s1 ¼ s2 ¼ s3 ¼ −1, one obtains4

F≃ RM1=2
e K−1M1=2

e ¼ −RMeM−1
ν Me: ð3:18Þ

For R → 0, F becomes small in this choice which means
there is up-down symmetry (Md ∝ Mu) in the limit, and
there is no solution. Therefore, there may no solution for
vR > Oð1016Þ GeV in type I.

IV. NUMERICAL VERIFICATION

In the previous section, we have studied the property of
the solution for the case of a large vR (R → 0). Now, we
verify the property by performing the numerical fitting of
the fermion masses and mixings. In our formulation, the

lepton parameters are inputs and the quark parameters are
outputs. Of course, in order to perform the numerical fit in
the practical way, we use the observed quark masses and
mixings to fit by χ2 analyses. Therefore, the fit results have
to be the same as the one given in the previous works (up to
the detail updated experimental data) mathematically, and
the formulation itself does not provide a better fitting for
sure. As described, the purpose to use the expression by
inputting the lepton parameters is to make clear the
property of the solution depending on the vR, which is
important to apply the model to the low energy physics. In
fact, the fitting in the minimal SOð10Þ model needs
complicated tuning in the parameters (depending on the
parametrization) especially in the case of a large vR, and
one may feel that a better fit can exist by using the tuning of
the parameters in the quark sector. However, in our
expression, the solution provides a simple behavior for
the large vR case, and we can understand how the fit
behaves.
In this section, we demonstrate the numerical fit of the

fermion masses and mixings, and we check the consistency
to the previous works in the literature. Compared to an era
when the previous works are done in the literature, the
neutrino oscillation experiments enter into a new stage to
measure the oscillation parameters: not only the measure-
ment of the 13-mixing angle, but also the expectation of the
precision measurements of 23-mixing angle and PMNS CP
phase. We first describe our parametrization which is suited
in our scheme, and next explain the method of our analyses
including a technical detail. As a purpose to revisit the
analyses, we show our fit results making clear the impor-
tance of the precise measurement of 23-mixing angle.
Although the fit of the PMNS phase is constrained mildly,
the correlation between the PMNS phase and 23-mixing
angle can provide an important implication to distinguish
models and the flavor structure in the different essential
parameter regions.

A. Parametrization

The relation is summarized as

rMu ¼ Me þ
3þ r2
1 − r2

F; ð4:1Þ

Md ¼ rMu þ F; ð4:2Þ

F¼ 1

18R−2δ
M1=2

e

�
K−6R1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2−12RKþ4δR1

p �
M1=2

e ;

ð4:3Þ

K ¼ −M−1=2
e M̂νM

−1=2
e : ð4:4Þ

Wework on the basis where the charged lepton mass matrix
Me is diagonal:

4Because of the algebraic equation ðK − 6R1þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − 12RK þ 4δR1

p
ÞðK − 6R1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − 12RK þ 4δR1

p
Þ ¼

2Rð18R − 2δÞ1, one obtains

F¼ 1

18R−2δ
M1=2

e ðK−6R1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2−12RKþ4δR1

p
ÞM1=2

e

¼ 2RM1=2
e ðK−6R1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2−12RKþ4δR1

p
Þ−1M1=2

e : ð3:17Þ
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Me ¼ diag:ðmeeiαe ; mμeiαμ ; mτeiατÞ: ð4:5Þ

The light neutrino mass matrix is parametrized as

Mν ¼ Ūdiagðm1eiα1 ; m2eiα2 ; m3eiα3ÞŪT; ð4:6Þ

and the unitary matrix Ū is the PMNS neutrino matrix, and
we use the usual convention by the Particle Data Group
(PDG). In the matrix Ū, there are three neutrino mixing
angles θ12, θ23, θ13 and a CP phase δPMNS in neutrino
oscillation. As a convention, the mass parameters, me, mμ,
mτ, m1, m2, m3, are given as real and positive values.
As one can find easily, one of the phases

αe; αμ; ατ; α1; α2; α3 can be made to be zero without loss
of generality, since the relation is covariant under

Mu;d;e → eiαMu;d;e; Mν → eiαMν: ð4:7Þ

We choose α1 ¼ 0 as a convention. The relation is also
covariant under the rephasing:

R→ eiαR; δ→ eiαδ; Mu;d;e → e−iαMu;d;e; ð4:8Þ

and thus we can choose R to be real (and positive) without
loss of generality. We can also define the parameter r to be
real. Therefore, the parameters in this parametrization are
the following:

me;mμ; mτ; m1; m2; m3;

αe; αμ; ατ; α2; α3;

θ12; θ23; θ13; δPMNS;

r2ðcomplexÞ; r;
δðcomplexÞ; R; ð4:9Þ

and there are 21 degrees of freedom in total.
The input parameters in the lepton sector are

me;mμ; mτ; θ12; θ13; θ23;Δm2
sol;Δm2

atm; δPMNS; ð4:10Þ

and the PMNS phase δPMNS will be treated as output in our
analysis. The parameters in the quark sector are

mu;mc;mt; md;ms;mb; Vus; Vcb; Vub; δKM; ð4:11Þ

which we will fit by using the freedom in the model.
Totally, there are 19 degrees for the observables.5

Just from the degrees of freedom, one can fit all
19 parameters using the full degrees of freedom in

the model, in principle. However, the parameters we
need to fit are hierarchical and some of the degrees are
phases, and consequently, the fits all of them are
not necessarily fit contrary to the simple number
counting expectation. Actually, due to the hierarchy
mu=mt ≪ me=mτ ≪ md=mb, the complex freedom r2
should be almost consumed to fit the up-quark mass mu
(roughly, the solution is obeyed by a cubic equation of r2,
detMu → 0). Thus, roughly speaking, to fit mu, 2 degrees
of freedom are consumed. As we have explained, the fit
does not depend on R for small R very much, and then the
phase of δ is not an active freedom due to the rephasing
covariance described above. Therefore, the active number
of parameters to fit the quark masses and mixings is
reduced. As a result, for the case of small R, down-quark
mass md is not fully fit as we will see later, though the
R ∼Oð1Þ (vR ∼ 1013 GeV) solution in type II can repro-
duce md, as it was known in the literature [14].

B. Method of χ 2 fit

Before going into the detailed description of the fit
process, we explain the equations to solve the quark masses
which we can find quickly from the expression,

rMu ¼Me þ
3þ r2
1− r2

F

¼M1=2
e

�
1þ 3þ r2

1− r2

K − 6R1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK − 6R1Þ2 þD1

p
18R− 2δ

�

×M1=2
e : ð4:12Þ

As we have already noted, due to the hierarchy
mu=mt ≪ me=mτ, the matrix in the bracket in the above
equation has to be nearly singular. Therefore,

1 − r2
3þ r2

þ λi − 6Rþ si
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλi − 6RÞ2 þD

p
18R − 2δ

→ 0 ð4:13Þ

for one of i ¼ 1, 2, 3, where λi are eigenvalues of the matrix
K as was given previously. By perturbation from the above
relation, the up-quark mass mu can be easily fit. One can
also easily solve the equation by r:

r2ðm2
u þm2

c þm2
t Þ ¼ r2TrMuM

†
u

¼ Tr

�
Me þ

3þ r2
1 − r2

F

�

×

�
Me þ

3þ r2
1 − r2

F

�†
; ð4:14Þ

and thus, roughly speaking, the top quark mass mt can be
easily fit by using r. As we have explained, we will try to fit
the masses and mixings in quark sector by inputting the
masses and mixings in lepton sector. The parameters to fit
are now

5Depending on the size of absolute neutrino mass, the neutrino
Majorana phases α2 and α3 and the neutrino mass m1 can be the
observables in the future by neutrinoless double beta decay and
the radiative emission of neutrino pairs from excited atoms [24],
but we do not count them as observables in this paper.
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mc;md;ms;mb; Vus; Vcb; Vub; δKM: ð4:15Þ

The χ2 function is defined as

χ2 ¼
X
i

ðχi − χ̂iÞ2
σ̂2i

; ð4:16Þ

where χ̂i and σ̂i are the experimental measurements of the
parameters and their standard deviations of errors.
The values and uncertainties used in the fit are summa-

rized in Table I where we use the value of the quark mass in
Table III of Ref. [25] (MSSM, tan β ¼ 10) and calculate the
quark mixing angle and Kobayashi-Maskawa (KM) phases
at GUT scale from PDG data [26] by DR scheme.
For the minimization, we use the Metropolis-Hastings

(MH) algorithm [27] of the Markov chain Monte Carlo
(MCMC) method. Since we expect that there exist many
local minima, we perform the replica exchange MCMC
(REMC) sampling [28] where several copies of the Markov
chain with various temperature Ti are simultaneously
simulated. Each chain performs the MH scheme under a
likelihood function defined by exp½−χ2=ð2TiÞ�. Every time
after performing some MC steps, the state of the chains is
swapped by comparing the values of the likelihood. For
ordinary MCMC, the state of the chain is often trapped at a
local minimum and costs a large amount of time when we
search a likelihood function with many local minima. For
REMC, on the other hand, a replica with high temperature
(>1) has a flatter distribution function and the sampling
point can easily move on to another local minimum.

Thanks to the swapping algorithm, this transition can
propagate to low-temperature replicas and therefore we
can effectively sweep all the local minima.
We should note, however, that it is still challenging to

find the absolute global minimum of the likelihood function
with many local deep minima. We have made much an
effort to find the minimum including changing the initial
parameter set, tuning the replica temperatures as well as the
width of the parameter jump in MCMC sampling.
Nevertheless, there is always a possibility that the like-
lihood has another better minimum due to our limited
hardware and calculation time.
The fits are done assuming that ML is negligible

(type I: δ ¼ 0) or non-negligible (type II: δ ≠ 0)6 under
two values of θ23ð0.710; π=4Þ. In the MCMC, we fix
the scale parameter R to precisely investigate the χ2

behavior against the scale parameter, and therefore, the
χ2 function has seven (nine) free parameters for type I
(type II).7We adopt a uniform prior for the phases
ðαe; αμ; ατ;α2; α3; δPMNS;ArgðδÞÞ from −π to π and the
magnitude of the seesaw parameter jδj ≤ 500. A log
flat prior is applied to m1 over the range of 10 ≤
− log10ðm1=GeVÞ ≤ 16.

C. Fit results

Figure 1 shows R (and cRvR) dependence of χ2 values.
For all cases, the global best fit is found at around
vR ∼Oð1013Þ GeV where the χ2 value is 1.5–2 for type
I and ≤ 0.001 for type II. The χ2 value of type I mainly
stems from down-quark mass (∼0.44 MeV) which is
smaller than the experimental value by ∼1.2–1.3σ.
For type I, another local minimum appears at vR ∼
Oð1015Þ GeV where large deviation is given by
mdð∼1.3σ smallerÞ and msð∼2σ largerÞ. For type II, the
χ2 curve becomes flat above vR ∼Oð1014Þ GeV and no
prominent local minimum exists. As we expected in
Sec. III, vR ∼Oð1016Þ GeV is disfavored for type I while
type II gives a χ2 value of ∼2–2.5 where the deviation is
dominated by the down-quark mass (∼1.4σ smaller).
Compared with the case of θ23 ¼ 0.710, although the
difference is not obvious, θ23 ¼ π=4 gives slightly larger

TABLE I. The reference parameters used in the fit.

Fixed values

mu 3.961 × 10−4 GeV [25]
mt 71.0883 GeV [25]
me 3.585 × 10−4 GeV [25]
mμ 7.5639 × 10−2 GeV [25]
mτ 1.3146 GeV [25]
Δm2

sol 7.54 × 10−5 eV2 [5]
Δm2

atm 2.4 × 10−3 eV2 [5]
θ12 0.583 [5]
θ23 0.710, π=4 [5]
θ13 0.156 [5]

Parameters to fit

mc 0.1930� 0.025 GeV [25]
md ð9.316� 3.8Þ × 10−4 GeV [25]
ms ð1.76 702� 0.5Þ × 10−2 GeV [25]
mb ð0.9898� 0.03Þ GeV [25]
Vus 0.224� 0.002 [26]
Vcb ð3.7� 0.13Þ × 10−2 [26]
Vub ð3.7� 0.45Þ × 10−3 [26]
δKM 1.18� 0.2 [26]

6The parameter δ is given in Eq. (2.17), and the classification
of the χ2 minimal solution is described in Sec. III.

7We also search the global best fit and the fit at R ¼ 0.001
allowing the neutrino oscillation parameters (θ12, θ13, θ23) and
neutrino mass difference (Δm2

sol;Δm2
atm) free within a range of

3σ. We find that most of the parameters except for θ23 converge
around their central values and we decide to fix these reference
values. For θ23, on the other hand, although the θ23 deviation does
not significantly change the χ2 values, its uncertainty is still large.
Moreover, the θ23 value has a correlation with δPMNS at the χ2

minimum as one can see in Sec. IV D. Therefore, in our fit, we
adopt two values of θ23 as the reference value, where one is the
global fit of the three neutrino oscillation parameters [5]
(θ23 ¼ 0.71) and the other is the maximal mixing (θ23 ¼ π=4).
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χ2 values and shifts the minima to lower energy scale.
Tables II and III show the summary of the fit parameters
and χ2 at each global best fit [vR ∼Oð1013Þ GeV], the local
minimum of type I [vR ∼Oð1015Þ GeV] and R ¼ 0.001 of
type II [vR ∼Oð1016Þ GeV].

The numerical quantities of the right-handed neutrino
mass are also obtained from the fit. For type II, we find that
the sign combination of

ffiffiffiffi
K

p
(s1, s2, s3) becomes a

permutation of ð−1; 1; 1Þ at a low R region (R < 0.1).
Thus, as investigated in Sec. III, the lightest right-handed

FIG. 1. Left panel: R dependence of χ2 for type I of θ23 ¼ 0.710 (red dashed line), π=4 (blue dashed line) and type II of θ23 ¼ 0.710
(red solid line), π=4 (blue solid line). Right panel: The same figure as the left one but we transform R to the energy scale cRvR.

TABLE II. The fit result for type I. Pull is defined by ðχi − χ̂iÞ=σ̂i for each observable.

Type I

Best fit Local minimum

θ23 0.710 π=4 0.710 π=4
R 2.9853 4.7315 0.237 13 0.290 06
αe 1.2200 −0.15753 0.977 41 1.5312
αμ −0.773 58 1.9305 1.7110 0.953 62
ατ 2.2100 −2.1821 −1.7127 −2.3612
α2 −2.8818 2.8578 −2.7599 −2.8910
α3 −0.455 28 1.8924 −1.1936 −2.0470
δPMNS −0.806 38 1.9094 −1.5819 −2.3119
log10ðm1=GeVÞ −11.501 −11.273 −11.381 −11.270
mc (GeV) 0.1955 0.1999 0.2153 0.2098
md (GeV) 0.000 481 0 0.000 427 0 0.000 438 0 0.000 441 6
ms (GeV) 0.018 14 0.017 98 0.027 05 0.027 91
mb (GeV) 0.9916 0.9885 0.9789 1.004
Vuc 0.2242 0.2241 0.2243 0.2245
Vsb 0.003 703 0.003 674 0.004 025 0.004 011
Vub 0.036 92 0.036 92 0.036 93 0.036 12
δKM 1.218 1.189 1.206 1.190

Pull
mc 0.099 0.275 0.893 0.672
md −1.186 −1.328 −1.299 −1.290
ms 0.094 0.061 1.876 2.048
mb 0.061 −0.042 −0.362 0.464
Vuc 0.086 0.033 0.156 0.229
Vsb 0.006 −0.057 0.722 0.691
Vub −0.065 −0.064 −0.051 −0.675
δKM 0.190 0.045 0.128 0.048

r 0.0138 0.0144 0.0279 0.0285
r2 0.323þ 0.00618i 0.311 − 0.00331i 2.78þ 0.00190i 2.77 − 0.379i
cRvR (GeV) 2.85 × 1013 1.76 × 1013 4.69 × 1014 3.81 × 1014

χ2 1.48 1.85 6.70 7.51
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neutrino mass is small compared with the other two
eigenvalues. For example, at R ¼ 0.001, the lightest mass
is 6.9ð5.5Þ × 108 GeV while the other masses are
3.3ð3.5Þ × 1014 GeV and 1.3ð1.2Þ × 1016 GeV for θ23 ¼
0.71ðπ=4Þ. In addition, the lightest right-handed neutrino
mass is insensitive to R while the other two eigenvalues of
the neutrino mass behave as ∼1=R in that small R region,
which is also consistent with the analytical consideration in
Sec. III. Around the global best fit (vR ∼ 1013 GeV), in
contrast, the lightest neutrino mass grows and becomes
nearly the same scale as the second largest neutrino mass.
For example, at the global best fit R, the lightest neutrino
mass is 2.4ð2.2Þ × 1010 GeV while the other two eigen-
values are 4.6ð3.2Þ × 1010 GeV and 11.1ð6.9Þ × 1011 GeV
for θ23 ¼ 0.71ðπ=4Þ.
We assume the normal hierarchy of the neutrino masses,

m1 < m2 < m3, in the above discussion. We also search for
the χ2 minimum for the inverted hierarchy case, which can

be done since the neutrino mass matrix is given as input in
our formula. We find that the fit does not lead to a
competitive result within the energy scale from 1013 to
1016 GeV, which gives χ2 > 200.

D. Prediction of PMNS phase in the neutrino oscillation

The PMNS phase δPMNS is one of the interesting
predictions of our fitting results. Though the accuracy is
not still sufficient, the on-going experiments [3] already
give a tendency of the parameter region. The long-baseline
accelerator experiments and its global fit [29] suggest that
θ23 larger than π=4 is slightly favored while the reactor
experiments support small θ23ð< π=4Þ. Figure 2 shows the
global best fit by [5] which involves both the accelerator
and the reactor experiments.8 Although the wide range of

TABLE III. The fit result for type II.

Type II

Best fit R ¼ 0.001

θ23 0.710 π=4 0.710 π=4
R 5.1582 7.2861 0.001 0.001
αe −0.819 68 −1.8785 −0.666 48 −0.253 01
αμ −1.0015 1.5169 −2.8148 2.8177
ατ 1.4632 2.8853 −0.539 61 −0.842 87
α2 −2.8481 2.8306 −2.8709 −3.1146
α3 −0.306 01 1.1731 −1.9809 −2.8604
δPMNS −0.281 15 1.4476 −2.3550 −3.1131
log10ðm1=GeVÞ −11.592 −11.467 −11.207 −11.173
jδj 75.056 100.11 15.545 16.156
ArgðδÞ 0.117 82 0.115 35 0.439 12 0.515 67

mc (GeV) 0.1931 0.1929 0.1978 0.1989
md (GeV) 0.000 927 8 0.000 930 9 0.000 413 8 0.000 393 6
ms (GeV) 0.017 85 0.017 67 0.019 80 0.020 28
mb (GeV) 0.9897 0.9898 0.9903 0.9901
Vuc 0.2240 0.2240 0.2240 0.2241
Vsb 0.003 698 0.003 698 0.003 765 0.003 724
Vub 0.037 00 0.036 99 0.036 94 0.036 95
δKM 1.180 1.180 1.195 1.160

Pull
mc 0.004 −0.005 0.191 0.236
md −0.010 −0.002 −1.363 −1.416
ms 0.036 0.000 0.426 0.522
mb −0.002 0.000 0.017 0.010
Vuc 0.002 −0.012 −0.000 0.027
Vsb −0.005 −0.005 0.144 0.054
Vub −0.004 −0.009 −0.044 −0.039
δKM −0.001 −0.001 0.075 −0.099
r 0.0140 0.0138 0.0230 0.0233
r2 0.506þ 0.0252i 0.502þ 0.00628i 2.15þ 0.227i 2.22 − 0.160i
cRvR (GeV) 1.19 × 1013 0.861 × 1013 8.86 × 1016 9.22 × 1016

χ2 0.001 0.0003 2.10 2.35

8The global best fit is recently updated by [6]. The result does
not significantly change.
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the parameter region is still allowed, negative δPMNS with
small θ23 (<π=4) is slightly favored. It is expected that the
experiments will present more accurate δPMNS as well as θ23
within a few years. In addition, accessibility of other future
experiments is estimated and found to reach 10 and several
percent accuracy for θ23 and 10 to 40 percent accuracy for
δPMNS [30]. Therefore, it is interesting to compare the
current experimental favored region with our fit prediction.
For that purpose, we search for the global χ2 minimum

for each fixed θ23 and δPMNS
9 in the range of 0.675 <

θ23 < 0.835 and jδPMNSj < π allowing R free within a
range of 0.0001 < R < 100 and also explore the same
parameter region at R ¼ 0.001 (cRvR ∼ 1016 GeV) for
type II. Here we set the parameter range of θ23 as the
2σ region of Ref. [5].
Figure 3 shows the χ2 map with respect to δPMNS and θ23

for each case. The darker blue region represents higher χ2

where the step size is given by the color bars beside the
map. For type I global best fit (left panel), the figure shows
that jδPMNS=πj < 0.3 is mildly disfavored when θ23 is large
ð>π=4Þ. At most of the points, the largest contribution to χ2

comes from (smaller) md with 1–2.5σ deviation. The
second largest contribution is from (larger) ms and
(smaller) δKM, which becomes conspicuous at the disfa-
vored region and reach 1–1.5σ. Interestingly, the χ2

asymmetry on the δPMNS sign is mainly derived from the
δKM deviation, the center of which is located at around
δPMNS=π ∼ 0.1. If δKM is more precisely measured in the
future, this asymmetry will be stressed, which leads a
stronger prediction on the sign of the PMNS phase.

For type II, the χ2 map of the global best fit (middle
panel) shows that χ2 is small enough under any value of θ23
and δPMNS. In contrast to the type I case, larger χ2 appears at
jδPMNS=πj > 0.5 in a large θ23ð>0.75Þ region, implying
that the fit becomes an interesting prediction if θ23 is large
as suggested by the current accelerator experiments. The
largest contribution to χ2 is from md (0–1.2σ smaller) and
the second largest contribution is from ms (0–0.7σ smaller)
and the other contributions are negligible. We also check
the χ2 behavior at large θ23 (0.835 < θ23 < 0.88) under
fixed δPMNS=π ¼ −0.5 and find that the χ2 value remains
less than 3.0 for all the θ23 region. We expect that more
accurate measurement against the observables used in our
fit will resolve the degeneracy of the χ2 map in the near
future.
For type II of R ¼ 0.001 (right panel), though the

shape of the χ2 map is similar to the type I best fit, it
seems more symmetric with the δPMNS-axis and its
disfavored region is more obvious. The χ2 value within
jδPMNS=πj < 0.5 steeply increases as θ23 becomes large
and reaches ∼80 at δPMNS=π ∼ 0. (In the figure, we set
the darkest blue panel to represent χ2 > 25.) Particularly,
δPMNS=π ∼ −0.5 with a large θ23ð>0.81Þ is strongly
disfavored in this phenomenologically preferred case.
A stronger upper bound on θ23 can be found when
jδPMNSj is small and reaches θ23 < 0.73 at jδPMNS=πj ∼ 0.
At a point with a small χ2ð<5Þ in our map, the largest
contribution to χ2 comes from md (1–1.5σ smaller) and
ms (0–1.5σ larger). While the md contribution does not
strongly depend on θ23; δPMNS, the ms deviation becomes
large at the disfavored region (jδPMNS=πj < 0.5 with a
large θ23) and reaches ∼2.5σ. Still, these contributions are
subdominant at the disfavored region in which (larger)
mc and (smaller) δKM give 4–6σ and 3–4.5σ deviations,
respectively. In addition, (larger) mb and (larger) Vub also
contribute to χ2 with 3 − 4σ deviation around
jδPMNS=πj ∼ 0 at a large θ23ð>π=4Þ. Similarly to the
type I case, the δKM deviation is slightly δPMNS-axis
asymmetric, which is centered at jδPMNS=πj ∼ 0.1.
However, this asymmetry is canceled by the contribution
from mc, mb which are located at around jδPMNS=πj∼
−0.1. Hence, we cannot conclude which sign of δPMNS is
preferred only from our fit.
Even though it is not easy to explain how the

prediction of the phase is obtained explicitly, one can
understand the results qualitatively, especially in the case of
R ¼ 0.001 for type II. Relating to the result that the fit of
the down-quark mass is smaller than the observation, (1,1)
and (1,2) elements of Mν are smaller than the other
elements in the fit result. In fact, in the special case
with two-zero texture of the neutrino mass matrix,
ðMνÞ11 ¼ ðMνÞ12 ¼ 0, one obtains a relation among
the mixing angles, mass squared ratio, and PMNS phase
[31]. Under the two-zero texture assumption, we
obtain [32,33]

FIG. 2. The preferred region of δPMNS and θ23 given by [5]. The
best fit is shown by the red star. The red, blue, gray areas
represent the 1σ; 2σ and 3σ regions respectively.

9One might think that we can construct the same map by
simply accumulating the MCMC samples by allowing θ23 and
δPMNS free. However, as mentioned in Sec. IV B, the χ2 function
has a large number of deep local minimum and it is difficult to
explore the detailed χ2 map under the full free parameter space.
Hence, we decide to fix these two parameters for each MCMC
simulation.
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cos δPMNS ¼
Δm2

sol
Δm2

atm
cos 2θ13sin22θ12 − 4sin2θ13ðΔm

2
sol

Δm2
atm
cos4θ12 þ cos 2θ12Þtan2θ23

4sin3θ13ð1þ Δm2
sol

Δm2
atm
cos2θ12Þ sin 2θ12 tan θ23

: ð4:17Þ

In Fig. 4, we plot the relation between δPMNS and θ23 in the
assumption. Surely, those two elements are not exactly zero
in the fits, and the relation provides a guide to understand
the fit results for the prediction of the PMNS phase
depending on the mixing angle. In fact, the points far
from the two-zero texture, such as ðδPMNS; θ23Þ ∼ ð0; 0.8Þ,
are disfavored in our fits in the case of R ¼ 0.001 for
type II. There is also such a tendency in the fits in type I,
though the detail of the fits is more complicated. In the type
II global best fit, on the other hand, the (1,1) and (1,2)
elements are not small for the observed values to be
tuned. Therefore, the χ2 values become slightly larger near
the points from the two-zero texture. We remark that
the smallness of (1,1) and (1,2) elements relates to the
suppression of the proton decay amplitudes [34]. It is
important to measure the PMNS phase and the 23-mixing

angle accurately by the long-baseline neutrino oscillation
experiments in order to survey the structure of the Yukawa
matrices in the SOð10Þ model.

V. IMPLICATION OF THE SCALE vR

We have demonstrated the fitting of the fermion masses
and mixings to make the properties of the solution depend-
ing on vR conspicuously. As we have described, the key to
distinguish the scale vR in the model is the combination of
the precise measurements of 23-mixing angles and PMNS
phases. Surely, the fits are shown by making the χ2

analyses, and the prediction of the PMNS phase is modest
by referring the χ2 values in the parameter space, though the
fits will be more crucial when the parameters are measured
more accurately in the future. Not only the numerical
values of the observables but also the flavor structure in the
Yukawa matrices are different for each solution as we have
displayed in the previous section. The detail of the flavor
structure can be applied to the low energy phenomena,
which can depends on the scale vR. In this section, we study
the application, which can depend on the flavor structure in
the several cases of the model.

A. Lepton flavor violation

The fitting of the fermion masses and mixings in the
minimal SOð10Þ model fixes the matrices of the Yukawa
couplings. The most interesting application of this feature
is to calculate the flavor violation in the SUSY model. In
fact, the Dirac and Majorana neutrino mass matrices are
determined (as a function of vR scale), and the flavor
violation is predictable. The importance of the scale vR can
be also illustrated in the scheme where the SUSY breaking
mass matrices are diagonal as boundary conditions and the
flavor violation is generated only from the Yukawa inter-
action via RGE running. As an application of the solution

FIG. 4. The relation between δPMNS and θ23 under the two-zero
texture assumption: ðMνÞ11 ¼ ðMνÞ12 ¼ 0. The solid line is
drawn using the center value of θ13: sin θ13 ¼ 0.156, and the
dashed lines are drawn to present the 2σ range of θ13. For the
mass squared difference and θ12, we use the center values of
the global analysis [5].

FIG. 3. Left panel: The χ2 map of type I global best fit. The colored tiles show the magnitude of χ2. Middle panel: The χ2 map of type
II global best fit. Right panel: The χ2 map of type II best fit at R ¼ 0.001. We set the darkest blue panel to represent χ2 > 25.
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of the mass and mixing fitting, we perform the calculation
of lepton flavor violation of the μ → eγ process by
assuming the minimal flavor violation, which can be a
major sensitive probe to find a footprint.
There are two kinds of amplitudes of μ → eγ decay,

AL∶ μR → eLγ and AR∶ μL → eRγ, and the branching
fraction of μ → eγ is

Brðμ → eγÞ ∝ jALj2 þ jARj2: ð5:1Þ

Roughly speaking, AL arises from the chargino loop
contribution and the off-diagonal elements in the left-
handed slepton mass matrix contribute to it. The right-
handed amplitude arises from neutralino loop diagrams:
(1) bino-Higgsino diagram, (2) bino-bino diagram. The off-
diagonal elements in the right-handed charged lepton mass
matrix contribute to the diagram (1), and those of both left-
and right-handed slepton mass matrices can contribute to
diagram (2).
The sources of the flavor violation are the following:
(1) Dirac Yukawa coupling, lνcHu.—The right-handed

neutrino νc and the Higgs doublet Hu propagate in
the loop, and the off-diagonal elements of the left-
handed slepton mass matrix are generated [36]. In
the minimal SOð10Þ model, the Dirac neutrino
Yukawa coupling and the heaviest right-handed
neutrino mass are determined (irrespective of vR),
and thus, this contribution is predictable.

(2) Majorana coupling, llΔL.—The SUð2ÞL triplet ΔL
and the left-handed lepton doublet l propagate in the
loop, and the off-diagonal elements of the left-
handed slepton mass matrix are generated. In the
triplet seesaw, when the SUð2ÞL triplet contribution
is in the sub-eV range, the mass of the ΔL is about
1013 GeV, and this contribution will be important to
the lepton flavor violation. Since the coupling matrix
is unified to the 126 Higgs coupling, the Majorana
coupling matrix is determined by the fermion mass
and mixing fitting, up to the overall mixing param-
eter. The coupling matrix f is obtained as the
original matrix f multiplied by the Higgs mixing
as given in Sec. II, and thus, this contribution is not
fully determined by the fit of the fermion masses and
mixings. Since the matrix is obtained up to the
overall factor, the ratio of the contributions to
μ → eγ, τ → μγ and τ → eγ is predictable if the
contributions from the other sources are small.
Because the Higgs mixing cannot be larger than
1, the matrix elements of the Majorana coupling
have lower bounds in the simplest model. However,
if the 54 Higgs is adopted, the SUð2ÞL triplet from
the 126 is mixed with the one in 54, and then, the
SUð2ÞL triplet mixing is also multiplied, and the
lower bound from this source is model dependent.

(3) ececΔ−−
R , ecνcΔ−

R couplings.—If the SUð2ÞR sym-
metry or Uð1ÞR ×Uð1ÞB−L symmetry is broken
much below the GUT scale, the fields of Δ−−

R
and/or Δ−

R can be light and they propagate in the
loop and the off-diagonal elements of the right-
handed charged-lepton mass matrix is generated.
This contribution is related to the Higgs spectrum
and model dependent, and thus, it is not very
predictable. However, if vR is ∼Oð1013Þ GeV, this
contribution is not small and needs to be considered.
Since it contributes to the flavor-changing neutral
currents (FCNC) from the right-handed sleptons,
flavor violating decay is generated from the neu-
tralino loop diagram.

(4) ecucHC coupling.—In the language of SUð5Þ GUT,
10 · 10 · 5H includes this coupling. The right-handed
up-type quarks and the colored Higgs fields HC
propagate in the loop, and the off-diagonal elements
of the right-handed charged-lepton mass matrix are
generated. In the other sources, the mass of the fields
which propagate in the loop is supposed to be of the
order of 1013 GeV, while the colored Higgs mass is
Oð1016Þ GeV, and thus, this contribution is not very
important, compared to the others in the current
context of SOð10Þ model.

In general, those Yukawa coupling Yij to the charged-
leptons can induce off-diagonal elements in the slepton
mass matrices by RGE in the form of

ðM2
~l;~e
Þ
i≠j

¼ −
C
8π2

X
k

YikY�
jkð3m2

0 þ A2
0Þ ln

M�
MX

: ð5:2Þ

Here m0 is a universal scalar mass, A0 is a universal scalar
trilinear coupling,M� is a cutoff scale, MX is the mass of a
heavy field which propagates in the loop, and C is a group
weight factor. In particular, the off-diagonal elements
induced by the Dirac neutrino Yukawa coupling Yν can
be roughly written as

ðM2
~l
Þ
i≠j

¼ −
1

8π2
X
k

ðYνÞikðYνÞ�jkð3m2
0 þ A2

0Þ ln
M�
MRk

;

ð5:3Þ
where Yν is given in the basis where the right-handed
neutrino mass matrix is diagonal, and MRk

is an eigenmass
of the kth generation right-handed neutrino. It is important to
note that the gluino and squark masses should be heavy due
to the LHC results, and thus, the amount of the induced
FCNCbecomes less in theuniversal SUSYbreakingmodels.
The discovery of the 125 GeV Higgs boson also pushes up
the squark masses. If the mass of the squarks and gluino is O
(10) TeV, it is hard to extract the off-diagonal elements from
the flavor data. However, if the squark and gluinomasses are
about 2 TeV, the scalar trilinear coupling A0 has to be large
(∼5 TeV) to obtain the Higgs mass to be 125GeV, and then,
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the off-diagonal elements are generated (even ifm0 is small)
and the FCNCs are induced slightly. Therefore, the SUSY
contribution can be consistent with the experimental results
of many of the FCNC processes, but a slight excess can be
observed in a processwhose amplitude can have an enhance-
ment factor. We remark that the circumstances are changed
from the literature a few years ago.
Another main circumstance changed by the LHC experi-

ments is the SUSY mass spectrum: The gluino and squark
masses are bounded from below. The observation of Bs →
μþμ− to be consistent with the SM prediction also bounds
the parameters [37]. Though the bound of the slepton
masses, which is important for the lepton flavor violating
decays, is not directly related to the gluino and squark mass
bound, the slepton masses depend on the gluino and squark
mass bounds if the universal SUSY breaking is assumed.
The bounds depend on the SUSY breaking scenario. Since
the anomaly mediation is an infrared phenomenon,
the slepton spectrum is still less bounded compared to the
squark masses, even in the GUT models.10 We calculate the
lepton flavor violation using theYukawa couplings by fitting

the fermion masses and mixings in the minimal SOð10Þ
model assuming the universality to make the number of
SUSY breaking parameters less, and thus, the slepton mass
spectrum depends on the gluino mass bound indirectly. We
choose the unified gauginomassm1=2 ¼ 800 GeV to satisfy
the current gluino bound and to be covered by the next run at
the LHC. We vary the universal scalar mass m0, which is
important to the sleptonmasses. The scalar trilinear coupling
A0 is chosen to make the Higgs mass to be 125 GeV,
depending onm0. The ratio of theVEVof up- and down-type
Higgs bosons, tan β, is an important parameter because the
decay width of μ → eγ is roughly proportional to tan2β. We
choose tan β ¼ 10 in the calculation.
In Fig. 5, we show the results of the numerical calcu-

lation in four cases given by the χ2 minimum fits, where the
right-handed neutrino masses and the Dirac neutrino
Yukawa couplings are given as follows in the basis where
the charged lepton and the right-handed neutrino mass
matrices are real/positive diagonal. Using unphysical phase
freedom in the SM, we make the ði; 1Þ components to
be real.

(1) type II, cRvR ¼ 8.86 × 1016 GeV (R ¼ 0.001)

MR1
¼ 6.9 × 108 GeV; MR2

¼ 3.3 × 1014 GeV; MR3
¼ 1.2 × 1016 GeV; ð5:4Þ

Yν ¼

0
B@

0.000111 0.000203þ 0.000217i 0.00888þ 0.00372i

0.000440 0.0308 − 0.0248i 0.0426þ 0.0013i

0.00607 −0.0276 − 0.0069i 0.990 − 0.278i

1
CA; ð5:5Þ

(2) type II, cRvR ¼ 1.19 × 1013 GeV (R ¼ 5.1582) (the best fit)

MR1
¼ 2.4 × 1010 GeV; MR2

¼ 4.6 × 1010 GeV; MR3
¼ 1.1 × 1012 GeV; ð5:6Þ

Yν ¼

0
B@

0.00301 −0.00147 − 0.00394i −0.0031þ 0.0134i

0.0211 0.00023 − 0.0284i −0.0073þ 0.0359i

0.103 −0.044 − 0.131i −0.324þ 0.428i

1
CA; ð5:7Þ

(3) type I, cRvR ¼ 4.69 × 1014 GeV (R ¼ 0.23713)

MR1
¼ 6.6 × 108 GeV; MR2

¼ 1.3 × 1012 GeV; MR3
¼ 5.5 × 1013 GeV; ð5:8Þ

Yν ¼

0
B@

0.0000957 0.000056 − 0.000189i 0.00852 − 0.00459i

0.000222 0.0279 − 0.0253i 0.0418 − 0.0143i

0.00400 −0.0081þ 0.0177i −0.02 − 1.11i

1
CA; ð5:9Þ

10In fact, if we take the known anomaly of the muon g − 2 seriously, the universal SUSY breaking is not very favored after the LHC
results bound the gluino and squark masses, and the mixed modulus-anomaly mediation is favored in the unification scenario [38]. In
that scenario, the branching fraction of μ → eγ becomes larger and the flavor nonuniversality (as we will describe in Sec. X) is needed to
satisfy the current bound.
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(4) type I, cRvR ¼ 2.85 × 1013 GeV (R ¼ 2.9853) (the best fit in type I)

MR1
¼ 6.8 × 109 GeV; MR2

¼ 3.6 × 1011 GeV; MR3
¼ 3.0 × 1012 GeV; ð5:10Þ

Yν ¼

0
B@

0.000443 0.00236þ 0.00016i 0.0024þ 0.0109i

0.00302 −0.00648 − 0.00218i 0.0105þ 0.0413i

0.0208 0.100 − 0.0004i 0.004þ 0.527i

1
CA: ð5:11Þ

As explained, the effects from ececΔ−−
R , ecνcΔ−

R cou-
plings are absent in case 1, and in type I solutions (3 and 4),
the contribution from the Majorana coupling is absent. The
contribution from the left-handed Majorana coupling has
an ambiguity from the Higgs mixings, and here we assume
the mixing to make the contributions to the flavor violation
maximal. In the figure, the behavior of the plot in case 3
looks different. This is because the (3,3) element of the
Dirac neutrino Yukawa coupling is a bit larger than others,
and the stop masses are reduced indirectly due to the RGE
evolutions, and a larger value of the A-term is needed to
reproduce 125 GeV Higgs mass compared to the others.
[The (3,3) element in case 1 is also large, but the effect is
not large since the 3rd right-handed neutrino is heavy and
soon decoupled in the RGE evolution.] The induced
off-diagonal elements in the slepton mass matrices are
proportional to 3m2

0 þ A2
0, and thus, the m0 dependence of

Brðμ → eγÞ looks different between the smaller and the
larger m0. As noted, the value of A0 is chosen to make the
Higgs mass 125 GeV, the detailed numerical values depend
on the Higgs mass. We note that due to a large value of A0

(∼4–6 TeV), the stau becomes LSP for m0 < 600 GeV.
The branching fraction of case 2 is the largest (in the region

satisfying the current experimental bound). This is because
the (1,1) and (1,2) elements of the Dirac neutrino Yukawa
coupling are larger than the other cases, relating to the
result of the proper size of the down-quark mass fit in
case 2.
Relating to the vR dependence, we here comment on the

electron EDM. We assume A0 and the Higgsino mass μ to
be real because otherwise the EDM becomes much larger
than the current experimental bound. Even in the case, if
there are e-τ flavor changes (with CP phases) for both left-
and right-handed slepton mass matrices, the bino-bino
diagram can hit the Aτvd − μmτ tan β for the electron
EDM amplitudes, and the value of the EDM can be more
than the current experimental bound for slepton masses to
be ∼1 TeV. Surely, if there is only left-handed flavor
change such as the case of cRvR ¼ 1016 GeV, the electron
EDM is tiny as long as A0 and μ are real. Therefore, if the
scale of vR is much less than the unification scale, and the
ecνcΔ−

R coupling can generate the right-handed slepton
flavor changing, the electron EDM can be large in the
SOð10Þ model, and the electron EDM can be the probe of
the scale vR.
In the numerical calculation in the above cases, the

electron EDM becomes large except for case 1 for
vR ∼ 1016 GeV. In case 2, the current bound of the electron
EDM, jdej < 8.7 × 10−29e · cm [39], can be satisfied for
m0>2.5TeV, and then, we obtain Brðμ→eγÞ<1.1×10−13.
In case 4 (the best fit in type I), we need m0 > 2 TeV, and
then Brðμ → eγÞ < 2.3 × 10−13. In case 1, the electron
EDM is tiny (<10−35e · cm) and m0 ≃ 1 TeV is still
allowed, which can provide the boundary value of the
current μ → eγ bound.

B. Proton decay

As we have explained, the flavor structure is different in
each solution, which influences the proton decay ampli-
tudes depending on the scenarios of seesaw mechanism and
the scale vR. The calculation of the proton decay ampli-
tudes in various scenarios has been done in the literature
[40], and we do not repeat it in this paper. However, in the
earliest works, they sometimes neglect right-handed proton
decay operators to calculate the decay rate, and the
importance of the flavor structure [especially for the

FIG. 5. The branching ratio μ → eγ for type II at cRvR ¼
8.86 × 1016 GeV (R ¼ 0.001) (red solid line), type II at the
global minimum (cRvR ¼ 1.19 × 1013 GeV) (red dashed line),
type I at the local minimum (cRvR ¼ 4.69 × 1014 GeV) (blue
solid line), and type I at the global minimum (cRvR ¼
2.85 × 1013 GeV) (blue dashed line). We set θ23 ¼ 0.71.
The gray dashed line shows the current experimental bound,
Brðμ → eγÞ < 4.2 × 10−13 [35].
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(1,1) and (1,2) elements in the Yukawa matrices] for natural
suppression of the proton decay amplitudes [34] is missing.
We stress that the flavor structure is important to suppress
the proton decay amplitudes in this model, and claim the
importance of the large vR solution. We can show that the
proton decay amplitudes can be suppressed near the line
shown in Fig. 4 in the solution. The detail will be discussed
in a separate paper [41].

C. Discussion on the modification of Yukawa
couplings by threshold corrections

The quark masses and mixings can receive large cor-
rections from the low energy threshold effects. This
inversely means that the present procedure in the
SOð10Þ model (inputting the lepton parameters and out-
putting quark masses and mixings) provides a prediction to
holomorphic Yukawa couplings for quarks at the unifica-
tion scale, and the deviations from the observed values
of quark masses can be buried by the threshold effects
[42–44]. This feature can be applied to suppress the
dimension-five operators in the SUSY GUT models.
As given in the previous section, in the case R ∼Oð1Þ

[vR ∼Oð1013Þ GeV], the down-quark mass (and all the
other masses and mixings) can be fully fit. In the solution,
the (1,1) element of the 126 Higgs coupling (in the basis
where Md is diagonal) is as large as the down-quark
Yukawa coupling. On the other hand, the solutions for
R ≪ 1, the (1,1) element can be much less than the down-
quark Yukawa coupling, which has a merit to the natural
suppression of the proton decay amplitudes though the fit
of the down-quark mass deviates from the observation at
around 2σ.
In the SUSY models, in addition to the corrections from

the RGEs, the finite loop corrections arise due to the SUSY
breaking. It is famous that the bottom quark mass can be
corrected largely by the finite corrections of the non-
holomorphic term, qdcH�

u. Actually, the quark mass matri-
ces, which are connected to the GUT scale via RGEs, can
be modified by the loop correction via the SUSY breaking
around TeV scale, and in general, all the quark masses and
mixings can be different from them via the RGE evolution.
However, the corrections from the loop corrections are
severely restricted from the flavor physics data, such as
K-K̄, B-B̄ mixings, b → sγ, and Bs;d → μþμ−, and there is
not so much room to be available. For example, if the
bottom quark mass is modified, the b → sγ and Bs;d →
μþμ− processes can be also modified from the SM
predictions. If the second generation masses are modified,
the K-K̄ and/orD-D̄mixings are modified. One may adjust
them to the flavor data in general even if there are large
corrections in all the quark masses and mixings, but it is not
an attractive situation. Among the masses and mixings,
only the first generation masses can be modified without a
major contradiction to the flavor data, and thus, it is suitable
to make the minimal modification to the fit results.

The finite correction of the down-type quark masses
from the gluino loop diagram (neglecting the effect from
flavor mixings) can be written as

Δmdi ≃
2αs
3π

m~g sin θiLR

�
F

�
m2

~g

m2
~diL

�
− F

�
m2

~g

m2
~diR

��
; ð5:12Þ

where m~g is a gluino mass, FðxÞ ¼ log x=ðx − 1Þ, and θLR
is a left-right mixing angle,

sin θiLR ≃ Ai
dvd − μmdi tan β

m2
~diL
−m2

~diR

: ð5:13Þ

Thus, if the A term is proportional to the Yukawa coupling
as in the minimal supergravity model (Ai

dvd ≃ Amdi), the
gluino contribution to the fermion mass is flavor universal:

�
Δmd

md

�
gluino

≃
�
Δms

ms

�
gluino

≃
�
Δmb

mb

�
gluino

: ð5:14Þ

The chargino contribution can break the flavor universality
to the mass corrections, but the corrections to down and
strange quark are still universal. In order to correct the fit of
the down-quark masses and mixings, we need to break the
universality of the corrections, and therefore, the non-
proportional term of the trilinear coupling is needed.
In the minimal supergravity model, the scalar potential

contains the trilinear coupling originated from the mixed
term between the visible and hidden sectors, W ¼
Wvis þWhid, and thus, the scalar trilinear couplings are
proportional to the Yukawa couplings. In the string-inspired
models, the Yukawa coupling can depends on moduli, τ,
and the nonproportional term can be induced.11 The
Yukawa matrix and the derivative of the Yukawa matrix
are not necessarily simultaneously diagonalized, and there-
fore, the nonproportional term can have complete different
structure compared to the fermion mass matrix. As a result,
the (1,1) element of the nonproportional part of the A term
(in the basis of the Yukawa matrix is diagonal) is not
necessarily hierarchically small, and it can easily modify
the first generation fermion masses. If the gluino and
squark masses are around 2 TeV, we estimate that
A11
d cos β is sub-GeV to modify the down-quark mass.

Suppose that all the components are roughly the same order
of the trilinear coupling, the corrections to the other
elements of the mass matrix are also of the order of
1 MeV, which can be negligible for the generation mixings
and the FCNC processes.

11In general, denoting the cubic coupling of the superfield ΦI
in the superpotential as YIJKΦIΦjΦK , one obtains the scalar
trilinear coupling as

AIJK ¼ A0ðYIJK þ c∂τYIJKðτÞÞ: ð5:15Þ
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If the down-quark mass is modified via the trilinear
scalar coupling, the up-quark mass can be also modified.
Therefore, the (1,1) element of the trilinear coupling for
the up-type quarks should be small, which is possible
within a freedom of the model parameter. Because there
are only two Higgs coupling matrices in the minimal
model, the (1,1) element of the trilinear coupling for the
charged lepton remains in that case, and thus, the electron
mass is also modified. The correction to the electron mass
is induced by the Bino component of the neutralino, and
the modification is not large. Instead, there can be freedom
to tune the loop correction of the up-quark mass and
cancel the tree-level one to make the physical up-quark
mass tiny.
The scalar trilinear triplet Higgs couplings can induce

dimension-four proton decay operators via the triplet Higgs
scalar exchange, and the (1,1) element of the coupling can
make the excess of the proton decay amplitudes after
double gaugino dressing. However, to generate the dimen-
sion-four operators, the holomorphic bilinear mass term of
the triplet Higgs scalars is needed. Besides, the other
elements of the trilinear scalar coupling matrix are free
and can be small. Thus, the induced amplitudes can be
suppressed within the freedom of the parameters.
As the implication to the low energy observables, the

bounds from the neutron EDM need to be considered, as in
the case of the minimal flavor violation, and the non-
proportional term of the trilinear coupling should be
Hermitian (in the basis where the quark mass matrix is
real/positive diagonal). Because the coupling matrix is
symmetric due to the SOð10Þ algebra, the phases of the
components in the nonproportional term are severely
restricted. The nonproportional term can be a new source
of the flavor violation via the RGE evolution of the scalar
masses, and the μ → eγ process will be the most stringent
constraint on it. As described before, the nonproportional
term does not necessarily have a hierarchical structure
parallel to the Yukawa hierarchy, and within the freedom,
the contributions to μ → eγ can be switched off. Rather,
choosing the size of ð1; 2Þ=ð2; 1Þ elements of the trilinear
coupling, the size of the μ → eγ amplitude can be adjusted,
and the production studied in the previous sections
becomes just a reference value. However, the qualitative
statement relating to the vR scale dependence is expected to
be kept.
We note that the charge/color breaking vacua may appear

for the large (1,1) element of the scalar trilinear coupling,
and the electroweak symmetry breaking vacua may become
metastable [45,46], similarly to the models in which the
fermion masses and mixings are modified by the loop
corrections [44]. Surely, if the lifetime of our vacuum can
be larger than the age of the universe [47], the model is still
valid. The bounds from the tunneling processes of the
vacua should be analyzed model independently, and the
bounds are beyond the scope of this paper. We just mention

that the vacua may be unstable, but long-lived as in the
other analyses.

VI. CONCLUSIONS AND DISCUSSIONS

We study the minimal SOð10Þ model in which quarks
and leptons couple to only 10 and 126 Higgs representa-
tions. In the minimal Yukawa coupling, the up-quark mass
is not necessarily small, and as a consequence, the relation
memμmτ ≃mdmsmb is not obvious for a proper size of
Cabibbo angle [48]. However, the quark and lepton masses
can be fully fitted (without such a clear reason) by using the
full parameter freedom even in the case of the minimal
Yukawa coupling. In fact, as we have described, in the case
of R ∼Oð1Þ [i.e., vR ∼ 1013 GeV], the freedom is active to
fit all of the fermion masses and mixings, which is
consistent with the number counting of the parameters.
Even though the fitting of fermion masses and mixings is

just a choice of parameters, the minimal SOð10Þ is still
attractive since the model is predictive. As was seen, the
scale of vR is important for the χ2 minimum fits, and it is
related to an intermediate scale determined by the SOð10Þ
symmetry breaking vacua. Although we perform the search
of the χ2 minimum by using the fermion masses at the GUT
scale in the minimal SUSY boundary conditions, the
qualitative properties of the solutions described in
Sec. III are also applied to the case of non-SUSY boundary
conditions. In the non-SUSY model, the intermediate scale
is rather favored for the gauge coupling unification,
contrary to the SUSY models, and the constraints from
the dimension-five proton decays and the flavor physics are
of course absent. To say it inversely, the predicted fermion
mass matrices cannot be probed nor applied to the low
energy physics in the non-SUSY model. In the sense to
probe the GUT scale physics, the SUSY scenario of the
predictive minimal Yukawa coupling in the SOð10Þ model
is still attractive and worth being chased. As it was
explained, the solution for vR ∼ 1016 GeV is interesting
to apply even though the threshold corrections are needed
to fit the center value of the down-quark mass.
As methodology, physicists often assume the minimality

of a model, not only because the model is predictive due to
the reduced number of the parameters, but also because the
prototypal model can contain the essential features to study
the phenomenology of the objects. In general, it is obvious
that the predictivity can be obtained by reducing the
number of parameters. It is important to dissect the property
of the objects to see whether it only originates from the
minimality or whether it comes from any other fundamental
mechanism theoretically. In reality, the minimality at the
GUT scale physics is hard to be verified experimentally,
and one can always claim that the corrections can be
induced since the reduced Planck scale is just two digits
above the GUT scale. Therefore, the concern one has to
care about is whether the prediction is stable under the
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perturbation of the minimality assumption in GUT models,
and we should investigate both the speciality of the
prediction from the minimality assumption and the essen-
tial features which remain predictable even after the model
is extended. As described, the major prediction of the
minimal SOð10Þ model (in which the Yukawa coupling to
the fermions is minimal) is that the Dirac and Majorana
neutrino mass matrices are fully determined.
Sometimes, the Higgs contents are also restricted to be

minimal, i.e., 10þ 126þ 126þ 210, and the number of
parameters in the Higgs superpotential is made to be
minimal in the SOð10Þ model. In the SUSY version of
the minimal Higgs contents, the fermion data fittings
require a typical SOð10Þ symmetry breaking vacuum,
and some decomposed particles from the Higgs multiplets
appear at the intermediate scale to obtain the proper size of
neutrino masses. The gauge coupling evolution is severely
affected by the presence of the particles at the intermediate
scales, and the gauge unification suggests a non-SUSY (or
split-SUSY) version of the model [14,16,17]. In the non-
SUSY scenario, however, it is impossible to communicate
with the predicted fermion mass matrices by using the low
energy phenomena, such as the various modes of baryon
number violating processes and lepton flavor violation,
which are induced by the Yukawa interactions. We, thus,
take a stance to probe the footprint of the GUT scale
physics by using the SUSY scenario, in which the whole
picture of the predicted mass matrices can be influenced to
the low energy physics. In order to have the stance, we do
not employ the minimality of the Higgs contents. As we
have described frequently in this paper, we define the
minimal SOð10Þ model as that based on the minimality of
the Yukawa interaction, which is fully predictive to find the
structure of the fermion mass matrices.
The important parameters in SUSY GUTs, which can

affect low energy physics, are 126 VEV vR, SUð2ÞL triplet
Higgs mass MΔ, the lightest colored Higgs mass MHC

, and
the heavy gauge boson mass MG. The parameters vR, MΔ,
MHC

, and MG are functions of the parameters in the Higgs
potential and particle spectrum (depending on the consis-
tency of the gauge coupling evolutions) deductively, and
one can discuss how the parameters can depend on SOð10Þ
breaking vacua and the particle spectrum [49]. Instead of
specifying the Higgs potential and deriving the scale vR
from the certain number of parameters in the Higgs
potential, we choose them to be free parameters as
methodology because there are plenty of choices to extend
the Higgs potential. In fact, vR is an important scale to
describe the GUT symmetry breaking and the neutrino
mass spectrum, and it is an open question how the right-
handed Majorana neutrino is generated in GUTs and the
size of the light neutrino masses are obtained. As we have
seen, the fit of the fermion masses and mixings depends on
vR. Actually, the naive scale of the right-handed neutrino
masses to reproduce the observation is less than 1014 GeV,

which is hierarchically smaller than the GUT scale. In other
words, the neutrino masses are a bit heavier if the GUT
scale, 1016 GeV, is considered to be a fundamental scale,
and explaining the hierarchy is one of the open questions in
GUTs. In the solution of the minimal SOð10Þ model
featured in this paper, the nearly singular Majorana mass
matrix is contained for a large scale of vR instead of the
smallness of the each component of the matrix. The nearly
singular Majorana matrix is one of the solutions to explain
the neutrino masses keeping the symmetry breaking scale
to be 1016 GeV, because the inverse of the Majorana mass
matrix is included the type I seesaw formulas. In that sense,
this solution can provide an approach to the fundamental
question, and it is interesting to research the prediction of
the model.
In SUð5Þ GUT, the Dirac neutrino mass matrix is

completely independent to the other charged fermions.
In the unified model scenario, the hierarchical forms of
the Dirac and Majorana neutrino mass matrices are often
assumed. The Dirac neutrino mass is generated by the
couplings to the up-type Higgs, and in a certain model,
the hierarchy of the Dirac neutrino mass is assumed to
be similar to the up-type quarks. On the other hand, the
predicted Dirac neutrino Yukawa coupling in the min-
imal SOð10Þ model is less hierarchical rather than the
up-type quarks, and the hierarchy rather resembles the
down-type quark or charged leptons. This is simply
because the up-type quark mass hierarchy in this model
is realized by a cancellation between two Yukawa
matrices. Even in the nonminimal models, in which
120 Higgs is added to the Yukawa couplings and the
(1,1) elements of the Yukawa couplings are assumed to
be small to suppress proton decay amplitudes in an
SOð10Þ model, the Dirac neutrino Yukawa coupling also
resembles the down-type quarks and the charged leptons
and the size of the induced FCNCs is similar to the
minimal model [33]. In that sense, the size of the
induced FCNCs is predictable in the renormalizable
SOð10Þ models. This feature provides an important
implication to the process of μ → eγ in SUSY models,
and it can be tested by the experiment.
As described in the text, the electron EDM is one of the

major implications of the vR dependence in the SOð10Þ
model. If the scale vR is less than the unification scale, the
flavor violation is generated in both left- and right-handed
slepton mass matrices, and the electron EDM is enlarged.
If the source of the flavor violation is Hermitian, the phase
of the EDM amplitude is canceled. In the minimal model,
the Yukawa coupling is symmetric due to the SOð10Þ
algebra, and the components are not real numbers to
reproduce the KM phase. Therefore, the electron EDM
can be induced in general for the lower scale vR. On the
other hand, the Yukawa coupling to the 120 representation
is antisymmetric, and thus, there can be room to generate
the Hermitian flavor violation in the nonminimal models.

FUKUYAMA, ICHIKAWA, and MIMURA PHYSICAL REVIEW D 94, 075018 (2016)

075018-18



Consequently, the electron EDM can be a major probe to
distinguish the models.
Among the quark-lepton phenomena directly induced by

the Yukawa interaction, the CP violation in the neutrino
oscillations is the last piece to be discovered. In fact, the
ongoing experiments have already given the hint that CP is
violated in the oscillations, and it is expected that the CP
phase (PMNS phase) is measured in the near future.
Remarkably, the minimal SOð10Þ model has predicted
the proper size of neutrino 13-mixing angle (before its
measurement), which is consistent with the current exper-
imental results. We show the prediction of the PMNS
phase in the minimal SOð10Þ model, in which there are
disfavored region depending on the 23-mixing. Now the
prediction of the PMNS phase of the model is being
challenged to the experimental results, including the
precise measurement of the 23-mixing.
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APPENDIX: SQUARE ROOT MATRIX

A square root matrix of A, denoted as
ffiffiffiffi
A

p
, is defined to

be matrices which satisfy ð ffiffiffiffi
A

p Þ2 ¼ A.
In our numerical practical reason, we assume that the

eigenvalues of a 3 × 3 matrix A, λ1;2;3, are not degenerate.
Then, it can be diagonalized by a matrix V:

A ¼ V

0
B@

λ1

λ2

λ3

1
CAV−1: ðA1Þ

The square root matrix can be expressed as

ffiffiffiffi
A

p
¼ V

0
B@

� ffiffiffiffiffi
λ1

p

� ffiffiffiffiffi
λ2

p

� ffiffiffiffiffi
λ3

p

1
CAV−1: ðA2Þ

The double signs are in no particular order, and there are
eightfold matrices for the square root of a 3 × 3 matrix.
Defining matrices Λi as

Λ1 ¼ V

0
B@

1

0

0

1
CAV−1; Λ2 ¼ V

0
B@

0

1

0

1
CAV−1;

Λ3 ¼ V

0
B@

0

0

1

1
CAV−1; ðA3Þ

we obtain

A ¼ λ1Λ1 þ λ2Λ2 þ λ3Λ3: ðA4Þ

One can easily obtain the following relations:

Λ1 þ Λ2 þ Λ3 ¼ 1; ΛiΛj ¼ Λiδij: ðA5Þ

By solving the simultaneous equation

0
B@

1 1 1

λ1 λ2 λ3

λ21 λ22 λ23

1
CA
0
B@

Λ1

Λ2

Λ3

1
CA ¼

0
B@

1

A

A2

1
CA; ðA6Þ

we obtain

Λ1 ¼
1

ðλ1 − λ2Þðλ1 − λ3Þ
ðA2 − ðλ2 þ λ3ÞAþ λ2λ31Þ; ðA7Þ

Λ2 ¼
1

ðλ2 − λ1Þðλ2 − λ3Þ
ðA2 − ðλ1 þ λ3ÞAþ λ1λ31Þ; ðA8Þ

Λ3 ¼
1

ðλ3 − λ1Þðλ3 − λ2Þ
ðA2 − ðλ1 þ λ2ÞAþ λ1λ21Þ: ðA9Þ

Using the matrices Λi, the square root matrix can be
written as

ffiffiffiffi
A

p
¼

X
i

si
ffiffiffiffi
λi

p
Λi; ðA10Þ

where si stands for the sign of each root of eigen-
value, si ¼ �1.
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